當前位置:育文網(wǎng)>教學文檔>教案> 高一數(shù)學的教案

高一數(shù)學的教案

時間:2024-08-27 11:33:14 教案 我要投稿

關于高一數(shù)學的教案

  作為一名專為他人授業(yè)解惑的人民教師,很有必要精心設計一份教案,教案有助于學生理解并掌握系統(tǒng)的知識。那么優(yōu)秀的教案是什么樣的呢?下面是小編整理的關于高一數(shù)學的教案,希望能夠幫助到大家。

關于高一數(shù)學的教案

關于高一數(shù)學的教案1

  教材分析:集合概念及其基本理論,稱為集合論,是近、現(xiàn)代數(shù)學的一個重要的基礎,一方面,許多重要的數(shù)學分支,都建立在集合理論的基礎上。另一方面,集合論及其所反映的數(shù)學思想,在越來越廣泛的領域種得到應用。

  課型:新授課

  教學目標:

 。1)通過實例,了解集合的含義,體會元素與集合的理解集合“屬于”關系;

  (2)能選擇自然語言、圖形語言、集合語言(列舉法或描述法)描述不同的具體問題,感受集合語言的意義和作用;

  教學重點:集合的基本概念與表示方法;

  教學難點:運用集合的兩種常用表示方法——列舉法與描述法,正確表示一些簡單的集合;

  教學過程:

  一、引入課題

  軍訓前學校通知:8月15日8點,高一年段在體育館集合進行軍訓動員;試問這個通知的對象是全體的高一學生還是個別學生?

  在這里,集合是我們常用的一個詞語,我們感興趣的是問題中某些特定(是高一而不是高二、高三)對象的總體,而不是個別的對象,為此,我們將學習一個新的概念——集合(宣布課題),即是一些研究對象的總體。

  閱讀課本P2—P3內容

  二、新課教學

 。ㄒ唬┘系挠嘘P概念

  1、集合理論創(chuàng)始人康托爾稱集合為一些確定的、不同的`東西的全體,人們能意識到這些東西,并且能判斷一個給定的東西是否屬于這個總體。

  2、一般地,研究對象統(tǒng)稱為元素(element),一些元素組成的總體叫集合(set),也簡稱集。

  3、思考1:課本P3的思考題,并再列舉一些集合例子和不能構成集合的例子,對學生的例子予以討論、點評,進而講解下面的問題。

  4、關于集合的元素的特征

 。1)確定性:設A是一個給定的集合,x是某一個具體對象,則或者是A的元素,或者不是A的元素,兩種情況必有一種且只有一種成立。

 。2)互異性:一個給定集合中的元素,指屬于這個集合的互不相同的個體(對象),因此,同一集合中不應重復出現(xiàn)同一元素。

 。3)集合相等:構成兩個集合的元素完全一樣

  5、元素與集合的關系;

 。1)如果a是集合A的元素,就說a屬于(belong to)A,記作a∈A

  (2)如果a不是集合A的元素,就說a不屬于(not belong to)A,記作a A(或a A)(舉例)

  6、常用數(shù)集及其記法

  非負整數(shù)集(或自然數(shù)集),記作N

  正整數(shù)集,記作Nx或N+;

  整數(shù)集,記作Z

  有理數(shù)集,記作Q

  實數(shù)集,記作R

 。ǘ┘系谋硎痉椒

  我們可以用自然語言來描述一個集合,但這將給我們帶來很多不便,除此之外還常用列舉法和描述法來表示集合。

 。1)列舉法:把集合中的元素一一列舉出來,寫在大括號內。

  如:{1,2,3,4,5},{x2,3x+2,5y3—x,x2+y2},…;

  例1、(課本例1)

  思考2,引入描述法

  說明:集合中的元素具有無序性,所以用列舉法表示集合時不必考慮元素的順序。

 。2)描述法:把集合中的元素的公共屬性描述出來,寫在大括號{}內。

  具體方法:在大括號內先寫上表示這個集合元素的一般符號及取值(或變化)范圍,再畫一條豎線,在豎線后寫出這個集合中元素所具有的共同特征。

  如:{x|x—3>2},{(x,y)|y=x2+1},{直角三角形},…;

  例2、(課本例2)

  說明:(課本P5最后一段)

  思考3:(課本P6思考)

  強調:描述法表示集合應注意集合的代表元素

  {(x,y)|y= x2+3x+2}與{y|y= x2+3x+2}不同,只要不引起誤解,集合的代表元素也可省略,例如:{整數(shù)},即代表整數(shù)集Z。

  辨析:這里的{ }已包含“所有”的意思,所以不必寫{全體整數(shù)}。下列寫法{實數(shù)集},{R}也是錯誤的。

  說明:列舉法與描述法各有優(yōu)點,應該根據(jù)具體問題確定采用哪種表示法,要注意,一般集合中元素較多或有無限個元素時,不宜采用列舉法。

 。ㄈ┱n堂練習(課本P6練習)

  三、歸納小結

  本節(jié)課從實例入手,非常自然貼切地引出集合與集合的概念,并且結合實例對集合的概念作了說明,然后介紹了集合的常用表示方法,包括列舉法、描述法。

  四、作業(yè)布置

  書面作業(yè):習題1、1,第1— 4題

關于高一數(shù)學的教案2

  教學類型:

  探究研究型

  設計思路:

  通過一系列的猜想得出德.摩根律,但是這個結論僅僅是猜想,數(shù)學是一門科學,所以需要論證它的正確性,因此本節(jié)通過剖析維恩圖的四部分來驗證猜想的正確性,并對德摩根律進行簡單的應用,因此我們制作了本微課.

  教學過程:

  一、片頭

  內容:現(xiàn)在讓我們一起來學習《集合的運算——自己探索也能發(fā)現(xiàn)的'數(shù)學規(guī)律(第二講)》。

  二、正文講解

  1.引入:牛頓曾說過:“沒有大膽的猜測,就做不出偉大的發(fā)現(xiàn)!

  上節(jié)課老師和大家學習了集合的運算,得出了一個有趣的.規(guī)律。課后,你舉例驗證了這個規(guī)律嗎?

  那么,這個規(guī)律是偶然的,還是一個恒等式呢?

  2.規(guī)律的驗證:

  試用集合A,B的交集、并集、補集分別表示維恩圖中1,2,3,4及彩色部分的集合,通過剖析維恩圖來驗證猜想的正確性使用

  3.抽象概括:通過我們的觀察和驗證,我們發(fā)現(xiàn)這個規(guī)律是一個恒等式。

  而這個規(guī)律就是180年前的英國數(shù)學家德摩根發(fā)現(xiàn)的。

  為了紀念他,我們將它稱為德摩根律。

  原來我們通過自己的探索也能發(fā)現(xiàn)這么偉大的數(shù)學規(guī)律。

  4.例題應用:使用例題形式,將的德摩根定律的結論加以應用,讓學生更加熟悉集合的運算

  三、結尾

  通過這在道題的解答,我們發(fā)現(xiàn)德摩根律為解答集合運算問題提供了更為簡便的方法。

  希望你在今后的學習中,勇于探索,發(fā)現(xiàn)更多有趣的規(guī)律。

【高一數(shù)學的教案】相關文章:

高一數(shù)學集合教案09-28

高一數(shù)學教案07-21

高一數(shù)學教案11-08

高一數(shù)學必修一教案02-06

高一數(shù)學教案(15篇)12-13

高一數(shù)學教案15篇12-08

人教版高一數(shù)學必修一教案04-24

最新高一數(shù)學教案01-21

高一數(shù)學教案(匯編15篇)12-21