當(dāng)前位置:育文網(wǎng)>初中>初中數(shù)學(xué)> 初中七年級數(shù)學(xué)下冊

初中七年級數(shù)學(xué)下冊

時間:2022-02-26 09:26:17 初中數(shù)學(xué) 我要投稿
  • 相關(guān)推薦

初中七年級數(shù)學(xué)下冊

初中七年級數(shù)學(xué)下冊1

  平行線的判定第1課時

初中七年級數(shù)學(xué)下冊

  基礎(chǔ)知識

  1、C

  2、ADBCADBC180°—∠1—∠2∠3+∠4

  3、ADBEADBCAECD同位角相等,兩直線平行

  4、題目略

  MNAB內(nèi)錯角相等,兩直線平行

  MNAB同位角相等,兩直線平行

  兩直線平行于同一條直線,兩直線平行

  5、B

  6、∠BED∠DFC∠AFD∠DAF

  7、證明:

  ∵AC⊥AEBD⊥BF

  ∴∠CAE=∠DBF=90°

  ∵∠1=35°∠2=35°

  ∴∠1=∠2

  ∵∠BAE=∠1+∠CAE=35°+90°=125°∠CBF=∠2+∠DBF=35°+90°=125°

  ∴∠CBF=∠BAE

  ∴AE∥BF(同位角相等,兩直線平行)

  8、題目略

 。1)DEBC

 。2)∠F同位角相等,兩直線平行

 。3)∠BCFDEBC同位角相等,兩直線平行

  能力提升

  9、∠1=∠5或∠2=∠6或∠3=∠7或∠4=∠8

  10、有,AB∥CD

  ∵OH⊥AB

  ∴∠BOH=90°

  ∵∠2=37°

  ∴∠BOE=90°—37°=53°

  ∵∠1=53°

  ∴∠BOE=∠1

  ∴AB∥CD(同位角相等,兩直線平行)

  11、已知互補等量代換同位角相等,兩直線平行

  12、平行,證明如下:

  ∵CD⊥DA,AB⊥DA

  ∴∠CDA=∠2+∠3=∠BAD=∠1+∠4=90°(互余)

  ∵∠1=∠2(已知)

  ∴∠3=∠4

  ∴DF∥AE(內(nèi)錯角相等,兩直線平行)

  探索研究

  13、對,證明如下:

  ∵∠1+∠2+∠3=180°∠2=80°

  ∴∠1+∠3=100°

  ∵∠1=∠3

  ∴∠1=∠3=50°

  ∵∠D=50°

  ∴∠1=∠D=50°

  ∴AB∥CD(內(nèi)錯角相等,兩直線平行)

  14、證明:

  ∵∠1+∠2+∠GEF=180°(三角形內(nèi)角和為180°)且∠1=50°,∠2=65°

  ∴∠GEF=180°—65°—50°=65°

  ∵∠GEF=∠BEG=1/2∠BEF=65°

  ∴∠BEG=∠2=65°

  ∴AB∥CD(內(nèi)錯角相等,兩直線平行)

初中七年級數(shù)學(xué)下冊2

  一、單項式

  1、都是數(shù)字與字母的乘積的代數(shù)式叫做單項式。

  2、單項式的數(shù)字因數(shù)叫做單項式的系數(shù)。

  3、單項式中所有字母的指數(shù)和叫做單項式的次數(shù)。

  4、單獨一個數(shù)或一個字母也是單項式。

  5、只含有字母因式的單項式的系數(shù)是1或―1。

  6、單獨的一個數(shù)字是單項式,它的系數(shù)是它本身。

  7、單獨的一個非零常數(shù)的次數(shù)是0。

  8、單項式中只能含有乘法或乘方運算,而不能含有加、減等其他運算。

  9、單項式的系數(shù)包括它前面的符號。

  10、單項式的系數(shù)是帶分數(shù)時,應(yīng)化成假分數(shù)。

  11、單項式的系數(shù)是1或―1時,通常省略數(shù)字“1”。

  12、單項式的次數(shù)僅與字母有關(guān),與單項式的系數(shù)無關(guān)。

  二、多項式

  1、幾個單項式的和叫做多項式。

  2、多項式中的每一個單項式叫做多項式的項。

  3、多項式中不含字母的項叫做常數(shù)項。

  4、一個多項式有幾項,就叫做幾項式。

  5、多項式的每一項都包括項前面的符號。

  6、多項式?jīng)]有系數(shù)的概念,但有次數(shù)的概念。

  7、多項式中次數(shù)的項的次數(shù),叫做這個多項式的次數(shù)。

  三、整式

  1、單項式和多項式統(tǒng)稱為整式。

  2、單項式或多項式都是整式。

  3、整式不一定是單項式。

  4、整式不一定是多項式。

  5、分母中含有字母的代數(shù)式不是整式;而是今后將要學(xué)習(xí)的分式。

  四、整式的加減

  1、整式加減的理論根據(jù)是:去括號法則,合并同類項法則,以及乘法分配率。

  2、幾個整式相加減,關(guān)鍵是正確地運用去括號法則,然后準(zhǔn)確合并同類項。

  3、幾個整式相加減的`一般步驟:

 。1)列出代數(shù)式:用括號把每個整式括起來,再用加減號連接。

 。2)按去括號法則去括號。

 。3)合并同類項。

  4、代數(shù)式求值的一般步驟:

  (1)代數(shù)式化簡。

 。2)代入計算

 。3)對于某些特殊的代數(shù)式,可采用“整體代入”進行計算。

  五、同底數(shù)冪的乘法

  1、n個相同因式(或因數(shù))a相乘,記作an,讀作a的n次方(冪),其中a為底數(shù),n為指數(shù),an的結(jié)果叫做冪。

  2、底數(shù)相同的冪叫做同底數(shù)冪。

  3、同底數(shù)冪乘法的運算法則:同底數(shù)冪相乘,底數(shù)不變,指數(shù)相加。即:am﹒an=am+n。

  4、此法則也可以逆用,即:am+n=am﹒an。

  5、開始底數(shù)不相同的冪的乘法,如果可以化成底數(shù)相同的冪的乘法,先化成同底數(shù)冪再運用法則。

  六、冪的乘方

  1、冪的乘方是指幾個相同的冪相乘。(am)n表示n個am相乘。

  2、冪的乘方運算法則:冪的乘方,底數(shù)不變,指數(shù)相乘。(am)n=amn。

  3、此法則也可以逆用,即:amn=(am)n=(an)m。

  七、積的乘方

  1、積的乘方是指底數(shù)是乘積形式的乘方。

  2、積的乘方運算法則:積的乘方,等于把積中的每個因式分別乘方,然后把所得的冪相乘。即(ab)n=anbn。

  3、此法則也可以逆用,即:anbn=(ab)n。

  八、三種“冪的運算法則”異同點

  1、共同點:

 。1)法則中的底數(shù)不變,只對指數(shù)做運算。

 。2)法則中的底數(shù)(不為零)和指數(shù)具有普遍性,即可以是數(shù),也可以是式(單項式或多項式)。

 。3)對于含有3個或3個以上的運算,法則仍然成立。

  2、不同點:

 。1)同底數(shù)冪相乘是指數(shù)相加。

 。2)冪的乘方是指數(shù)相乘。

 。3)積的乘方是每個因式分別乘方,再將結(jié)果相乘。

  九、同底數(shù)冪的除法

  1、同底數(shù)冪的除法法則:同底數(shù)冪相除,底數(shù)不變,指數(shù)相減,即:am÷an=am—n(a≠0)。

  2、此法則也可以逆用,即:am—n=am÷an(a≠0)。

  十、零指數(shù)冪

  1、零指數(shù)冪的意義:任何不等于0的數(shù)的0次冪都等于1,即:a0=1(a≠0)。

  十一、負指數(shù)冪

  1、任何不等于零的數(shù)的―p次冪,等于這個數(shù)的p次冪的倒數(shù),即:

  注:在同底數(shù)冪的除法、零指數(shù)冪、負指數(shù)冪中底數(shù)不為0。

  十二、整式的乘法

  (一)單項式與單項式相乘

  1、單項式乘法法則:單項式與單項式相乘,把它們的系數(shù)、相同字母的冪分別相乘,其余字母連同它的指數(shù)不變,作為積的因式。

  2、系數(shù)相乘時,注意符號。

  3、相同字母的冪相乘時,底數(shù)不變,指數(shù)相加。

  4、對于只在一個單項式中含有的字母,連同它的指數(shù)一起寫在積里,作為積的因式。

  5、單項式乘以單項式的結(jié)果仍是單項式。

  6、單項式的乘法法則對于三個或三個以上的單項式相乘同樣適用。

 。ǘ﹩雾検脚c多項式相乘

  1、單項式與多項式乘法法則:單項式與多項式相乘,就是根據(jù)分配率用單項式去乘多項式中的每一項,再把所得的積相加。即:m(a+b+c)=ma+mb+mc。

  2、運算時注意積的符號,多項式的每一項都包括它前面的符號。

  3、積是一個多項式,其項數(shù)與多項式的項數(shù)相同。

  4、混合運算中,注意運算順序,結(jié)果有同類項時要合并同類項,從而得到最簡結(jié)果。

  (三)多項式與多項式相乘

  1、多項式與多項式乘法法則:多項式與多項式相乘,先用一個多項式的每一項乘另一個多項式的每一項,再把所得的積相加。即:(m+n)(a+b)=ma+mb+na+nb。

  2、多項式與多項式相乘,必須做到不重不漏。相乘時,要按一定的順序進行,即一個多項式的每一項乘以另一個多項式的每一項。在未合并同類項之前,積的項數(shù)等于兩個多項式項數(shù)的積。

  3、多項式的每一項都包含它前面的符號,確定積中每一項的符號時應(yīng)用“同號得正,異號得負”。

  4、運算結(jié)果中有同類項的要合并同類項。

  5、對于含有同一個字母的一次項系數(shù)是1的兩個一次二項式相乘時,可以運用下面的公式簡化運算:(x+a)(x+b)=x2+(a+b)x+ab。

  十三、平方差公式

  1、(a+b)(a—b)=a2—b2,即:兩數(shù)和與這兩數(shù)差的積,等于它們的平方之差。

  2、平方差公式中的a、b可以是單項式,也可以是多項式。

  3、平方差公式可以逆用,即:a2—b2=(a+b)(a—b)。

  4、平方差公式還能簡化兩數(shù)之積的運算,解這類題,首先看兩個數(shù)能否轉(zhuǎn)化成

 。╝+b)?(a—b)的形式,然后看a2與b2是否容易計算。

初中七年級數(shù)學(xué)下冊3

  1、整式的乘除的公式運用(六條)及逆運用(數(shù)的計算)。

  (1)an·am(2)(am)n=(3)(ab)n=4)am÷an(5)a0(a≠0)(6)a—p==

  2、單項式與單項式、多項式相乘的法則。

  3、整式的乘法公式(兩條)。

  平方差公式:(a+b)(a—b)=

  完全平方公式:(a+b)2(a—b)2

  常用公式:(x+m)(x+n)=

  4、單項式除以單項式,多項式除以單項式(轉(zhuǎn)換單項式除以單項式)。

  5、互為余角和互為補角和

  6、兩直線平行的條件:(角的關(guān)系線的平行)

  ①相等,兩直線平行;

 、谙嗟,兩直線平行;

 、刍パa,兩直線平行。

  7、平行線的性質(zhì):兩直線平行。(線的平行

  8、能判別變量中的自變量和因變量,會列列關(guān)系式(因變量=自變量與常量的`關(guān)系)

  9、變量中的圖象法,注意:(1)橫、縱坐標(biāo)的對象。(2)起點、終點不同表示什么意義(3)圖象交點表示什么意義(4)會求平均值。

  10、三角形

 。1)三邊關(guān)系:角的關(guān)系)

 。2)內(nèi)角關(guān)系:

  (3)三角形的三條重要線段:

 。4)三角形全等的判別方法:(注意:公共邊、邊的公共部分對頂角、公共角、角的公共部分)

 。5)全等三角形的性質(zhì):

  (6)等腰三角形:(a)知邊求邊、周長方法(b)知角求角方法(c)三線合一:

 。7)等邊三角形:

  11、會判軸對稱圖形,會根據(jù)畫對稱圖形,(或在方格中畫)

  12、常見的軸對稱圖形有:

  13、(1)等腰三角形:對稱軸,性質(zhì)

 。2)線段:對稱軸,性質(zhì)

 。3)角:對稱軸,性質(zhì)

  14、尺規(guī)作圖:(1)作一線段等已知線段(2)作角已知角(3)作線段垂直平分線

 。4)作角的平分線(5)作三角形

  15、事件的分類:,會求各種事件的概率

 。1)摸球:P(摸某種球)=

  (2)摸牌:P(摸某種牌)=

 。3)轉(zhuǎn)盤:P(指向某個區(qū)域)=

  (4)拋骰子:P(拋出某個點數(shù))=

 。5)方格(面積):P(停留某個區(qū)域)=

  16、必然事件不可能事件,不確定事件

  17、方法歸納:(1)求邊相等可以利用

 。2)求角相等可以利用。

 。3)計算簡便可以利用。

  18、注意復(fù)習(xí):合并同類項的法則,科學(xué)記數(shù)法,解一元一次方程,絕對值。

【初中七年級數(shù)學(xué)下冊】相關(guān)文章:

七年級數(shù)學(xué)下冊教案02-19

七年級下冊數(shù)學(xué)教學(xué)總結(jié)05-22

人教版七年級數(shù)學(xué)下冊教案01-29

七年級下冊的數(shù)學(xué)教學(xué)計劃02-22

七年級下冊數(shù)學(xué)教案04-02

七年級下冊數(shù)學(xué)優(yōu)秀教案02-20

七年級數(shù)學(xué)下冊教學(xué)總結(jié)01-09

七年級下冊數(shù)學(xué)教學(xué)計劃03-04

七年級數(shù)學(xué)下冊教學(xué)計劃03-03