當(dāng)前位置:育文網(wǎng)>初中>初中數(shù)學(xué)> 初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)

初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)

時(shí)間:2024-10-18 17:57:42 初中數(shù)學(xué) 我要投稿

初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)15篇[必備]

  總結(jié)就是把一個(gè)時(shí)段的學(xué)習(xí)、工作或其完成情況進(jìn)行一次全面系統(tǒng)的總結(jié),它有助于我們尋找工作和事物發(fā)展的規(guī)律,從而掌握并運(yùn)用這些規(guī)律,因此,讓我們寫一份總結(jié)吧。如何把總結(jié)做到重點(diǎn)突出呢?以下是小編整理的初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié),希望對(duì)大家有所幫助。

初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)15篇[必備]

初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)1

  銳角三角函數(shù)定義

  銳角角A的正弦(sin),余弦(cos)和正切(tan),余切(cot)以及正割(sec),余割(csc)都叫做角A的銳角三角函數(shù)。

  正弦(sin):對(duì)邊比斜邊,即sinA=a/c;

  余弦(cos):鄰邊比斜邊,即cosA=b/c;

  正切(tan):對(duì)邊比鄰邊,即tanA=a/b;

  余切(cot):鄰邊比對(duì)邊,即cotA=b/a;

  正割(sec):斜邊比鄰邊,即secA=c/b;

  余割(csc):斜邊比對(duì)邊,即cscA=c/a。

  三角函數(shù)關(guān)系

  1、互余角的關(guān)系

  sin(90°—α)=cosα,cos(90°—α)=sinα,tan(90°—α)=cotα,cot(90°—α)=tanα。

  2、平方關(guān)系

  sin^2(α)+cos^2(α)=1

  tan^2(α)+1=sec^2(α)

  cot^2(α)+1=csc^2(α)

  3、積的關(guān)系

  sinα=tanα·cosα

  cosα=cotα·sinα

  tanα=sinα·secα

  cotα=cosα·cscα

  secα=tanα·cscα

  cscα=secα·cotα

  4、倒數(shù)關(guān)系

  tanα·cotα=1

  sinα·cscα=1

  cosα·secα=1

  兩角和差公式

  sin(A+B)= sinAcosB+cosAsinB

  sin(A—B)= sinAcosB—cosAsinB

  cos(A+B)= cosAcosB—sinAsinB

  cos(A—B)= cosAcosB+sinAsinB

  tan(A+B)=(tanA+tanB)/(1—tanAtanB)

  tan(A—B)=(tanA—tanB)/(1+tanAtanB)

  cot(A+B)=(cotAcotB—1)/(cotB+cotA)

  cot(A—B)=(cotAcotB+1)/(cotB—cotA)

  1、不在同一直線上的三點(diǎn)確定一個(gè)圓。

  2、垂徑定理:垂直于弦的直徑平分這條弦并且平分弦所對(duì)的兩條弧。

  3、圓是以圓心為對(duì)稱中心的中心對(duì)稱圖形。

  4、圓是定點(diǎn)的距離等于定長(zhǎng)的點(diǎn)的集合

  5、圓的內(nèi)部可以看作是圓心的距離小于半徑的點(diǎn)的集合。

  6、圓的外部可以看作是圓心的距離大于半徑的點(diǎn)的'集合。

  7、同圓或等圓的半徑相等。

  8、到定點(diǎn)的距離等于定長(zhǎng)的點(diǎn)的軌跡,是以定點(diǎn)為圓心,定長(zhǎng)為半徑的圓。

  9、定理在同圓或等圓中,相等的圓心角所對(duì)的弧相等,所對(duì)的弦相等,所對(duì)的弦的弦心距相等。

  10、推論在同圓或等圓中,如果兩個(gè)圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相等那么它們所對(duì)應(yīng)的其余各組量都相等。

  11、定理圓的內(nèi)接四邊形的對(duì)角互補(bǔ),并且任何一個(gè)外角都等于它的內(nèi)對(duì)角。

  13、切線的判定定理經(jīng)過半徑的外端并且垂直于這條半徑的直線是圓的切線。

  14、切線的性質(zhì)定理圓的切線垂直于經(jīng)過切點(diǎn)的半徑。

  15、推論1經(jīng)過圓心且垂直于切線的直線必經(jīng)過切點(diǎn)。

初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)2

  動(dòng)點(diǎn)與函數(shù)圖象問題常見的四種類型:

   1、三角形中的動(dòng)點(diǎn)問題:動(dòng)點(diǎn)沿三角形的邊運(yùn)動(dòng),根據(jù)問題中的常量與變量之間的關(guān)系,判斷函數(shù)圖象.

  2、四邊形中的動(dòng)點(diǎn)問題:動(dòng)點(diǎn)沿四邊形的邊運(yùn)動(dòng),根據(jù)問題中的常量與變量之間的關(guān)系,判斷函數(shù)圖象.

  3、圓中的動(dòng)點(diǎn)問題:動(dòng)點(diǎn)沿圓周運(yùn)動(dòng),根據(jù)問題中的常量與變量之間的關(guān)系,判斷函數(shù)圖象.

  4、直線、雙曲線、拋物線中的動(dòng)點(diǎn)問題:動(dòng)點(diǎn)沿直線、雙曲線、拋物線運(yùn)動(dòng),根據(jù)問題中的常量與變量之間的關(guān)系,判斷函數(shù)圖象.

  圖形運(yùn)動(dòng)與函數(shù)圖象問題常見的三種類型:

  1、線段與多邊形的運(yùn)動(dòng)圖形問題:把一條線段沿一定方向運(yùn)動(dòng)經(jīng)過三角形或四邊形,根據(jù)問題中的常量與變量之間的.關(guān)系,進(jìn)行分段,判斷函數(shù)圖象.

  2、多邊形與多邊形的運(yùn)動(dòng)圖形問題:把一個(gè)三角形或四邊形沿一定方向運(yùn)動(dòng)經(jīng)過另一個(gè)多邊形,根據(jù)問題中的常量與變量之間的關(guān)系,進(jìn)行分段,判斷函數(shù)圖象.

  3、多邊形與圓的運(yùn)動(dòng)圖形問題:把一個(gè)圓沿一定方向運(yùn)動(dòng)經(jīng)過一個(gè)三角形或四邊形,或把一個(gè)三角形或四邊形沿一定方向運(yùn)動(dòng)經(jīng)過一個(gè)圓,根據(jù)問題中的常量與變量之間的關(guān)系,進(jìn)行分段,判斷函數(shù)圖象.

  動(dòng)點(diǎn)問題常見的四種類型:

  1、三角形中的動(dòng)點(diǎn)問題:動(dòng)點(diǎn)沿三角形的邊運(yùn)動(dòng),通過全等或相似,探究構(gòu)成的新圖形與原圖形的邊或角的關(guān)系.

  2、四邊形中的動(dòng)點(diǎn)問題:動(dòng)點(diǎn)沿四邊形的邊運(yùn)動(dòng),通過探究構(gòu)成的新圖形與原圖形的全等或相似,得出它們的邊或角的關(guān)系.

  3、圓中的動(dòng)點(diǎn)問題:動(dòng)點(diǎn)沿圓周運(yùn)動(dòng),探究構(gòu)成的新圖形的邊角等關(guān)系.

  4、直線、雙曲線、拋物線中的動(dòng)點(diǎn)問題:動(dòng)點(diǎn)沿直線、雙曲線、拋物線運(yùn)動(dòng),探究是否存在動(dòng)點(diǎn)構(gòu)成的三角形是等腰三角形或與已知圖形相似等問題.

  總結(jié)反思:

   本題是二次函數(shù)的綜合題,考查了待定系數(shù)法求二次函數(shù)的解析式,一次函數(shù)的解析式,三角形全等的判定和性質(zhì),等腰直角三角形的性質(zhì),平行線的性質(zhì)等,數(shù)形結(jié)合思想的應(yīng)用是解題的關(guān)鍵.

  解答動(dòng)態(tài)性問題通常是對(duì)幾何圖形運(yùn)動(dòng)過程有一個(gè)完整、清晰的認(rèn)識(shí),發(fā)掘“動(dòng)”與“靜”的內(nèi)在聯(lián)系,尋求變化規(guī)律,從變中求不變,從而達(dá)到解題目的

  解答函數(shù)的圖象問題一般遵循的步驟:

   1、根據(jù)自變量的取值范圍對(duì)函數(shù)進(jìn)行分段.

  2、求出每段的解析式.

  3、由每段的解析式確定每段圖象的形狀.

  對(duì)于用圖象描述分段函數(shù)的實(shí)際問題,要抓住以下幾點(diǎn):

  1、自變量變化而函數(shù)值不變化的圖象用水平線段表示.

  2、自變量變化函數(shù)值也變化的增減變化情況.

  3、函數(shù)圖象的最低點(diǎn)和最高點(diǎn).

初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)3

  1、初中數(shù)學(xué)知識(shí)點(diǎn)口訣

  人說幾何很困難,難點(diǎn)就在輔助線。

  輔助線,如何添?把握定理和概念。

  還要刻苦加鉆研,找出規(guī)律憑經(jīng)驗(yàn)。

  圖中有角平分線,可向兩邊作垂線。

  角平分線平行線,等腰三角形來添。

  線段垂直平分線,常向兩端把線連。

  要證線段倍與半,延長(zhǎng)縮短可試驗(yàn)。

  三角形中兩中點(diǎn),連接則成中位線。

  三角形中有中線,延長(zhǎng)中線加一倍。

  梯形里面作高線,平移一腰試試看。

  等積式子比例換,尋找相似很關(guān)鍵。

  直接證明有困難,等量代換少麻煩。

  斜邊上面作高線,弦高公式是關(guān)鍵。

  半徑與弦長(zhǎng)計(jì)算,弦心距來中間站。

  圓上若有一切線,切點(diǎn)圓心半徑連。

  要想證明是切線,半徑垂線仔細(xì)辨。

  是直徑,成半圓,想成直角徑連弦。

  弧有中點(diǎn)圓心連,垂徑定理要記全。

  圓周角邊兩條弦,直徑和弦端點(diǎn)連。

  要想作個(gè)外接圓,各邊作出中垂線。

  還要作個(gè)內(nèi)切圓,內(nèi)角平分線夢(mèng)園。

  如果遇到相交圓,不要忘作公共弦。

  若是添上連心線,切點(diǎn)肯定在上面。

  輔助線,是虛線,畫圖注意勿改變。

  假如圖形較分散,對(duì)稱旋轉(zhuǎn)去實(shí)驗(yàn)。

  基本作圖很關(guān)鍵,平時(shí)掌握要熟練。

  解題還要多心眼,經(jīng)?偨Y(jié)方法顯。

  切勿盲目亂添線,方法靈活應(yīng)多變。

  分析綜合方法選,困難再多也會(huì)減。

  虛心勤學(xué)加苦練,成績(jī)上升成直線。

  2、初中數(shù)學(xué)知識(shí)點(diǎn)口訣

  學(xué)習(xí)幾何體會(huì)深,成敗也許一線牽。

  分散條件要集中,常要添加輔助線。

  畏懼心理不要有,其次要把觀念變。

  熟能生巧有規(guī)律,真知灼見靠實(shí)踐。

  圖中已知有中線,倍長(zhǎng)中線把線連。

  旋轉(zhuǎn)構(gòu)造全等形,等線段角可代換。

  多條中線連中點(diǎn),便可得到中位線。

  倘若知角平分線,既可兩邊作垂線。

  也可沿線去翻折,全等圖形立呈現(xiàn)。

  角分線若加垂線,等腰三角形可見。

  角分線加平行線,等線段角位置變。

  已知線段中垂線,連接兩端等線段。

  輔助線必畫虛線,便與原圖聯(lián)系看。

  3、有理數(shù)的加法運(yùn)算

  同號(hào)兩數(shù)來相加,絕對(duì)值加不變號(hào)。

  異號(hào)相加大減小,大數(shù)決定和符號(hào)。

  互為相反數(shù)求和,結(jié)果是零須記好。

  【注】“大”減“小”是指絕對(duì)值的大小。

  4、有理數(shù)的減法運(yùn)算

  減正等于加負(fù),減負(fù)等于加正。

  有理數(shù)的乘法運(yùn)算符號(hào)法則

  同號(hào)得正異號(hào)負(fù),一項(xiàng)為零積是零。

  5、合并同類項(xiàng)

  說起合并同類項(xiàng),法則千萬不能忘。

  只求系數(shù)代數(shù)和,字母指數(shù)留原樣。

  6、去、添括號(hào)法則

  去括號(hào)或添括號(hào),關(guān)鍵要看連接號(hào)。

  擴(kuò)號(hào)前面是正號(hào),去添括號(hào)不變號(hào)。

  括號(hào)前面是負(fù)號(hào),去添括號(hào)都變號(hào)。

  7、解方程

  已知未知鬧分離,分離要靠移完成。

  移加變減減變加,移乘變除除變乘。

  8、平方差公式

  兩數(shù)和乘兩數(shù)差,等于兩數(shù)平方差。

  積化和差變兩項(xiàng),完全平方不是它。

  9、完全平方公式

  二數(shù)和或差平方,展開式它共三項(xiàng)。

  首平方與末平方,首末二倍中間放。

  和的平方加聯(lián)結(jié),先減后加差平方。

  10、完全平方公式

  首平方又末平方,二倍首末在中央。

  和的平方加再加,先減后加差平方。

  11、解一元一次方程

  先去分母再括號(hào),移項(xiàng)變號(hào)要記牢。

  同類各項(xiàng)去合并,系數(shù)化“1”還沒好。

  求得未知須檢驗(yàn),回代值等才上算。

  12、解一元一次方程

  先去分母再括號(hào),移項(xiàng)合并同類項(xiàng)。

  系數(shù)化1還沒好,準(zhǔn)確無誤不白忙。

  13、因式分解與乘法

  和差化積是乘法,乘法本身是運(yùn)算。

  積化和差是分解,因式分解非運(yùn)算。

  14、因式分解

  兩式平方符號(hào)異,因式分解你別怕。

  兩底和乘兩底差,分解結(jié)果就是它。

  兩式平方符號(hào)同,底積2倍坐中央。

  因式分解能與否,符號(hào)上面有文章。

  同和異差先平方,還要加上正負(fù)號(hào)。

  同正則正負(fù)就負(fù),異則需添冪符號(hào)。

  15、因式分解

  一提二套三分組,十字相乘也上數(shù)。

  四種方法都不行,拆項(xiàng)添項(xiàng)去重組。

  重組無望試求根,換元或者算余數(shù)。

  多種方法靈活選,連乘結(jié)果是基礎(chǔ)。

  同式相乘若出現(xiàn),乘方表示要記住。

  【注】一提(提公因式)二套(套公式)

  16、因式分解

  一提二套三分組,叉乘求根也上數(shù)。

  五種方法都不行,拆項(xiàng)添項(xiàng)去重組。

  對(duì)癥下藥穩(wěn)又準(zhǔn),連乘結(jié)果是基礎(chǔ)。

  17、二次三項(xiàng)式的因式分解

  先想完全平方式,十字相乘是其次。

  兩種方法行不通,求根分解去嘗試。

  18、比和比例

  兩數(shù)相除也叫比,兩比相等叫比例。

  外項(xiàng)積等內(nèi)項(xiàng)積,等積可化八比例。

  分別交換內(nèi)外項(xiàng),統(tǒng)統(tǒng)都要叫更比。

  同時(shí)交換內(nèi)外項(xiàng),便要稱其為反比。

  前后項(xiàng)和比后項(xiàng),比值不變叫合比。

  前后項(xiàng)差比后項(xiàng),組成比例是分比。

  兩項(xiàng)和比兩項(xiàng)差,比值相等合分比。

  前項(xiàng)和比后項(xiàng)和,比值不變叫等比。

  19、解比例

  外項(xiàng)積等內(nèi)項(xiàng)積,列出方程并解之。

  20、求比值

  由已知去求比值,多種途徑可利用。

  活用比例七性質(zhì),變量替換也走紅。

  消元也是好辦法,殊途同歸會(huì)變通。

  21、正比例與反比例

  商定變量成正比,積定變量成反比。

  22、正比例與反比例

  變化過程商一定,兩個(gè)變量成正比。

  變化過程積一定,兩個(gè)變量成反比。

  23、判斷四數(shù)成比例

  四數(shù)是否成比例,遞增遞減先排序。

  兩端積等中間積,四數(shù)一定成比例。

  24、判斷四式成比例

  四式是否成比例,生或降冪先排序。

  兩端積等中間積,四式便可成比例。

  25、比例中項(xiàng)

  成比例的四項(xiàng)中,外項(xiàng)相同會(huì)遇到。

  有時(shí)內(nèi)項(xiàng)會(huì)相同,比例中項(xiàng)少不了。

  比例中項(xiàng)很重要,多種場(chǎng)合會(huì)碰到。

  成比例的四項(xiàng)中,外項(xiàng)相同有不少。

  有時(shí)內(nèi)項(xiàng)會(huì)相同,比例中項(xiàng)出現(xiàn)了。

  同數(shù)平方等異積,比例中項(xiàng)無處逃。

  26、根式與無理式

  表示方根代數(shù)式,都可稱其為根式。

  根式異于無理式,被開方式無限制。

  被開方式有字母,才能稱為無理式。

  無理式都是根式,區(qū)分它們有標(biāo)志。

  被開方式有字母,又可稱為無理式。

  27、求定義域

  求定義域有講究,四項(xiàng)原則須留意。

  負(fù)數(shù)不能開平方,分母為零無意義。

  指是分?jǐn)?shù)底正數(shù),數(shù)零沒有零次冪。

  限制條件不唯一,滿足多個(gè)不等式。

  求定義域要過關(guān),四項(xiàng)原則須注意。

  負(fù)數(shù)不能開平方,分母為零無意義。

  分?jǐn)?shù)指數(shù)底正數(shù),數(shù)零沒有零次冪。

  限制條件不唯一,不等式組求解集。

  28、解一元一次不等式

  先去分母再括號(hào),移項(xiàng)合并同類項(xiàng)。

  系數(shù)化“1”有講究,同乘除負(fù)要變向。

  先去分母再括號(hào),移項(xiàng)別忘要變號(hào)。

  同類各項(xiàng)去合并,系數(shù)化“1”注意了。

  同乘除正無防礙,同乘除負(fù)也變號(hào)。

  29、解一元一次不等式組

  大于頭來小于尾,大小不一中間找。

  大大小小沒有解,四種情況全來了。

  同向取兩邊,異向取中間。

  中間無元素,無解便出現(xiàn)。

  幼兒園小鬼當(dāng)家,(同小相對(duì)取較小)

  敬老院以老為榮,(同大就要取較大)

  軍營(yíng)里沒老沒少。(大小小大就是它)

  大大小小解集空。(小小大大哪有哇)

  30、解一元二次不等式

  首先化成一般式,構(gòu)造函數(shù)第二站。

  判別式值若非負(fù),曲線橫軸有交點(diǎn)。

  A正開口它向上,大于零則取兩邊。

  代數(shù)式若小于零,解集交點(diǎn)數(shù)之間。

  方程若無實(shí)數(shù)根,口上大零解為全。

  小于零將沒有解,開口向下正相反。

  31、用平方差公式因式分解

  異號(hào)兩個(gè)平方項(xiàng),因式分解有辦法。

  兩底和乘兩底差,分解結(jié)果就是它。

  32、用完全平方公式因式分解

  兩平方項(xiàng)在兩端,底積2倍在中部。

  同正兩底和平方,全負(fù)和方相反數(shù)。

  分成兩底差平方,方正倍積要為負(fù)。

  兩邊為負(fù)中間正,底差平方相反數(shù)。

  一平方又一平方,底積2倍在中路。

  三正兩底和平方,全負(fù)和方相反數(shù)。

  分成兩底差平方,兩端為正倍積負(fù)。

  兩邊若負(fù)中間正,底差平方相反數(shù)。

  33、用公式法解一元二次方程

  要用公式解方程,首先化成一般式。

  調(diào)整系數(shù)隨其后,使其成為最簡(jiǎn)比。

  確定參數(shù)abc,計(jì)算方程判別式。

  判別式值與零比,有無實(shí)根便得知。

  有實(shí)根可套公式,沒有實(shí)根要告之。

  34、用常規(guī)配方法解一元二次方程

  左未右已先分離,二系化“1”是其次。

  一系折半再平方,兩邊同加沒問題。

  左邊分解右合并,直接開方去解題。

  該種解法叫配方,解方程時(shí)多練習(xí)。

  35、用間接配方法解一元二次方程

  已知未知先分離,因式分解是其次。

  調(diào)整系數(shù)等互反,和差積套恒等式。

  完全平方等常數(shù),間接配方顯優(yōu)勢(shì)。

  【注】恒等式

  36、解一元二次方程

  方程沒有一次項(xiàng),直接開方最理想。

  如果缺少常數(shù)項(xiàng),因式分解沒商量。

 。狻ⅲ阆嗟榷紴榱,等根是零不要忘。

 。、c同時(shí)不為零,因式分解或配方,也可直接套公式,因題而異擇良方。

  37、正比例函數(shù)的`鑒別

  判斷正比例函數(shù),檢驗(yàn)當(dāng)分兩步走。

  一量表示另一量,是與否。

  若有還要看取值,全體實(shí)數(shù)都要有。

  正比例函數(shù)是否,辨別需分兩步走。

  一量表示另一量,有沒有。

  若有再去看取值,全體實(shí)數(shù)都需要。

  區(qū)分正比例函數(shù),衡量可分兩步走。

  一量表示另一量,是與否。

  若有還要看取值,全體實(shí)數(shù)都要有。

  38、正比例函數(shù)的圖象與性質(zhì)

  正比函數(shù)圖直線,經(jīng)過和原點(diǎn)。

  K正一三負(fù)二四,變化趨勢(shì)記心間。

  K正左低右邊高,同大同小向爬山。

  K負(fù)左高右邊低,一大另小下山巒。

  39、一次函數(shù)

  一次函數(shù)圖直線,經(jīng)過點(diǎn)。

  K正左低右邊高,越走越高向爬山。

  K負(fù)左高右邊低,越來越低很明顯。

  K稱斜率b截距,截距為零變正函。

  40、反比例函數(shù)

  反比函數(shù)雙曲線,經(jīng)過點(diǎn)。

  K正一三負(fù)二四,兩軸是它漸近線。

  K正左高右邊低,一三象限滑下山。

  K負(fù)左低右邊高,二四象限如爬山。

  41、二次函數(shù)

  二次方程零換y,二次函數(shù)便出現(xiàn)。

  全體實(shí)數(shù)定義域,圖像叫做拋物線。

  拋物線有對(duì)稱軸,兩邊單調(diào)正相反。

  A定開口及大小,線軸交點(diǎn)叫頂點(diǎn)。

  頂點(diǎn)非高即最低。上低下高很顯眼。

  如果要畫拋物線,平移也可去描點(diǎn),提取配方定頂點(diǎn),兩條途徑再挑選。

  列表描點(diǎn)后連線,平移規(guī)律記心間。

  左加右減括號(hào)內(nèi),號(hào)外上加下要減。

  二次方程零換y,就得到二次函數(shù)。

  圖像叫做拋物線,定義域全體實(shí)數(shù)。

  A定開口及大小,開口向上是正數(shù)。

  絕對(duì)值大開口小,開口向下A負(fù)數(shù)。

  拋物線有對(duì)稱軸,增減特性可看圖。

  線軸交點(diǎn)叫頂點(diǎn),頂點(diǎn)縱標(biāo)最值出。

  如果要畫拋物線,描點(diǎn)平移兩條路。

  提取配方定頂點(diǎn),平移描點(diǎn)皆成圖。

  列表描點(diǎn)后連線,三點(diǎn)大致定全圖。

  若要平移也不難,先畫基礎(chǔ)拋物線,頂點(diǎn)移到新位置,開口大小隨基礎(chǔ)。

  【注】基礎(chǔ)拋物線

  42、直線、射線與線段

  直線射線與線段,形狀相似有關(guān)聯(lián)。

  直線長(zhǎng)短不確定,可向兩方無限延。

  射線僅有一端點(diǎn),反向延長(zhǎng)成直線。

  線段定長(zhǎng)兩端點(diǎn),雙向延伸變直線。

  兩點(diǎn)定線是共性,組成圖形最常見。

  43、角

  一點(diǎn)出發(fā)兩射線,組成圖形叫做角。

  共線反向是平角,平角之半叫直角。

  平角兩倍成周角,小于直角叫銳角。

  直平之間是鈍角,平周之間叫優(yōu)角。

  互余兩角和直角,和是平角互補(bǔ)角。

  一點(diǎn)出發(fā)兩射線,組成圖形叫做角。

  平角反向且共線,平角之半叫直角。

  平角兩倍成周角,小于直角叫銳角。

  鈍角界于直平間,平周之間叫優(yōu)角。

  和為直角叫互余,互為補(bǔ)角和平角。

  44、證等積或比例線段

  等積或比例線段,多種途徑可以證。

  證等積要改等比,對(duì)照?qǐng)D形看特征。

  共點(diǎn)共線線相交,平行截比把題證。

  三點(diǎn)定型十分像,想法來把相似證。

  圖形明顯不相似,等線段比替換證。

  換后結(jié)論能成立,原來命題即得證。

  實(shí)在不行用面積,射影角分線也成。

  只要學(xué)習(xí)肯登攀,手腦并用無不勝。

  45、解無理方程

  一無一有各一邊,兩無也要放兩邊。

  乘方根號(hào)無蹤跡,方程可解無負(fù)擔(dān)。

  兩無一有相對(duì)難,兩次乘方也好辦。

  特殊情況去換元,得解驗(yàn)根是必然。

  46、解分式方程

  先約后乘公分母,整式方程轉(zhuǎn)化出。

  特殊情況可換元,去掉分母是出路。

  求得解后要驗(yàn)根,原留增舍別含糊。

  47、列方程解應(yīng)用題

  列方程解應(yīng)用題,審設(shè)列解雙檢答。

  審題弄清已未知,設(shè)元直間兩辦法。

  列表畫圖造方程,解方程時(shí)守章法。

  檢驗(yàn)準(zhǔn)且合題意,問求同一才作答。

  48、兩點(diǎn)間距離公式

  同軸兩點(diǎn)求距離,大減小數(shù)就為之。

  與軸等距兩個(gè)點(diǎn),間距求法亦如此。

  平面任意兩個(gè)點(diǎn),橫縱標(biāo)差先求值。

  差方相加開平方,距離公式要牢記。

  49、矩形的判定

  任意一個(gè)四邊形,三個(gè)直角成矩形;

  對(duì)角線等互平分,四邊形它是矩形。

  已知平行四邊形,一個(gè)直角叫矩形;

  兩對(duì)角線若相等,理所當(dāng)然為矩形。

  50、菱形的判定

  任意一個(gè)四邊形,四邊相等成菱形;

  四邊形的對(duì)角線,垂直互分是菱形。

  已知平行四邊形,鄰邊相等叫菱形;

  兩對(duì)角線若垂直,順理成章為菱形。

初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)4

  平面直角坐標(biāo)系

  下面是對(duì)平面直角坐標(biāo)系的內(nèi)容學(xué)習(xí),希望同學(xué)們很好的掌握下面的內(nèi)容。

  平面直角坐標(biāo)系:

  在平面內(nèi)畫兩條互相垂直、原點(diǎn)重合的數(shù)軸,組成平面直角坐標(biāo)系。

  水平的數(shù)軸稱為x軸或橫軸,豎直的數(shù)軸稱為y軸或縱軸,兩坐標(biāo)軸的交點(diǎn)為平面直角坐標(biāo)系的原點(diǎn)。

  平面直角坐標(biāo)系的要素:①在同一平面②兩條數(shù)軸③互相垂直④原點(diǎn)重合

  三個(gè)規(guī)定:

  ①正方向的規(guī)定橫軸取向右為正方向,縱軸取向上為正方向

  ②單位長(zhǎng)度的規(guī)定;一般情況,橫軸、縱軸單位長(zhǎng)度相同;實(shí)際有時(shí)也可不同,但同一數(shù)軸上必須相同。

 、巯笙薜囊(guī)定:右上為第一象限、左上為第二象限、左下為第三象限、右下為第四象限。

  相信上面對(duì)平面直角坐標(biāo)系知識(shí)的講解學(xué)習(xí),同學(xué)們已經(jīng)能很好的掌握了吧,希望同學(xué)們都能考試成功。

  初中數(shù)學(xué)知識(shí)點(diǎn):平面直角坐標(biāo)系的構(gòu)成

  對(duì)于平面直角坐標(biāo)系的構(gòu)成內(nèi)容,下面我們一起來學(xué)習(xí)哦。

  平面直角坐標(biāo)系的構(gòu)成

  在同一個(gè)平面上互相垂直且有公共原點(diǎn)的兩條數(shù)軸構(gòu)成平面直角坐標(biāo)系,簡(jiǎn)稱為直角坐標(biāo)系。通常,兩條數(shù)軸分別置于水平位置與鉛直位置,取向右與向上的方向分別為兩條數(shù)軸的正方向。水平的數(shù)軸叫做X軸或橫軸,鉛直的數(shù)軸叫做Y軸或縱軸,X軸或Y軸統(tǒng)稱為坐標(biāo)軸,它們的公共原點(diǎn)O稱為直角坐標(biāo)系的原點(diǎn)。

  通過上面對(duì)平面直角坐標(biāo)系的構(gòu)成知識(shí)的講解學(xué)習(xí),希望同學(xué)們對(duì)上面的內(nèi)容都能很好的掌握,同學(xué)們認(rèn)真學(xué)習(xí)吧。

  初中數(shù)學(xué)知識(shí)點(diǎn):點(diǎn)的坐標(biāo)的性質(zhì)

  下面是對(duì)數(shù)學(xué)中點(diǎn)的坐標(biāo)的性質(zhì)知識(shí)學(xué)習(xí),同學(xué)們認(rèn)真看看哦。

  點(diǎn)的坐標(biāo)的性質(zhì)

  建立了平面直角坐標(biāo)系后,對(duì)于坐標(biāo)系平面內(nèi)的任何一點(diǎn),我們可以確定它的坐標(biāo)。反過來,對(duì)于任何一個(gè)坐標(biāo),我們可以在坐標(biāo)平面內(nèi)確定它所表示的一個(gè)點(diǎn)。

  對(duì)于平面內(nèi)任意一點(diǎn)C,過點(diǎn)C分別向X軸、Y軸作垂線,垂足在X軸、Y軸上的對(duì)應(yīng)點(diǎn)a,b分別叫做點(diǎn)C的橫坐標(biāo)、縱坐標(biāo),有序?qū)崝?shù)對(duì)(a,b)叫做點(diǎn)C的坐標(biāo)。

  一個(gè)點(diǎn)在不同的象限或坐標(biāo)軸上,點(diǎn)的坐標(biāo)不一樣。

  希望上面對(duì)點(diǎn)的坐標(biāo)的性質(zhì)知識(shí)講解學(xué)習(xí),同學(xué)們都能很好的掌握,相信同學(xué)們會(huì)在考試中取得優(yōu)異成績(jī)的。

  初中數(shù)學(xué)知識(shí)點(diǎn):因式分解的一般步驟

  關(guān)于數(shù)學(xué)中因式分解的一般步驟內(nèi)容學(xué)習(xí),我們做下面的知識(shí)講解。

  因式分解的'一般步驟

  如果多項(xiàng)式有公因式就先提公因式,沒有公因式的多項(xiàng)式就考慮運(yùn)用公式法;若是四項(xiàng)或四項(xiàng)以上的多項(xiàng)式,

  通常采用分組分解法,最后運(yùn)用十字相乘法分解因式。因此,可以概括為:“一提”、“二套”、“三分組”、“四十字”。

  注意:因式分解一定要分解到每一個(gè)因式都不能再分解為止,否則就是不完全的因式分解,若題目沒有明確指出在哪個(gè)范圍內(nèi)因式分解,應(yīng)該是指在有理數(shù)范圍內(nèi)因式分解,因此分解因式的結(jié)果,必須是幾個(gè)整式的積的形式。

  相信上面對(duì)因式分解的一般步驟知識(shí)的內(nèi)容講解學(xué)習(xí),同學(xué)們已經(jīng)能很好的掌握了吧,希望同學(xué)們會(huì)考出好成績(jī)。

  初中數(shù)學(xué)知識(shí)點(diǎn):因式分解

  下面是對(duì)數(shù)學(xué)中因式分解內(nèi)容的知識(shí)講解,希望同學(xué)們認(rèn)真學(xué)習(xí)。

  因式分解定義

  把一個(gè)多項(xiàng)式化成幾個(gè)整式的積的形式的變形叫把這個(gè)多項(xiàng)式因式分解。

  因式分解要素

 、俳Y(jié)果必須是整式

 、诮Y(jié)果必須是積的形式

  ③結(jié)果是等式

 、芤蚴椒纸馀c整式乘法的關(guān)系:m(a+b+c)

  公因式:

  一個(gè)多項(xiàng)式每項(xiàng)都含有的公共的因式,叫做這個(gè)多項(xiàng)式各項(xiàng)的公因式。

  公因式確定方法

  ①系數(shù)是整數(shù)時(shí)取各項(xiàng)最大公約數(shù)。

 、谙嗤帜溉∽畹痛蝺

  ③系數(shù)最大公約數(shù)與相同字母取最低次冪的積就是這個(gè)多項(xiàng)式各項(xiàng)的公因式。

  提取公因式步驟:

  ①確定公因式。

 、诖_定商式

 、酃蚴脚c商式寫成積的形式。

  分解因式注意;

 、俨粶(zhǔn)丟字母

 、诓粶(zhǔn)丟常數(shù)項(xiàng)注意查項(xiàng)數(shù)

  ③雙重括號(hào)化成單括號(hào)

 、芙Y(jié)果按數(shù)單字母單項(xiàng)式多項(xiàng)式順序排列

  ⑤相同因式寫成冪的形式

 、奘醉(xiàng)負(fù)號(hào)放括號(hào)外

 、呃ㄌ(hào)內(nèi)同類項(xiàng)合并。

  通過上面對(duì)因式分解內(nèi)容知識(shí)的講解學(xué)習(xí),相信同學(xué)們已經(jīng)能很好的掌握了吧,希望上面的內(nèi)容給同學(xué)們的學(xué)習(xí)很好的幫助。

初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)5

  1、深刻理解概念,概念是數(shù)學(xué)的基石,學(xué)習(xí)概念不僅要知其然,還要知其所以然。

  2、對(duì)于每個(gè)定義、定理必須在牢記其內(nèi)容的基礎(chǔ)上知道是怎樣得來的,又是運(yùn)用到何處的。

  3、多看一些例題,不能只看皮毛,不看內(nèi)涵。

  4、要把想和看結(jié)合起來,各難度層次的例題都照顧到。

  5、看例題要循序漸進(jìn),這同后面的“做練習(xí)”一樣,但看比做有一個(gè)顯著的好處,例題有現(xiàn)成的.解答,思路清晰,只需循著思路走,就會(huì)得出結(jié)論,所以可以看一些技巧性較強(qiáng)、難度較大的例題。

初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)6

  1、不在同一直線上的三點(diǎn)確定一個(gè)圓。

  2、垂徑定理:垂直于弦的直徑平分這條弦并且平分弦所對(duì)的兩條弧

  推論1

 、(不是直徑)的直徑垂直于弦,并且平分弦所對(duì)的兩條弧

 、谙业拇怪逼椒志經(jīng)過圓心,并且平分弦所對(duì)的兩條弧

 、燮椒窒宜鶎(duì)的一條弧的直徑,垂直平分弦,并且平分弦所對(duì)的另一條弧

  推論2

  圓的兩條平行弦所夾的弧相等

  3、圓是以圓心為對(duì)稱中心的中心對(duì)稱圖形

  4、圓是定點(diǎn)的距離等于定長(zhǎng)的點(diǎn)的集合

  5、圓的內(nèi)部可以看作是圓心的距離小于半徑的點(diǎn)的集合

  6、圓的外部可以看作是圓心的距離大于半徑的點(diǎn)的集合

  7、同圓或等圓的半徑相等

  8、到定點(diǎn)的距離等于定長(zhǎng)的點(diǎn)的軌跡,是以定點(diǎn)為圓心,定長(zhǎng)為半徑的圓

  9、定理在同圓或等圓中,相等的圓心角所對(duì)的弧相等,所對(duì)的弦相等,所對(duì)的弦的弦心距相等

  10、推論在同圓或等圓中,如果兩個(gè)圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相等那么它們所對(duì)應(yīng)的其余各組量都相等。

  11、定理:圓的內(nèi)接四邊形的對(duì)角互補(bǔ),并且任何一個(gè)外角都等于它的.內(nèi)對(duì)角

  12、①直線L和⊙O相交d

 、谥本L和⊙O相切d=r

 、壑本L和⊙O相離d>r

  13、切線的判定定理:經(jīng)過半徑的外端并且垂直于這條半徑的直線是圓的切線

  14、切線的性質(zhì)定理:圓的切線垂直于經(jīng)過切點(diǎn)的半徑

  15、推論1經(jīng)過圓心且垂直于切線的直線必經(jīng)過切點(diǎn)

  16、推論2經(jīng)過切點(diǎn)且垂直于切線的直線必經(jīng)過圓心

  17、切線長(zhǎng)定理:從圓外一點(diǎn)引圓的兩條切線,它們的切線長(zhǎng)相等,圓心和這一點(diǎn)的連線平分兩條切線的夾角

  18、圓的外切四邊形的兩組對(duì)邊的和相等,外角等于內(nèi)對(duì)角

  19、如果兩個(gè)圓相切,那么切點(diǎn)一定在連心線上

  20、

 、賰蓤A外離d>R+r

  ②兩圓外切d=R+r

 、蹆蓤A相交R-rr)

 、軆蓤A內(nèi)切d=R-r(R>r)

 、輧蓤A內(nèi)含dr)

初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)7

  1、圓是定點(diǎn)的距離等于定長(zhǎng)的點(diǎn)的集合

  2、圓的內(nèi)部可以看作是圓心的距離小于半徑的點(diǎn)的集合3、圓的外部可以看作是圓心的距離大于半徑的點(diǎn)的集合4、同圓或等圓的半徑相等

  5、到定點(diǎn)的距離等于定長(zhǎng)的點(diǎn)的軌跡,是以定點(diǎn)為圓心,定長(zhǎng)為半徑的圓6、和已知線段兩個(gè)端點(diǎn)的距離相等的點(diǎn)的軌跡,是著條線段的垂直平分線7、到已知角的兩邊距離相等的點(diǎn)的軌跡,是這個(gè)角的平分線

  8、到兩條平行線距離相等的點(diǎn)的軌跡,是和這兩條平行線平行且距離相等的一條直線

  9、定理不在同一直線上的三點(diǎn)確定一個(gè)圓。

  10、垂徑定理垂直于弦的直徑平分這條弦并且平分弦所對(duì)的兩條弧11、推論1:

  ①平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對(duì)的兩條弧②弦的垂直平分線經(jīng)過圓心,并且平分弦所對(duì)的兩條弧

  ③平分弦所對(duì)的一條弧的直徑,垂直平分弦,并且平分弦所對(duì)的另一條弧12、推論2:圓的兩條平行弦所夾的弧相等13、圓是以圓心為對(duì)稱中心的中心對(duì)稱圖形

  14、定理:在同圓或等圓中,相等的圓心角所對(duì)的弧相等,所對(duì)的弦相等,所對(duì)的弦的弦心距相等

  15、推論:在同圓或等圓中,如果兩個(gè)圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相等那么它們所對(duì)應(yīng)的其余各組量都相等

  16、定理:一條弧所對(duì)的圓周角等于它所對(duì)的圓心角的一半

  17、推論:1同弧或等弧所對(duì)的圓周角相等;同圓或等圓中,相等的圓周角所對(duì)的弧也相等

  18、推論:2半圓(或直徑)所對(duì)的圓周角是直角;90°的圓周角所對(duì)的弦是直徑

  19、推論:3如果三角形一邊上的中線等于這邊的一半,那么這個(gè)三角形是直角三角形

  20、定理:圓的內(nèi)接四邊形的對(duì)角互補(bǔ),并且任何一個(gè)外角都等于它的內(nèi)對(duì)角

  21、①直線L和⊙O相交dr②直線L和⊙O相切d=r③直線L和⊙O相離dr

  22、切線的判定定理經(jīng)過半徑的外端并且垂直于這條半徑的直線是圓的切線23、切線的性質(zhì)定理圓的切線垂直于經(jīng)過切點(diǎn)的半徑24、推論1經(jīng)過圓心且垂直于切線的直線必經(jīng)過切點(diǎn)25、推論2經(jīng)過切點(diǎn)且垂直于切線的直線必經(jīng)過圓心

  26、切線長(zhǎng)定理:從圓外一點(diǎn)引圓的兩條切線,它們的切線長(zhǎng)相等圓心和這一點(diǎn)的連線平分兩條切線的夾角

  27、圓的外切四邊形的兩組對(duì)邊的和相等

  28、弦切角定理:弦切角等于它所夾的弧對(duì)的圓周角

  29、推論:如果兩個(gè)弦切角所夾的弧相等,那么這兩個(gè)弦切角也相等30、相交弦定理:圓內(nèi)的兩條相交弦,被交點(diǎn)分成的兩條線段長(zhǎng)的積相等31、推論:如果弦與直徑垂直相交,那么弦的一半是它分直徑所成的.兩條線段的比例中項(xiàng)

  32、切割線定理:從圓外一點(diǎn)引圓的切線和割線,切線長(zhǎng)是這點(diǎn)到割線與圓交點(diǎn)的兩條線段長(zhǎng)的比例中項(xiàng)

  33、推論:從圓外一點(diǎn)引圓的兩條割線,這一點(diǎn)到每條割線與圓的交點(diǎn)的兩條線段長(zhǎng)的積相等

  34、如果兩個(gè)圓相切,那么切點(diǎn)一定在連心線上35、①兩圓外離dR+r②兩圓外切d=R+r

 、蹆蓤A相交R-rdR+r(Rr)④兩圓內(nèi)切d=R-r(Rr)⑤兩圓內(nèi)含dR-r(Rr)

  36、定理:相交兩圓的連心線垂直平分兩圓的公共弦37、定理:把圓分成n(n≥3):

  ⑴依次連結(jié)各分點(diǎn)所得的多邊形是這個(gè)圓的內(nèi)接正n邊形

 、平(jīng)過各分點(diǎn)作圓的切線,以相鄰切線的交點(diǎn)為頂點(diǎn)的多邊形是這個(gè)圓的外切正n邊形

  38、定理:任何正多邊形都有一個(gè)外接圓和一個(gè)內(nèi)切圓,這兩個(gè)圓是同心圓

  39、正n邊形的每個(gè)內(nèi)角都等于(n-2)×180°/n40、定理:正n邊形的半徑和邊心距把正n邊形分成2n個(gè)全等的直角三角形

  41、正n邊形的面積Sn=pnrn/2p表示正n邊形的周長(zhǎng)42、正三角形面積√3a/4a表示邊長(zhǎng)

  43、如果在一個(gè)頂點(diǎn)周圍有k個(gè)正n邊形的角,由于這些角的和應(yīng)為360°,因此k(n-2)180°/n=360°化為(n-2)(k-2)=444、弧長(zhǎng)計(jì)算公式:L=n兀R/180

  45、扇形面積公式:S扇形=n兀R^2/360=LR/246、內(nèi)公切線長(zhǎng)=d-(R-r)外公切線長(zhǎng)=d-(R+r)

初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)8

  初中數(shù)學(xué)總復(fù)習(xí),是對(duì)初中三年來所學(xué)數(shù)學(xué)知識(shí)的回顧,鞏固提高,查漏補(bǔ)缺,它不是對(duì)知識(shí)的簡(jiǎn)單重復(fù),而是引導(dǎo)學(xué)生對(duì)所學(xué)知識(shí)進(jìn)行系統(tǒng)歸納和升華,并用已學(xué)的知識(shí)解決新問題。進(jìn)一步加深對(duì)數(shù)學(xué)概念的理解,弄清各部分知識(shí)的內(nèi)在聯(lián)系,熟練掌握重要的數(shù)學(xué)方法和數(shù)學(xué)思想,從而達(dá)到開發(fā)智力、培養(yǎng)能力的目的因此,初中數(shù)學(xué)總復(fù)習(xí)是非常重要的,復(fù)習(xí)的好壞將決定學(xué)生成績(jī)的好壞、決定學(xué)生掌握知識(shí)的牢固程度。一直以來,如何有效提高復(fù)習(xí)效率,是廣大教師多年來探求的重要課題之一。筆者從1999年以來,一直擔(dān)任初中數(shù)學(xué)的教學(xué)任務(wù),所教班級(jí)的數(shù)學(xué)中考考試成績(jī)一直名列前茅。下面筆者根據(jù)對(duì)初中數(shù)學(xué)總復(fù)習(xí)的實(shí)踐,總結(jié)出的一套較為實(shí)用的復(fù)習(xí)方法。

  一、復(fù)習(xí)基礎(chǔ)知識(shí)階段

  在初中數(shù)學(xué)復(fù)習(xí)中,第一階段要緊扣課本,疏理教材,使學(xué)生在頭腦中形成一個(gè)關(guān)于初中數(shù)學(xué)知識(shí)的前后相連、縱橫交錯(cuò)、融會(huì)貫通的知識(shí)結(jié)構(gòu)。在第一階段中,一般按初中數(shù)學(xué)知識(shí)體系把初中數(shù)學(xué)知識(shí)分成九個(gè)單元,即:“數(shù)與式”“方程和不等式(組)”“函數(shù)及其圖像”“統(tǒng)計(jì)與概率”“圖形初步認(rèn)識(shí)和三角形”“四邊形”“相似和解直角三角形”“圓”“圖形的變換、投影與視圖”。按單元進(jìn)行復(fù)習(xí)。每個(gè)單元按下面步驟進(jìn)行。

  1、疏理知識(shí)結(jié)構(gòu)

  首先,引導(dǎo)學(xué)生把本單元的知識(shí)用文字、圖表等方式編織知識(shí)網(wǎng)絡(luò),用簡(jiǎn)表式的結(jié)構(gòu)表示本單元的知識(shí)結(jié)構(gòu);其次,引導(dǎo)學(xué)生回顧基礎(chǔ)知識(shí);最后,以基本習(xí)題的形式再現(xiàn)知識(shí)的內(nèi)容,即通過一些判斷題、填空題、選擇題、簡(jiǎn)單計(jì)算題的訓(xùn)練達(dá)到鞏固基礎(chǔ)知識(shí)的'目的

  2、訓(xùn)練基本技能和解題技巧

  在理順知識(shí)結(jié)構(gòu)的基礎(chǔ)上,把每個(gè)單元按知識(shí)點(diǎn)分成若干課時(shí),然后按知識(shí)點(diǎn)精選例題和練習(xí)題,引導(dǎo)學(xué)生進(jìn)行多方練習(xí),多角度思考,正反求解,促進(jìn)學(xué)生掌握基礎(chǔ)知識(shí)和解題技巧。

  精選的例題和練習(xí)題最好從課本上尋找,因?yàn)橹锌嫉拿}原則是:“源于教材,高于教材!彼x例題、練習(xí)題力求典型,緊扣教材。另外,也可從近幾年中考試題中改編新穎的題目進(jìn)行訓(xùn)練。

  每課時(shí)的教學(xué)可按“理順知識(shí)――嘗試做例題――講解例題――練習(xí)――變式練習(xí)――作業(yè)”幾個(gè)步驟進(jìn)行。在“理解知識(shí)”階段力求簡(jiǎn)單明了地揭示本節(jié)課所要復(fù)習(xí)的知識(shí)點(diǎn),領(lǐng)會(huì)概念、定理、公理和數(shù)學(xué)思想方法。講解的例題或作業(yè)一般可選擇一部分題進(jìn)行“一題多變”“一題多解”的題目。在分析、講解例題時(shí)切不可就題論題,應(yīng)注意揭示例題中所反映出的概念、原理和思想方法及解題技巧。

  3、單元測(cè)試

  在上述復(fù)習(xí)的基礎(chǔ)上,復(fù)習(xí)完每一個(gè)單元后,必須出示至少4份試卷。第一份試卷,以引導(dǎo)學(xué)生系統(tǒng)地梳理教材、構(gòu)建知識(shí)結(jié)構(gòu),歸納和總結(jié)各種概念、公理、定理、公式為主。第二份試卷,以歸納、總結(jié)本單元的常用結(jié)論、解題方法、一題多解、一題多變?yōu)橹。?duì)學(xué)生進(jìn)行測(cè)試,以了解學(xué)生掌握知識(shí)的情況,及時(shí)查漏補(bǔ)缺。

  測(cè)試題應(yīng)以教學(xué)大綱、考標(biāo)、教材為依據(jù),要求內(nèi)容覆蓋面廣,題目搭配合理、難易適中、題型俱全,富有啟發(fā)性。通過測(cè)試,全面衡量復(fù)習(xí)效果,一般來說,測(cè)試題可從以下幾個(gè)方面精選題目:(1)全面體現(xiàn)本單元的基礎(chǔ)知識(shí)的填空題和選擇題;(2)本單元所反映出的基本技能和技巧的解答題;(3)綜合運(yùn)用本單元知識(shí)的綜合題。

  上面三方面試題的比例為6∶3∶1測(cè)試完后,教師進(jìn)行講評(píng),對(duì)學(xué)生未弄懂的知識(shí)點(diǎn)及時(shí)進(jìn)行補(bǔ)救。

  二、綜合訓(xùn)練,加強(qiáng)重點(diǎn)知識(shí)階段

  在完成第一階段的基礎(chǔ)上,根據(jù)初中數(shù)學(xué)知識(shí)的重點(diǎn),選擇一些較為典型的綜合題,引導(dǎo)學(xué)生合作探索和研究,以培養(yǎng)學(xué)生綜合運(yùn)用知識(shí)來分析問題和解決問題的能力。選擇的題目一般從本市及全省近5年的中考試題中去精選。

  綜合題,一般來說有代數(shù)綜合題、幾何綜合題、代數(shù)和幾何相結(jié)合的綜合題。代數(shù)綜合題的重點(diǎn)應(yīng)是二次方程和二次函數(shù);幾何綜合題的重點(diǎn)是三角形、四邊形和圖;代數(shù)與幾何相結(jié)合的綜合題則是方程、函數(shù)與圖像相結(jié)合的題。

  對(duì)于綜合題的訓(xùn)練,一般采用“嘗試練習(xí)――分析――講解――歸納解題方法與技巧――練習(xí)”的方式進(jìn)行。對(duì)重點(diǎn)問題進(jìn)行一題多解、一題多變的訓(xùn)練。

  三、綜合測(cè)試,查漏補(bǔ)缺階段

  為了進(jìn)一步鞏固數(shù)學(xué)知識(shí),全面考查復(fù)習(xí)效果,提高學(xué)生的心理素質(zhì),在第二階段復(fù)習(xí)結(jié)束時(shí),可進(jìn)行模擬測(cè)試。測(cè)試題一般自擬幾套和選擇其他省市上屆中考題和本省往屆的中考題,模擬試題,力求全面再現(xiàn)初中數(shù)學(xué)知識(shí)和方法,既要有考查雙基的基礎(chǔ)題,又要有考查學(xué)生能力的綜合題。有的知識(shí)還要與高中知識(shí)銜接并拓展。

  考完一套,及時(shí)講評(píng),與學(xué)生一起分析,共同探討,列出知識(shí)清單使得每個(gè)學(xué)生經(jīng)歷知識(shí)收集、整理的過程,把書學(xué)“薄”,有效地回顧了一章書所學(xué)的知識(shí)。

初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)9

  一、在創(chuàng)新中培養(yǎng)學(xué)生的歸納意?R

  在初中數(shù)學(xué)教學(xué)中,重點(diǎn)是對(duì)學(xué)生的創(chuàng)新精神和實(shí)踐能力的培養(yǎng),體現(xiàn)出現(xiàn)代素質(zhì)教育。學(xué)生創(chuàng)新能力的培養(yǎng)在學(xué)習(xí)中占據(jù)非常重要的作用,在創(chuàng)新中學(xué)生可以鞏固自身所學(xué)的知識(shí),使數(shù)學(xué)知識(shí)在自己的頭腦中根深蒂固,各類知識(shí)點(diǎn)在學(xué)生的頭腦中形成清晰的框架,有助于學(xué)生歸納意識(shí)的培養(yǎng)。歸納意識(shí)的培養(yǎng),可以減輕學(xué)生的學(xué)習(xí)負(fù)擔(dān),提升學(xué)生對(duì)知識(shí)的理解能力。

  初中生在學(xué)習(xí)數(shù)學(xué)的環(huán)節(jié)中,常常會(huì)接觸到大量的圖像,在數(shù)學(xué)學(xué)習(xí)中,老師應(yīng)該鼓勵(lì)學(xué)生大膽創(chuàng)新,在創(chuàng)新環(huán)節(jié)中完成對(duì)知識(shí)點(diǎn)的歸納。數(shù)學(xué)學(xué)習(xí)并不死板,不僅僅學(xué)習(xí)教科書上的知識(shí),還應(yīng)該學(xué)習(xí)書本以外的知識(shí),從而創(chuàng)新自己的思維。例如在進(jìn)行函數(shù)的學(xué)習(xí)中,老師可以讓學(xué)生繪制函數(shù)圖像,對(duì)函數(shù)進(jìn)行分類討論,從而掌握遞增函數(shù)和遞減函數(shù)的定義,在分類討論后,學(xué)生結(jié)合圖像進(jìn)行歸納。在數(shù)學(xué)教學(xué)中,老師不僅僅要重視書本上的邏輯內(nèi)容,而且在把握邏輯內(nèi)容的基礎(chǔ)上,將圖像和數(shù)學(xué)知識(shí)有機(jī)結(jié)合起來,使學(xué)生可以大膽創(chuàng)新。

  很多學(xué)生在數(shù)學(xué)學(xué)習(xí)中存在困難,認(rèn)為數(shù)學(xué)的學(xué)習(xí)就是解答大量的難題,他們?cè)诖罅康念}海戰(zhàn)術(shù)后不善于歸納,導(dǎo)致數(shù)學(xué)學(xué)習(xí)的效率不高。

  二、在交流中歸納知識(shí)點(diǎn)

  在數(shù)學(xué)學(xué)習(xí)中,如果學(xué)生只是自己探究,那么在學(xué)習(xí)中不會(huì)得到靈感。數(shù)學(xué)學(xué)習(xí)不僅僅要求學(xué)生具有認(rèn)真的鉆研態(tài)度,而且也需要老師幫助學(xué)生養(yǎng)成歸納的意識(shí)。溝通和交流不僅僅在語言的學(xué)習(xí)中發(fā)揮非常重要的作用,而且在數(shù)學(xué)學(xué)習(xí)中同樣非常重要。學(xué)生在解答數(shù)學(xué)問題中,常常會(huì)遇到一些問題,學(xué)生自己探究會(huì)陷入到死胡同中,需要老師和同學(xué)的幫助才能進(jìn)一步完成。

  為了切實(shí)在初中數(shù)學(xué)教學(xué)中培養(yǎng)學(xué)生的歸納意識(shí),老師可以將班級(jí)內(nèi)的學(xué)生分成幾個(gè)不同的小組,組內(nèi)的同學(xué)可以通過合作的方式,對(duì)知識(shí)點(diǎn)進(jìn)行歸納,在數(shù)學(xué)的學(xué)習(xí)中更加變通,將數(shù)學(xué)這門學(xué)科應(yīng)用到生活中。

  例如,在進(jìn)行二次函數(shù)的學(xué)習(xí)中,老師可以將學(xué)生分成不同的小組,留給學(xué)生充足的時(shí)間,讓他們互相幫助,在溝通中對(duì)知識(shí)點(diǎn)進(jìn)行歸納。學(xué)生很快就能得到結(jié)論,如果函數(shù)有兩個(gè)解,那么函數(shù)與數(shù)軸會(huì)有兩個(gè)交點(diǎn),如果方程只有一個(gè)解,那么函數(shù)與數(shù)軸只有一個(gè)交點(diǎn),如果方程沒有解,那么函數(shù)與數(shù)軸沒有交點(diǎn)。學(xué)生通過分組討論的方式得到結(jié)論,通過歸納,學(xué)生對(duì)二次函數(shù)知識(shí)點(diǎn)的印象非常深刻。

  三、學(xué)會(huì)正確歸納

  在數(shù)學(xué)學(xué)習(xí)中,歸納思想非常重要,數(shù)學(xué)這門學(xué)科的知識(shí)非常細(xì)碎,是一門系統(tǒng)性很強(qiáng)的學(xué)科。數(shù)學(xué)知識(shí)錯(cuò)綜復(fù)雜,很多學(xué)生在學(xué)習(xí)數(shù)學(xué)中力不從心,掌握合理的歸納方式,可以切實(shí)提升學(xué)生的數(shù)學(xué)成績(jī)。初中生的`思維還不是特別完善,在進(jìn)行數(shù)學(xué)學(xué)習(xí)環(huán)節(jié)中,對(duì)知識(shí)點(diǎn)進(jìn)行合理的歸納,是每位老師應(yīng)該采取的方法。如果學(xué)生不懂得歸納,那么在數(shù)學(xué)考試中,學(xué)生會(huì)將知識(shí)點(diǎn)混淆。為了提升學(xué)生的歸納能力,老師在課堂上應(yīng)該將一些容易混淆和容易出現(xiàn)錯(cuò)誤的習(xí)題讓學(xué)生總結(jié)。

  例如,在學(xué)習(xí)圓和直線這部分內(nèi)容中,老師都會(huì)將重點(diǎn)內(nèi)容,圓和圓的位置關(guān)系,直線和圓的位置關(guān)系進(jìn)行重點(diǎn)分析。老師可以借助一些參考書目和資料,總結(jié)一些相似的題目,讓學(xué)生在課堂上解答這些題目,使學(xué)生對(duì)這部分知識(shí)點(diǎn)進(jìn)行總結(jié),從而加深對(duì)這部分知識(shí)的理解。歸納思想在數(shù)學(xué)學(xué)習(xí)中應(yīng)用非常多,在進(jìn)行初中數(shù)學(xué)教學(xué)環(huán)節(jié)中,學(xué)生應(yīng)該花更多的時(shí)間進(jìn)行歸納。

  在進(jìn)行初中數(shù)學(xué)的學(xué)習(xí)中,學(xué)生歸納意識(shí)的養(yǎng)成可以完善學(xué)生的數(shù)學(xué)思維,學(xué)生學(xué)會(huì)歸納,在學(xué)習(xí)中就會(huì)如魚得水,在考試中取得好成績(jī)。

  四、在反思中完成知識(shí)點(diǎn)的歸納

初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)10

  課題

  3.5正比例函數(shù)、反比例函數(shù)、一次函數(shù)和二次函數(shù)

  教學(xué)目標(biāo)

  1、掌握正(反)比例函數(shù)、一次函數(shù)和二次函數(shù)的概念及其圖形和性質(zhì)2、會(huì)用待定系數(shù)法確定函數(shù)的解析式

  教學(xué)重點(diǎn)

  掌握正(反)比例函數(shù)、一次函數(shù)和二次函數(shù)的概念及其圖形和性質(zhì)

  教學(xué)難點(diǎn)

  掌握正(反)比例函數(shù)、一次函數(shù)和二次函數(shù)的概念及其圖形和性質(zhì)

  教學(xué)方法

  講練結(jié)合法

  教學(xué)過程

 。↖)知識(shí)要點(diǎn)(見下表:)

  第三章第29頁函數(shù)名稱解析式圖像正比例函數(shù)ykx(k0)0x反比例函數(shù)一次函數(shù)ykxb(k0)0x二次函數(shù)yax2bxc(a0)y0xy0xky(k0)xyxy0xyy0xy0xyk0k0k0k0k0k0a0a0圖像過點(diǎn)(0,0)及(1,k)的直線雙曲線,x軸、y軸是它的漸近線與直線ykx平行且過點(diǎn)(0,b)的直線拋物線定義域RxxR且xoyyR且yoRR4acb2a0時(shí),y,4aR值域R4acb2a0時(shí),y,4aba0時(shí),在-,上為增2a函數(shù),在,-單調(diào)性k0時(shí),在,0,k0時(shí)為增函數(shù)0,上為減函數(shù)k0時(shí),為增函數(shù)b上為減函數(shù)2ak0時(shí)為減函數(shù)k0時(shí),在,0,k0時(shí),為減函數(shù)0,上為增函數(shù)ba0時(shí),在-,上為減2a函數(shù),在,-b上為增函數(shù)2a奇偶性奇函數(shù)奇函數(shù)b=0時(shí)奇函數(shù)b=0時(shí)偶函數(shù)a0且x-ymin最值無無無b時(shí),2a24acb4ab時(shí),2a24acb4aa0且x-ymax

  第三章第30頁b24acb2注:二次函數(shù)yaxbxca(x(a0))a(xm)(xn)2a4abb4acb2對(duì)稱軸x,頂點(diǎn)(,)

  2a2a4a2拋物線與x軸交點(diǎn)坐標(biāo)(m,0),(n,0)(II)例題講解

  例1、求滿足下列條件的二次函數(shù)的.解析式:(1)拋物線過點(diǎn)A(1,1),B(2,2),C(4,2)(2)拋物線的頂點(diǎn)為P(1,5)且過點(diǎn)Q(3,3)

 。3)拋物線對(duì)稱軸是x2,它在x軸上截出的線段AB長(zhǎng)為2且拋物線過點(diǎn)(1,7)。2,

  解:(1)設(shè)yax2bxc(a0),將A、B、C三點(diǎn)坐標(biāo)分別代入,可得方程組為

  abc1a1解得b4yx24x24a2bc216a4bc2c2(2)設(shè)二次函數(shù)為ya(x1)25,將Q點(diǎn)坐標(biāo)代入,即a(31)253,得

  a2,故y2(x1)252x24x3

  (3)∵拋物線對(duì)稱軸為x2;

  ∴拋物線與x軸的兩個(gè)交點(diǎn)A、B應(yīng)關(guān)于x2對(duì)稱;∴由題設(shè)條件可得兩個(gè)交點(diǎn)坐標(biāo)分別為A(2∴可設(shè)函數(shù)解析式為:ya(x2代入方程可得a1

  ∴所求二次函數(shù)為yx24x2,

  2,0)、B(222,0)

  2)(x22)a(x2)22a,將(1,7)

  5),例2:二次函數(shù)的圖像過點(diǎn)(0,8),(1,(4,0)

 。1)求函數(shù)圖像的頂點(diǎn)坐標(biāo)、對(duì)稱軸、最值及單調(diào)區(qū)間(2)當(dāng)x取何值時(shí),①y≥0,②y(2)由y0可得x22x80,解得x4或x2由y0可得x22x80,解得2x4

  例3:求函數(shù)f(x)x2x1,x[1,1]的最值及相應(yīng)的x值

  113x1(x)2,知函數(shù)的圖像開口向上,對(duì)稱軸為x

  224111]上是增函數(shù)!嘁李}設(shè)條件可得f(x)在[1,]上是減函數(shù),在[,22131]時(shí),函數(shù)取得最小值,且ymin∴當(dāng)x[1,24131又∵11

初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)11

  基本定理

  1、過兩點(diǎn)有且只有一條直線

  2、兩點(diǎn)之間線段最短

  3、同角或等角的補(bǔ)角相等

  4、同角或等角的余角相等

  5、過一點(diǎn)有且只有一條直線和已知直線垂直

  6、直線外一點(diǎn)與直線上各點(diǎn)連接的所有線段中,垂線段最短

  7、平行公理經(jīng)過直線外一點(diǎn),有且只有一條直線與這條直線平行

  8、如果兩條直線都和第三條直線平行,這兩條直線也互相平行

  9、同位角相等,兩直線平行

  10、內(nèi)錯(cuò)角相等,兩直線平行

  11、同旁內(nèi)角互補(bǔ),兩直線平行

  12、兩直線平行,同位角相等

  13、兩直線平行,內(nèi)錯(cuò)角相等

  14、兩直線平行,同旁內(nèi)角互補(bǔ)

  15、定理xxx兩邊的和大于第三邊

  16、推論xxx兩邊的差小于第三邊

  17、xxx內(nèi)角和定理xxx三個(gè)內(nèi)角的和等于180°

  18、推論1直角xxx的兩個(gè)銳角互余

  19、推論2 xxx的一個(gè)外角等于和它不相鄰的兩個(gè)內(nèi)角的和

  20、推論3 xxx的一個(gè)外角大于任何一個(gè)和它不相鄰的內(nèi)角

  21、全等xxx的對(duì)應(yīng)邊、對(duì)應(yīng)角相等

  22、邊角邊公理(SAS)有兩邊和它們的夾角對(duì)應(yīng)相等的兩個(gè)xxx全等

  23、角邊角公理( ASA)有兩角和它們的夾邊對(duì)應(yīng)相等的兩個(gè)xxx全等

  24、推論(AAS)有兩角和其中一角的對(duì)邊對(duì)應(yīng)相等的兩個(gè)xxx全等

  25、邊邊邊公理(SSS)有三邊對(duì)應(yīng)相等的兩個(gè)xxx全等

  26、斜邊、直角邊公理(HL)有斜邊和一條直角邊對(duì)應(yīng)相等的兩個(gè)直角xxx全等

  27、定理1在角的平分線上的點(diǎn)到這個(gè)角的兩邊的距離相等

  28、定理2到一個(gè)角的兩邊的距離相同的點(diǎn),在這個(gè)角的平分線上

  29、角的平分線是到角的兩邊距離相等的所有點(diǎn)的集合

  30、等腰xxx的性質(zhì)定理等腰xxx的兩個(gè)底角相等(即等邊對(duì)等角)

  31、推論1等腰xxx頂角的平分線平分底邊并且垂直于底邊

  32、等腰xxx的頂角平分線、底邊上的中線和底邊上的高互相重合

  33、推論3等邊xxx的各角都相等,并且每一個(gè)角都等于60°

  34、等腰xxx的判定定理如果一個(gè)xxx有兩個(gè)角相等,那么這兩個(gè)角所對(duì)的邊也相等(等角對(duì)等邊)

  35、推論1三個(gè)角都相等的xxx是等邊xxx

  36、推論2有一個(gè)角等于60°的等腰xxx是等邊xxx

  37、在直角xxx中,如果一個(gè)銳角等于30°那么它所對(duì)的直角邊等于斜邊的一半

  38、直角xxx斜邊上的中線等于斜邊上的.一半

  39、定理線段垂直平分線上的點(diǎn)和這條線段兩個(gè)端點(diǎn)的距離相等

  40、逆定理和一條線段兩個(gè)端點(diǎn)距離相等的點(diǎn),在這條線段的垂直平分線上

  41、線段的垂直平分線可看作和線段兩端點(diǎn)距離相等的所有點(diǎn)的集合

  42、定理1關(guān)于某條直線對(duì)稱的兩個(gè)圖形是全等形

  43、定理2如果兩個(gè)圖形關(guān)于某直線對(duì)稱,那么對(duì)稱軸是對(duì)應(yīng)點(diǎn)連線的垂直平分線

  44、定理3兩個(gè)圖形關(guān)于某直線對(duì)稱,如果它們的對(duì)應(yīng)線段或延長(zhǎng)線相交,那么交點(diǎn)在對(duì)稱軸上

  45、逆定理如果兩個(gè)圖形的對(duì)應(yīng)點(diǎn)連線被同一條直線垂直平分,那么這兩個(gè)圖形關(guān)于這條直線對(duì)稱

  46、勾股定理直角xxx兩直角邊a、b的平方和、等于斜邊c的平方,即a2+b2=c2

  47、勾股定理的逆定理如果xxx的三邊長(zhǎng)a、b、c有關(guān)系a2+b2=c2,那么這個(gè)xxx是直角xxx

  48、定理四邊形的內(nèi)角和等于360°

  49、四邊形的外角和等于360°

  50、多邊形內(nèi)角和定理n邊形的內(nèi)角的和等于(n-2)×180°

初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)12

  一、一次函數(shù)圖象y=kx+b

  一次函數(shù)的圖象可以由k、b的正負(fù)來決定:

  k大于零是一撇(由左下至右上,增函數(shù))

  k小于零是一捺(由右上至左下,減函數(shù))

  b等于零必過原點(diǎn);

  b大于零交點(diǎn)(指圖象與y軸的交點(diǎn))在上方(指x軸上方)

  b小于零交點(diǎn)(指圖象與y軸的交點(diǎn))在下方(指x軸下方)

  其圖象經(jīng)過(0,b)和(—b/k,0)這兩點(diǎn)(兩點(diǎn)就可以決定一條直線),且(0,b)在y軸上,(—b/k,0)在x軸上。

  b的數(shù)值就是一次函數(shù)在y軸上的截距(不是距離,有正、負(fù)、零之分)。

  二、不等式組的解集

  1、步驟:去分母(后分子應(yīng)加上括號(hào))、去括號(hào)、移項(xiàng)、合并同類項(xiàng)、系數(shù)化為1。

  2、解一元一次不等式組時(shí),先求出各個(gè)不等式的解集,然后按不等式組解集的四種類型所反映的`規(guī)律,寫出不等式組的解集:不等式組解集的確定方法,若a

  A的解集是解集小小的取小

  B的解集是解集大大的取大

  C的解集是解集大小的小大的取中間

  D的解集是空集解集大大的小小的無解

  另需注意等于的問題。

  三、零的描述

  1、零既不是正數(shù)也不是負(fù)數(shù),是介于正數(shù)和負(fù)數(shù)之間的數(shù)。零是自然數(shù),是整數(shù),是偶數(shù)。

  A、零是表示具有相反意義的量的基準(zhǔn)數(shù)。

  B、零是判定正、負(fù)數(shù)的界限。

  C、在一切非負(fù)數(shù)中有一個(gè)最小值是0;在一切非正數(shù)中有一個(gè)最大值是0。

  2、零的運(yùn)算性質(zhì)

  A、乘方:零的正整數(shù)次冪都是零。

  B、除法:零除以任何不等于零的數(shù)都得零;零不能作除數(shù);0沒有倒數(shù)。

  C、乘法:零乘以任何數(shù)都得零。ab=0a、b中至少有一個(gè)是0。

  D、加法a、b互為相反數(shù)a+b=0

  E、減法(比較大小用)a—b=0a=b;a—b0ab;a—b0a

  3、在近似數(shù)中,當(dāng)0作為有效數(shù)字時(shí),它表示不同的精確度,不能省略。

  四、因式分解分解方法

  首先提取公因式,然后依次用公式,十字相乘,分組分解法,若都不行,再拆項(xiàng)添項(xiàng)試一試。必須進(jìn)行到每一個(gè)多項(xiàng)式因式不能再分解為止

  1、提公因式法

  首先觀察多項(xiàng)式的結(jié)構(gòu)特點(diǎn),確定多項(xiàng)式的公因式。當(dāng)多項(xiàng)式各項(xiàng)的公因式是一個(gè)多項(xiàng)式時(shí),可以用設(shè)輔助元的方法把它轉(zhuǎn)化為單項(xiàng)式,也可以把這個(gè)多項(xiàng)式因式看作一個(gè)整體,直接提取公因式;當(dāng)多項(xiàng)式各項(xiàng)的公因式是隱含的時(shí)候,要把多項(xiàng)式進(jìn)行適當(dāng)?shù)淖冃危蚋淖兎?hào),直到可確定多項(xiàng)式的公因式。

  2、公式

  a2—b2=(a+b)(a—b)

  a2+2ab+b2=(a+b)2

  a2—2ab+b2=(a—b)2,還立方差和及其他公式

  3、十字相乘

  運(yùn)用公式x2+(p+q)x+pq=(x+q)(x+p)進(jìn)行因式分解。

  將常數(shù)項(xiàng)分解成滿足要求的兩個(gè)因數(shù)積的多次嘗試,一般步驟:

 、倭谐龀(shù)項(xiàng)分解成兩個(gè)因數(shù)的積各種可能情況;

 、趪L試其中的哪兩個(gè)因數(shù)的和恰好等于一次項(xiàng)系數(shù)。

  4、分組分解法

  多項(xiàng)式am+an+bm+bn,這四項(xiàng)中沒有公因式,所以不能用提取公因式法,再看它又不能用公式、十字相乘法分解因式。如果把它分成兩組(am+an)和(bm+bn),這兩組能分別用提取公因式的方法分別分解因式。

  原式=(am+an)+(bm+bn)

  =a(m+n)+b(m+n)

  再提公因式(m+n)

  a(m+n)+b(m+n)

  =(m+n)?(a+b)。

  可見如把一個(gè)多項(xiàng)式的項(xiàng)分組并提取公因式后它們的另一個(gè)因式正好相同,那么這個(gè)多項(xiàng)式就可以用分組分解法來分解因式。

初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)13

  第一章 豐富的圖形世界

  1、幾何圖形

  從實(shí)物中抽象出來的各種圖形,包括立體圖形和平面圖形。

  2、點(diǎn)、線、面、體

  (1)幾何圖形的組成

  點(diǎn):線和線相交的地方是點(diǎn),它是幾何圖形中最基本的圖形。

  線:面和面相交的地方是線,分為直線和曲線。

  面:包圍著體的是面,分為平面和曲面。

  體:幾何體也簡(jiǎn)稱體。

  (2)點(diǎn)動(dòng)成線,線動(dòng)成面,面動(dòng)成體。

  3、生活中的立體圖形

  生活中的立體圖形

  柱:棱柱:三棱柱、四棱柱(長(zhǎng)方體、正方體)、五棱柱、……

  正有理數(shù) 整數(shù)

  有理數(shù) 零 有理數(shù)

  負(fù)有理數(shù) 分?jǐn)?shù)

  2、相反數(shù):只有符號(hào)不同的兩個(gè)數(shù)叫做互為相反數(shù),零的相反數(shù)是零

  3、數(shù)軸:規(guī)定了原點(diǎn)、正方向和單位長(zhǎng)度的直線叫做數(shù)軸(畫數(shù)軸時(shí),三要素缺一不可)。任何一個(gè)有理數(shù)都可以用數(shù)軸上的一個(gè)點(diǎn)來表示。

  4、倒數(shù):如果a與b互為倒數(shù),則有ab=1,反之亦成立。倒數(shù)等于本身的數(shù)是1和-1。零沒有倒數(shù)。

  5、絕對(duì)值:在數(shù)軸上,一個(gè)數(shù)所對(duì)應(yīng)的點(diǎn)與原點(diǎn)的距離,叫做該數(shù)的絕對(duì)值,(|a|≥0)。若|a|=a,則a≥0;若|a|=-a,則a≤0。

  正數(shù)的絕對(duì)值是它本身;負(fù)數(shù)的絕對(duì)值是它的相反數(shù);0的絕對(duì)值是0;橄喾磾(shù)的兩個(gè)數(shù)的絕對(duì)值相等。

  6、有理數(shù)比較大小:正數(shù)大于0,負(fù)數(shù)小于0,正數(shù)大于負(fù)數(shù);數(shù)軸上的兩個(gè)點(diǎn)所表示的數(shù),右邊的總比左邊的大;兩個(gè)負(fù)數(shù),絕對(duì)值大的反而小。

  7、有理數(shù)的運(yùn)算:

  (1)五種運(yùn)算:加、減、乘、除、乘方

  多個(gè)數(shù)相乘,積的符號(hào)由負(fù)因數(shù)的個(gè)數(shù)決定,當(dāng)負(fù)因數(shù)有奇數(shù)個(gè)時(shí),積的符號(hào)為負(fù);當(dāng)負(fù)因數(shù)有偶數(shù)個(gè)時(shí),積的符號(hào)為正。只要有一個(gè)數(shù)為零,積就為零。

  有理數(shù)加法法則:

  同號(hào)兩數(shù)相加,取相同的符號(hào),并把絕對(duì)值相加。

  異號(hào)兩數(shù)相加,絕對(duì)值值相等時(shí)和為0;絕對(duì)值不相等時(shí),取絕對(duì)值較大的加數(shù)的符號(hào),并用較大的絕對(duì)值減去較小的絕對(duì)值。

  一個(gè)數(shù)同0相加,仍得這個(gè)數(shù)。

  互為相反數(shù)的兩個(gè)數(shù)相加和為0。

  有理數(shù)減法法則:減去一個(gè)數(shù),等于加上這個(gè)數(shù)的相反數(shù)!

  有理數(shù)乘法法則:

  兩數(shù)相乘,同號(hào)得正,異號(hào)得負(fù),并把絕對(duì)值相乘。

  任何數(shù)與0相乘,積仍為0。

  有理數(shù)除法法則:

  兩個(gè)有理數(shù)相除,同號(hào)得正,異號(hào)得負(fù),并把絕對(duì)值相除。

  0除以任何非0的數(shù)都得0。

  注意:0不能作除數(shù)。

  有理數(shù)的乘方:求n個(gè)相同因數(shù)a的積的運(yùn)算叫做乘方。

  正數(shù)的任何次冪都是正數(shù),負(fù)數(shù)的偶次冪是正數(shù),負(fù)數(shù)的奇次冪是負(fù)數(shù)。

  (2)有理數(shù)的運(yùn)算順序

  先算乘方,再算乘除,最后算加減,如果有括號(hào),先算括號(hào)里面的。

  (3)運(yùn)算律

  加法交換律 加法結(jié)合律

  乘法交換律 乘法結(jié)合律

  乘法對(duì)加法的分配律

  8、科學(xué)記數(shù)法

  一般地,一個(gè)大于10的數(shù)可以表示成的形式,其中,n是正整數(shù),這種記數(shù)方法叫做科學(xué)記數(shù)法。(n=整數(shù)位數(shù)-1)

  第三章 整式及其加減

  1、代數(shù)式

  用運(yùn)算符號(hào)(加、減、乘、除、乘方、開方等)把數(shù)或表示數(shù)的字母連接而成的式子叫做代數(shù)式。單獨(dú)的一個(gè)數(shù)或一個(gè)字母也是代數(shù)式。

  注意:①代數(shù)式中除了含有數(shù)、字母和運(yùn)算符號(hào)外,還可以有括號(hào);

  ②代數(shù)式中不含有“=、>、<、≠”等符號(hào)。等式和不等式都不是代數(shù)式,但等號(hào)和不等號(hào)兩邊的式子一般都是代數(shù)式;

 、鄞鷶(shù)式中的字母所表示的數(shù)必須要使這個(gè)代數(shù)式有意義,是實(shí)際問題的要符合實(shí)際問題的意義。

  ※代數(shù)式的書寫格式:

 、俅鷶(shù)式中出現(xiàn)乘號(hào),通常省略不寫,如vt;

 、跀(shù)字與字母相乘時(shí),數(shù)字應(yīng)寫在字母前面,如4a;

 、蹘Х?jǐn)?shù)與字母相乘時(shí),應(yīng)先把帶分?jǐn)?shù)化成假分?jǐn)?shù),如應(yīng)寫作;

  ④數(shù)字與數(shù)字相乘,一般仍用“×”號(hào),即“×”號(hào)不省略;

 、菰诖鷶(shù)式中出現(xiàn)除法運(yùn)算時(shí),一般寫成分?jǐn)?shù)的形式,如4÷(a-4)應(yīng)寫作;注意:分?jǐn)?shù)線具有“÷”號(hào)和括號(hào)的雙重作用。

 、拊诒硎竞(或)差的代數(shù)式后有單位名稱的,則必須把代數(shù)式括起來,再將單位名稱寫在式子的后面,如平方米。

  2、整式:?jiǎn)雾?xiàng)式和多項(xiàng)式統(tǒng)稱為整式。

 、賳雾(xiàng)式:都是數(shù)字和字母乘積的形式的代數(shù)式叫做單項(xiàng)式。單項(xiàng)式中,所有字母的指數(shù)之和叫做這個(gè)單項(xiàng)式的次數(shù);數(shù)字因數(shù)叫做這個(gè)單項(xiàng)式的系數(shù)。

  注意:1.單獨(dú)的一個(gè)數(shù)或一個(gè)字母也是單項(xiàng)式;2.單獨(dú)一個(gè)非零數(shù)的次數(shù)是0;3.當(dāng)單項(xiàng)式的系數(shù)為1或-1時(shí),這個(gè)“1”應(yīng)省略不寫,如-ab的系數(shù)是-1,a3b的系數(shù)是1。

  ②多項(xiàng)式:幾個(gè)單項(xiàng)式的和叫做多項(xiàng)式。多項(xiàng)式中,每個(gè)單項(xiàng)式叫做多項(xiàng)式的項(xiàng);次數(shù)最高的項(xiàng)的次數(shù)叫做多項(xiàng)式的次數(shù)。

  3、同類項(xiàng):所含字母相同,并且相同字母的指數(shù)也相同的項(xiàng)叫做同類項(xiàng)。

  注意:①同類項(xiàng)有兩個(gè)條件:a.所含字母相同;b.相同字母的指數(shù)也相同。

 、谕愴(xiàng)與系數(shù)無關(guān),與字母的排列順序無關(guān);

 、蹘讉(gè)常數(shù)項(xiàng)也是同類項(xiàng)。

  4、合并同類項(xiàng)法則:把同類項(xiàng)的系數(shù)相加,字母和字母的指數(shù)不變。

  5、去括號(hào)法則

 、俑鶕(jù)去括號(hào)法則去括號(hào):

  括號(hào)前面是“+”號(hào),把括號(hào)和它前面的“+”號(hào)去掉,括號(hào)里各項(xiàng)都不改變符號(hào);括號(hào)前面是“-”號(hào),把括號(hào)和它前面的“-”號(hào)去掉,括號(hào)里各項(xiàng)都改變符號(hào)。

  ②根據(jù)分配律去括號(hào):

  括號(hào)前面是“+”號(hào)看成+1,括號(hào)前面是“-”號(hào)看成-1,根據(jù)乘法的分配律用+1或-1去乘括號(hào)里的每一項(xiàng)以達(dá)到去括號(hào)的目的。

  6、添括號(hào)法則

  添“+”號(hào)和括號(hào),添到括號(hào)里的各項(xiàng)符號(hào)都不改變;添“-”號(hào)和括號(hào),添到括號(hào)里的各項(xiàng)符號(hào)都要改變。

  7、整式的運(yùn)算:

  整式的加減法:(1)去括號(hào);(2)合并同類項(xiàng)。

  第四章 基本平面圖形

  2、直線的性質(zhì)

  (1)直線公理:經(jīng)過兩個(gè)點(diǎn)有且只有一條直線。(兩點(diǎn)確定一條直線。)

  (2)過一點(diǎn)的直線有無數(shù)條。

  (3)直線是是向兩方面無限延伸的.,無端點(diǎn),不可度量,不能比較大小。

  3、線段的性質(zhì)

  (1)線段公理:兩點(diǎn)之間的所有連線中,線段最短。(兩點(diǎn)之間線段最短。)

  (2)兩點(diǎn)之間的距離:兩點(diǎn)之間線段的長(zhǎng)度,叫做這兩點(diǎn)之間的距離。

  (3)線段的大小關(guān)系和它們的長(zhǎng)度的大小關(guān)系是一致的。

  4、線段的中點(diǎn):

  點(diǎn)M把線段AB分成相等的兩條相等的線段AM與BM,點(diǎn)M叫做線段AB的中點(diǎn)。AM = BM =1/2AB (或AB=2AM=2BM)。

  5、角:

  有公共端點(diǎn)的兩條射線組成的圖形叫做角,兩條射線的公共端點(diǎn)叫做這個(gè)角的頂點(diǎn),這兩條射線叫做這個(gè)角的邊;颍航且部梢钥闯墒且粭l射線繞著它的端點(diǎn)旋轉(zhuǎn)而成的。

  6、角的表示

  角的表示方法有以下四種:

 、儆脭(shù)字表示單獨(dú)的角,如∠1,∠2,∠3等。

 、谟眯懙南ED字母表示單獨(dú)的一個(gè)角,如∠α,∠β,∠γ,∠θ等。

 、塾靡粋(gè)大寫英文字母表示一個(gè)獨(dú)立(在一個(gè)頂點(diǎn)處只有一個(gè)角)的角,如∠B,∠C等。

  ④用三個(gè)大寫英文字母表示任一個(gè)角,如∠BAD,∠BAE,∠CAE等。

  注意:用三個(gè)大寫字母表示角時(shí),一定要把頂點(diǎn)字母寫在中間,邊上的字母寫在兩側(cè)。

  7、角的度量

  角的度量有如下規(guī)定:把一個(gè)平角180等分,每一份就是1度的角,單位是度,用“°”表示,1度記作“1°”,n度記作“n°”。

  把1°的角60等分,每一份叫做1分的角,1分記作“1’”。

  把1’的角60等分,每一份叫做1秒的角,1秒記作“1””。

  1°=60’,1’=60”

  8、角的平分線

  從一個(gè)角的頂點(diǎn)引出的一條射線,把這個(gè)角分成兩個(gè)相等的角,這條射線叫做這個(gè)角的平分線。

  9、角的性質(zhì)

  (1)角的大小與邊的長(zhǎng)短無關(guān),只與構(gòu)成角的兩條射線的幅度大小有關(guān)。

  (2)角的大小可以度量,可以比較,角可以參與運(yùn)算。

  10、平角和周角:一條射線繞著它的端點(diǎn)旋轉(zhuǎn),當(dāng)終邊和始邊成一條直線時(shí),所形成的角叫做平角。終邊繼續(xù)旋轉(zhuǎn),當(dāng)它又和始邊重合時(shí),所形成的角叫做周角。

  11、多邊形:由若干條不在同一條直線上的線段首尾順次相連組成的封閉平面圖形叫做多邊形。連接不相鄰兩個(gè)頂點(diǎn)的線段叫做多邊形的對(duì)角線。

  從一個(gè)n邊形的同一個(gè)頂點(diǎn)出發(fā),分別連接這個(gè)頂點(diǎn)與其余各頂點(diǎn),可以畫(n-3)條對(duì)角線,把這個(gè)n邊形分割成(n-2)個(gè)三角形。

  12、圓:平面上,一條線段繞著一個(gè)端點(diǎn)旋轉(zhuǎn)一周,另一個(gè)端點(diǎn)形成的圖形叫做圓。固定的端點(diǎn)O稱為圓心,線段OA的長(zhǎng)稱為半徑的長(zhǎng)(通常簡(jiǎn)稱為半徑)。

  圓上任意兩點(diǎn)A、B間的部分叫做圓弧,簡(jiǎn)稱弧,讀作“圓弧AB”或“弧AB”;由一條弧AB和經(jīng)過這條弧的端點(diǎn)的兩條半徑OA、OB所組成的圖形叫做扇形。頂點(diǎn)在圓心的角叫做圓心角。

  第五章 一元一次方程

  1、方程

  含有未知數(shù)的等式叫做方程。

  2、方程的解

  能使方程左右兩邊相等的未知數(shù)的值叫做方程的解。

  3、等式的性質(zhì)

  (1)等式的兩邊同時(shí)加上(或減去)同一個(gè)代數(shù)式,所得結(jié)果仍是等式。

  (2)等式的兩邊同時(shí)乘以同一個(gè)數(shù)((或除以同一個(gè)不為0的數(shù)),所得結(jié)果仍是等式。

  4、一元一次方程

  只含有一個(gè)未知數(shù),并且未知數(shù)的最高次數(shù)是1的整式方程叫做一元一次方程。

  5、移項(xiàng):把方程中的某一項(xiàng),改變符號(hào)后,從方程的一邊移到另一邊,這種變形叫做移項(xiàng).

  6、解一元一次方程的一般步驟:

  (1)去分母(2)去括號(hào)(3)移項(xiàng)(把方程中的某一項(xiàng)改變符號(hào)后,從方程的一邊移到另一邊,這種變形叫移項(xiàng)。)(4)合并同類項(xiàng)(5)將未知數(shù)的系數(shù)化為1

  第六章 數(shù)據(jù)的收集與整理

  1、普查與抽樣調(diào)查

  為了特定目的對(duì)全部考察對(duì)象進(jìn)行的全面調(diào)查,叫做普查。其中被考察對(duì)象的全體叫做總體,組成總體的每一個(gè)被考察對(duì)象稱為個(gè)體。

  從總體中抽取部分個(gè)體進(jìn)行調(diào)查,這種調(diào)查稱為抽樣調(diào)查,其中從總體抽取的一部分個(gè)體叫做總體的一個(gè)樣本。

  2、扇形統(tǒng)計(jì)圖

  扇形統(tǒng)計(jì)圖:利用圓與扇形來表示總體與部分的關(guān)系,扇形的大小反映部分占總體的百分比的大小,這樣的統(tǒng)計(jì)圖叫做扇形統(tǒng)計(jì)圖。(各個(gè)扇形所占的百分比之和為1)

  圓心角度數(shù)=360°×該項(xiàng)所占的百分比。(各個(gè)部分的圓心角度數(shù)之和為360°)

  3、頻數(shù)直方圖

  頻數(shù)直方圖是一種特殊的條形統(tǒng)計(jì)圖,它將統(tǒng)計(jì)對(duì)象的數(shù)據(jù)進(jìn)行了分組畫在橫軸上,縱軸表示各組數(shù)據(jù)的頻數(shù)。

  4、各種統(tǒng)計(jì)圖的特點(diǎn)

  條形統(tǒng)計(jì)圖:能清楚地表示出每個(gè)項(xiàng)目的具體數(shù)目。

  折線統(tǒng)計(jì)圖:能清楚地反映事物的變化情況。

  扇形統(tǒng)計(jì)圖:能清楚地表示出各部分在總體中所占的百分比。

初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)14

  本章內(nèi)容通過讓學(xué)生經(jīng)歷觀察、操作等過程了解旋轉(zhuǎn)的概念,探索旋轉(zhuǎn)的性質(zhì),進(jìn)一步發(fā)展空間觀察,培養(yǎng)幾何思維和審美意識(shí),在實(shí)際問題中體驗(yàn)數(shù)學(xué)的快樂,激發(fā)對(duì)學(xué)習(xí)學(xué)習(xí)。

  一.知識(shí)框架

  二.知識(shí)概念

  1.旋轉(zhuǎn):在平面內(nèi),將一個(gè)圖形繞一個(gè)圖形按某個(gè)方向轉(zhuǎn)動(dòng)一個(gè)角度,這樣的運(yùn)動(dòng)叫做圖形的旋轉(zhuǎn)。這個(gè)定點(diǎn)叫做旋轉(zhuǎn)中心,轉(zhuǎn)動(dòng)的角度叫做旋轉(zhuǎn)角。(圖形的旋轉(zhuǎn)是圖形上的每一點(diǎn)在平面上繞著某個(gè)固定點(diǎn)旋轉(zhuǎn)固定角度的位置移動(dòng),其中對(duì)應(yīng)點(diǎn)到旋轉(zhuǎn)中心的距離相等,對(duì)應(yīng)線段的長(zhǎng)度、對(duì)應(yīng)角的大小相等,旋轉(zhuǎn)前后圖形的大小和形狀沒有改變。)

  2.旋轉(zhuǎn)對(duì)稱中心:把一個(gè)圖形繞著一個(gè)定點(diǎn)旋轉(zhuǎn)一個(gè)角度后,與初始圖形重合,這種圖形叫做旋轉(zhuǎn)對(duì)稱圖形,這個(gè)定點(diǎn)叫做旋轉(zhuǎn)對(duì)稱中心,旋轉(zhuǎn)的角度叫做旋轉(zhuǎn)角(旋轉(zhuǎn)角小于0°,大于360°)。

  3.中心對(duì)稱和中心對(duì)稱圖形是兩個(gè)不同而又緊密聯(lián)系的'概念.區(qū)別是:中心對(duì)稱是指兩個(gè)全等圖形之間的相互位置關(guān)系,這兩個(gè)圖形關(guān)于一點(diǎn)對(duì)稱,這個(gè)點(diǎn)是對(duì)稱中心,兩個(gè)圖形關(guān)于點(diǎn)的對(duì)稱也叫做中心對(duì)稱.成中心對(duì)稱的兩個(gè)圖形中,其中一個(gè)上所有點(diǎn)關(guān)于對(duì)稱中心的對(duì)稱點(diǎn)都在另一個(gè)圖形上,反之,另一個(gè)圖形上所有點(diǎn)的對(duì)稱點(diǎn),又都在這個(gè)圖形上;而中心對(duì)稱圖形是指一個(gè)圖形本身成中心對(duì)稱.中心對(duì)稱圖形上所有點(diǎn)關(guān)于對(duì)稱中心的對(duì)稱點(diǎn)都在這個(gè)圖形本身上.如果將中心對(duì)稱的兩個(gè)圖形看成一個(gè)整體(一個(gè)圖形),那么這個(gè)圖形就是中心對(duì)稱圖形;一個(gè)中心對(duì)稱圖形,如果把對(duì)稱的部分看成是兩個(gè)圖形,那么它們又是關(guān)于中心對(duì)稱.

  4.中心對(duì)稱圖形與中心對(duì)稱:

  中心對(duì)稱圖形:如果把一個(gè)圖形繞著某一點(diǎn)旋轉(zhuǎn)180度后能與自身重合,那么我們就說,這個(gè)圖形成中心對(duì)稱圖形。

  中心對(duì)稱:如果把一個(gè)圖形繞著某一點(diǎn)旋轉(zhuǎn)180度后能與另一個(gè)圖形重合,那么我們就說,這兩個(gè)圖形成中心對(duì)稱。

  5.把一個(gè)圖形繞著某一點(diǎn)旋轉(zhuǎn)180°,如果它能與另一個(gè)圖形重合,那么就說這兩個(gè)圖形關(guān)于這個(gè)點(diǎn)對(duì)稱或中心對(duì)稱(centralsymmetry),這個(gè)點(diǎn)叫做對(duì)稱中心,這兩個(gè)圖形的對(duì)應(yīng)點(diǎn)叫做關(guān)于中心的對(duì)稱點(diǎn)。

  6.中心對(duì)稱的性質(zhì):

  關(guān)于中心對(duì)稱的兩個(gè)圖形是全等形。

  關(guān)于中心對(duì)稱的兩個(gè)圖形,對(duì)稱點(diǎn)連線都經(jīng)過對(duì)稱中心,并且被對(duì)稱中心平分。關(guān)于中心對(duì)稱的兩個(gè)圖形,對(duì)應(yīng)線段平行(或者在同一直線上)且相等。

初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)15

  一、數(shù)與代數(shù)

  1.有理數(shù)

  有理數(shù):

 、僬麛(shù)→正整數(shù)/0/負(fù)整數(shù)

 、诜?jǐn)?shù)→正分?jǐn)?shù)/負(fù)分?jǐn)?shù)

  數(shù)軸:

 、佼嬕粭l水平直線,在直線上取一點(diǎn)表示0(原點(diǎn)),選取某一長(zhǎng)度作為單位長(zhǎng)度,規(guī)定直線上向右的方向?yàn)檎较,就得到?shù)軸。

 、谌魏我粋(gè)有理數(shù)都可以用數(shù)軸上的一個(gè)點(diǎn)來表示。

  ③如果兩個(gè)數(shù)只有符號(hào)不同,那么我們稱其中一個(gè)數(shù)為另外一個(gè)數(shù)的相反數(shù),也稱這兩個(gè)數(shù)互為相反數(shù)。在數(shù)軸上,表示互為相反數(shù)的兩個(gè)點(diǎn),位于原點(diǎn)的兩側(cè),并且與原點(diǎn)距離相等。

 、軘(shù)軸上兩個(gè)點(diǎn)表示的數(shù),右邊的總比左邊的大。正數(shù)大于0,負(fù)數(shù)小于0,正數(shù)大于負(fù)數(shù)。

  2.實(shí)數(shù)

  無理數(shù):無限不循環(huán)小數(shù)叫無理數(shù)

  平方根:如果一個(gè)數(shù)的平方等于a,那么這個(gè)數(shù)就叫做a的平方根(或二次方跟);一個(gè)數(shù)有兩個(gè)平方根,他們互為相反數(shù);零的平方根是零;負(fù)數(shù)沒有平方根。

  算術(shù)平方根:正數(shù)的正的平方根和零的平方根統(tǒng)稱為主根,用符號(hào)“√a”表示,a為“被開方數(shù)”。

  立方根:如果一個(gè)數(shù)的立方等于a,那么這個(gè)數(shù)就叫做a的立方根(或a的三次方根);一個(gè)正數(shù)的立方根是正數(shù)、零的立方根是零、負(fù)數(shù)的立方根是負(fù)數(shù);

  二、方程

  1.代數(shù)式:?jiǎn)为?dú)一個(gè)數(shù)字或一個(gè)字母也是代數(shù)式。

  2.一元一次方程:含有一個(gè)未知數(shù),并且未知數(shù)的次數(shù)是1,并且含有一個(gè)未知數(shù),并且未知數(shù)的次數(shù)是1的所有整式方程是一元一次方程。

  3.一元二次方程:含有一個(gè)未知數(shù),并且未知數(shù)的次數(shù)是2的所有整式方程是一元二次方程。

  4.二元一次方程:含有兩個(gè)未知數(shù),并且含有一個(gè)未知數(shù)的次數(shù)是1的所有整式方程叫二元一次方程。

  5.二元二次方程:含有兩個(gè)未知數(shù),并且含有一個(gè)未知數(shù)的次數(shù)是2的所有整式方程叫二元二次方程。

  三、三角形

  1.幾何圖形:學(xué)過的立體圖形有圓柱、圓錐和球以及長(zhǎng)方體、正方體、棱柱、棱錐、棱臺(tái)。

  2.圖形的三視圖:俯視圖、主視圖、左視圖。

  3.三角形的.穩(wěn)定性。

  4.三角形的分類:銳角三角形、直角三角形、鈍角三角形。

  5.三角形的內(nèi)角和定理:三角形三個(gè)內(nèi)角的和等于180度。

  6.解直角三角形:解直角三角形需要運(yùn)用勾股定理及銳角三角函數(shù)的定義。銳角三角函數(shù)的定義:在直角三角形中,一銳角的正切等于銳角A對(duì)邊與鄰邊的比值;一銳角的余切等于銳角A的鄰邊與對(duì)邊的比值;一銳角的正弦等于銳角A的對(duì)邊與斜邊的比值;一銳角的余弦等于銳角A的鄰邊與斜邊的比值。

  7.全等三角形:全等三角形的對(duì)應(yīng)邊相等;全等三角形的對(duì)應(yīng)角相等。

  8.等腰三角形的性質(zhì)定理:等腰三角形的兩個(gè)底角相等;(簡(jiǎn)稱:等邊對(duì)等角)以及等腰三角形的頂角平分線、底邊上的中線、底邊上的高相互重合。(簡(jiǎn)稱:三線合一)

  9.等腰三角形的判定定理:如果一個(gè)三角形有兩個(gè)角相等,那么這兩個(gè)角所對(duì)的邊也相等。(簡(jiǎn)稱:等角對(duì)等邊)

  10.等邊三角形:三條邊都相等的三角形是等腰三角形;三個(gè)角都相等的三角形是等邊三角形。

  11.相似的三角形:相似三角形的對(duì)應(yīng)邊成比例;對(duì)應(yīng)角相等。

  12.反證法:在證明一個(gè)命題的論證中,假設(shè)命題的結(jié)論不成立,從這個(gè)假設(shè)出發(fā),經(jīng)過推理論證,得出與定義、公理或已經(jīng)證明過的命題或已經(jīng)掌握的事實(shí)相矛盾,從而使這個(gè)假設(shè)成為一個(gè)不成立的命題,這種推證方法叫做反證法。證明兩條線段相等時(shí)常常用反證法。

  四、四邊形

  1.平行四邊形及特殊平行四邊形的重心:平行四邊形及特殊平行四邊形的重心是它的兩條對(duì)角線的交點(diǎn)。

  2.矩形、菱形、正方形的重心:矩形、菱形、正方形的重心是它們的對(duì)角線的交點(diǎn)。

  3.梯形問題

【初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)】相關(guān)文章:

初中數(shù)學(xué)總結(jié)知識(shí)點(diǎn)08-26

【經(jīng)典】數(shù)學(xué)初中知識(shí)點(diǎn)總結(jié)07-16

初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)08-26

數(shù)學(xué)初中知識(shí)點(diǎn)總結(jié)06-10

初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)07-22

初中數(shù)學(xué)必備知識(shí)點(diǎn)總結(jié)03-01

初中數(shù)學(xué)幾何知識(shí)點(diǎn)總結(jié)11-05

初中數(shù)學(xué)函數(shù)知識(shí)點(diǎn)總結(jié)11-24

初中數(shù)學(xué)圓的知識(shí)點(diǎn)總結(jié)12-05

初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)07-15