初中數(shù)學(xué)知識點總結(jié)
在我們平凡無奇的學(xué)生時代,大家都沒少背知識點吧?知識點也不一定都是文字,數(shù)學(xué)的知識點除了定義,同樣重要的公式也可以理解為知識點。為了幫助大家掌握重要知識點,以下是小編收集整理的初中數(shù)學(xué)知識點總結(jié),僅供參考,歡迎大家閱讀。
初中數(shù)學(xué)知識點總結(jié) 1
1、圓是定點的距離等于定長的點的集合
2、圓的內(nèi)部可以看作是圓心的距離小于半徑的點的集合3、圓的外部可以看作是圓心的距離大于半徑的點的集合4、同圓或等圓的半徑相等
5、到定點的距離等于定長的點的軌跡,是以定點為圓心,定長為半徑的圓6、和已知線段兩個端點的距離相等的點的軌跡,是著條線段的垂直平分線7、到已知角的兩邊距離相等的點的軌跡,是這個角的平分線
8、到兩條平行線距離相等的點的軌跡,是和這兩條平行線平行且距離相等的一條直線
9、定理不在同一直線上的三點確定一個圓。
10、垂徑定理垂直于弦的直徑平分這條弦并且平分弦所對的兩條弧11、推論1:
、倨椒窒遥ú皇侵睆剑┑闹睆酱怪庇谙遥⑶移椒窒宜鶎Φ膬蓷l、谙业拇怪逼椒志經(jīng)過圓心,并且平分弦所對的兩條弧
、燮椒窒宜鶎Φ'一條弧的直徑,垂直平分弦,并且平分弦所對的另一條弧12、推論2:圓的兩條平行弦所夾的弧相等13、圓是以圓心為對稱中心的中心對稱圖形
14、定理:在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對的弦的弦心距相等
15、推論:在同圓或等圓中,如果兩個圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相等那么它們所對應(yīng)的其余各組量都相等
16、定理:一條弧所對的圓周角等于它所對的圓心角的一半
17、推論:1同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等
18、推論:2半圓(或直徑)所對的圓周角是直角;90°的圓周角所對的弦是直徑
19、推論:3如果三角形一邊上的中線等于這邊的一半,那么這個三角形是直角三角形
20、定理:圓的內(nèi)接四邊形的對角互補,并且任何一個外角都等于它的內(nèi)對角
21、①直線L和⊙O相交dr②直線L和⊙O相切d=r③直線L和⊙O相離dr
22、切線的判定定理經(jīng)過半徑的外端并且垂直于這條半徑的直線是圓的切線23、切線的性質(zhì)定理圓的切線垂直于經(jīng)過切點的半徑24、推論1經(jīng)過圓心且垂直于切線的直線必經(jīng)過切點25、推論2經(jīng)過切點且垂直于切線的直線必經(jīng)過圓心
26、切線長定理:從圓外一點引圓的兩條切線,它們的切線長相等圓心和這一點的連線平分兩條切線的夾角
27、圓的外切四邊形的兩組對邊的和相等
28、弦切角定理:弦切角等于它所夾的弧對的圓周角
29、推論:如果兩個弦切角所夾的弧相等,那么這兩個弦切角也相等30、相交弦定理:圓內(nèi)的兩條相交弦,被交點分成的兩條線段長的積相等31、推論:如果弦與直徑垂直相交,那么弦的一半是它分直徑所成的兩條線段的比例中項
32、切割線定理:從圓外一點引圓的切線和割線,切線長是這點到割線與圓交點的兩條線段長的比例中項
33、推論:從圓外一點引圓的兩條割線,這一點到每條割線與圓的交點的兩條線段長的積相等
34、如果兩個圓相切,那么切點一定在連心線上35、①兩圓外離dR+r②兩圓外切d=R+r
③兩圓相交R-rdR+r(Rr)④兩圓內(nèi)切d=R-r(Rr)⑤兩圓內(nèi)含dR-r(Rr)
36、定理:相交兩圓的連心線垂直平分兩圓的公共弦37、定理:把圓分成n(n≥3):
、乓来芜B結(jié)各分點所得的多邊形是這個圓的內(nèi)接正n邊形
、平(jīng)過各分點作圓的切線,以相鄰切線的交點為頂點的多邊形是這個圓的外切正n邊形
38、定理:任何正多邊形都有一個外接圓和一個內(nèi)切圓,這兩個圓是同心圓
39、正n邊形的每個內(nèi)角都等于(n-2)×180°/n40、定理:正n邊形的半徑和邊心距把正n邊形分成2n個全等的直角三角形
41、正n邊形的面積Sn=pnrn/2p表示正n邊形的周長42、正三角形面積√3a/4a表示邊長
43、如果在一個頂點周圍有k個正n邊形的角,由于這些角的和應(yīng)為360°,因此k(n-2)180°/n=360°化為(n-2)(k-2)=444、弧長計算公式:L=n兀R/180
45、扇形面積公式:S扇形=n兀R^2/360=LR/246、內(nèi)公切線長=d-(R-r)外公切線長=d-(R+r)
初中數(shù)學(xué)知識點總結(jié) 2
一、旋轉(zhuǎn)
1、定義
把一個圖形繞某一點O轉(zhuǎn)動一個角度的圖形變換叫做旋轉(zhuǎn),其中O叫做旋轉(zhuǎn)中心,轉(zhuǎn)動的角叫做旋轉(zhuǎn)角。
2、性質(zhì)
。1)對應(yīng)點到旋轉(zhuǎn)中心的距離相等。
。2)對應(yīng)點與旋轉(zhuǎn)中心所連線段的夾角等于旋轉(zhuǎn)角。
二、中心對稱
1、定義
把一個圖形繞著某一個點旋轉(zhuǎn)180°,如果旋轉(zhuǎn)后的圖形能夠和原來的圖形互相重合,那么這個圖形叫做中心對稱圖形,這個點就是它的對稱中心。
2、性質(zhì)
。1)關(guān)于中心對稱的兩個圖形是全等形。
。2)關(guān)于中心對稱的兩個圖形,對稱點連線都經(jīng)過對稱中心,并且被對稱中心平分。
。3)關(guān)于中心對稱的兩個圖形,對應(yīng)線段平行(或在同一直線上)且相等。
3、判定
如果兩個圖形的對應(yīng)點連線都經(jīng)過某一點,并且被這一點平分,那么這兩個圖形關(guān)于這一點對稱。
4、中心對稱圖形
把一個圖形繞某一個點旋轉(zhuǎn)180°,如果旋轉(zhuǎn)后的圖形能夠和原來的圖形互相重合,那么這個圖形叫做中心對稱圖形,這個店就是它的對稱中心。
考點五、坐標(biāo)系中對稱點的特征(3分)
1、關(guān)于原點對稱的點的特征
兩個點關(guān)于原點對稱時,它們的坐標(biāo)的符號相反,即點P(x,y)關(guān)于原點的對稱點為P’(—x,—y)
2、關(guān)于x軸對稱的點的特征
兩個點關(guān)于x軸對稱時,它們的坐標(biāo)中,x相等,y的.符號相反,即點P(x,y)關(guān)于x軸的對稱點為P’(x,—y)
3、關(guān)于y軸對稱的點的特征
兩個點關(guān)于y軸對稱時,它們的坐標(biāo)中,y相等,x的符號相反,即點P(x,y)關(guān)于y軸的對稱點為P’(—x,y)
數(shù)學(xué)學(xué)習(xí)中常見問題分析
大部分學(xué)生在學(xué)習(xí)中或多或少的都會積累一些問題,這些問題平時我們可能不是很在意,那么到了初二后就會突顯出來。首先新生在學(xué)習(xí)數(shù)學(xué)的時候常遇到的就是對于知識點的理解不到位,還停留在一知半解的層次上面。有的學(xué)生在解答數(shù)學(xué)題的時候始終不能把握解題技巧,也就是說學(xué)生缺乏對待數(shù)學(xué)的舉一反三能力。
還有的學(xué)生在解答數(shù)學(xué)題時效率太低,無法再規(guī)定的時間內(nèi)完成解題,對于初中的考試節(jié)奏還沒辦法適應(yīng)。一些學(xué)生還沒有養(yǎng)成一個總結(jié)歸納的習(xí)慣,不會歸納知識點,不會歸納錯題。這些都是導(dǎo)致學(xué)生學(xué)不好數(shù)學(xué)的原因。
常見面積定理
1、一個圖形的面積等于它的各部分面積的和;
2、兩個全等圖形的面積相等;
3、等底等高的三角形、平行四邊形、梯形(梯形等底應(yīng)理解為兩底的和相等)的面積相等;
4、等底(或等高)的三角形、平行四邊形、梯形的面積比等于其所對應(yīng)的高(或底)的比;
5、相似三角形的面積比等于相似比的平方;
6、等角或補角的三角形面積的比,等于夾等角或補角的兩邊的乘積的比;等角的平行四邊形面積比等于夾等角的兩邊乘積的比;
7、任何一條曲線都可以用一個函數(shù)y=f(x)來表示,那么,這條曲線所圍成的面積就是對X求積分。
初中數(shù)學(xué)知識點總結(jié) 3
一、平移變換:
1、概念:在平面內(nèi),將一個圖形沿著某個方向移動一定的距離,這樣的圖形運動叫做平移。
2、性質(zhì):(1)平移前后圖形全等;
(2)對應(yīng)點連線平行或在同一直線上且相等。
3、平移的作圖步驟和方法:
。1)分清題目要求,確定平移的方向和平移的距離;
。2)分析所作的圖形,找出構(gòu)成圖形的關(guān)健點;
(3)沿一定的方向,按一定的距離平移各個關(guān)健點;
。4)連接所作的各個關(guān)鍵點,并標(biāo)上相應(yīng)的字母;
。5)寫出結(jié)論。
二、旋轉(zhuǎn)變換:
1、概念:在平面內(nèi),將一個圖形繞一個定點沿某個方向轉(zhuǎn)動一個角度,這樣的圖形運動叫做旋轉(zhuǎn)。
說明:
。1)圖形的旋轉(zhuǎn)是由旋轉(zhuǎn)中心和旋轉(zhuǎn)的角度所決定的;
。2)旋轉(zhuǎn)過程中旋轉(zhuǎn)中心始終保持不動。
。3)旋轉(zhuǎn)過程中旋轉(zhuǎn)的方向是相同的。
。4)旋轉(zhuǎn)過程靜止時,圖形上一個點的旋轉(zhuǎn)角度是一樣的。⑤旋轉(zhuǎn)不改變圖形的'大小和形狀。
2、性質(zhì):
。1)對應(yīng)點到旋轉(zhuǎn)中心的距離相等;
(2)對應(yīng)點與旋轉(zhuǎn)中心所連線段的夾角等于旋轉(zhuǎn)角;
(3)旋轉(zhuǎn)前、后的圖形全等。
3、旋轉(zhuǎn)作圖的步驟和方法:
。1)確定旋轉(zhuǎn)中心及旋轉(zhuǎn)方向、旋轉(zhuǎn)角;
。2)找出圖形的關(guān)鍵點;
。3)將圖形的關(guān)鍵點和旋轉(zhuǎn)中心連接起來,然后按旋轉(zhuǎn)方向分別將它們旋轉(zhuǎn)一個旋轉(zhuǎn)角度數(shù),得到這些關(guān)鍵點的對應(yīng)點;
(4)按原圖形順次連接這些對應(yīng)點,所得到的圖形就是旋轉(zhuǎn)后的圖形。
說明:在旋轉(zhuǎn)作圖時,一對對應(yīng)點與旋轉(zhuǎn)中心的夾角即為旋轉(zhuǎn)角。
常見考法
(1)把平移旋轉(zhuǎn)結(jié)合起來證明三角形全等;
(2)利用平移變換與旋轉(zhuǎn)變換的性質(zhì),設(shè)計一些題目。
誤區(qū)提醒
。1)弄反了坐標(biāo)平移的上加下減,左減右加的規(guī)律;
。2)平移與旋轉(zhuǎn)的性質(zhì)沒有掌握。
初中數(shù)學(xué)知識點總結(jié) 4
1、相交線
對頂角相等。
過一點有且只有一條直線與已知直線垂直。
連接直線外一點與直線上各點的所有線段中,垂線段最短(簡單說成:垂線段最短)。
2、平行線
經(jīng)過直線外一點,有且只有一條直線與這條直線平行。
如果兩條直線都與第三條直線平行,那么這兩條直線也互相平行。
直線平行的條件:
兩條直線被第三條直線所截,如果同位角相等,那么兩直線平行。
兩條直線被第三條直線所截,如果內(nèi)錯角相等,那么兩直線平行。
兩條直線被第三條直線所截,如果同旁內(nèi)角互補,那么兩直線平行。
3、平行線的性質(zhì)
兩條平行線被第三條直線所截,同位角相等。
兩條平行線被第三條直線所截,內(nèi)錯角相等。
兩條平行線被第三條直線所截,同旁內(nèi)角互補。
判斷一件事情的.語句,叫做命題。
初中數(shù)學(xué)知識點總結(jié) 5
相關(guān)的角:
1、對頂角:一個角的兩邊分別是另一個角的兩邊的反向延長線,這兩個角叫做對頂角。
2、互為補角:如果兩個角的和是一個平角,這兩個角做互為補角。
3、互為余角:如果兩個角的和是一個直角,這兩個角叫做互為余角。
4、鄰補角:有公共頂點,一條公共邊,另兩條邊互為反向延長線的兩個角做互為鄰補角。
注意:互余、互補是指兩個角的數(shù)量關(guān)系,與兩個角的位置無關(guān),而互為鄰補角則要求兩個角有特殊的'位置關(guān)系。
角的性質(zhì)
1、對頂角相等。
2、同角或等角的余角相等。
3、同角或等角的補角相等。
初中數(shù)學(xué)知識點總結(jié) 6
第一章分式
1、分式及其基本性質(zhì)分式的分子和分母同時乘以(或除以)一個不等于零的整式,分式的只不變
2、分式的運算
。1)分式的乘除乘法法則:分式乘以分式,用分子的積作為積的分子,分母的積作為積的分母除法法則:分式除以分式,把除式的.分子、分母顛倒位置后,與被除式相乘。
。2)分式的加減加減法法則:同分母分式相加減,分母不變,把分子相加減;異分母分式相加減,先通分,變?yōu)橥帜傅姆质,再加減
3、整數(shù)指數(shù)冪的加減乘除法
4、分式方程及其解法
第二章反比例函數(shù)
1、反比例函數(shù)的表達式、圖像、性質(zhì)
圖像:雙曲線
表達式:y=k/x(k不為0)
性質(zhì):兩支的增減性相同;
2、反比例函數(shù)在實際問題中的應(yīng)用
第三章勾股定理
1、勾股定理:直角三角形的兩個直角邊的平方和等于斜邊的平方
2、勾股定理的逆定理:如果一個三角形中,有兩個邊的平方和等于第三條邊的平方,那么這個三角形是直角三角形。
第四章四邊形
1、平行四邊形
性質(zhì):對邊相等;對角相等;對角線互相平分。
判定:兩組對邊分別相等的四邊形是平行四邊形;
兩組對角分別相等的四邊形是平行四邊形;
對角線互相平分的四邊形是平行四邊形;
一組對邊平行而且相等的四邊形是平行四邊形。
推論:三角形的中位線平行第三邊,并且等于第三邊的一半。
2、特殊的平行四邊形:矩形、菱形、正方形
。1)矩形
性質(zhì):矩形的四個角都是直角;
矩形的對角線相等;
矩形具有平行四邊形的所有性質(zhì)
判定:有一個角是直角的平行四邊形是矩形;對角線相等的平行四邊形是矩形;
推論:直角三角形斜邊的中線等于斜邊的一半。
。2)菱形性質(zhì):菱形的四條邊都相等;菱形的對角線互相垂直,并且每一條對角線平分一組對角;菱形具有平行四邊形的一切性質(zhì)
判定:有一組鄰邊相等的平行四邊形是菱形;對角線互相垂直的平行四邊形是菱形;四邊相等的四邊形是菱形。
。3)正方形:既是一種特殊的矩形,又是一種特殊的菱形,所以它具有矩形和菱形的所有性質(zhì)。
3、梯形:直角梯形和等腰梯形
等腰梯形:等腰梯形同一底邊上的兩個角相等;等腰梯形的兩條對角線相等;同一個底上的兩個角相等的梯形是等腰梯形。
第五章數(shù)據(jù)的分析
加權(quán)平均數(shù)、中位數(shù)、眾數(shù)、極差、方差
初中數(shù)學(xué)知識點總結(jié) 7
一、勾股定理
1、勾股定理
直角三角形兩直角邊a,b的平方和等于斜邊c的平方,即a2+b2=c2。
2、勾股定理的逆定理
如果三角形的三邊長a,b,c有這種關(guān)系,那么這個三角形是直角三角形。
3、勾股數(shù)
滿足的三個正整數(shù),稱為勾股數(shù)。
常見的勾股數(shù)組有:(3,4,5);(5,12,13);(8,15,17);(7,24,25);(20,21,29);(9,40,41);……(這些勾股數(shù)組的倍數(shù)仍是勾股數(shù))。
二、證明
1、對事情作出判斷的句子,就叫做命題。即:命題是判斷一件事情的句子。
2、三角形內(nèi)角和定理:三角形三個內(nèi)角的和等于180度。
。1)證明三角形內(nèi)角和定理的思路是將原三角形中的三個角湊到一起組成一個平角。一般需要作輔助。
。2)三角形的外角與它相鄰的內(nèi)角是互為補角。
3、三角形的外角與它不相鄰的內(nèi)角關(guān)系
。1)三角形的一個外角等于和它不相鄰的兩個內(nèi)角的和。
。2)三角形的一個外角大于任何一個和它不相鄰的內(nèi)角。
4、證明一個命題是真命題的基本步驟
。1)根據(jù)題意,畫出圖形。
。2)根據(jù)條件、結(jié)論,結(jié)合圖形,寫出已知、求證。
。3)經(jīng)過分析,找出由已知推出求證的途徑,寫出證明過程。在證明時需注意:①在一般情況下,分析的過程不要求寫出來。②證明中的每一步推理都要有根據(jù)。如果兩條直線都和第三條直線平行,那么這兩條直線也相互平行。
三、數(shù)據(jù)的分析
1、平均數(shù)
、僖话愕,對于n個數(shù)x1x2......xn,我們把(x1+x2+?+xn)叫做這n個數(shù)的算數(shù)平均數(shù),簡稱平均數(shù)記為。
②在實際問題中,一組數(shù)據(jù)里的各個數(shù)據(jù)的“重要程度”未必相同,因而在計算,這組數(shù)據(jù)的平均數(shù)時,往往給每個數(shù)據(jù)一個權(quán),叫做加權(quán)平均數(shù)。
2、中位數(shù)與眾數(shù)
①中位數(shù):一般地,n個數(shù)據(jù)按大小順序排列,處于最中間位置的一個數(shù)據(jù)(或最中間兩個數(shù)據(jù)的平均數(shù))叫做這組數(shù)據(jù)的中位數(shù)。
、谝唤M數(shù)據(jù)中出現(xiàn)次數(shù)最多的`那個數(shù)據(jù)叫做這組數(shù)據(jù)的眾數(shù)。
、燮骄鶖(shù)、中位數(shù)和眾數(shù)都是描述數(shù)據(jù)集中趨勢的統(tǒng)計量。
、苡嬎闫骄鶖(shù)時,所有數(shù)據(jù)都參加運算,它能充分地利用數(shù)據(jù)所提供的信息,因此在現(xiàn)實生活中較為常用,但他容易受極端值影響。
⑤中位數(shù)的優(yōu)點是計算簡單,受極端值影響較小,但不能充分利用所有數(shù)據(jù)的信息。
、薷鱾數(shù)據(jù)重復(fù)次數(shù)大致相等時,眾數(shù)往往沒有特別意義。
3、從統(tǒng)計圖分析數(shù)據(jù)的集中趨勢
4、數(shù)據(jù)的離散程度
、賹嶋H生活中,除了關(guān)心數(shù)據(jù)的集中趨勢外,人們還關(guān)注數(shù)據(jù)的離散程度,即它們相對于集中趨勢的偏離情況。一組數(shù)據(jù)中數(shù)據(jù)與最小數(shù)據(jù)的差,(稱為極差),就是刻畫數(shù)據(jù)離散程度的一個統(tǒng)計量。
②數(shù)學(xué)上,數(shù)據(jù)的離散程度還可以用方差或標(biāo)準(zhǔn)差刻畫。
、鄯讲钍歉鱾數(shù)據(jù)與平均數(shù)差的平方的平均數(shù)。
、芷渲惺莤1,x2......xn平均數(shù),s2是方差,而標(biāo)準(zhǔn)差就是方差的算術(shù)平方根。
、菀话愣,一組數(shù)據(jù)的極差、方差或標(biāo)準(zhǔn)差越小,這組數(shù)據(jù)就越穩(wěn)定。
初中數(shù)學(xué)知識點總結(jié) 8
有理數(shù):
①整數(shù)→正整數(shù)/0/負(fù)整數(shù)
、诜?jǐn)?shù)→正分?jǐn)?shù)/負(fù)分?jǐn)?shù)
數(shù)軸:
、佼嬕粭l水平直線,在直線上取一點表示0(原點),選取某一長度作為單位長度,規(guī)定直線上向右的方向為正方向,就得到數(shù)軸。
、谌魏我粋有理數(shù)都可以用數(shù)軸上的一個點來表示。
③如果兩個數(shù)只有符號不同,那么我們稱其中一個數(shù)為另外一個數(shù)的相反數(shù),也稱這兩個數(shù)互為相反數(shù)。在數(shù)軸上,表示互為相反數(shù)的兩個點,位于原點的兩側(cè),并且與原點距離相等。
④數(shù)軸上兩個點表示的數(shù),右邊的總比左邊的大。正數(shù)大于0,負(fù)數(shù)小于0,正數(shù)大于負(fù)數(shù)。
絕對值:
、僭跀(shù)軸上,一個數(shù)所對應(yīng)的點與原點的距離叫做該數(shù)的絕對值。
②正數(shù)的絕對值是他的本身、負(fù)數(shù)的絕對值是他的相反數(shù)、0的絕對值是0。兩個負(fù)數(shù)比較大小,絕對值大的反而小。
有理數(shù)的運算:
加法:
、偻栂嗉,取相同的符號,把絕對值相加。
②異號相加,絕對值相等時和為0;絕對值不等時,取絕對值較大的數(shù)的符號,并用較大的.絕對值減去較小的絕對值。
、垡粋數(shù)與0相加不變。
減法:減去一個數(shù),等于加上這個數(shù)的相反數(shù)。
乘法:
、賰蓴(shù)相乘,同號得正,異號得負(fù),絕對值相乘。
、谌魏螖(shù)與0相乘得0。
、鄢朔e為1的兩個有理數(shù)互為倒數(shù)。
除法:
、俪砸粋數(shù)等于乘以一個數(shù)的倒數(shù)。
②0不能作除數(shù)。
乘方:求N個相同因數(shù)A的積的運算叫做乘方,乘方的結(jié)果叫冪,A叫底數(shù),N叫次數(shù)。
混合順序:先算乘法,再算乘除,最后算加減,有括號要先算括號里的。
實數(shù)
無理數(shù):無限不循環(huán)小數(shù)叫無理數(shù)
平方根:
、偃绻粋正數(shù)X的平方等于A,那么這個正數(shù)X就叫做A的算術(shù)平方根。
、谌绻粋數(shù)X的平方等于A,那么這個數(shù)X就叫做A的平方根。
、垡粋正數(shù)有2個平方根/0的平方根為0/負(fù)數(shù)沒有平方根。
、芮笠粋數(shù)A的平方根運算,叫做開平方,其中A叫做被開方數(shù)。
立方根:
、偃绻粋數(shù)X的立方等于A,那么這個數(shù)X就叫做A的立方根。
②正數(shù)的立方根是正數(shù)、0的立方根是0、負(fù)數(shù)的立方根是負(fù)數(shù)。
、矍笠粋數(shù)A的立方根的運算叫開立方,其中A叫做被開方數(shù)。
實數(shù):
、賹崝(shù)分有理數(shù)和無理數(shù)。
、谠趯崝(shù)范圍內(nèi),相反數(shù),倒數(shù),絕對值的意義和有理數(shù)范圍內(nèi)的相反數(shù),倒數(shù),絕對值的意義完全一樣。
、勖恳粋實數(shù)都可以在數(shù)軸上的一個點來表示。
代數(shù)式
代數(shù)式:單獨一個數(shù)或者一個字母也是代數(shù)式。
合并同類項:
、偎帜赶嗤,并且相同字母的指數(shù)也相同的項,叫做同類項。②把同類項合并成一項就叫做合并同類項。③在合并同類項時,我們把同類項的系數(shù)相加,字母和字母的指數(shù)不變。
整式與分式
整式:
、贁(shù)與字母的乘積的代數(shù)式叫單項式,幾個單項式的和叫多項式,單項式和多項式統(tǒng)稱整式。
、谝粋單項式中,所有字母的指數(shù)和叫做這個單項式的次數(shù)。
、垡粋多項式中,次數(shù)最高的項的次數(shù)叫做這個多項式的次數(shù)。
整式運算:
加減運算時,如果遇到括號先去括號,再合并同類項。
冪的運算:
AM+AN=A(M+N)
。ˋM)N=AMN
(A/B)N=AN/BN除法一樣。
整式的乘法:
①單項式與單項式相乘,把他們的系數(shù),相同字母的冪分別相乘,其余字母連同他的指數(shù)不變,作為積的因式。
、趩雾検脚c多項式相乘,就是根據(jù)分配律用單項式去乘多項式的每一項,再把所得的積相加。
、鄱囗検脚c多項式相乘,先用一個多項式的每一項乘另外一個多項式的每一項,再把所得的積相加。
公式兩條:
平方差公式/完全平方公式
整式的除法:
、賳雾検较喑严禂(shù),同底數(shù)冪分別相除后,作為商的因式;對于只在被除式里含有的字母,則連同他的指數(shù)一起作為商的一個因式。
、诙囗検匠詥雾検,先把這個多項式的每一項分別除以單項式,再把所得的商相加。
分解因式:
把一個多項式化成幾個整式的積的形式,這種變化叫做把這個多項式分解因式。
方法:提公因式法、運用公式法、分組分解法、十字相乘法。
分式:
①整式A除以整式B,如果除式B中含有分母,那么這個就是分式,對于任何一個分式,分母不為0。②分式的分子與分母同乘以或除以同一個不等于0的整式,分式的值不變。
分式的運算:
乘法:把分子相乘的積作為積的分子,把分母相乘的積作為積的分母。
除法:除以一個分式等于乘以這個分式的倒數(shù)。
加減法:
、偻帜阜质较嗉訙p,分母不變,把分子相加減。
②異分母的分式先通分,化為同分母的分式,再加減。
分式方程:
①分母中含有未知數(shù)的方程叫分式方程。
②使方程的分母為0的解稱為原方程的增根。
初中數(shù)學(xué)知識點總結(jié) 9
1、變量與常量
在某一變化過程中,可以取不同數(shù)值的量叫做變量,數(shù)值保持不變的量叫做常量。
一般地,在某一變化過程中有兩個變量x與y,如果對于x的每一個值,y都有確定的值與它對應(yīng),那么就說x是自變量,y是x的函數(shù)。
2、函數(shù)解析式
用來表示函數(shù)關(guān)系的數(shù)學(xué)式子叫做函數(shù)解析式或函數(shù)關(guān)系式。
使函數(shù)有意義的.自變量的取值的全體,叫做自變量的取值范圍。
3、函數(shù)的三種表示法及其優(yōu)缺點
(1)解析法
兩個變量間的函數(shù)關(guān)系,有時可以用一個含有這兩個變量及數(shù)字運算符號的等式表示,這種表示法叫做解析法。
。2)列表法
把自變量x的一系列值和函數(shù)y的對應(yīng)值列成一個表來表示函數(shù)關(guān)系,這種表示法叫做列表法。
(3)圖像法
用圖像表示函數(shù)關(guān)系的方法叫做圖像法。
4、由函數(shù)解析式畫其圖像的一般步驟
。1)列表:列表給出自變量與函數(shù)的一些對應(yīng)值
。2)描點:以表中每對對應(yīng)值為坐標(biāo),在坐標(biāo)平面內(nèi)描出相應(yīng)的點
(3)連線:按照自變量由小到大的順序,把所描各點用平滑的曲線連接起來。
初中數(shù)學(xué)知識點總結(jié) 10
動點與函數(shù)圖象問題常見的四種類型:
1、三角形中的動點問題:動點沿三角形的邊運動,根據(jù)問題中的常量與變量之間的關(guān)系,判斷函數(shù)圖象。
2、四邊形中的動點問題:動點沿四邊形的邊運動,根據(jù)問題中的常量與變量之間的關(guān)系,判斷函數(shù)圖象。
3、圓中的動點問題:動點沿圓周運動,根據(jù)問題中的常量與變量之間的關(guān)系,判斷函數(shù)圖象。
4、直線、雙曲線、拋物線中的動點問題:動點沿直線、雙曲線、拋物線運動,根據(jù)問題中的常量與變量之間的關(guān)系,判斷函數(shù)圖象。
圖形運動與函數(shù)圖象問題常見的三種類型:
1、線段與多邊形的運動圖形問題:把一條線段沿一定方向運動經(jīng)過三角形或四邊形,根據(jù)問題中的常量與變量之間的關(guān)系,進行分段,判斷函數(shù)圖象。
2、多邊形與多邊形的運動圖形問題:把一個三角形或四邊形沿一定方向運動經(jīng)過另一個多邊形,根據(jù)問題中的`常量與變量之間的關(guān)系,進行分段,判斷函數(shù)圖象。
3、多邊形與圓的運動圖形問題:把一個圓沿一定方向運動經(jīng)過一個三角形或四邊形,或把一個三角形或四邊形沿一定方向運動經(jīng)過一個圓,根據(jù)問題中的常量與變量之間的關(guān)系,進行分段,判斷函數(shù)圖象。
動點問題常見的四種類型:
1、三角形中的動點問題:動點沿三角形的邊運動,通過全等或相似,探究構(gòu)成的新圖形與原圖形的邊或角的關(guān)系。
2、四邊形中的動點問題:動點沿四邊形的邊運動,通過探究構(gòu)成的新圖形與原圖形的全等或相似,得出它們的邊或角的關(guān)系。
3、圓中的動點問題:動點沿圓周運動,探究構(gòu)成的新圖形的邊角等關(guān)系。
4、直線、雙曲線、拋物線中的動點問題:動點沿直線、雙曲線、拋物線運動,探究是否存在動點構(gòu)成的三角形是等腰三角形或與已知圖形相似等問題。
總結(jié)反思:
本題是二次函數(shù)的綜合題,考查了待定系數(shù)法求二次函數(shù)的解析式,一次函數(shù)的解析式,三角形全等的判定和性質(zhì),等腰直角三角形的性質(zhì),平行線的性質(zhì)等,數(shù)形結(jié)合思想的應(yīng)用是解題的關(guān)鍵。
解答動態(tài)性問題通常是對幾何圖形運動過程有一個完整、清晰的認(rèn)識,發(fā)掘“動”與“靜”的內(nèi)在聯(lián)系,尋求變化規(guī)律,從變中求不變,從而達到解題目的。
解答函數(shù)的圖象問題一般遵循的步驟:
1、根據(jù)自變量的取值范圍對函數(shù)進行分段。
2、求出每段的解析式。
3、由每段的解析式確定每段圖象的形狀。
對于用圖象描述分段函數(shù)的實際問題,要抓住以下幾點:
1、自變量變化而函數(shù)值不變化的圖象用水平線段表示。
2、自變量變化函數(shù)值也變化的增減變化情況。
3、函數(shù)圖象的最低點和最高點。
初中數(shù)學(xué)知識點總結(jié) 11
在初中數(shù)學(xué)課堂教學(xué)中,小結(jié)一般作為總結(jié)本課,開啟下一課的鑰匙。但是在具體執(zhí)行過程中,受到時間、學(xué)生心態(tài)、教師課堂設(shè)計水平等因素的限制,初中數(shù)學(xué)課堂小結(jié)在運用的過程中呈現(xiàn)出多種問題。究其原因是多方面的,而其最主要的原因則來源于教師對學(xué)生心理的把握力度不夠。心理學(xué)專家在當(dāng)代少年兒童的大腦結(jié)構(gòu)分析基礎(chǔ)上所做出的研究表明,在初中階段的學(xué)生對課程的關(guān)注度主要集中在前15分鐘,個別注意力比較好的學(xué)生能堅持到15~25分鐘,隨著時間的推移,從25分鐘到45分鐘之間學(xué)生的記憶力和注意力則出現(xiàn)了逐漸下滑的趨勢。由此可見,教師在做初中數(shù)學(xué)課程設(shè)計時,僅僅按照傳統(tǒng)習(xí)慣將課堂小結(jié)作為課末總結(jié)的方式并不科學(xué),對學(xué)生的課堂學(xué)習(xí)和課下探索延伸起不到推動作用。
由此,在新的知識環(huán)節(jié)講解和學(xué)習(xí)的過程中,對課堂小結(jié)的設(shè)計,教師應(yīng)該通過巧妙的規(guī)劃,實現(xiàn)溫故知新,而這又是對本堂課程的總結(jié)和反思的過程,具有極強的邏輯性和漸進性,環(huán)環(huán)相扣,同時要為學(xué)生的思考和課下探索的延伸留出獨立的空間。因此,按照具體的操作,本文以浙教版初中數(shù)學(xué)“探索多邊形的內(nèi)角和”的課堂學(xué)習(xí)為例,對課堂小結(jié)的運用從以下兩個方面進行闡述。
一、撥迷梳“理”,溫故知新
七年級“探索多邊形的內(nèi)角和”一課的教學(xué)重點是讓學(xué)生了解什么是多邊形、什么是內(nèi)角、如何求內(nèi)角和、如何在現(xiàn)實生活中利用此種計算方法。新課標(biāo)要求,學(xué)生作為教學(xué)主體,對課程重點內(nèi)容的了解和領(lǐng)悟主要是以他們自身的動手操作為主,這也是教師在教案設(shè)計時的主要切入點之一。在明確本堂課的教學(xué)重點之后,教師需要對以往學(xué)習(xí)過的知識點進行梳理,并找出與本堂課有關(guān)聯(lián)性的知識點,在課程初始時作為引導(dǎo),通過對以往知識點的回顧,如三角形、相交線等已學(xué)知識點引出本堂課的重點。而后面即將學(xué)習(xí)的課程,如“多姿多彩幾何圖形”等的相應(yīng)測試,也可以作為學(xué)生課堂及課后的延伸知識點,在教師的課程講解過程中予以貫穿。當(dāng)然,在課程設(shè)計初期,教師要尤為注意的'是,應(yīng)根據(jù)本堂課知識點的重點排序,由主到輔、由簡入深地安排好具有節(jié)奏感的講解內(nèi)容及小結(jié),而作為延伸思考的知識點在每個小結(jié)部分可以按照其相關(guān)性和重要性進行穿插安排。
二、動手操作,注重反思
“探索多邊形的內(nèi)角和”中,多邊形的概念是本課各個難點展開的基礎(chǔ),按照多邊形的概念,教師可以讓學(xué)生用線、卡紙、鐵絲等工具自行制作凹多邊形或凸多變形,以體驗多邊形的曲線美。引導(dǎo)學(xué)生嘗試以拉伸和縮小的方式構(gòu)架出凹多邊形和凸多變形后,教師可以讓學(xué)生按照體驗來描述二者的區(qū)別和相同點,并以此作為小結(jié)。當(dāng)學(xué)生做完歸納后,根據(jù)本課“多邊形的內(nèi)角和主要以凸多邊形為主”的教學(xué)目標(biāo)要求,教師可提問:“同學(xué)們目前已經(jīng)了解了二者的區(qū)別,本堂課要講解的‘多邊形內(nèi)角和’主要以凸多邊形為基礎(chǔ),但是為什么我們不以凹多邊形為基礎(chǔ)呢?請同學(xué)們仔細(xì)想想原因!苯處煹倪@種講解模式既可以為下面對“內(nèi)角和”的重點講解作鋪墊,又可以讓學(xué)生深入思考之前對凹凸多邊形的描述是否恰當(dāng),是否符合多邊形的數(shù)學(xué)性規(guī)律。
在此種引導(dǎo)方法下,學(xué)生會按照下一個知識點的內(nèi)容來反思之前的小結(jié)是否具有全面性。在反復(fù)的思考和對比過程中,學(xué)生的邏輯思維可以得到充分的訓(xùn)練。這對培養(yǎng)學(xué)生的數(shù)學(xué)思維,以及對知識點的重復(fù)性推敲和反思能力的提升具有促進作用。一旦學(xué)生在思考和探討的過程中,摸索到數(shù)學(xué)本身的規(guī)律,并從復(fù)雜多樣的數(shù)學(xué)知識點中找到其原本的架構(gòu),自然會在頭腦中建立起一個符合自身記憶和領(lǐng)悟需要的數(shù)學(xué)知識體系。
三、大道從簡,循環(huán)漸進
大道從簡,按照初中數(shù)學(xué)的知識點架構(gòu)來看,每堂課的每個知識點都可以在被重點提煉之后作為節(jié)點來布置課堂小結(jié)。以數(shù)學(xué)的邏輯思維傳承性為基礎(chǔ),課堂上的下一個知識點就可以作為反思和推敲上一個小結(jié)的試金石,如此循環(huán)往復(fù)后,課末的最終知識點總結(jié)則對本課所有知識點小結(jié)進行有效的補充和完善,進而延伸出下堂課以及與本堂課重點內(nèi)容相關(guān)的其他數(shù)學(xué)知識點的探索和思考。
當(dāng)然,這種教學(xué)方法也同樣可以運用到其他學(xué)科的教學(xué)中。借助教師的漸進式誘導(dǎo),學(xué)生會自主加入到課堂探索中,通過由簡到難、由淺入深的逐層遞進式反思和討論提升在課堂中的興趣度和專注度。
初中數(shù)學(xué)知識點總結(jié) 12
一、平行四邊形的定義、性質(zhì)及判定
1、兩組對邊平行的四邊形是平行四邊形。
2、性質(zhì):
。1)平行四邊形的對邊相等且平行
。2)平行四邊形的對角相等,鄰角互補
。3)平行四邊形的對角線互相平分
3、判定:
。1)兩組對邊分別平行的四邊形是平行四邊形
(2)兩組對邊分別相等的四邊形是平行四邊形
。3)一組對邊平行且相等的四邊形是平行四邊形
。4)兩組對角分別相等的四邊形是平行四邊形
。5)對角線互相平分的四邊形是平行四邊形
4、對稱性:平行四邊形是中心對稱圖形
二、矩形的定義、性質(zhì)及判定
1、定義:有一個角是直角的平行四邊形叫做矩形
2、性質(zhì):矩形的四個角都是直角,矩形的.對角線相等
3、判定:
。1)有一個角是直角的平行四邊形叫做矩形
(2)有三個角是直角的四邊形是矩形
。3)兩條對角線相等的平行四邊形是矩形
4、對稱性:矩形是軸對稱圖形也是中心對稱圖形。
三、菱形的定義、性質(zhì)及判定
1、定義:有一組鄰邊相等的平行四邊形叫做菱形
(1)菱形的四條邊都相等
。2)菱形的對角線互相垂直,并且每一條對角線平分一組對角
。3)菱形被兩條對角線分成四個全等的直角三角形
。4)菱形的面積等于兩條對角線長的積的一半
2、s菱=爭6(n、6分別為對角線長)
3、判定:
。1)有一組鄰邊相等的平行四邊形叫做菱形
。2)四條邊都相等的四邊形是菱形
(3)對角線互相垂直的平行四邊形是菱形
4、對稱性:菱形是軸對稱圖形也是中心對稱圖形
初中數(shù)學(xué)知識點總結(jié) 13
銳角三角函數(shù)定義
銳角角A的正弦(sin),余弦(cos)和正切(tan),余切(cot)以及正割(sec),余割(csc)都叫做角A的銳角三角函數(shù)。
正弦(sin):對邊比斜邊,即sinA=a/c;
余弦(cos):鄰邊比斜邊,即cosA=b/c;
正切(tan):對邊比鄰邊,即tanA=a/b;
余切(cot):鄰邊比對邊,即cotA=b/a;
正割(sec):斜邊比鄰邊,即secA=c/b;
余割(csc):斜邊比對邊,即cscA=c/a。
三角函數(shù)關(guān)系
1、互余角的關(guān)系
sin(90°—α)=cosα,cos(90°—α)=sinα,tan(90°—α)=cotα,cot(90°—α)=tanα。
2、平方關(guān)系
sin^2(α)+cos^2(α)=1
tan^2(α)+1=sec^2(α)
cot^2(α)+1=csc^2(α)
3、積的關(guān)系
sinα=tanα·cosα
cosα=cotα·sinα
tanα=sinα·secα
cotα=cosα·cscα
secα=tanα·cscα
cscα=secα·cotα
4、倒數(shù)關(guān)系
tanα·cotα=1
sinα·cscα=1
cosα·secα=1
兩角和差公式
sin(A+B)= sinAcosB+cosAsinB
sin(A—B)= sinAcosB—cosAsinB
cos(A+B)= cosAcosB—sinAsinB
cos(A—B)= cosAcosB+sinAsinB
tan(A+B)=(tanA+tanB)/(1—tanAtanB)
tan(A—B)=(tanA—tanB)/(1+tanAtanB)
cot(A+B)=(cotAcotB—1)/(cotB+cotA)
cot(A—B)=(cotAcotB+1)/(cotB—cotA)
1、不在同一直線上的三點確定一個圓。
2、垂徑定理:垂直于弦的直徑平分這條弦并且平分弦所對的兩條弧。
3、圓是以圓心為對稱中心的中心對稱圖形。
4、圓是定點的距離等于定長的點的集合
5、圓的內(nèi)部可以看作是圓心的距離小于半徑的點的集合。
6、圓的外部可以看作是圓心的距離大于半徑的`點的集合。
7、同圓或等圓的半徑相等。
8、到定點的距離等于定長的點的軌跡,是以定點為圓心,定長為半徑的圓。
9、定理在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對的弦的弦心距相等。
10、推論在同圓或等圓中,如果兩個圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相等那么它們所對應(yīng)的其余各組量都相等。
11、定理圓的內(nèi)接四邊形的對角互補,并且任何一個外角都等于它的內(nèi)對角。
13、切線的判定定理經(jīng)過半徑的外端并且垂直于這條半徑的直線是圓的切線。
14、切線的性質(zhì)定理圓的切線垂直于經(jīng)過切點的半徑。
15、推論1經(jīng)過圓心且垂直于切線的直線必經(jīng)過切點。
初中數(shù)學(xué)知識點總結(jié) 14
一.圓的定義
1.平面上到定點的距離等于定長的所有點組成的圖形叫做圓。
2.平面上一條線段,繞它的一端旋轉(zhuǎn)360°,留下的軌跡叫圓。
二.圓心
1.定義1中的定點為圓心。
2.定義2中繞的那一端的端點為圓心。
3.圓任意兩條對稱軸的交點為圓心。
4.垂直于圓內(nèi)任意一條弦且兩個端點在圓上的線段的二分點為圓心。
注:圓心一般用字母O表示
5.直徑:通過圓心,并且兩端都在圓上的線段叫做圓的直徑。直徑一般用字母d表示。
6.半徑:連接圓心和圓上任意一點的線段,叫做圓的半徑。半徑一般用字母r表示。
7.圓的直徑和半徑都有無數(shù)條。圓是軸對稱圖形,每條直徑所在的直線是圓的對稱軸。在同圓或等圓中:直徑是半徑的2倍,半徑是直徑的二分之一.d=2r或r=二分之d。
8.圓的`半徑或直徑?jīng)Q定圓的大小,圓心決定圓的位置。
三.圓的基本性質(zhì)
1.圓的對稱性
(1)圓是軸對稱圖形,它的對稱軸是直徑所在的直線。
(2)圓是中心對稱圖形,它的對稱中心是圓心。
(3)圓是旋轉(zhuǎn)對稱圖形。
2.垂徑定理
(1)垂直于弦的直徑平分這條弦,且平分這條弦所對的兩條弧。
(2)推論:
平分弦(非直徑)的直徑,垂直于弦且平分弦所對的兩條弧。
平分弧的直徑,垂直平分弧所對的弦。
3.圓心角的度數(shù)等于它所對弧的度數(shù)。圓周角的度數(shù)等于它所對弧度數(shù)的一半。
(1)同弧所對的圓周角相等。
(2)直徑所對的圓周角是直角;圓周角為直角,它所對的弦是直徑。
4.在同圓或等圓中,兩條弦、兩條弧、兩個圓周角、兩個圓心角、兩條弦心距五對量中只要有一對量相等,其余四對量也分別相等。
5.夾在平行線間的兩條弧相等。
(1)過兩點的圓的圓心一定在兩點間連線段的中垂線上。
(2)不在同一直線上的三點確定一個圓,圓心是三邊中垂線的交點,它到三個點的距離相等。
(直角三角形的外心就是斜邊的中點。)
6.直線與圓的位置關(guān)系。d表示圓心到直線的距離,r表示圓的半徑。
直線與圓有兩個交點,直線與圓相交;直線與圓只有一個交點,直線與圓相切;直線與圓沒有交點,直線與圓相離。
四.圓和圓
1.兩個圓沒有公共點且每個圓的點都在另一個圓的外部時,叫做這兩個圓的外離。
2.兩個圓有唯一的公共點且除了這個公共點外,每個圓上的點都在另一個圓的外部,叫做兩個圓的外切。
3.兩個圓有兩個交點,叫做兩個圓的相交。
4.兩個圓有唯一的公共點且除了這個公共點外,每個圓上的點都在另一個圓的內(nèi)部,叫做兩個圓的內(nèi)切。
5.兩個圓沒有公共點且每個圓的點都在另一個圓的內(nèi)部時,叫做這兩個圓的內(nèi)含。
五.正多邊形和圓
1.正多邊形的概念:各邊相等,各角也相等的多邊形叫做正多邊形。
2.正多邊形與圓的關(guān)系:
(1)將一個圓n(n≥3)等分(可以借助量角器),依次連結(jié)各等分點所得的多邊形是這個圓的內(nèi)接正多邊形。
(2)這個圓是這個正多邊形的外接圓。
初中數(shù)學(xué)知識點總結(jié) 15
1、乘法與因式分解
a2-b2=(a+b)(a-b)a3+b3=(a+b)(a2-ab+b2)a3-b3=(a-b)(a2+ab+b2)
2、三角不等式
|a+b|≤|a|+|b||a-b|≤|a|+|b||a|≤b<=>-b≤a≤b
|a-b|≥|a|-|b|-|a|≤a≤|a|
3、一元二次方程的解
-b+√(b2-4ac)/2a-b-b+√(b2-4ac)/2a
4、根與系數(shù)的關(guān)系
X1+X2=-b/a X1*X2=c/a注:韋達定理
5、判別式
、賐2-4a=0注:方程有相等的兩實根
②b2-4ac>0注:方程有一個實根
、踒2-4ac<0注:方程有共軛復(fù)數(shù)根
6、三角函數(shù)公式
、賰山呛凸
sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA
cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB
tan(A+B)=(tanA+tanB)/(1-tanAtanB)tan(A-B)=(tanA-tanB)/(1+tanAtanB)
ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA)ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)
、诒督枪
tan2A=2tanA/(1-tan2A)ctg2A=(ctg2A-1)/2ctga
cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a
、郯虢枪
sin(A/2)=√((1-cosA)/2)sin(A/2)=-√((1-cosA)/2)
cos(A/2)=√((1+cosA)/2)cos(A/2)=-√((1+cosA)/2)
tan(A/2)=√((1-cosA)/((1+cosA))tan(A/2)=-√((1-cosA)/((1+cosA))
ctg(A/2)=√((1+cosA)/((1-cosA))ctg(A/2)=-√((1+cosA)/((1-cosA))
④和差化積
2sinAcosB=sin(A+B)+sin(A-B)2cosAsinB=sin(A+B)-sin(A-B)
2cosAcosB=cos(A+B)-sin(A-B)-2sinAsinB=cos(A+B)-cos(A-B)
sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2)
tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosB
ctgA+ctgBsin(A+B)/sinAsinB-ctgA+ctgBsin(A+B)/sinAsinB
、菽承⿺(shù)列前n項和
1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2
1+3+5+7+9+11+13+15+…+(2n-1)=n2
2+4+6+8+10+12+14+…+(2n)=n(n+1)
12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6
13+23+33+43+53+63+…n3=n2(n+1)2/4
1*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3
、拚叶ɡ
a/sinA=b/sinB=c/sinC=2R注:其中R表示三角形的外接圓半徑
、哂嘞叶ɡ
b2=a2+c2-2accosB注:角B是邊a和邊c的夾角
、鄨A的方程
圓的標(biāo)準(zhǔn)方程(x-a)2+(y-b)2=r2注:(a,b)是圓心坐標(biāo)
圓的一般方程x2+y2+Dx+Ey+F=0注:D2+E2-4F>0
⑨立體體積與側(cè)面積
直棱柱側(cè)面積S=c*h斜棱柱側(cè)面積S=c*h
正棱錐側(cè)面積S=1/2c*h正棱臺側(cè)面積S=1/2(c+c)h
圓臺側(cè)面積S=1/2(c+c)l=pi(R+r)l球的表面積S=4pi*r2
圓柱側(cè)面積S=c*h=2pi*h圓錐側(cè)面積S=1/2*c*l=pi*r*l
弧長公式l=a*r a是圓心角的弧度數(shù)r>0扇形面積公式s=1/2*l*r
錐體體積公式V=1/3*S*H圓錐體體積公式V=1/3*pi*r2h
斜棱柱體積V=SL注:其中,S是直截面面積,L是側(cè)棱長
柱體體積公式V=s*h圓柱體V=pi*r2h
二、初中幾何公式
1、平行線證明
、俳(jīng)過直線外一點,有且只有一條直線與這條直線平行
②如果兩條直線都和第三條直線平行,這兩條直線也互相平行
③同位角相等,兩直線平行
、軆(nèi)錯角相等,兩直線平行
、萃詢(nèi)角互補,兩直線平行
、迌芍本平行,同位角相等
、邇芍本平行,內(nèi)錯角相等
、鄡芍本平行,同旁內(nèi)角互補
2、全等三角形證明
、龠吔沁吂(SAS)有兩邊和它們的夾角對應(yīng)相等的兩個三角形全等
、诮沁吔枪(ASA)有兩角和它們的夾邊對應(yīng)相等的兩個三角形全等
③推論(AAS)有兩角和其中一角的對邊對應(yīng)相等的兩個三角形全等
、苓呥呥吂(SSS)有三邊對應(yīng)相等的兩個三角形全等
、菪边叀⒅苯沁吂(HL)有斜邊和一條直角邊對應(yīng)相等的兩個直角三角形全等
3、三角形基本定理
、俣ɡ1在角的平分線上的點到這個角的兩邊的距離相等
②定理2到一個角的兩邊的距離相同的點,在這個角的平分線上
③角的平分線是到角的兩邊距離相等的所有點的集合
、艿妊切蔚男再|(zhì)定理等腰三角形的兩個底角相等(即等邊對等角)
、萃普1等腰三角形頂角的平分線平分底邊并且垂直于底邊
、薜妊切蔚捻斀瞧椒志、底邊上的中線和底邊上的高互相重合
、咄普3等邊三角形的各角都相等,并且每一個角都等于60°
、嗟妊切蔚呐卸ǘɡ砣绻粋三角形有兩個角相等,那么這兩個角所對的邊也相等(等角對等邊)
⑨直角三角形
4、多邊形定理
①定理四邊形的內(nèi)角和等于360°
、谒倪呅蔚耐饨呛偷扔360°
、鄱噙呅蝺(nèi)角和定理n邊形的內(nèi)角的和等于(n-2)×180°
、芡普撊我舛噙叺耐饨呛偷扔360°
5、平行四邊形證明與等腰梯形證明
①平行四邊形性質(zhì)定理1平行四邊形的對角相等
、谄叫兴倪呅涡再|(zhì)定理2平行四邊形的對邊相等
、燮叫兴倪呅涡再|(zhì)定理3平行四邊形的對角線互相平分
……
、芫匦涡再|(zhì)定理1矩形的四個角都是直角
、菥匦涡再|(zhì)定理2矩形的對角線相等
……
⑥等腰梯形性質(zhì)定理等腰梯形在同一底上的兩個角相等
、叩妊菪闻卸ǘɡ碓谕坏咨系膬蓚角相等的梯形是等腰梯形
、嗤普1經(jīng)過梯形一腰的'中點與底平行的直線,必平分另一腰
、嵬普2經(jīng)過三角形一邊的中點與另一邊平行的直線,必平分第三邊
7、相似三角形證明
①相似三角形判定定理1兩角對應(yīng)相等,兩三角形相似(ASA)
、谂卸ǘɡ2兩邊對應(yīng)成比例且夾角相等,兩三角形相似(SAS)
、叟卸ǘɡ3三邊對應(yīng)成比例,兩三角形相似(SSS)
、芏ɡ砣绻粋直角三角形的斜邊和一條直角邊與另一個直角三角形的斜邊和一條直角邊對應(yīng)成比例,那么這兩個直角三角形相似
、菪再|(zhì)定理1相似三角形對應(yīng)高的比,對應(yīng)中線的比與對應(yīng)角平分線的比都等于相似比
、扌再|(zhì)定理2相似三角形周長的比等于相似比
⑦性質(zhì)定理3相似三角形面積的比等于相似比的平方
8、弦和圓的證明
、俣ɡ聿辉谕恢本上的三點確定一個圓。
、诖箯蕉ɡ泶怪庇谙业闹睆狡椒诌@條弦并且平分弦所對的兩條弧
、弁普1
平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條弧
弦的垂直平分線經(jīng)過圓心,并且平分弦所對的兩條弧
平分弦所對的一條弧的直徑,垂直平分弦,并且平分弦所對的另一條弧
④推論2圓的兩條平行弦所夾的弧相等
、輬A是以圓心為對稱中心的中心對稱圖形
、薅ɡ碓谕瑘A或等圓中,相等的圓心角所對的弧相等,所對的弦
相等,所對的弦的弦心距相等
、呔與圓的位置關(guān)系
直線L和⊙O相交d 直線L和⊙O相切d=r 直線L和⊙O相離d>r ⑧圓與圓之間的位置關(guān)系 兩圓外離d>R+r②兩圓外切d=R+r 兩圓相交R-r 兩圓內(nèi)切d=R-r(R>r) 兩圓內(nèi)含dr) QQ截圖20150129173906.jpg 三、數(shù)學(xué)學(xué)習(xí)方法 1、突出一個“勤”字(克服一個“惰”字) 數(shù)學(xué)家華羅庚曾經(jīng)說過:“聰明在于學(xué)習(xí),天才在于勤奮”,“勤能補拙是良訓(xùn),一分辛勞一分才“:我們在學(xué)習(xí)的時候要突出一個勤字,克服一個“懶”字,怎么突出“勤”字,從這個字面上來看,要做到五勤:“耳勤”“眼勤”(耳朵聽,眼睛看,接受信息) “口勤”(討論,回答問題,而不是講話,消化信息)“腦勤”(善于思考問題,積極思考問題——吸收、儲存信息)那是不是做到以上四點就行了呢?不是。這個字還有缺陷,在聰下面加上“手” “手勤”(動手多實踐,不僅光做題,做課件,做模型) 這樣的人聰明不聰明? 最大的提高學(xué)習(xí)效率,首先要做到——上課認(rèn)真聽講(這是根本)回家先復(fù)習(xí)再做題如果課聽不好,就別想消化知識 2、學(xué)好初中數(shù)學(xué)還有兩個要點,要狠抓兩個要點: 學(xué)好數(shù)學(xué),一要(動手),二要(動腦)。動腦就是要學(xué)會觀察分析問題,學(xué)會思考,不要拿到題就做,找到已知和未知想象之間有什么聯(lián)系,多問幾個為什么。動手就是多實踐,多做題,要“拳不離手”(武術(shù))“曲不離口”(唱歌)。同學(xué)就是“題不離手”,這兩個要點大家要記住!皠幽X又動手,才能最大地發(fā)揮大腦的效率” 3、做到“三個一遍” 大家聽過“失敗是成功之母”聽過“重復(fù)是學(xué)習(xí)之母”嗎?培根(18-19世紀(jì)英國的哲學(xué)家)——“知識就是力量”,“重復(fù)是學(xué)習(xí)之母”。如何重復(fù),我給你們解釋一下: “上課要認(rèn)真聽一遍,動手推一遍,想一遍” “下課看” “考試前” 4、重視“四個依據(jù)” 讀好一本教科書——它是教學(xué)、中考的主要依據(jù); 記好一本筆記——它是教師多年經(jīng)驗的結(jié)晶; 做好做凈一本習(xí)題集——它是使知識拓寬; 記好一本心得筆記,最好每人自己準(zhǔn)備一本錯題集 1、重心的定義: 平面圖形中,幾何圖形的重心是當(dāng)支撐或懸掛時圖形能在水平面處于平衡狀態(tài),此時的支撐點或者懸掛點叫做平衡點,也叫做重心。 2、幾種幾何圖形的重心: ⑴線段的重心就是線段的中點; 、破叫兴倪呅渭疤厥馄叫兴倪呅蔚闹匦氖撬膬蓷l對角線的交點; 、侨切蔚娜龡l中線交于一點,這一點就是三角形的重心; 、热我舛噙呅味加兄匦,以多邊形的任意兩個頂點作為懸掛點,把多邊形懸掛時,過這兩點鉛垂線的交點就是這個多邊形的重心。 提示:⑴無論幾何圖形的形狀如何,重心都有且只有一個; 、茝奈锢韺W(xué)角度看,幾何圖形在懸掛或支撐時,位于重心兩邊的力矩相同。 3、常見圖形重心的性質(zhì): ⑴線段的重心把線段分為兩等份; 、破叫兴倪呅蔚闹匦陌褜蔷分為兩等份; 、侨切蔚闹匦陌阎芯分為1:2兩部分(重心到頂點距離占2份,重心到對邊中點距離占1份)。 上面對重心知識點的`鞏固學(xué)習(xí),同學(xué)們都能熟練的掌握了吧,希望同學(xué)們很好的復(fù)習(xí)學(xué)習(xí)數(shù)學(xué)知識。 ①直線和圓無公共點,稱相離。 AB與圓O相離,d>r。 、谥本和圓有兩個公共點,稱相交,這條直線叫做圓的割線。AB與⊙O相交,d 、壑本和圓有且只有一公共點,稱相切,這條直線叫做圓的切線,這個唯一的公共點叫做切點。AB與⊙O相切,d=r。(d為圓心到直線的距離) 平面內(nèi),直線Ax+By+C=0與圓x^2+y^2+Dx+Ey+F=0的位置關(guān)系判斷一般方法是: 1.由Ax+By+C=0,可得y=(-C-Ax)/B,(其中B不等于0),代入x^2+y^2+Dx+Ey+F=0,即成為一個關(guān)于x的方程 如果b^2-4ac>0,則圓與直線有2交點,即圓與直線相交。 如果b^2-4ac=0,則圓與直線有1交點,即圓與直線相切。 如果b^2-4ac<0,則圓與直線有0交點,即圓與直線相離。 2.如果B=0即直線為Ax+C=0,即x=-C/A,它平行于y軸(或垂直于x軸),將x^2+y^2+Dx+Ey+F=0化為(x-a)^2+(y-b)^2=r^2。令y=b,求出此時的兩個x值x1、x2,并且規(guī)定x1 當(dāng)x=-C/Ax2時,直線與圓相離; 一、實數(shù) 1.平方根性質(zhì): 。1)一個正數(shù)有兩個平方根,它們互為相反數(shù); (2)零的平方根是零; 。3)負(fù)數(shù)沒有平方根。 2.算術(shù)平方根性質(zhì): 。1)一個正數(shù)的正的平方根叫做它的算術(shù)平方根; (2)零的算術(shù)平方根是零; 。3)負(fù)數(shù)沒有算術(shù)平方根。 3.立方根性質(zhì): 。1)正數(shù)的立方根是正數(shù); 。2)零的立方根是零; 。3)負(fù)數(shù)的立方根是負(fù)數(shù)。 4.實數(shù)的性質(zhì): 。1)零是唯一沒有平方根的數(shù); 。2)正數(shù)和負(fù)數(shù)可以沒有算術(shù)平方根; 。3)任何實數(shù)的立方根只有唯一的一個; (4)正數(shù)的立方根與它本身和零同類。 二、整式的運算 1.整式范圍: 。1)整式可以化為分?jǐn)?shù)或整數(shù); 。2)整式可以化為負(fù)數(shù)或非負(fù)數(shù); 。3)整式可以化為奇數(shù)或偶數(shù); 。4)整式可以化簡為分?jǐn)?shù)指數(shù)冪。 2.單項式: (1)單項式的系數(shù)是數(shù)字因數(shù); 。2)一個單項式中所有字母的指數(shù)的和叫做單項式的次數(shù)。 3.多項式: 。1)多項式的每一項都是一個單項式; (2)一個多項式的項數(shù)與多項式中含有幾個單項式有關(guān)。 4.同底數(shù)冪的`乘法: 。1)同底數(shù)冪相乘,底數(shù)不變,指數(shù)相加; 。2)同底數(shù)冪相除,底數(shù)不變,指數(shù)相減。 5.冪的乘方: 冪的乘方,底數(shù)不變,指數(shù)相乘。 6.積的乘方: (1)積的乘方,等于把積的每一個因式分別乘方,再把所得的冪相乘; 。2)1的乘方等于1。 7.同底數(shù)冪的除法: 。1)同底數(shù)冪相除,底數(shù)不變,指數(shù)相減; 。2)0的任何正整數(shù)次冪都是0。 8.分式: 。1)分式是整式的一種,在整式中區(qū)別于整式,分式的分母中必須含有字母; 。2)分式的值等于分子除以分母。 9.分式的運算: 。1)分式的乘方:分式與分式相乘,再把被乘式的分子、分母分別與乘式的分子、分母相乘,即分子相乘的積做積的分子,分母相乘的積做積的分母; (2)分式的除法:分式除以分式,把除式的分子、分母顛倒位置后,與被除式相乘,即分子相除的商做被除式的分子,分母相除的商做被除式的分母; 。3)分式的加減:異分母分式的加減運算,為了使不同分母的分?jǐn)?shù)直接相加減不便,因此常把不同分母的分?jǐn)?shù)分別化成與原來的分母相同的分母后再相加減。 三、方程與方程組 1.方程: 。1)含有未知數(shù)的等式叫方程; 。2)使方程左右兩邊相等的未知數(shù)的值,叫做方程的解; (3)求方程的解的過程叫做解方程。 2.方程的解: (1)能使方程左右兩邊相等的未知數(shù)的值; 。2)一個數(shù)(它不一定是數(shù),也可以是符號和運算)是某一等式(含有未知數(shù)的等式)的解,那么這個數(shù)就叫做該等式的解。 3.一元一次方程: 。1)只有一個未知數(shù); 。2)未知數(shù)的最高次數(shù)為1; 。3)整式方程。 4.方程的解法: 。1)去分母:在方程兩端同乘各分母的最小公倍數(shù); (2)去括號:去括號要變號; 。3)移項:把含有未知數(shù)的項移到等號的一邊,其他項移到另一邊; (4)合并同類項:化未知數(shù)為已知數(shù); 。5)系數(shù)化成1:在方程兩端同除以未知數(shù)的系數(shù)。 【初中數(shù)學(xué)知識點總結(jié)】相關(guān)文章: 初中數(shù)學(xué)函數(shù)知識點總結(jié)06-14 初中數(shù)學(xué)必備知識點總結(jié)03-01 初中數(shù)學(xué)幾何知識點總結(jié)11-05 初中數(shù)學(xué)函數(shù)知識點總結(jié)11-24 【經(jīng)典】數(shù)學(xué)初中知識點總結(jié)07-16 初中數(shù)學(xué)知識點總結(jié) 16
初中數(shù)學(xué)知識點總結(jié) 17