- 相關(guān)推薦
高中數(shù)學(xué)二次函數(shù)解題技巧
數(shù)形結(jié)合
數(shù)形結(jié)合的方法,就是將數(shù)字與圖形二者進(jìn)行相互變換,不僅可以把問題變得更加簡單,而且可以把抽象的問題變得更加具體,這種方法在數(shù)學(xué)的學(xué)習(xí)過程中經(jīng)常用到.通過對(duì)二次函數(shù)的定義以及性質(zhì)進(jìn)行學(xué)習(xí),我們了解到它的圖像是一個(gè)拋物線,并且它的圖像還具有非常多的特殊性。
例如,它具有對(duì)稱性、單調(diào)性等等,我們?cè)趯?duì)二次函數(shù)求解的過程中,可以充分地利用它的圖像所具有的這些性質(zhì),它不僅可以把復(fù)雜的二次函數(shù)變得更加的簡單,而且可以把二次函數(shù)變得更加直觀.拋物線具有的對(duì)稱性是一個(gè)非常重要的解題思路.二次函數(shù)圖像的對(duì)稱軸一般與y軸平行或者重合;它的另一大特性是連續(xù)性,并且與其對(duì)應(yīng)的方程最多只能夠有兩個(gè)實(shí)根,因此就會(huì)產(chǎn)生一個(gè)區(qū)間,這可以為我們的解題帶來很多方便.在解題的過程中還可以利用二次函數(shù)的單調(diào)性,這也是經(jīng)常用到的方法。
代數(shù)推理
眾所周知,二次函數(shù)的函數(shù)式是y = ax2 + bx + c,觀察其函數(shù)式非常的簡單,而與其對(duì)應(yīng)的拋物線圖像卻比較容易發(fā)生變形,例如,在其中會(huì)有一般式、頂點(diǎn)式以及零點(diǎn)式等等,因此,在解決二次函數(shù)問題的過程中,其函數(shù)式會(huì)得到非常廣泛的應(yīng)用。
在二次函數(shù)的函數(shù)式y(tǒng) = ax2 + bx + c中,具有三個(gè)變量a,b,c,在確定這三個(gè)變量時(shí)一定要給出三個(gè)相互獨(dú)立的條件,有一些時(shí)候?qū)⑺o出的條件全部應(yīng)用完成之后還不能夠得出三個(gè)變量的值,這時(shí)我們就要使用逆向思維,看給出的條件中是否含有隱含條件,我們不能夠被其中的假象迷惑;我們還應(yīng)該學(xué)會(huì)利用二次函數(shù)與方程根之間具有的關(guān)系,寫出它的頂點(diǎn)式,我們可以對(duì)二次函數(shù)進(jìn)行假設(shè),對(duì)其圖像進(jìn)行描繪;然后使用函數(shù)所具有的一些性質(zhì)對(duì)其進(jìn)行限制,并且在對(duì)頂點(diǎn)式進(jìn)行運(yùn)用的過程中要非常的靈活.頂點(diǎn)式看著比較復(fù)雜,而其中最簡單的就是它,在此過程中充分的利用頂點(diǎn)式,最后一定會(huì)找到答案。
二次函數(shù)的問題靈活多變,在題目中稍稍改變一下各項(xiàng)的系數(shù)(a、b、c),就可能會(huì)改變函數(shù)的開口方向、對(duì)稱軸、二次方程的根(x1、x2)的情況;改變一下定義域的取值,就會(huì)影響到二次函數(shù)的最值y。這樣貌似一樣的題目,就變成了一個(gè)新題,會(huì)產(chǎn)生很多的不同。從這個(gè)角度上講,二次函數(shù)的題目是永遠(yuǎn)做不完的,所以要在做題的過程中不斷地強(qiáng)化對(duì)于知識(shí)點(diǎn)的認(rèn)識(shí),摸清其內(nèi)部的思路,學(xué)會(huì)舉一反三,這樣才能夠提高上課的效率,做學(xué)習(xí)的主人。學(xué)會(huì)舉一反三同樣需要在大量的做題和思考之后,這對(duì)于學(xué)生的思考能力也有著較高的要求,在具體的學(xué)習(xí)活動(dòng)中不斷地摸索二次函數(shù)的學(xué)習(xí)規(guī)律,才能夠加強(qiáng)對(duì)于二次函數(shù)的認(rèn)識(shí)。
注重二次函數(shù)圖像的學(xué)習(xí)和認(rèn)識(shí)
對(duì)于二次函數(shù)的學(xué)習(xí),尤其需要注意的一點(diǎn)就是對(duì)于圖像的認(rèn)識(shí)和使用。首先將二次函數(shù)畫出來能夠較為直觀地反映出函數(shù)本身的特點(diǎn),如開口方向、對(duì)稱抽、與坐標(biāo)軸的交點(diǎn)情況等。圖像的使用對(duì)于認(rèn)識(shí)二次函數(shù)有較大的幫助作用,尤其是在總結(jié)和歸納知識(shí)點(diǎn)的過程中,函數(shù)圖像能夠很直觀地折射出函數(shù)的性質(zhì)。二次函數(shù)的圖像實(shí)則展現(xiàn)的是一種數(shù)學(xué)上的美感,完美圖形的展示,顯示了幾何圖像本身無與倫比的美。可以說二次函數(shù)的圖像不僅僅是數(shù)學(xué)學(xué)習(xí)和解題的必需,更是認(rèn)識(shí)數(shù)學(xué)美的途徑,它帶給學(xué)生更多的是數(shù)學(xué)美的感性認(rèn)識(shí)。
注重開發(fā)式教學(xué),實(shí)現(xiàn)學(xué)生思維能力的培養(yǎng)提升
高中數(shù)學(xué)教學(xué)中,函數(shù)作為高中數(shù)學(xué)教學(xué)的重要部分,在教學(xué)中涉及的范圍內(nèi)容不僅多,并且所占的比例范圍也比較大。二次函數(shù)作為高中數(shù)學(xué)函數(shù)教學(xué)的重要一部分,其在教學(xué)中所占的比例內(nèi)容也相對(duì)比較多。因此,進(jìn)行高中數(shù)學(xué)二次函數(shù)教學(xué)所應(yīng)用的教學(xué)思想以及方法也就相對(duì)較多,在實(shí)際教學(xué)中,教師應(yīng)注意通過二次函數(shù)教學(xué)思想與教學(xué)方法的合理選擇應(yīng)用,以實(shí)現(xiàn)在二次函數(shù)教學(xué)基礎(chǔ)上學(xué)生數(shù)學(xué)思維能力的培養(yǎng)提升。
比如,在教學(xué)中可以通過下列題目的引導(dǎo)解答,引導(dǎo)學(xué)生對(duì)二次函數(shù)的內(nèi)涵與外延進(jìn)行掌握理解,同時(shí)進(jìn)行二次函數(shù)解題方式的總結(jié)思考,進(jìn)而實(shí)現(xiàn)數(shù)學(xué)思維能力的培養(yǎng)提升。已知y=ax2+bx+c,其中a>0,并且方程f(x)-x=0的兩個(gè)根x1和x2滿足0根據(jù)上題所給出的已知條件,在進(jìn)行該題目的計(jì)算解答中,不僅需要對(duì)題目已知與問題進(jìn)行很好的理解,以通過二次函數(shù)的圖象與性質(zhì)變化特征,進(jìn)行題目解答,同時(shí)在該題目解答中還需要應(yīng)用到數(shù)形結(jié)合和分類討論等解題方法。
加強(qiáng)高中數(shù)學(xué)二次函數(shù)概念定義的理解認(rèn)識(shí)
在二次函數(shù)教學(xué)中,高中數(shù)學(xué)的二次函數(shù)教學(xué)是建立在初中階段函數(shù)定義與知識(shí)教學(xué)的基礎(chǔ)之上的,在進(jìn)行函數(shù)知識(shí)內(nèi)容的定義解釋中,是通過集合之間的相對(duì)應(yīng)關(guān)系實(shí)現(xiàn)函數(shù)定義解釋的,與初中函數(shù)定義之間有著一定的區(qū)別,這就使學(xué)生在學(xué)習(xí)過程中對(duì)函數(shù)定義的理解不容易接受和適應(yīng)。因此,進(jìn)行高中數(shù)學(xué)二次函數(shù)的教學(xué),首先需要結(jié)合初中函數(shù)教學(xué)的定義內(nèi)容,對(duì)函數(shù)教學(xué)的知識(shí)定義進(jìn)行全面透徹的理解,以便于學(xué)生學(xué)習(xí)與掌握。
在高中數(shù)學(xué)二次函數(shù)教學(xué)中,首先注意引導(dǎo)學(xué)生對(duì)初中階段所學(xué)習(xí)的二次函數(shù)定義和內(nèi)容進(jìn)行復(fù)習(xí)回顧,同時(shí)與高中數(shù)學(xué)中的二次函數(shù)定義內(nèi)容進(jìn)行對(duì)比,以實(shí)現(xiàn)進(jìn)一步理解認(rèn)識(shí),弄清楚二次函數(shù)的定義、對(duì)應(yīng)關(guān)系和定義域、值域等相應(yīng)內(nèi)容,以便后續(xù)教學(xué)的開展與實(shí)施。比如,在教學(xué)“已知f(x)=x2+1,要求f(2),f(a)和f(x+1)”一題中,如果對(duì)二次函數(shù)概念定義的理解認(rèn)識(shí)比較清晰,就可以看出該問題就是一個(gè)簡單的二次函數(shù)代換問題,通過自變量的代換就能夠?qū)λ髥栴}進(jìn)行解答。需要注意的是,在進(jìn)行上述問題的解答過程中,還需要引導(dǎo)學(xué)生理解認(rèn)識(shí)二次函數(shù)的概念定義,像二次函數(shù)f(x+1)=x2+2x+2中,就不能夠?qū)(x+1)理解為x=x+1時(shí)的函數(shù)值,而應(yīng)理解為自變量x+1的函數(shù)值。
嘗試教學(xué)法與啟發(fā)式教學(xué)并用,激發(fā)學(xué)生的概括能力
高中二次函數(shù)有很多規(guī)律潛在于函數(shù)的學(xué)習(xí)過程,如果只是通過教師的普通講解讓學(xué)生被動(dòng)接受,學(xué)生難以掌握知識(shí),對(duì)于特殊解題方法的應(yīng)用印象不會(huì)深刻,對(duì)于知識(shí)點(diǎn)的記憶程度不會(huì)牢固。如果在二次函數(shù)教學(xué)中采用嘗試教學(xué)法,讓學(xué)生先自行解題,發(fā)現(xiàn)不足或困難后通過啟發(fā)式教育,引導(dǎo)學(xué)生一步步求解并在這個(gè)過程中發(fā)現(xiàn)新的規(guī)律,通過這種方法記憶將比被動(dòng)接受更加牢固。
例如,對(duì)于函數(shù)零點(diǎn)個(gè)數(shù)的判斷,以y=lnx+2x-6這個(gè)函數(shù)為例,讓學(xué)生先自主進(jìn)行零點(diǎn)個(gè)數(shù)的判斷。大多數(shù)學(xué)生在解題的時(shí)候,求解lnx+2x-6=0這個(gè)方程來求方程的零點(diǎn),然后求解出零點(diǎn)的個(gè)數(shù)。但是,在解題過程中,幾乎所有的學(xué)生都不能完成對(duì)這一方程的求解。學(xué)生發(fā)現(xiàn)問題時(shí),教師再適時(shí)進(jìn)行引導(dǎo)式的教育,讓學(xué)生求解出函數(shù)的最值,并作圖于二元坐標(biāo)系中,最后按照函數(shù)與橫軸交點(diǎn)判斷出方程的零點(diǎn)個(gè)數(shù)。在這種模式下,首先讓學(xué)生通過自主學(xué)習(xí)尋找出傳統(tǒng)方法中的弊端,然后通過指引式教學(xué),讓學(xué)生逐步發(fā)現(xiàn)求解的特殊方法,最后加深學(xué)生的印象,同時(shí)也再次利用了數(shù)形結(jié)合的方法。
利用信息數(shù)據(jù)統(tǒng)計(jì),加強(qiáng)針對(duì)性訓(xùn)練
數(shù)學(xué)學(xué)習(xí)不是一朝一夕就能提高成績,而是需要刻苦鍛煉。二次函數(shù)由于難度大,在高中數(shù)學(xué)中占據(jù)的比重高,更需要強(qiáng)化訓(xùn)練。在數(shù)字化的今天,高中數(shù)學(xué)的訓(xùn)練不能簡單進(jìn)行盲目練習(xí),而是要根據(jù)班級(jí)的實(shí)際情況進(jìn)行有針對(duì)性地訓(xùn)練,來提高學(xué)生在二次函數(shù)學(xué)習(xí)中的效果,最終達(dá)到各個(gè)班級(jí)共同進(jìn)步的目的。
由于國家對(duì)于教育的重視,數(shù)字化的設(shè)備走進(jìn)了學(xué)校課堂,更新了學(xué)校的教學(xué)工具。教師在平時(shí)的課堂訓(xùn)練及作業(yè)測試中,要做好相應(yīng)記錄,將知識(shí)有條理地分成若干模塊,對(duì)各個(gè)班級(jí)在學(xué)習(xí)時(shí)候的情況進(jìn)行統(tǒng)計(jì)。在二次函數(shù)教學(xué)中,教師可以根據(jù)函數(shù)的基本概念、基本初等函數(shù)、函數(shù)的應(yīng)用等幾個(gè)方面進(jìn)行分類統(tǒng)計(jì),對(duì)各個(gè)班級(jí)在二次函數(shù)學(xué)習(xí)的過程中產(chǎn)生的各方面問題進(jìn)行記錄,并在課程學(xué)習(xí)的復(fù)習(xí)前進(jìn)行相關(guān)數(shù)據(jù)的分析,根據(jù)數(shù)據(jù)制作統(tǒng)計(jì)圖表等,給各個(gè)班級(jí)開出一份明確的診斷證明,并根據(jù)實(shí)際情況為各個(gè)班級(jí)設(shè)計(jì)不同的講義,讓學(xué)生有針對(duì)性地進(jìn)行強(qiáng)化和糾正,彌補(bǔ)自己的不足,最終讓各個(gè)班級(jí)都能克服弱點(diǎn),在二次函數(shù)的學(xué)習(xí)中得到共同的進(jìn)步。