高中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)【合集】
總結(jié)是事后對(duì)某一階段的學(xué)習(xí)、工作或其完成情況加以回顧和分析的一種書面材料,它可以幫助我們有尋找學(xué)習(xí)和工作中的規(guī)律,不妨讓我們認(rèn)真地完成總結(jié)吧。總結(jié)怎么寫才不會(huì)流于形式呢?以下是小編為大家收集的高中數(shù)學(xué)知識(shí)點(diǎn)總結(jié) ,歡迎閱讀與收藏。
高中數(shù)學(xué)知識(shí)點(diǎn)總結(jié) 1
一次函數(shù)
一、定義與定義式:
自變量x和因變量y有如下關(guān)系:
y=kx+b
則此時(shí)稱y是x的一次函數(shù)。
特別地,當(dāng)b=0時(shí),y是x的正比例函數(shù)。
即:y=kx (k為常數(shù),k0)
二、一次函數(shù)的性質(zhì):
1、y的變化值與對(duì)應(yīng)的x的變化值成正比例,比值為k
即:y=kx+b (k為任意不為零的實(shí)數(shù)b取任何實(shí)數(shù))
2、當(dāng)x=0時(shí),b為函數(shù)在y軸上的截距。
三、一次函數(shù)的圖像及性質(zhì):
1、作法與圖形:通過如下3個(gè)步驟
(1)列表;
(2)描點(diǎn);
(3)連線,可以作出一次函數(shù)的圖像一條直線。因此,作一次函數(shù)的圖像只需知道2點(diǎn),并連成直線即可。(通常找函數(shù)圖像與x軸和y軸的交點(diǎn))
2、性質(zhì):(1)在一次函數(shù)上的任意一點(diǎn)P(x,y),都滿足等式:y=kx+b。(2)一次函數(shù)與y軸交點(diǎn)的坐標(biāo)總是(0,b),與x軸總是交于(—b/k,0)正比例函數(shù)的圖像總是過原點(diǎn)。
3、k,b與函數(shù)圖像所在象限:
當(dāng)k0時(shí),直線必通過一、三象限,y隨x的增大而增大;
當(dāng)k0時(shí),直線必通過二、四象限,y隨x的增大而減小。
當(dāng)b0時(shí),直線必通過一、二象限;
當(dāng)b=0時(shí),直線通過原點(diǎn)
當(dāng)b0時(shí),直線必通過三、四象限。
特別地,當(dāng)b=O時(shí),直線通過原點(diǎn)O(0,0)表示的是正比例函數(shù)的圖像。
這時(shí),當(dāng)k0時(shí),直線只通過一、三象限;當(dāng)k0時(shí),直線只通過二、四象限。
四、確定一次函數(shù)的表達(dá)式:
已知點(diǎn)A(x1,y1);B(x2,y2),請(qǐng)確定過點(diǎn)A、B的一次函數(shù)的表達(dá)式。
。1)設(shè)一次函數(shù)的表達(dá)式(也叫解析式)為y=kx+b。
。2)因?yàn)樵谝淮魏瘮?shù)上的任意一點(diǎn)P(x,y),都滿足等式y(tǒng)=kx+b。所以可以列出2個(gè)方程:y1=kx1+b ①和y2=kx2+b ②
。3)解這個(gè)二元一次方程,得到k,b的值。
(4)最后得到一次函數(shù)的表達(dá)式。
五、一次函數(shù)在生活中的應(yīng)用:
1、當(dāng)時(shí)間t一定,距離s是速度v的一次函數(shù)。s=vt。
2、當(dāng)水池抽水速度f一定,水池中水量g是抽水時(shí)間t的一次函數(shù)。設(shè)水池中原有水量S。g=S—ft。
六、常用公式:(不全,希望有人補(bǔ)充)
1、求函數(shù)圖像的k值:(y1—y2)/(x1—x2)
2、求與x軸平行線段的中點(diǎn):|x1—x2|/2
3、求與y軸平行線段的中點(diǎn):|y1—y2|/2
4、求任意線段的長:(x1—x2)^2+(y1—y2)^2 (注:根號(hào)下(x1—x2)與(y1—y2)的平方和)
二次函數(shù)
I、定義與定義表達(dá)式
一般地,自變量x和因變量y之間存在如下關(guān)系:
y=ax^2+bx+c
。╝,b,c為常數(shù),a0,且a決定函數(shù)的開口方向,a0時(shí),開口方向向上,a0時(shí),開口方向向下,IaI還可以決定開口大小,IaI越大開口就越小,IaI越小開口就越大、)
則稱y為x的二次函數(shù)。
二次函數(shù)表達(dá)式的.右邊通常為二次三項(xiàng)式。
II、二次函數(shù)的三種表達(dá)式
一般式:y=ax^2+bx+c(a,b,c為常數(shù),a0)
頂點(diǎn)式:y=a(x—h)^2+k [拋物線的頂點(diǎn)P(h,k)]
交點(diǎn)式:y=a(x—x)(x—x ) [僅限于與x軸有交點(diǎn)A(x,0)和B(x,0)的拋物線]
注:在3種形式的互相轉(zhuǎn)化中,有如下關(guān)系:
h=—b/2ak=(4ac—b^2)/4a x,x=(—bb^2—4ac)/2a
III、二次函數(shù)的圖像
在平面直角坐標(biāo)系中作出二次函數(shù)y=x^2的圖像,
可以看出,二次函數(shù)的圖像是一條拋物線。
IV、拋物線的性質(zhì)
1、拋物線是軸對(duì)稱圖形。對(duì)稱軸為直線
x= —b/2a。
對(duì)稱軸與拋物線唯一的交點(diǎn)為拋物線的頂點(diǎn)P。
特別地,當(dāng)b=0時(shí),拋物線的對(duì)稱軸是y軸(即直線x=0)
2、拋物線有一個(gè)頂點(diǎn)P,坐標(biāo)為
P( —b/2a,(4ac—b^2)/4a )
當(dāng)—b/2a=0時(shí),P在y軸上;當(dāng)= b^2—4ac=0時(shí),P在x軸上。
3、二次項(xiàng)系數(shù)a決定拋物線的開口方向和大小。
當(dāng)a0時(shí),拋物線向上開口;當(dāng)a0時(shí),拋物線向下開口。
|a|越大,則拋物線的開口越小。
4、一次項(xiàng)系數(shù)b和二次項(xiàng)系數(shù)a共同決定對(duì)稱軸的位置。
當(dāng)a與b同號(hào)時(shí)(即ab0),對(duì)稱軸在y軸左;
當(dāng)a與b異號(hào)時(shí)(即ab0),對(duì)稱軸在y軸右。
5、常數(shù)項(xiàng)c決定拋物線與y軸交點(diǎn)。
拋物線與y軸交于(0,c)
6、拋物線與x軸交點(diǎn)個(gè)數(shù)
= b^2—4ac0時(shí),拋物線與x軸有2個(gè)交點(diǎn)。
= b^2—4ac=0時(shí),拋物線與x軸有1個(gè)交點(diǎn)。
= b^2—4ac0時(shí),拋物線與x軸沒有交點(diǎn)。X的取值是虛數(shù)(x= —bb^2—4ac的值的相反數(shù),乘上虛數(shù)i,整個(gè)式子除以2a)
V、二次函數(shù)與一元二次方程
特別地,二次函數(shù)(以下稱函數(shù))y=ax^2+bx+c,
當(dāng)y=0時(shí),二次函數(shù)為關(guān)于x的一元二次方程(以下稱方程),
即ax^2+bx+c=0
此時(shí),函數(shù)圖像與x軸有無交點(diǎn)即方程有無實(shí)數(shù)根。
函數(shù)與x軸交點(diǎn)的橫坐標(biāo)即為方程的根。
1、二次函數(shù)y=ax^2,y=a(x—h)^2,y=a(x—h)^2+k,y=ax^2+bx+c(各式中,a0)的圖象形狀相同,只是位置不同,它們的頂點(diǎn)坐標(biāo)及對(duì)稱軸如下表:
解析式頂點(diǎn)坐標(biāo)對(duì)稱軸
y=ax^2(0,0) x=0
y=a(x—h)^2(h,0) x=h
y=a(x—h)^2+k(h,k) x=h
y=ax^2+bx+c(—b/2a,[4ac—b^2]/4a) x=—b/2a
當(dāng)h0時(shí),y=a(x—h)^2的圖象可由拋物線y=ax^2向右平行移動(dòng)h個(gè)單位得到,
當(dāng)h0時(shí),則向左平行移動(dòng)|h|個(gè)單位得到、
當(dāng)h0,k0時(shí),將拋物線y=ax^2向右平行移動(dòng)h個(gè)單位,再向上移動(dòng)k個(gè)單位,就可以得到y(tǒng)=a(x—h)^2+k的圖象;
當(dāng)h0,k0時(shí),將拋物線y=ax^2向右平行移動(dòng)h個(gè)單位,再向下移動(dòng)|k|個(gè)單位可得到y(tǒng)=a(x—h)^2+k的圖象;
當(dāng)h0,k0時(shí),將拋物線向左平行移動(dòng)|h|個(gè)單位,再向上移動(dòng)k個(gè)單位可得到y(tǒng)=a(x—h)^2+k的圖象;
當(dāng)h0,k0時(shí),將拋物線向左平行移動(dòng)|h|個(gè)單位,再向下移動(dòng)|k|個(gè)單位可得到y(tǒng)=a(x—h)^2+k的圖象;
因此,研究拋物線y=ax^2+bx+c(a0)的圖象,通過配方,將一般式化為y=a(x—h)^2+k的形式,可確定其頂點(diǎn)坐標(biāo)、對(duì)稱軸,拋物線的大體位置就很清楚了、這給畫圖象提供了方便、
2、拋物線y=ax^2+bx+c(a0)的圖象:當(dāng)a0時(shí),開口向上,當(dāng)a0時(shí)開口向下,對(duì)稱軸是直線x=—b/2a,頂點(diǎn)坐標(biāo)是(—b/2a,[4ac—b^2]/4a)、
3、拋物線y=ax^2+bx+c(a0),若a0,當(dāng)x —b/2a時(shí),y隨x的增大而減小;當(dāng)x —b/2a時(shí),y隨x的增大而增大、若a0,當(dāng)x —b/2a時(shí),y隨x的增大而增大;當(dāng)x —b/2a時(shí),y隨x的增大而減小、
4、拋物線y=ax^2+bx+c的圖象與坐標(biāo)軸的交點(diǎn):
(1)圖象與y軸一定相交,交點(diǎn)坐標(biāo)為(0,c);
。2)當(dāng)△=b^2—4ac0,圖象與x軸交于兩點(diǎn)A(x,0)和B(x,0),其中的x1,x2是一元二次方程ax^2+bx+c=
。╝0)的兩根、這兩點(diǎn)間的距離AB=|x—x|
當(dāng)△=0、圖象與x軸只有一個(gè)交點(diǎn);
當(dāng)△0、圖象與x軸沒有交點(diǎn)、當(dāng)a0時(shí),圖象落在x軸的上方,x為任何實(shí)數(shù)時(shí),都有y0;當(dāng)a0時(shí),圖象落在x軸的下方,x為任何實(shí)數(shù)時(shí),都有y0、
5、拋物線y=ax^2+bx+c的最值:如果a0(a0),則當(dāng)x= —b/2a時(shí),y最。ù螅┲=(4ac—b^2)/4a、
頂點(diǎn)的橫坐標(biāo),是取得最值時(shí)的自變量值,頂點(diǎn)的縱坐標(biāo),是最值的取值、
6、用待定系數(shù)法求二次函數(shù)的解析式
(1)當(dāng)題給條件為已知圖象經(jīng)過三個(gè)已知點(diǎn)或已知x、y的三對(duì)對(duì)應(yīng)值時(shí),可設(shè)解析式為一般形式:
y=ax^2+bx+c(a0)、
。2)當(dāng)題給條件為已知圖象的頂點(diǎn)坐標(biāo)或?qū)ΨQ軸時(shí),可設(shè)解析式為頂點(diǎn)式:y=a(x—h)^2+k(a0)、
。3)當(dāng)題給條件為已知圖象與x軸的兩個(gè)交點(diǎn)坐標(biāo)時(shí),可設(shè)解析式為兩根式:y=a(x—x)(x—x)(a0)、
7、二次函數(shù)知識(shí)很容易與其它知識(shí)綜合應(yīng)用,而形成較為復(fù)雜的綜合題目。因此,以二次函數(shù)知識(shí)為主的綜合性題目是中考的熱點(diǎn)考題,往往以大題形式出現(xiàn)、
反比例函數(shù)
形如y=k/x(k為常數(shù)且k0)的函數(shù),叫做反比例函數(shù)。
自變量x的取值范圍是不等于0的一切實(shí)數(shù)。
反比例函數(shù)圖像性質(zhì):
反比例函數(shù)的圖像為雙曲線。
由于反比例函數(shù)屬于奇函數(shù),有f(—x)=—f(x),圖像關(guān)于原點(diǎn)對(duì)稱。
另外,從反比例函數(shù)的解析式可以得出,在反比例函數(shù)的圖像上任取一點(diǎn),向兩個(gè)坐標(biāo)軸作垂線,這點(diǎn)、兩個(gè)垂足及原點(diǎn)所圍成的矩形面積是定值,為∣k∣。
如圖,上面給出了k分別為正和負(fù)(2和—2)時(shí)的函數(shù)圖像。
當(dāng)K0時(shí),反比例函數(shù)圖像經(jīng)過一,三象限,是減函數(shù)
當(dāng)K0時(shí),反比例函數(shù)圖像經(jīng)過二,四象限,是增函數(shù)
反比例函數(shù)圖像只能無限趨向于坐標(biāo)軸,無法和坐標(biāo)軸相交。
知識(shí)點(diǎn):
1、過反比例函數(shù)圖象上任意一點(diǎn)作兩坐標(biāo)軸的垂線段,這兩條垂線段與坐標(biāo)軸圍成的矩形的面積為| k |。
2、對(duì)于雙曲線y=k/x,若在分母上加減任意一個(gè)實(shí)數(shù)(即y=k/(xm)m為常數(shù)),就相當(dāng)于將雙曲線圖象向左或右平移一個(gè)單位。(加一個(gè)數(shù)時(shí)向左平移,減一個(gè)數(shù)時(shí)向右平移)
高中數(shù)學(xué)知識(shí)點(diǎn)總結(jié) 2
。浩矫
1.經(jīng)過不在同一條直線上的三點(diǎn)確定一個(gè)面.
注:兩兩相交且不過同一點(diǎn)的四條直線必在同一平面內(nèi).
2.兩個(gè)平面可將平面分成3或4部分.(①兩個(gè)平面平行,②兩個(gè)平面相交)
3.過三條互相平行的直線可以確定1或3個(gè)平面.(①三條直線在一個(gè)平面內(nèi)平行,②三條直線不在一個(gè)平面內(nèi)平行)
[注]:三條直線可以確定三個(gè)平面,三條直線的公共點(diǎn)有0或1個(gè).
4.三個(gè)平面最多可把空間分成8部分.(X、Y、Z三個(gè)方向)
:空間的直線與平面
、逼矫娴幕拘再|(zhì)⑴三個(gè)公理及公理三的三個(gè)推論和它們的用途. ⑵斜二測(cè)畫法.
、部臻g兩條直線的位置關(guān)系:相交直線、平行直線、異面直線.
⑴公理四(平行線的傳遞性).等角定理.
、飘惷嬷本的判定:判定定理、反證法.
、钱惷嬷本所成的角:定義(求法)、范圍.
、持本和平面平行直線和平面的位置關(guān)系、直線和平面平行的判定與性質(zhì).
、粗本和平面垂直
、胖本和平面垂直:定義、判定定理.
、迫咕定理及逆定理.
5.平面和平面平行
兩個(gè)平面的位置關(guān)系、兩個(gè)平面平行的判定與性質(zhì).
6.平面和平面垂直
互相垂直的平面及其判定定理、性質(zhì)定理.
(二)直線與平面的平行和垂直的證明思路(見附圖)
(三)夾角與距離
7.直線和平面所成的角與二面角
⑴平面的斜線和平面所成的角:三面角余弦公式、最小角定理、斜線和平
面所成的角、直線和平面所成的角.
⑵二面角:①定義、范圍、二面角的平面角、直二面角.
、诨ハ啻怪钡钠矫婕捌渑卸ǘɡ、性質(zhì)定理.
8.距離
、劈c(diǎn)到平面的距離.
⑵直線到與它平行平面的距離.
、莾蓚(gè)平行平面的距離:兩個(gè)平行平面的公垂線、公垂線段.
⑷異面直線的距離:異面直線的公垂線及其性質(zhì)、公垂線段.
(四)簡單多面體與球
9.棱柱與棱錐
⑴多面體.
⑵棱柱與它的性質(zhì):棱柱、直棱柱、正棱柱、棱柱的性質(zhì).
、瞧叫辛骟w與長方體:平行六面體、直平行六面體、長方體、正四棱柱、
正方體;平行六面體的性質(zhì)、長方體的性質(zhì).
、壤忮F與它的性質(zhì):棱錐、正棱錐、棱錐的性質(zhì)、正棱錐的性質(zhì).
⑸直棱柱和正棱錐的直觀圖的畫法.
10.多面體歐拉定理的發(fā)現(xiàn)
、藕唵味嗝骟w的歐拉公式.
、普嗝骟w.
11.球
、徘蚝退男再|(zhì):球體、球面、球的大圓、小圓、球面距離.
⑵球的體積公式和表面積公式.
。撼S媒Y(jié)論、方法和公式
1.異面直線所成角的求法:
(1)平移法:在異面直線中的一條直線中選擇一特殊點(diǎn),作另一條的平行線;
(2)補(bǔ)形法:把空間圖形補(bǔ)成熟悉的或完整的幾何體,如正方體、平行六面體、長方體等,其目的在于容易發(fā)現(xiàn)兩條異面直線間的關(guān)系;
2.直線與平面所成的角
斜線和平面所成的是一個(gè)直角三角形的銳角,它的三條邊分別是平面的垂線段、斜線段及斜線段在平面上的'射影。通常通過斜線上某個(gè)特殊點(diǎn)作出平面的垂線段,垂足和斜足的連線,是產(chǎn)生線面角的關(guān)鍵;
3.二面角的求法
(1)定義法:直接在二面角的棱上取一點(diǎn)(特殊點(diǎn)),分別在兩個(gè)半平面內(nèi)作棱的垂線,得出平面角,用定義法時(shí),要認(rèn)真觀察圖形的特性;
(2)三垂線法:已知二面角其中一個(gè)面內(nèi)一點(diǎn)到一個(gè)面的垂線,用三垂線定理或逆定理作出二面角的平面角;
(3)垂面法:已知二面角內(nèi)一點(diǎn)到兩個(gè)面的垂線時(shí),過兩垂線作平面與兩個(gè)半平面的交線所成的角即為平面角,由此可知,二面角的平面角所在的平面與棱垂直;
(4)射影法:利用面積射影公式S射=S原cos,其中為平面角的大小,此法不必在圖形中畫出平面角;
特別:對(duì)于一類沒有給出棱的二面角,應(yīng)先延伸兩個(gè)半平面,使之相交出現(xiàn)棱,然后再選用上述方法(尤其要考慮射影法)。
4.空間距離的求法
(1)兩異面直線間的距離,高考要求是給出公垂線,所以一般先利用垂直作出公垂線,然后再進(jìn)行計(jì)算;
(2)求點(diǎn)到直線的距離,一般用三垂線定理作出垂線再求解;
(3)求點(diǎn)到平面的距離,一是用垂面法,借助面面垂直的性質(zhì)來作,因此,確定已知面的垂面是關(guān)鍵;二是不作出公垂線,轉(zhuǎn)化為求三棱錐的高,利用等體積法列方程求解;
高中數(shù)學(xué)知識(shí)點(diǎn)總結(jié) 3
函數(shù)的表示方法
1.函數(shù)的三種表示方法列表法圖象法解析法
2.分段函數(shù):定義域的不同部分,有不同的對(duì)應(yīng)法則的函數(shù)。注意兩點(diǎn):
①分段函數(shù)是一個(gè)函數(shù),不要誤認(rèn)為是幾個(gè)函數(shù)。
、诜侄魏瘮(shù)的定義域是各段定義域的并集,值域是各段值域的并集。
求定義域的幾種情況
①若f(x)是整式,則函數(shù)的定義域是實(shí)數(shù)集R;
、谌鬴(x)是分式,則函數(shù)的定義域是使分母不等于0的實(shí)數(shù)集;
、廴鬴(x)是二次根式,則函數(shù)的'定義域是使根號(hào)內(nèi)的式子大于或等于0的實(shí)數(shù)集合;
④若f(x)是對(duì)數(shù)函數(shù),真數(shù)應(yīng)大于零。
⑤因?yàn)榱愕牧愦蝺鐩]有意義,所以底數(shù)和指數(shù)不能同時(shí)為零。
、奕鬴(x)是由幾個(gè)部分的數(shù)學(xué)式子構(gòu)成的,則函數(shù)的定義域是使各部分式子都有意義的實(shí)數(shù)集合;
、呷鬴(x)是由實(shí)際問題抽象出來的函數(shù),則函數(shù)的定義域應(yīng)符合實(shí)際問題
高中數(shù)學(xué)知識(shí)點(diǎn)總結(jié) 4
數(shù)學(xué)知識(shí)點(diǎn)1、柱、錐、臺(tái)、球的結(jié)構(gòu)特征
。1)棱柱:
幾何特征:兩底面是對(duì)應(yīng)邊平行的全等多邊形;側(cè)面、對(duì)角面都是平行四邊形;側(cè)棱平行且相等;平行于底面的截面是與底面全等的多邊形。
(2)棱錐
幾何特征:側(cè)面、對(duì)角面都是三角形;平行于底面的截面與底面相似,其相似比等于頂點(diǎn)到
截面距離與高的比的平方。
。3)棱臺(tái):
幾何特征:①上下底面是相似的平行多邊形②側(cè)面是梯形③側(cè)棱交于原棱錐的頂點(diǎn)
(4)圓柱:定義:以矩形的一邊所在的直線為軸旋轉(zhuǎn),其余三邊旋轉(zhuǎn)所成
幾何特征:①底面是全等的圓;②母線與軸平行;③軸與底面圓的半徑垂直;④側(cè)面展開圖
是一個(gè)矩形。
。5)圓錐:定義:以直角三角形的一條直角邊為旋轉(zhuǎn)軸,旋轉(zhuǎn)一周所成
幾何特征:①底面是一個(gè)圓;②母線交于圓錐的頂點(diǎn);③側(cè)面展開圖是一個(gè)扇形。
。6)圓臺(tái):定義:以直角梯形的垂直與底邊的腰為旋轉(zhuǎn)軸,旋轉(zhuǎn)一周所成
幾何特征:①上下底面是兩個(gè)圓;②側(cè)面母線交于原圓錐的頂點(diǎn);③側(cè)面展開圖是一個(gè)弓形。
。7)球體:定義:以半圓的直徑所在直線為旋轉(zhuǎn)軸,半圓面旋轉(zhuǎn)一周形成的幾何體幾何特征:①球的截面是圓;②球面上任意一點(diǎn)到球心的距離等于半徑。
數(shù)學(xué)知識(shí)點(diǎn)2、空間幾何體的三視圖
定義三視圖:正視圖(光線從幾何體的前面向后面正投影);側(cè)視圖(從左向右)、俯視圖(從上向下)
注:正視圖反映了物體的高度和長度;俯視圖反映了物體的長度和寬度;側(cè)視圖反映了物體的高度和寬度。
數(shù)學(xué)知識(shí)點(diǎn)3、空間幾何體的直觀圖——斜二測(cè)畫法
斜二測(cè)畫法特點(diǎn):①原來與x軸平行的線段仍然與x平行且長度不變;
、谠瓉砼cy軸平行的線段仍然與y平行,長度為原來的一半。
平面
通常用一個(gè)平行四邊形來表示。
平面常用希臘字母α、β、γ…或拉丁字母M、N、P來表示,也可用表示平行四邊形的兩個(gè)相對(duì)頂點(diǎn)字母表示,如平面AC。
在立體幾何中,大寫字母A,B,C,…表示點(diǎn),小寫字母,a,b,c,…l,m,n,…表示直線,且把直線和平面看成點(diǎn)的集合,因而能借用集合論中的符號(hào)表示它們之間的關(guān)系,例如:
a) A∈l—點(diǎn)A在直線l上;Aα—點(diǎn)A不在平面α內(nèi);
b) lα—直線l在平面α內(nèi);
c) aα—直線a不在平面α內(nèi);
d) l∩m=A—直線l與直線m相交于A點(diǎn);
e) α∩l=A—平面α與直線l交于A點(diǎn);
f) α∩β=l—平面α與平面β相交于直線l。
二、平面的基本性質(zhì)
公理1如果一條直線上的兩點(diǎn)在一個(gè)平面內(nèi),那么這條直線上所有的點(diǎn)都在這個(gè)平面內(nèi)。
公理2如果兩個(gè)平面有一個(gè)公共點(diǎn),那么它們有且只有一條通過這個(gè)點(diǎn)的公共直線。
公理3經(jīng)過不在同一直線上的三個(gè)點(diǎn),有且只有一個(gè)平面。
根據(jù)上面的公理,可得以下推論。
推論1經(jīng)過一條直線和這條直線外一點(diǎn),有且只有一個(gè)平面。
推論2經(jīng)過兩條相交直線,有且只有一個(gè)平面。
推論3經(jīng)過兩條平行直線,有且只有一個(gè)平面。
公理4平行于同一條直線的兩條直線互相平行
如何讓數(shù)學(xué)學(xué)科預(yù)習(xí)變得更高效
一、讀一讀。預(yù)習(xí)時(shí)要認(rèn)真,要逐字逐詞逐句的閱讀,用筆把重點(diǎn)畫出來,重點(diǎn)加以理解。遇到自己解決不了的問題,作出記號(hào),教師講解時(shí)作為聽課的重點(diǎn)。
二、想一想。對(duì)預(yù)習(xí)中感到困難的問題要先思考。如果是基礎(chǔ)問題,可以用以前的知識(shí)看看能不能弄通。如果是理解上的問題,可以記下來課上認(rèn)真聽講,通過積極思考去解決。這樣有利于提高對(duì)知識(shí)的理解,養(yǎng)成學(xué)習(xí)數(shù)學(xué)的良好思維習(xí)慣。
三、說一說。預(yù)習(xí)時(shí)可能感到認(rèn)識(shí)模糊,可以與父母或同學(xué)進(jìn)行討論,在同學(xué)們的合作交流與探討中找到正確的答案。這樣即增加了學(xué)生探求新課的興趣,有可以弄懂?dāng)?shù)學(xué)知識(shí)的'實(shí)際用法,對(duì)知識(shí)有個(gè)準(zhǔn)確的概念。
四、寫一寫。寫一寫在課前預(yù)習(xí)中也是很有必要的,預(yù)習(xí)時(shí)要適當(dāng)做學(xué)習(xí)筆記,主要包括看書時(shí)的初步體會(huì)和心得,讀明白了的問題的理解,對(duì)疑難問題的記錄和思考等。
五、做一做。預(yù)習(xí)應(yīng)用題,可以用畫線段的方法幫助理解數(shù)量間的關(guān)系,弄清已知條件和所求問題,找到解題的思路。對(duì)于一些有關(guān)圖形方面的問題,可以在預(yù)習(xí)中動(dòng)手操作,剪剪拼拼,增加感性認(rèn)識(shí)。
六、補(bǔ)一補(bǔ)。數(shù)學(xué)課新舊知識(shí)間往往存在緊密的聯(lián)系,預(yù)習(xí)時(shí)如發(fā)現(xiàn)學(xué)習(xí)過的要領(lǐng)有不清楚的地方,一定要在預(yù)習(xí)時(shí)弄明白,并對(duì)舊的知識(shí)加以鞏固和記憶,同時(shí)為學(xué)習(xí)新的知識(shí)打下堅(jiān)實(shí)的基礎(chǔ)。
七、練一練。往往每課時(shí)的例題都是很典型的,預(yù)習(xí)時(shí)應(yīng)把例題都做一遍,加深領(lǐng)悟的能力。如果做題時(shí)出現(xiàn)錯(cuò)誤,要想想錯(cuò)在哪,為什么錯(cuò),怎么改錯(cuò)。如果仍是找不到錯(cuò)誤的根源,可在聽課時(shí)重點(diǎn)聽,逐步領(lǐng)會(huì)。
該怎么提高數(shù)學(xué)課堂學(xué)習(xí)效率
課堂學(xué)習(xí)是學(xué)習(xí)過程中最基本,最重要的環(huán)節(jié),要堅(jiān)持做到“五到”即耳到、眼到、口到、心到、手到;
手到:就是以簡單扼要的方法記下聽課的要點(diǎn),思維方法,以備復(fù)習(xí)、消化、再思考,但要以聽課為主,記錄為輔;
耳到:專心聽講,聽老師如何講課,如何分析、如何歸納總結(jié)。另外,還要聽同學(xué)們的解答,看是否對(duì)自己有所啟發(fā),特別要注意聽自己預(yù)習(xí)未看懂的問題;
口到:主動(dòng)與老師、同學(xué)們進(jìn)行合作、探究,敢于提出問題,并發(fā)表自己的看法,不要人云亦云;
眼到:就是一看老師講課的表情,手勢(shì)所表達(dá)的意思,看老師的演示實(shí)驗(yàn)、板書內(nèi)容,二看老師要求看的課本內(nèi)容,把書上知識(shí)與老師課堂講的知識(shí)聯(lián)系起來;
心到:就是課堂上要認(rèn)真思考,注意理解課堂的新知識(shí),課堂上的思考要主動(dòng)積極。關(guān)鍵是理解并能融匯貫通,靈活使用。對(duì)于老師講的新概念,應(yīng)抓住關(guān)鍵字眼,變換角度去理解。
數(shù)學(xué)復(fù)習(xí)方法學(xué)霸分享
1、重點(diǎn)練習(xí)幾種類型的題目
不要鉆偏題、怪題、過難題的牛角尖,根據(jù)平時(shí)做套卷時(shí)的感受,多練習(xí)以下幾個(gè)類型的題目。
。1)初看沒有思路,但分析后能順利做出的。通過對(duì)這類問題的練習(xí),能夠使我們對(duì)題目的考點(diǎn)和重點(diǎn)更熟悉,提高建立思路的速度和切入點(diǎn)的準(zhǔn)確度,讓我們能在考試中留出更多時(shí)間來處理后面難度高、閱讀量大的綜合題。
。2)自己經(jīng)常出錯(cuò)的中檔題。中檔題在中考中每年的考查內(nèi)容都差不多,題目位置也相對(duì)固定,屬于解決了一個(gè)板塊就能得到相應(yīng)版塊分?jǐn)?shù)的類型。在中檔題的某個(gè)題型經(jīng)常出錯(cuò)說明對(duì)這部分內(nèi)容的基本概念和常用方法理解不到位。通過練習(xí),多總結(jié)這類題目的解題思路和技巧,把不穩(wěn)定的得分變成到手的分?jǐn)?shù)。中檔題難度一般不會(huì)太高,所以對(duì)于自己薄弱的中檔題進(jìn)行突擊練習(xí)一般都會(huì)有很好的效果。
。3)基礎(chǔ)相對(duì)薄弱的同學(xué)也應(yīng)該做一些?嫉念}目類型。比如圓的切線的判定以及與圓相關(guān)的線段計(jì)算、一次函數(shù)和反比例函數(shù)的綜合、二元一次方程整數(shù)根問題等,通過練習(xí),進(jìn)一步提高我們解決這些問題的熟練度
2、學(xué)會(huì)看錯(cuò)題的正確方式
大部分學(xué)生都有錯(cuò)題本,在復(fù)習(xí)時(shí)看錯(cuò)題本,鞏固自己的錯(cuò)誤是不錯(cuò)的復(fù)習(xí)方式,但在看錯(cuò)題時(shí)一定要杜絕連題目帶答案一起順著看下來的方式。盡量能夠?qū)⒋鸢笓踝,自己再嘗試做一遍,如果做的過程中遇到問題再去看答案,并做好標(biāo)注,過兩天再試做一遍,爭取能在期末考試前將之前的錯(cuò)題整體過兩到三遍、加深印象。
3、認(rèn)真研究每道題目的考點(diǎn)
做題時(shí),我們心中要對(duì)相應(yīng)題目所對(duì)應(yīng)的考點(diǎn)有所了解,比如填空題中如果出現(xiàn)幾何問題,主要是對(duì)圖形基本性質(zhì)和面積的考察,而很少考到全等三角形的證明(尺規(guī)作圖寫依據(jù)除外),所以我們?cè)谔羁疹}中看到幾何問題,就不用從全等方面找突破口,而是更多地注重圖形的基本性質(zhì)。比如平行四邊形對(duì)角線互相平分、等腰三角形三線合一等。
4、盡量避免只看不算
很多同學(xué)在復(fù)習(xí)時(shí)不喜歡動(dòng)筆,覺得自己看明白了就行,但俗話說“眼過千遍不如手過一遍”,不去實(shí)際操作只是看一遍題目,對(duì)題目解法和思路的印象其實(shí)是很低的。而且在計(jì)算過程中還能鍛煉我們的計(jì)算能力,提高解題速度和準(zhǔn)確性。許多同學(xué)在寫證明題時(shí)很不熟練,邏輯不順暢,也是由于平時(shí)對(duì)書寫的不重視,應(yīng)該趁著期末考試前的時(shí)間,多練練書寫。
學(xué)好數(shù)學(xué)要重視“四個(gè)依據(jù)”是什么
讀好一本教科書——它是教學(xué)、考試的主要依據(jù);
記好一本筆記——它是教師多年經(jīng)驗(yàn)的結(jié)晶;
做好一本習(xí)題集——它是知識(shí)的拓寬;
記好一本心得筆記——它是你自己的知識(shí)。
高中數(shù)學(xué)知識(shí)點(diǎn)總結(jié) 5
一、高中數(shù)列基本公式:
1、一般數(shù)列的通項(xiàng)an與前n項(xiàng)和Sn的關(guān)系:an=
2、等差數(shù)列的通項(xiàng)公式:an=a1+(n-1)d an=ak+(n-k)d (其中a1為首項(xiàng)、ak為已知的第k項(xiàng)) 當(dāng)d≠0時(shí),an是關(guān)于n的一次式;當(dāng)d=0時(shí),an是一個(gè)常數(shù)。
3、等差數(shù)列的前n項(xiàng)和公式:Sn=
Sn=
Sn=
當(dāng)d≠0時(shí),Sn是關(guān)于n的二次式且常數(shù)項(xiàng)為0;當(dāng)d=0時(shí)(a1≠0),Sn=na1是關(guān)于n的.正比例式。
4、等比數(shù)列的通項(xiàng)公式: an= a1qn-1an= akqn-k
(其中a1為首項(xiàng)、ak為已知的第k項(xiàng),an≠0)
5、等比數(shù)列的前n項(xiàng)和公式:當(dāng)q=1時(shí),Sn=n a1 (是關(guān)于n的正比例式);
當(dāng)q≠1時(shí),Sn=
Sn=
二、高中數(shù)學(xué)中有關(guān)等差、等比數(shù)列的結(jié)論
1、等差數(shù)列{an}的任意連續(xù)m項(xiàng)的和構(gòu)成的數(shù)列Sm、S2m-Sm、S3m-S2m、S4m- S3m、……仍為等差數(shù)列。
2、等差數(shù)列{an}中,若m+n=p+q,則
3、等比數(shù)列{an}中,若m+n=p+q,則
4、等比數(shù)列{an}的任意連續(xù)m項(xiàng)的和構(gòu)成的數(shù)列Sm、S2m-Sm、S3m-S2m、S4m- S3m、……仍為等比數(shù)列。
5、兩個(gè)等差數(shù)列{an}與{bn}的和差的數(shù)列{an+bn}、{an-bn}仍為等差數(shù)列。
6、兩個(gè)等比數(shù)列{an}與{bn}的積、商、倒數(shù)組成的數(shù)列仍為等比數(shù)列。
7、等差數(shù)列{an}的任意等距離的項(xiàng)構(gòu)成的數(shù)列仍為等差數(shù)列。
8、等比數(shù)列{an}的任意等距離的項(xiàng)構(gòu)成的數(shù)列仍為等比數(shù)列。
9、三個(gè)數(shù)成等差數(shù)列的設(shè)法:a-d,a,a+d;四個(gè)數(shù)成等差的設(shè)法:a-3d,a-d,,a+d,a+3d
10、三個(gè)數(shù)成等比數(shù)列的設(shè)法:a/q,a,aq;
四個(gè)數(shù)成等比的錯(cuò)誤設(shè)法:a/q3,a/q,aq,aq3 (為什么?)
高中數(shù)學(xué)知識(shí)點(diǎn)總結(jié) 6
第一章算法初步
1.1.1
算法的概念
1、算法概念:
在數(shù)學(xué)上,現(xiàn)代意義上的“算法”通常是指可以用計(jì)算機(jī)來解決的某一類問題是程序或步驟,這些程序或步驟必須是明確和有效的,而且能夠在有限步之內(nèi)完成.2.算法的特點(diǎn):
。1)有限性:一個(gè)算法的步驟序列是有限的,必須在有限操作之后停止,不能是無限的
(2)確定性:算法中的每一步應(yīng)該是確定的并且能有效地執(zhí)行且得到確定的結(jié)果,而不應(yīng)當(dāng)是模棱兩可.
(3)順序性與正確性:算法從初始步驟開始,分為若干明確的步驟,每一個(gè)步驟只能有一個(gè)確定的后繼步驟,前一步是后一步的前提,只有執(zhí)行完前一步才能進(jìn)行下一步,并且每一步都準(zhǔn)確無誤,才能完成問題.
。4)不唯一性:求解某一個(gè)問題的解法不一定是唯一的,對(duì)于一個(gè)問題可以有不同的算法.
。5)普遍性:很多具體的問題,都可以設(shè)計(jì)合理的算法去解決,如心算、計(jì)算器計(jì)算都要經(jīng)過有限、事先設(shè)計(jì)好的步驟加以解決.
1.1.2程序框圖
1、程序框圖基本概念:
。ㄒ唬┏绦驑(gòu)圖的概念:程序框圖又稱流程圖,是一種用規(guī)定的圖形、指向線及文字說明來準(zhǔn)確、直觀地表示算法的圖形。一個(gè)程序框圖包括以下幾部分:表示相應(yīng)操作的程序框;帶箭頭的流程線;程序框外必要文字說明。
(二)構(gòu)成程序框的圖形符號(hào)及其作用
程序框起止框輸入、輸出框處理框判斷框“Y”;不成立時(shí)標(biāo)明“否”或“N”。寫在不同的用以處理數(shù)據(jù)的處理框內(nèi)。判斷某一條件是否成立,成立時(shí)在出口處標(biāo)明“是”或要輸入、輸出的位置。賦值、計(jì)算,算法中處理數(shù)據(jù)需要的算式、公式等分別表示一個(gè)算法輸入和輸出的信息,可用在算法中任何需名稱功能表示一個(gè)算法的起始和結(jié)束,是任何流程圖不可少的。
學(xué)習(xí)這部分知識(shí)的時(shí)候,要掌握各個(gè)圖形的形狀、作用及使用規(guī)則,畫程序框圖的規(guī)則如下:
1、使用標(biāo)準(zhǔn)的圖形符號(hào)。
2、框圖一般按從上到下、從左到右的方向畫。
3、除判斷框外,大多數(shù)流程圖符號(hào)只有一個(gè)進(jìn)入點(diǎn)和一個(gè)退出點(diǎn)。判斷框具有超過一個(gè)退出點(diǎn)的唯一符號(hào)。
4、判斷框分兩大類,一類判斷框“是”與“否”兩分支的判斷,而且有且僅有兩個(gè)結(jié)果;另一類是多分支判斷,有幾種不同的結(jié)果。
5、在圖形符號(hào)內(nèi)描述的語言要非常簡練清楚。
(三)算法的三種基本邏輯結(jié)構(gòu):順序結(jié)構(gòu)、條件結(jié)構(gòu)、循環(huán)結(jié)構(gòu)。
1、順序結(jié)構(gòu):順序結(jié)構(gòu)是最簡單的算法結(jié)構(gòu),語句與語句之間,框與框之間是按從上到下的順序進(jìn)行的,它是由若干個(gè)依次執(zhí)行的處理步驟組成的,它是任何一個(gè)算法都離不開的一種基本算法結(jié)構(gòu)。順序結(jié)構(gòu)在程序框圖中的體現(xiàn)就是用流程線將程序框自上而下地連接起來,按順序執(zhí)行算法步驟。如在示意圖中,A框和B框是依次執(zhí)行的,只有在執(zhí)行完A框指定的操作后,才能接著執(zhí)行B框所指定的操作。
2、條件結(jié)構(gòu):
條件結(jié)構(gòu)是指在算法中通過對(duì)條件的判斷根據(jù)條件是否成立而選擇不同流向的算法結(jié)構(gòu)。
條件P是否成立而選擇執(zhí)行A框或B框。無論P(yáng)條件是否成立,只能執(zhí)行A框或B框之一,不可能同時(shí)執(zhí)行A框和B框,也不可能A框、B框都不執(zhí)行。一個(gè)判斷結(jié)構(gòu)可以有多個(gè)判斷框。
3、循環(huán)結(jié)構(gòu):在一些算法中,經(jīng)常會(huì)出現(xiàn)從某處開始,按照一定條件,反復(fù)執(zhí)行某一處理步驟的情況,這就是循環(huán)結(jié)構(gòu),反復(fù)執(zhí)行的處理步驟為循環(huán)體,顯然,循環(huán)結(jié)構(gòu)中一定包含條件結(jié)構(gòu)。循環(huán)結(jié)構(gòu)又稱重復(fù)結(jié)構(gòu),循環(huán)結(jié)構(gòu)可細(xì)分為兩類:(1)一類是當(dāng)型循環(huán)結(jié)構(gòu),如下左圖所示,它的功能是當(dāng)給定的條件P成立時(shí),執(zhí)行A框,A框執(zhí)行完畢后,再判斷條件P是否成立,如果仍然成立,再執(zhí)行A框,如此反復(fù)執(zhí)行A框,直到某一次條件P不成立為止,此時(shí)不再執(zhí)行A框,離開循環(huán)結(jié)構(gòu)。
。2)另一類是直到型循環(huán)結(jié)構(gòu),如下右圖所示,它的功能是先執(zhí)行,然后判斷給定的條件P是否成立,如果P仍然不成立,則繼續(xù)執(zhí)行A框,直到某一次給定的條件P成立為止,此時(shí)不再執(zhí)行A框,離開循環(huán)結(jié)構(gòu)。
當(dāng)型循環(huán)結(jié)構(gòu)直到型循環(huán)結(jié)構(gòu)ABAAP不成立構(gòu)要在某個(gè)條件循環(huán)結(jié)構(gòu)中一定包含條件結(jié)構(gòu),但不用于記錄循環(huán)次數(shù),累加變量用于輸出結(jié)下終止循允許“死循環(huán)”。P注意:1循環(huán)結(jié)不成立成立環(huán),這就需要條件結(jié)構(gòu)來判斷。因此,成立2在循環(huán)結(jié)構(gòu)中都有一個(gè)計(jì)數(shù)變量和累加變量。計(jì)數(shù)變量果。計(jì)數(shù)變量和累加變量一般是同步執(zhí)行的,累加一次,計(jì)數(shù)一次。
1.2.1輸入、輸出語句和賦值語句
1、輸入語句
(1)輸入語句的一般格式
INPUT“提示內(nèi)容”;變量圖形計(jì)算器格式
。2)輸入
INPUT“提示內(nèi)容”,變量語句的作用是實(shí)現(xiàn)算法的輸入信息功能;
(3)“提示內(nèi)容”提示用戶輸入什么樣的信息,變量是指程序在運(yùn)行時(shí)其值是可以變化的量;
。4)輸入語句要求輸入的值只能是具體的常數(shù),不能是函數(shù)、變量或表達(dá)式;
。5)提示內(nèi)容與變量之間用分號(hào)“;”隔開,若輸入多個(gè)變量,變量與變量之間用逗號(hào)“,”隔開。
2、輸出語句
。1)輸出語句的一般格式輸PRINT“提示內(nèi)容”;表達(dá)式圖形計(jì)算器格式Disp“提示內(nèi)容”,變量
(2)出語
句的作用是實(shí)現(xiàn)算法的輸出結(jié)果功能;
。3)“提示內(nèi)容”提示用戶輸入什么樣的信息,表達(dá)式是指程序要輸出的數(shù)據(jù);
。4)輸出語句可以輸出常量、變量或表達(dá)式的值以及字符。
3、賦值語句
。1)賦值語句的一般格式
。2)賦值語句的作用是將表達(dá)式所代表的值賦給變量;
(3)賦值語句中的“=”稱作賦值號(hào),與數(shù)學(xué)中的等號(hào)的意義是不同的。賦值號(hào)的左右兩邊不能對(duì)換,它將賦值號(hào)右邊的表達(dá)式的值賦給賦值號(hào)左邊的變量;
(4)賦值語句左邊只能是變量名字,而不是表達(dá)式,右邊表達(dá)式可以是一個(gè)數(shù)據(jù)、常量或算式;
。5)對(duì)于一個(gè)變量可以多次賦值。
注意:
、儋x值號(hào)左邊只能是變量名字,而不能是表達(dá)式。如:2=X是錯(cuò)誤的。
、谫x值號(hào)左右不能對(duì)換。如“A=B”“B=A”的含義運(yùn)行結(jié)果是不同的。
③不能利用賦值語句進(jìn)行代數(shù)式的演算。(如化簡、因式分解、解方程等)
④賦值號(hào)“=”與數(shù)學(xué)中的等號(hào)意義不同。1.2.2條件語句
1、條件語句的一般格式有兩種:
。1)IFTHENELSE語句;
(2)IFTHEN語句。
2、IFTHENELSE語句IFTHENELSE語句的一般格式為圖1,對(duì)應(yīng)的程序框圖為圖2。
圖形計(jì)算器變量=表達(dá)式格式表達(dá)式變量IF條件THEN語句1ELSE語句2ENDIF滿足條件?是語句1否
語句2
圖1圖2
分析:在IFTHENELSE語句中,“條件”表示判斷的條件,“語句1”表示滿足條件時(shí)執(zhí)行的操作內(nèi)容;“語句2”表示不滿足條件時(shí)執(zhí)行的操作內(nèi)容;ENDIF表示條件語句的結(jié)束。計(jì)算機(jī)在執(zhí)行時(shí),首先對(duì)IF后的.條件進(jìn)行判斷,如果條件符合,則執(zhí)行THEN后面的語句1;若條件不符合,則執(zhí)行ELSE后面的語句2。3、IFTHEN語句
IFTHEN語句的一般格式為圖3,對(duì)應(yīng)的程序框圖為圖4。
IF條件THEN語句ENDIF(圖3)
是滿足條件?否(圖4)語句注意:“條件”表示判斷的條件;“語句”表示滿足條件時(shí)執(zhí)行的操作
內(nèi)容,條件不滿足時(shí),結(jié)束程序;ENDIF表示條件語句的結(jié)束。計(jì)算機(jī)在執(zhí)行時(shí)首先對(duì)IF后的條件進(jìn)行判斷,如果條件符合就執(zhí)行THEN后邊的語句,若條件不符合則直接結(jié)束該條件語句,轉(zhuǎn)而執(zhí)行其它語句。
1.2.3循環(huán)語句
循環(huán)結(jié)構(gòu)是由循環(huán)語句來實(shí)現(xiàn)的。對(duì)應(yīng)于程序框圖中的兩種循環(huán)結(jié)構(gòu),一般程序設(shè)計(jì)語言中也有當(dāng)型(WHILE型)和直到型(UNTIL型)兩種語句結(jié)構(gòu)。即WHILE語句和UNTIL語句。1、WHILE語句
。1)WHILE語句的一般格式是對(duì)應(yīng)的程序框圖是
循環(huán)體WHILE條件循環(huán)體WEND滿足條件?否是(2)當(dāng)計(jì)算機(jī)遇到WHILE語句時(shí),先判斷條件的真假,如果條件符合,就執(zhí)行WHILE與WEND之間的循環(huán)體;然后再檢查上述條件,如果條件仍符合,再次執(zhí)行循環(huán)體,這個(gè)過程反復(fù)進(jìn)行,直到某一次條件不符合為止。這時(shí),計(jì)算機(jī)將不執(zhí)行循環(huán)體,直接跳到WEND語句后,接著執(zhí)行WEND之后的語句。因此,當(dāng)型循環(huán)有時(shí)也稱為“前測(cè)試型”循環(huán)。2、UNTIL語句
。1)UNTIL語句的一般格式是對(duì)應(yīng)的程序框圖是
。2)直到型循環(huán)又稱為“后測(cè)試型”循環(huán),從UNTIL型循環(huán)結(jié)構(gòu)分析,計(jì)算機(jī)執(zhí)行該語句時(shí),先執(zhí)行一次循環(huán)體,然后進(jìn)行DO循環(huán)體LOOPUNTIL條件循環(huán)體否滿足條件?是
條件的判斷,如果條件不滿足,繼續(xù)返回執(zhí)行循環(huán)體,然后再進(jìn)行條件的判斷,這個(gè)過程反復(fù)進(jìn)行,直到某一次條件滿足時(shí),不再執(zhí)行循環(huán)體,跳到LOOPUNTIL語句后執(zhí)行其他語句,是先執(zhí)行循環(huán)體后進(jìn)行條件判斷的循環(huán)語句。分析:當(dāng)型循環(huán)與直到型循環(huán)的區(qū)別:(先由學(xué)生討論再歸納)
。1)當(dāng)型循環(huán)先判斷后執(zhí)行,直到型循環(huán)先執(zhí)行后判斷;在WHILE語句中,是當(dāng)條件滿足時(shí)執(zhí)行循環(huán)體,在UNTIL語句中,是當(dāng)條件不滿足時(shí)執(zhí)行循環(huán)
1.3.1輾轉(zhuǎn)相除法與更相減損術(shù)
1、輾轉(zhuǎn)相除法。也叫歐幾里德算法,用輾轉(zhuǎn)相除法求最大公約數(shù)的步驟如下:
。1):用較大的數(shù)m除以較小的數(shù)n得到一個(gè)商
S0和一個(gè)余數(shù)R0;
。2):若R0=0,則n為m,n的最大公約數(shù);若R0≠0,則用除數(shù)n除以余數(shù)除以余數(shù)
R0得到一個(gè)商S1和一個(gè)余數(shù)R1;
。3):若R1=0,則R1為m,n的最大公約數(shù);若R1≠0,則用除數(shù)R0R1得到一個(gè)商S2和一個(gè)余數(shù)R2;依次計(jì)算直至Rn=0,此時(shí)所得到的Rn1即為所求的最大公約數(shù)。
2、更相減損術(shù)
我國早期也有求最大公約數(shù)問題的算法,就是更相減損術(shù)。在《九章算術(shù)》中有更相減損術(shù)求最大公約數(shù)的步驟:可半者半之,不可半者,副置分母子之?dāng)?shù),以少減多,更相減損,求其等也,以等數(shù)約之。
翻譯為:
。1):任意給出兩個(gè)正數(shù);判斷它們是否都是偶數(shù)。若是,用2約簡;若不是,執(zhí)行第二步。
。2):以較大的數(shù)減去較小的數(shù),接著把較小的數(shù)與所得的差比較,并以大數(shù)減小數(shù)。繼續(xù)這個(gè)操作,直到所得的數(shù)相等為止,則這個(gè)數(shù)(等數(shù))就是所求的最大公約數(shù)。例2用更相減損術(shù)求98與63的最大公約數(shù).分析:(略)
3、輾轉(zhuǎn)相除法與更相減損術(shù)的區(qū)別:
。1)都是求最大公約數(shù)的方法,計(jì)算上輾轉(zhuǎn)相除法以除法為主,更相減損術(shù)以減法為主,計(jì)算次數(shù)上輾轉(zhuǎn)相除法計(jì)算次數(shù)相對(duì)較少,特別當(dāng)兩個(gè)數(shù)字大小區(qū)別較大時(shí)計(jì)算次數(shù)的區(qū)別較明顯。
。2)從結(jié)果體現(xiàn)形式來看,輾轉(zhuǎn)相除法體現(xiàn)結(jié)果是以相除余數(shù)為0則得到,而更相減損術(shù)則以減數(shù)與差相等而得到
1.3.2秦九韶算法與排序
1、秦九韶算法概念:
f(x)=anxn+an-1xn-1+….+a1x+a0求值問題
f(x)=anxn+an-1xn-1+….+a1x+a0=(anxn-1+an-1xn-2+….+a1)x+a0=((anxn-2+an-1xn-3+….+a2)x+a1)x+a0
=......=(...(anx+an-1)x+an-2)x+...+a1)x+a0
求多項(xiàng)式的值時(shí),首先計(jì)算最內(nèi)層括號(hào)內(nèi)依次多項(xiàng)式的值,即v1=anx+an-1然后由內(nèi)向外逐層計(jì)算一次多項(xiàng)式的值,即v2=v1x+an-2v3=v2x+an-3......vn=vn-1x+a0
這樣,把n次多項(xiàng)式的求值問題轉(zhuǎn)化成求n個(gè)一次多項(xiàng)式的值的問題。
2、兩種排序方法:直接插入排序和冒泡排序
。1)直接插入排序
基本思想:插入排序的思想就是讀一個(gè),排一個(gè)。將第1個(gè)數(shù)放入數(shù)組的第1個(gè)元素中,以后讀入的數(shù)與已存入數(shù)組的數(shù)進(jìn)行比較,確定它在從大到小的排列中應(yīng)處的位置.將該位置以及以后的元素向后推移一個(gè)位置,將讀入的新數(shù)填入空出的位置中.(由于算法簡單,可以舉例說明)
。2)冒泡排序
基本思想:依次比較相鄰的兩個(gè)數(shù),把大的放前面,小的放后面.即首先比較第1個(gè)數(shù)和第2個(gè)數(shù),大數(shù)放前,小數(shù)放后.然后比較第2個(gè)數(shù)和第3個(gè)數(shù)......直到比較最后兩個(gè)數(shù).第一趟結(jié)束,最小的一定沉到最后.重復(fù)上過程,仍從第1個(gè)數(shù)開始,到最后第2個(gè)數(shù)......由于在排序過程中總是大數(shù)往前,小數(shù)往后,相當(dāng)氣泡上升,所以叫冒泡排序.
1.3.3進(jìn)位制
1、概念:進(jìn)位制是一種記數(shù)方式,用有限的數(shù)字在不同的位置表示不同的數(shù)值?墒褂脭(shù)字符號(hào)的個(gè)數(shù)稱為基數(shù),基數(shù)為n,即可稱n進(jìn)位制,簡稱n進(jìn)制,F(xiàn)在最常用的是十進(jìn)制,通常使用10個(gè)阿拉伯?dāng)?shù)字0-9進(jìn)行記數(shù)。對(duì)于任何一個(gè)數(shù),我們可以用不同的進(jìn)位制來表示。比如:十進(jìn)數(shù)57,可以用二進(jìn)制表示為111001,也可以用八進(jìn)制表示為71、用十六進(jìn)制表示為39,它們所代表的數(shù)值都是一樣的。
一般地,若k是一個(gè)大于一的整數(shù),那么以k為基數(shù)的k進(jìn)制可以表示為:anan1...a1a0(k)(0ank,0an1,...,a1,a0k),而表示各種進(jìn)位制數(shù)一般在數(shù)字右下腳加注來表示,如111001(2)表示二進(jìn)制數(shù),34(5)表示5進(jìn)制數(shù)
高中數(shù)學(xué)知識(shí)點(diǎn)總結(jié) 7
一、集合有關(guān)概念
1、集合的含義:某些指定的對(duì)象集在一起就成為一個(gè)集合,其中每一個(gè)對(duì)象叫元素。
2、集合的中元素的三個(gè)特性:
1)元素的確定性;
2)元素的互異性;
3)元素的無序性。
說明:(1)對(duì)于一個(gè)給定的集合,集合中的元素是確定的,任何一個(gè)對(duì)象或者是或者不是這個(gè)給定的集合的元素。
。2)任何一個(gè)給定的集合中,任何兩個(gè)元素都是不同的對(duì)象,相同的對(duì)象歸入一個(gè)集合時(shí),僅算一個(gè)元素。
(3)集合中的元素是平等的,沒有先后順序,因此判定兩個(gè)集合是否一樣,僅需比較它們的元素是否一樣,不需考查排列順序是否一樣。
。4)集合元素的三個(gè)特性使集合本身具有了確定性和整體性。
3、集合的表示:{…}如{我校的籃球隊(duì)員},{太平洋大西洋印度洋北冰洋}
1)用拉丁字母表示集合:A={我校的籃球隊(duì)員}B={12345}。
2)集合的表示方法:列舉法與描述法。
注意。撼S脭(shù)集及其記法:
非負(fù)整數(shù)集(即自然數(shù)集)記作:N
正整數(shù)集N_或N+整數(shù)集Z有理數(shù)集Q實(shí)數(shù)集R
關(guān)于“屬于”的概念
集合的元素通常用小寫的拉丁字母表示,如:a是集合A的元素,就說a屬于集合A記作a∈A,相反,a不屬于集合A記作a:A。
列舉法:把集合中的元素一一列舉出來,然后用一個(gè)大括號(hào)括上。
描述法:將集合中的元素的公共屬性描述出來,寫在大括號(hào)內(nèi)表示集合的方法。用確定的`條件表示某些對(duì)象是否屬于這個(gè)集合的方法。
、僬Z言描述法:例:{不是直角三角形的三角形}
、跀(shù)學(xué)式子描述法:例:不等式x—3>2的解集是{x?R|x—3>2}或{x|x—3>2}
4、集合的分類:
1)有限集含有有限個(gè)元素的集合。
2)無限集含有無限個(gè)元素的集合。
3)空集不含任何元素的集合例:{x|x2=—5}。
二、集合間的基本關(guān)系
1、“包含”關(guān)系子集
注意:有兩種可能(1)A是B的一部分,;(2)A與B是同一集合。
反之:集合A不包含于集合B或集合B不包含集合A記作AB或BA。
2、“相等”關(guān)系(5≥5,且5≤5,則5=5)
實(shí)例:設(shè)A={x|x2—1=0}B={—11}“元素相同”
結(jié)論:對(duì)于兩個(gè)集合A與B,如果集合A的任何一個(gè)元素都是集合B的元素,同時(shí)集合B的任何一個(gè)元素都是集合A的元素,我們就說集合A等于集合B,即:A=B。
、偃魏我粋(gè)集合是它本身的子集。AA
、谡孀蛹喝绻鸄?B且A?B那就說集合A是集合B的真子集,記作AB(或BA)
、廴绻鸄BBC那么AC
④如果AB同時(shí)BA那么A=B
3、不含任何元素的集合叫做空集,記為Φ。
規(guī)定:空集是任何集合的子集,空集是任何非空集合的真子集。
三、集合的運(yùn)算
1、交集的定義:一般地,由所有屬于A且屬于B的元素所組成的集合叫做AB的交集。
記作A∩B(讀作”A交B”),即A∩B={x|x∈A,且x∈B}。
2、并集的定義:一般地,由所有屬于集合A或?qū)儆诩螧的元素所組成的集合,叫做AB的并集。記作:A∪B(讀作”A并B”),即A∪B={x|x∈A,或x∈B}。
3、交集與并集的性質(zhì):A∩A=AA∩φ=φA∩B=B∩A,A∪A=A,A∪φ=AA∪B=B∪A。
4、全集與補(bǔ)集
。1)補(bǔ)集:設(shè)S是一個(gè)集合,A是S的一個(gè)子集(即),由S中所有不屬于A的元素組成的集合,叫做S中子集A的補(bǔ)集(或余集)
記作:CSA即CSA={x?x?S且x?A}。
。2)全集:如果集合S含有我們所要研究的各個(gè)集合的全部元素,這個(gè)集合就可以看作一個(gè)全集。通常用U來表示。
。3)性質(zhì):⑴CU(CUA)=A⑵(CUA)∩A=Φ⑶(CUA)∪A=U。
高中數(shù)學(xué)知識(shí)點(diǎn)總結(jié) 8
1、命題的四種形式及其相互關(guān)系是什么?
。ɑ槟娣耜P(guān)系的命題是等價(jià)命題。)
原命題與逆否命題同真、同假;逆命題與否命題同真同假。
2、對(duì)映射的概念了解嗎?映射f:A→B,是否注意到A中元素的任意性和B中與之對(duì)應(yīng)元素的唯一性,哪幾種對(duì)應(yīng)能構(gòu)成映射?
。ㄒ粚(duì)一,多對(duì)一,允許B中有元素?zé)o原象。)
3、函數(shù)的.三要素是什么?如何比較兩個(gè)函數(shù)是否相同?
。ǘx域、對(duì)應(yīng)法則、值域)
4、反函數(shù)存在的條件是什么?
(一一對(duì)應(yīng)函數(shù))
求反函數(shù)的步驟掌握了嗎?
(①反解x;②互換x、y;③注明定義域)
5、反函數(shù)的性質(zhì)有哪些?
、倩榉春瘮(shù)的圖象關(guān)于直線y=x對(duì)稱;
②保存了原來函數(shù)的單調(diào)性、奇函數(shù)性;
6、函數(shù)f(x)具有奇偶性的必要(非充分)條件是什么?
。╢(x)定義域關(guān)于原點(diǎn)對(duì)稱)
高中數(shù)學(xué)知識(shí)點(diǎn)總結(jié) 9
一、求導(dǎo)數(shù)的方法
。1)基本求導(dǎo)公式
(2)導(dǎo)數(shù)的四則運(yùn)算
(3)復(fù)合函數(shù)的導(dǎo)數(shù)
設(shè)在點(diǎn)x處可導(dǎo),y=在點(diǎn)處可導(dǎo),則復(fù)合函數(shù)在點(diǎn)x處可導(dǎo),且即
二、關(guān)于極限
1、數(shù)列的極限:
粗略地說,就是當(dāng)數(shù)列的項(xiàng)n無限增大時(shí),數(shù)列的項(xiàng)無限趨向于A,這就是數(shù)列極限的描述性定義。記作:=A。如:
2、函數(shù)的極限:
當(dāng)自變量x無限趨近于常數(shù)時(shí),如果函數(shù)無限趨近于一個(gè)常數(shù),就說當(dāng)x趨近于時(shí),函數(shù)的極限是,記作
三、導(dǎo)數(shù)的概念
1、在處的導(dǎo)數(shù)。
2、在的導(dǎo)數(shù)。
3。函數(shù)在點(diǎn)處的.導(dǎo)數(shù)的幾何意義:
函數(shù)在點(diǎn)處的導(dǎo)數(shù)是曲線在處的切線的斜率,
即k=,相應(yīng)的切線方程是
注:函數(shù)的導(dǎo)函數(shù)在時(shí)的函數(shù)值,就是在處的導(dǎo)數(shù)。
例、若=2,則=()A—1B—2C1D
四、導(dǎo)數(shù)的綜合運(yùn)用
。ㄒ唬┣的切線
函數(shù)y=f(x)在點(diǎn)處的導(dǎo)數(shù),就是曲線y=(x)在點(diǎn)處的切線的斜率。由此,可以利用導(dǎo)數(shù)求曲線的切線方程。具體求法分兩步:
(1)求出函數(shù)y=f(x)在點(diǎn)處的導(dǎo)數(shù),即曲線y=f(x)在點(diǎn)處的切線的斜率k=
。2)在已知切點(diǎn)坐標(biāo)和切線斜率的條件下,求得切線方程為x。
高中數(shù)學(xué)知識(shí)點(diǎn)總結(jié) 10
簡單隨機(jī)抽樣的定義:
一般地,設(shè)一個(gè)總體含有N個(gè)個(gè)體,從中逐個(gè)不放回地抽取n個(gè)個(gè)體作為樣本(n≤N),如果每次抽取時(shí)總體內(nèi)的各個(gè)個(gè)體被抽到的機(jī)會(huì)都相等,就把這種抽樣方法叫做簡單隨機(jī)抽樣。
簡單隨機(jī)抽樣的.特點(diǎn):
(1)用簡單隨機(jī)抽樣從含有N個(gè)個(gè)體的總體中抽取一個(gè)容量為n的樣本時(shí),每次抽取一個(gè)個(gè)體時(shí)任一個(gè)體被抽到的概率為___;在整個(gè)抽樣過程中各個(gè)個(gè)體被抽到的概率為____。
。2)簡單隨機(jī)抽樣的特點(diǎn)是,逐個(gè)抽取,且各個(gè)個(gè)體被抽到的概率相等。
。3)簡單隨機(jī)抽樣方法,體現(xiàn)了抽樣的客觀性與公平性,是其他更復(fù)雜抽樣方法的基礎(chǔ)。
。4)簡單隨機(jī)抽樣是不放回抽樣;它是逐個(gè)地進(jìn)行抽;它是一種等概率抽樣。
簡單抽樣常用方法:
(1)抽簽法:先將總體中的所有個(gè)體(共有N個(gè))編號(hào)(號(hào)碼可從1到N),并把號(hào)碼寫在形狀、大小相同的號(hào)簽上(號(hào)簽可用小球、卡片、紙條等制作),然后將這些號(hào)簽放在同一個(gè)箱子里,進(jìn)行均勻攪拌,抽簽時(shí)每次從中抽一個(gè)號(hào)簽,連續(xù)抽取n次,就得到一個(gè)容量為n的樣本適用范圍:總體的個(gè)體數(shù)不多時(shí)優(yōu)點(diǎn):抽簽法簡便易行,當(dāng)總體的個(gè)體數(shù)不太多時(shí)適宜采用抽簽法。
(2)隨機(jī)數(shù)表法:隨機(jī)數(shù)表抽樣“三步曲”:第一步,將總體中的個(gè)體編號(hào);第二步,選定開始的數(shù)字;第三步,獲取樣本號(hào)碼概率。
高中數(shù)學(xué)知識(shí)點(diǎn)總結(jié) 11
一、直線與方程高考考試內(nèi)容及考試要求:
考試內(nèi)容:
1.直線的傾斜角和斜率;直線方程的點(diǎn)斜式和兩點(diǎn)式;直線方程的一般式;
2.兩條直線平行與垂直的條件;兩條直線的交角;點(diǎn)到直線的距離;
考試要求:
1.理解直線的傾斜角和斜率的概念,掌握過兩點(diǎn)的直線的斜率公式,掌握直線方程的點(diǎn)斜式、兩點(diǎn)式、一般式,并能根據(jù)條件熟練地求出直線方程;
2.掌握兩條直線平行與垂直的條件,兩條直線所成的角和點(diǎn)到直線的距離公式能夠根據(jù)直線的方程判斷兩條直線的位置關(guān)系;
二、直線與方程
課標(biāo)要求:
1.在平面直角坐標(biāo)系中,結(jié)合具體圖形,探索確定直線位置的幾何要素;
2.理解直線的傾斜角和斜率的概念,經(jīng)歷用代數(shù)方法刻畫直線斜率的過程,掌握過兩點(diǎn)的直線斜率的計(jì)算公式;
3.根據(jù)確定直線位置的幾何要素,探索并掌握直線方程的幾種形式(點(diǎn)斜式、兩點(diǎn)式及一般式),體會(huì)斜截式與一次函數(shù)的關(guān)系;
4.會(huì)用代數(shù)的.方法解決直線的有關(guān)問題,包括求兩直線的交點(diǎn),判斷兩條直線的位置關(guān)系,求兩點(diǎn)間的距離、點(diǎn)到直線的距離以及兩條平行線之間的距離等。
要點(diǎn)精講:
1.直線的傾斜角:當(dāng)直線l與x軸相交時(shí),取x軸作為基準(zhǔn),x軸正向與直線l向上方向之間所成的角α叫做直線l的傾斜角。特別地,當(dāng)直線l與x軸平行或重合時(shí),規(guī)定α= 0°.
傾斜角α的取值范圍:0°≤α<180°. 當(dāng)直線l與x軸垂直時(shí), α= 90°.
2.直線的斜率:一條直線的傾斜角α(α≠90°)的正切值叫做這條直線的斜率,斜率常用小寫字母k表示,也就是k = tanα
。1)當(dāng)直線l與x軸平行或重合時(shí),α=0°,k = tan0°=0;
。2)當(dāng)直線l與x軸垂直時(shí),α= 90°,k 不存在。
由此可知,一條直線l的傾斜角α一定存在,但是斜率k不一定存在。
3.過兩點(diǎn)p1(x1,y1),p2(x2,y2)(x1≠x2)的直線的斜率公式:
。ㄈ魓1=x2,則直線p1p2的斜率不存在,此時(shí)直線的傾斜角為90°)。
4.兩條直線的平行與垂直的判定
。1)若l1,l2均存在斜率且不重合:
、伲虎
注: 上面的等價(jià)是在兩條直線不重合且斜率存在的前提下才成立的,缺少這個(gè)前提,結(jié)論并不成立。
。2)
若A1、A2、B1、B2都不為零。
注意:若A2或B2中含有字母,應(yīng)注意討論字母=0與0的情況。
兩條直線的交點(diǎn):兩條直線的交點(diǎn)的個(gè)數(shù)取決于這兩條直線的方程組成的方程組的解的個(gè)數(shù)。
5.直線方程的五種形式
確定直線方程需要有兩個(gè)互相獨(dú)立的條件,確定直線方程的形式很多,但必須注意各種形式的直線方程的適用范圍。
直線的點(diǎn)斜式與斜截式不能表示斜率不存在(垂直于x 軸)的直線;兩點(diǎn)式不能表示平行或重合兩坐標(biāo)軸的直線;截距式不能表示平行或重合兩坐標(biāo)軸的直線及過原點(diǎn)的直線。
6.直線的交點(diǎn)坐標(biāo)與距離公式
。1)兩直線的交點(diǎn)坐標(biāo)
一般地,將兩條直線的方程聯(lián)立,得方程組
若方程組有唯一解,則兩條直線相交,解即為交點(diǎn)的坐標(biāo);若方程組無解,則兩條直線無公共點(diǎn),此時(shí)兩條直線平行。
。2)兩點(diǎn)間距離
兩點(diǎn)P1(x1,y1),P2(x2,y2)間的距離公式
特別地:軸,則、軸,則
。3)點(diǎn)到直線的距離公式
點(diǎn)到直線的距離為:
(4)兩平行線間的距離公式:
若,則:
注意點(diǎn):x,y對(duì)應(yīng)項(xiàng)系數(shù)應(yīng)相等。
高中數(shù)學(xué)知識(shí)點(diǎn)總結(jié) 12
一、圓及圓的相關(guān)量的定義
1.平面上到定點(diǎn)的距離等于定長的所有點(diǎn)組成的圖形叫做圓。定點(diǎn)稱為圓心,定長稱為半徑。
2.圓上任意兩點(diǎn)間的部分叫做圓弧,簡稱弧。大于半圓的弧稱為優(yōu)弧,小于半圓的弧稱為劣弧。連接圓上任意兩點(diǎn)的線段叫做弦。經(jīng)過圓心的弦叫
做直徑。
3.頂點(diǎn)在圓心上的角叫做圓心角。頂點(diǎn)在圓周上,且它的兩邊分別與圓有另一個(gè)交點(diǎn)的角叫做圓周角。
4.過三角形的三個(gè)頂點(diǎn)的圓叫做三角形的外接圓,其圓心叫做三角形的外心。和三角形三邊都相切的圓叫做這個(gè)三角形的內(nèi)切圓,其圓心稱為內(nèi)心。
5.直線與圓有3種位置關(guān)系:無公共點(diǎn)為相離;有2個(gè)公共點(diǎn)為相交;圓與直線有唯一公共點(diǎn)為相切,這條直線叫做圓的切線,這個(gè)唯一的公共點(diǎn)叫做切點(diǎn)。
6.兩圓之間有5種位置關(guān)系:無公共點(diǎn)的,一圓在另一圓之外叫外離,在之內(nèi)叫內(nèi)含;有唯一公共點(diǎn)的,一圓在另一圓之外叫外切,在之內(nèi)叫內(nèi)切;有2個(gè)公共點(diǎn)的叫相交。兩圓圓心之間的距離叫做圓心距。
7.在圓上,由2條半徑和一段弧圍成的圖形叫做扇形。圓錐側(cè)面展開圖是一個(gè)扇形。這個(gè)扇形的半徑成為圓錐的母線。
二、有關(guān)圓的字母表示方法
圓--⊙ 半徑—r 弧--⌒ 直徑—d
扇形弧長/圓錐母線—l 周長—C 面積—S三、有關(guān)圓的基本性質(zhì)與定理(27個(gè))
1.點(diǎn)P與圓O的位置關(guān)系(設(shè)P是一點(diǎn),則PO是點(diǎn)到圓心的距離):
P在⊙O外,PO>r;P在⊙O上,PO=r;P在⊙O內(nèi),PO
2.圓是軸對(duì)稱圖形,其對(duì)稱軸是任意一條過圓心的直線。圓也是中心對(duì)稱圖形,其對(duì)稱中心是圓心。
3.垂徑定理:垂直于弦的直徑平分這條弦,并且平分弦所對(duì)的弧。逆定
理:平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對(duì)的弧。
4.在同圓或等圓中,如果2個(gè)圓心角,2個(gè)圓周角,2條弧,2條弦中有一組量相等,那么他們所對(duì)應(yīng)的其余各組量都分別相等。
5.一條弧所對(duì)的圓周角等于它所對(duì)的圓心角的一半。
6.直徑所對(duì)的圓周角是直角。90度的圓周角所對(duì)的弦是直徑。
7.不在同一直線上的3個(gè)點(diǎn)確定一個(gè)圓。
8.一個(gè)三角形有唯一確定的外接圓和內(nèi)切圓。外接圓圓心是三角形各邊垂直平分線的交點(diǎn),到三角形3個(gè)頂點(diǎn)距離相等;內(nèi)切圓的圓心是三角形各內(nèi)角平分線的交點(diǎn),到三角形3邊距離相等。
9.直線AB與圓O的位置關(guān)系(設(shè)OP⊥AB于P,則PO是AB到圓心的距
離):
AB與⊙O相離,PO>r;AB與⊙O相切,PO=r;AB與⊙O相交,PO
10.圓的切線垂直于過切點(diǎn)的直徑;經(jīng)過直徑的一端,并且垂直于這條直徑的直線,是這個(gè)圓的切線。
11.圓與圓的位置關(guān)系(設(shè)兩圓的半徑分別為R和r,且R≥r,圓心距為P):
外離P>R+r;外切P=R+r;相交R-r
三、有關(guān)圓的計(jì)算公式
1.圓的周長C=2πr=πd
2.圓的面積S=s=πr?
3.扇形弧長l=nπr/180
4.扇形面積S=nπr? /360=rl/2
5.圓錐側(cè)面積S=πrl
四、圓的方程
1.圓的標(biāo)準(zhǔn)方程
在平面直角坐標(biāo)系中,以點(diǎn)O(a,b)為圓心,以r為半徑的圓的標(biāo)準(zhǔn)方程是
。▁-a)^2+(y-b)^2=r^2
2.圓的一般方程
把圓的標(biāo)準(zhǔn)方程展開,移項(xiàng),合并同類項(xiàng)后,可得圓的一般方程是
x^2+y^2+Dx+Ey+F=0
和標(biāo)準(zhǔn)方程對(duì)比,其實(shí)D=-2a,E=-2b,F=a^2+b^2
相關(guān)知識(shí):圓的離心率e=0.在圓上任意一點(diǎn)的曲率半徑都是r.
五、圓與直線的位置關(guān)系判斷
平面內(nèi),直線Ax+By+C=O與圓x^2+y^2+Dx+Ey+F=0的位置關(guān)系判斷一般方法是
討論如下2種情況:
。1)由Ax+By+C=O可得y=(-C-Ax)/B,[其中B不等于0],
代入x^2+y^2+Dx+Ey+F=0,即成為一個(gè)關(guān)于x的一元二次方程f(x)=0.
利用判別式b^2-4ac的符號(hào)可確定圓與直線的位置關(guān)系如下:
如果b^2-4ac>0,則圓與直線有2交點(diǎn),即圓與直線相交
如果b^2-4ac=0,則圓與直線有1交點(diǎn),即圓與直線相切
如果b^2-4ac<0,則圓與直線有0交點(diǎn),即圓與直線相離
。2)如果B=0即直線為Ax+C=0,即x=-C/A.它平行于y軸(或垂直于x軸)
將x^2+y^2+Dx+Ey+F=0化為(x-a)^2+(y-b)^2=r^2
令y=b,求出此時(shí)的兩個(gè)x值x1,x2,并且我們規(guī)定x1
當(dāng)x=-C/Ax2時(shí),直線與圓相離
當(dāng)x1
當(dāng)x=-C/A=x1或x=-C/A=x2時(shí),直線與圓相切
圓的定理:
1.不在同一直線上的三點(diǎn)確定一個(gè)圓。
2.垂徑定理 垂直于弦的直徑平分這條弦并且平分弦所對(duì)的兩條弧
推論1.①平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對(duì)的兩條弧
②弦的垂直平分線經(jīng)過圓心,并且平分弦所對(duì)的兩條弧
③平分弦所對(duì)的一條弧的直徑,垂直平分弦,并且平分弦所對(duì)的另一條弧
推論2.圓的兩條平行弦所夾的弧相等
3.圓是以圓心為對(duì)稱中心的中心對(duì)稱圖形
4.圓是定點(diǎn)的距離等于定長的點(diǎn)的集合
5.圓的內(nèi)部可以看作是圓心的距離小于半徑的點(diǎn)的集合
6.圓的外部可以看作是圓心的距離大于半徑的.點(diǎn)的集合
7.同圓或等圓的半徑相等
8.到定點(diǎn)的距離等于定長的點(diǎn)的軌跡,是以定點(diǎn)為圓心,定長為半徑的圓
9.定理 在同圓或等圓中,相等的圓心角所對(duì)的弧相等,所對(duì)的弦 相等,所對(duì)的弦的弦心距相等
10.推論 在同圓或等圓中,如果兩個(gè)圓心角、兩條弧、兩條弦或兩 弦的弦心距中有一組量相等那么它們所對(duì)應(yīng)的其余各組量都相等
11.定理 圓的內(nèi)接四邊形的對(duì)角互補(bǔ),并且任何一個(gè)外角都等于它 的內(nèi)對(duì)角
12.①直線L和⊙O相交 d
②直線L和⊙O相切 d=r
、壑本L和⊙O相離 d>r
13.切線的判定定理 經(jīng)過半徑的外端并且垂直于這條半徑的直線是圓的切線
14.切線的性質(zhì)定理 圓的切線垂直于經(jīng)過切點(diǎn)的半徑
15.推論1 經(jīng)過圓心且垂直于切線的直線必經(jīng)過切點(diǎn)
16.推論2 經(jīng)過切點(diǎn)且垂直于切線的直線必經(jīng)過圓心
17.切線長定理 從圓外一點(diǎn)引圓的兩條切線,它們的切線長相等, 圓心和這一點(diǎn)的連線平分兩條切線的夾角
18.圓的外切四邊形的兩組對(duì)邊的和相等 外角等于內(nèi)對(duì)角
19.如果兩個(gè)圓相切,那么切點(diǎn)一定在連心線上
20.①兩圓外離 d>R+r ②兩圓外切 d=R+r
、蹆蓤A相交 R-rr)
、軆蓤A內(nèi)切 d=R-r(R>r) ⑤兩圓內(nèi)含dr)
21.定理 相交兩圓的連心線垂直平分兩圓的公共弦
22.定理 把圓分成n(n≥3):
。1)依次連結(jié)各分點(diǎn)所得的多邊形是這個(gè)圓的內(nèi)接正n邊形
(2)經(jīng)過各分點(diǎn)作圓的切線,以相鄰切線的交點(diǎn)為頂點(diǎn)的多邊形是這個(gè)圓的外切正n邊形
23.定理 任何正多邊形都有一個(gè)外接圓和一個(gè)內(nèi)切圓,這兩個(gè)圓是同心圓
24.正n邊形的每個(gè)內(nèi)角都等于(n-2)×180°/n
25.定理 正n邊形的半徑和邊心距把正n邊形分成2n個(gè)全等的直角三角形
26.正n邊形的面積Sn=pnrn/2 p表示正n邊形的周長
27.正三角形面積√3a/4 a表示邊長
28.如果在一個(gè)頂點(diǎn)周圍有k個(gè)正n邊形的角,由于這些角的和應(yīng)為 360°,因此k×(n-2)180°/n=360°化為(n-2)(k-2)=4
29.弧長計(jì)算公式:L=n兀R/180
30.扇形面積公式:S扇形=n兀R^2/360=LR/2
31.內(nèi)公切線長= d-(R-r) 外公切線長= d-(R+r)
32.定理 一條弧所對(duì)的圓周角等于它所對(duì)的圓心角的一半
33.推論1 同弧或等弧所對(duì)的圓周角相等;同圓或等圓中,相等的圓周角所對(duì)的弧也相等
34.推論2 半圓(或直徑)所對(duì)的圓周角是直角;90°的圓周角所 對(duì)的弦是直徑
35.弧長公式 l=a*r a是圓心角的弧度數(shù)r >0 扇形面積公式 s=1/2*l*r
高中數(shù)學(xué)知識(shí)點(diǎn)總結(jié) 13
4.1.1圓的標(biāo)準(zhǔn)方程
1、圓的標(biāo)準(zhǔn)方程:(xa)(yb)r
圓心為A(a,b),半徑為r的圓的方程
2、點(diǎn)M(x0,y0)與圓(xa)(yb)r的關(guān)系的判斷方法:
。1)(x0a)(y0b)>r,點(diǎn)在圓外(2)(x0a)(y0b)=r,點(diǎn)在圓上(3)(x0a)(y0b)中國權(quán)威高考信息資源門戶
(4)當(dāng)l|r1r2|時(shí),圓C1與圓C2內(nèi)切;(5)當(dāng)l|r1r2|時(shí),圓C1與圓C2內(nèi)含;
4.2.3直線與圓的方程的應(yīng)用
1、利用平面直角坐標(biāo)系解決直線與圓的位置關(guān)系;2、過程與方法
用坐標(biāo)法解決幾何問題的步驟:
第一步:建立適當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系,用坐標(biāo)和方程表示問題中的幾何元素,將平面幾何問題轉(zhuǎn)化為代數(shù)問題;第二步:通過代數(shù)運(yùn)算,解決代數(shù)問題;第三步:將代數(shù)運(yùn)算結(jié)果“翻譯”成幾何結(jié)論.
RMOPM"4.3.1空間直角坐標(biāo)系
1、點(diǎn)M對(duì)應(yīng)著唯一確定的`有序?qū)崝?shù)組(x,y,z),x、y、z分別是P、Q、R在x、y、z軸上的坐標(biāo)
2、有序?qū)崝?shù)組(x,y,z),對(duì)應(yīng)著空間直角坐標(biāo)系中的一點(diǎn)
xQy3、空間中任意點(diǎn)M的坐標(biāo)都可以用有序?qū)崝?shù)組(x,y,z)來表示,該數(shù)組叫做點(diǎn)M在此空間直角坐標(biāo)系中的坐標(biāo),記M(x,y,z),x叫做點(diǎn)M的橫坐標(biāo),y叫做點(diǎn)M的縱坐標(biāo),z叫做點(diǎn)M的豎坐標(biāo)。z4.3.2空間兩點(diǎn)間的距離公式1、空間中任意一點(diǎn)P1(x1,y1,z1)到點(diǎn)P2(x2,y2,z2)之間的距離公式222OM1N1xMM2HN2NyP2P1P1P2(x1x2)(y1y2)(z1z2)
高中數(shù)學(xué)知識(shí)點(diǎn)總結(jié) 14
★高中數(shù)學(xué)導(dǎo)數(shù)知識(shí)點(diǎn)
一、早期導(dǎo)數(shù)概念————特殊的形式大約在1629年法國數(shù)學(xué)家費(fèi)馬研究了作曲線的切線和求函數(shù)極值的方法1637年左右他寫一篇手稿《求最大值與最小值的方法》。在作切線時(shí)他構(gòu)造了差分f(A+E)—f(A),發(fā)現(xiàn)的因子E就是我們所說的導(dǎo)數(shù)f(A)。
二、17世紀(jì)————廣泛使用的“流數(shù)術(shù)”17世紀(jì)生產(chǎn)力的發(fā)展推動(dòng)了自然科學(xué)和技術(shù)的發(fā)展在前人創(chuàng)造性研究的基礎(chǔ)上大數(shù)學(xué)家牛頓、萊布尼茨等從不同的角度開始系統(tǒng)地研究微積分。牛頓的微積分理論被稱為“流數(shù)術(shù)”他稱變量為流量稱變量的變化率為流數(shù)相當(dāng)于我們所說的導(dǎo)數(shù)。牛頓的有關(guān)“流數(shù)術(shù)”的主要著作是《求曲邊形面積》、《運(yùn)用無窮多項(xiàng)方程的計(jì)算法》和《流數(shù)術(shù)和無窮級(jí)數(shù)》流數(shù)理論的實(shí)質(zhì)概括為他的重點(diǎn)在于一個(gè)變量的函數(shù)而不在于多變量的方程在于自變量的變化與函數(shù)的變化的比的構(gòu)成最在于決定這個(gè)比當(dāng)變化趨于零時(shí)的極限。
三、19世紀(jì)導(dǎo)數(shù)————逐漸成熟的理論1750年達(dá)朗貝爾在為法國科學(xué)家院出版的《百科全書》第五版寫的“微分”條目中提出了關(guān)于導(dǎo)數(shù)的一種觀點(diǎn)可以用現(xiàn)代符號(hào)簡單表示{dy/dx)=lim(oy/ox)。1823年柯西在他的《無窮小分析概論》中定義導(dǎo)數(shù)如果函數(shù)y=f(x)在變量x的兩個(gè)給定的界限之間保持連續(xù)并且我們?yōu)檫@樣的變量指定一個(gè)包含在這兩個(gè)不同界限之間的值那么是使變量得到一個(gè)無窮小增量。19世紀(jì)60年代以后魏爾斯特拉斯創(chuàng)造了ε—δ語言對(duì)微積分中出現(xiàn)的各種類型的極限重加表達(dá)導(dǎo)數(shù)的定義也就獲得了今天常見的形式。
四、實(shí)無限將異軍突起微積分第二輪初等化或成為可能微積分學(xué)理論基礎(chǔ)大體可以分為兩個(gè)部分。一個(gè)是實(shí)無限理論即無限是一個(gè)具體的東西一種真實(shí)的存在另一種是潛無限指一種意識(shí)形態(tài)上的過程比如無限接近。就歷史來看兩種理論都有一定的道理。其中實(shí)無限用了150年后來極限論就是現(xiàn)在所使用的。光是電磁波還是粒子是一個(gè)物理學(xué)長期爭論的問題后來由波粒二象性來統(tǒng)一。微積分無論是用現(xiàn)代極限論還是150年前的理論都不是最好的手段。
★高中數(shù)學(xué)導(dǎo)數(shù)要點(diǎn)
1、求函數(shù)的單調(diào)性:
利用導(dǎo)數(shù)求函數(shù)單調(diào)性的基本方法:設(shè)函數(shù)yf(x)在區(qū)間(a,b)內(nèi)可導(dǎo),(1)如果恒f(x)0,則函數(shù)yf(x)在區(qū)間(a,b)上為增函數(shù);(2)如果恒f(x)0,則函數(shù)yf(x)在區(qū)間(a,b)上為減函數(shù);(3)如果恒f(x)0,則函數(shù)yf(x)在區(qū)間(a,b)上為常數(shù)函數(shù)。
利用導(dǎo)數(shù)求函數(shù)單調(diào)性的基本步驟:①求函數(shù)yf(x)的定義域;②求導(dǎo)數(shù)f(x);③解不等式f(x)0,解集在定義域內(nèi)的`不間斷區(qū)間為增區(qū)間;④解不等式f(x)0,解集在定義域內(nèi)的不間斷區(qū)間為減區(qū)間。
反過來,也可以利用導(dǎo)數(shù)由函數(shù)的單調(diào)性解決相關(guān)問題(如確定參數(shù)的取值范圍):設(shè)函數(shù)yf(x)在區(qū)間(a,b)內(nèi)可導(dǎo),
。1)如果函數(shù)yf(x)在區(qū)間(a,b)上為增函數(shù),則f(x)0(其中使f(x)0的x值不構(gòu)成區(qū)間);
。2)如果函數(shù)yf(x)在區(qū)間(a,b)上為減函數(shù),則f(x)0(其中使f(x)0的x值不構(gòu)成區(qū)間);
(3)如果函數(shù)yf(x)在區(qū)間(a,b)上為常數(shù)函數(shù),則f(x)0恒成立。
2、求函數(shù)的極值:
設(shè)函數(shù)yf(x)在x0及其附近有定義,如果對(duì)x0附近的所有的點(diǎn)都有f(x)f(x0)(或f(x)f(x0)),則稱f(x0)是函數(shù)f(x)的極小值(或極大值)。
可導(dǎo)函數(shù)的極值,可通過研究函數(shù)的單調(diào)性求得,基本步驟是:
(1)確定函數(shù)f(x)的定義域;(2)求導(dǎo)數(shù)f(x);(3)求方程f(x)0的全部實(shí)根,x1x2xn,順次將定義域分成若干個(gè)小區(qū)間,并列表:x變化時(shí),f(x)和f(x)值的
變化情況:
。4)檢查f(x)的符號(hào)并由表格判斷極值。
3、求函數(shù)的最大值與最小值:
如果函數(shù)f(x)在定義域I內(nèi)存在x0,使得對(duì)任意的xI,總有f(x)f(x0),則稱f(x0)為函數(shù)在定義域上的最大值。函數(shù)在定義域內(nèi)的極值不一定唯一,但在定義域內(nèi)的最值是唯一的。
求函數(shù)f(x)在區(qū)間[a,b]上的最大值和最小值的步驟:(1)求f(x)在區(qū)間(a,b)上的極值;
(2)將第一步中求得的極值與f(a),f(b)比較,得到f(x)在區(qū)間[a,b]上的最大值與最小值。
4、解決不等式的有關(guān)問題:
。1)不等式恒成立問題(絕對(duì)不等式問題)可考慮值域。
f(x)(xA)的值域是[a,b]時(shí),
不等式f(x)0恒成立的充要條件是f(x)max0,即b0;
不等式f(x)0恒成立的充要條件是f(x)min0,即a0。
f(x)(xA)的值域是(a,b)時(shí),
不等式f(x)0恒成立的充要條件是b0;不等式f(x)0恒成立的充要條件是a0。
。2)證明不等式f(x)0可轉(zhuǎn)化為證明f(x)max0,或利用函數(shù)f(x)的單調(diào)性,轉(zhuǎn)化為證明f(x)f(x0)0。
5、導(dǎo)數(shù)在實(shí)際生活中的應(yīng)用:
實(shí)際生活求解最大(小)值問題,通常都可轉(zhuǎn)化為函數(shù)的最值。在利用導(dǎo)數(shù)來求函數(shù)最值時(shí),一定要注意,極值點(diǎn)唯一的單峰函數(shù),極值點(diǎn)就是最值點(diǎn),在解題時(shí)要加以說明。
高中數(shù)學(xué)知識(shí)點(diǎn)總結(jié) 15
4.1.1圓的標(biāo)準(zhǔn)方程
1、圓的標(biāo)準(zhǔn)方程:(xa)2(yb)2r2
圓心為A(a,b),半徑為r的圓的方程
2、點(diǎn)M(x0,y0)與圓(xa)(1)(x0(3)(x02(yb)2r2的關(guān)系的判斷方法:
a)2(y0b)2>r2,點(diǎn)在圓外(2)(x0a)2(y0b)2=r2,點(diǎn)在圓上a)2(y0b)2歸海木心QQ:634102564
(4)當(dāng)l|r1r2|時(shí),圓C1與圓C2內(nèi)切;(5)當(dāng)l|r1r2|時(shí),圓C1與圓C2內(nèi)含;
4.2.3直線與圓的方程的'應(yīng)用
1、利用平面直角坐標(biāo)系解決直線與圓的位置關(guān)系;2、過程與方法
用坐標(biāo)法解決幾何問題的步驟:
第一步:建立適當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系,用坐標(biāo)和方程表示問題中的幾何元素,將平面幾何問題轉(zhuǎn)化為代數(shù)問題;第二步:通過代數(shù)運(yùn)算,解決代數(shù)問題;第三步:將代數(shù)運(yùn)算結(jié)果“翻譯”成幾何結(jié)論.
RM4.3.1空間直角坐標(biāo)系
1、點(diǎn)M對(duì)應(yīng)著唯一確定的有序?qū)崝?shù)組(x,y,z),x、上的坐標(biāo)
2、有序?qū)崝?shù)組(x,y,z),對(duì)應(yīng)著空間直角坐標(biāo)系中的一點(diǎn)
y、z分別是P、Q、R在x、y、z軸
xOPQM"y3、空間中任意點(diǎn)M的坐標(biāo)都可以用有序?qū)崝?shù)組(x,y,z)來表示,該數(shù)組叫做點(diǎn)M在此空間直角坐標(biāo)系中的坐標(biāo),記M(x,y,z),x叫做點(diǎn)M的橫坐標(biāo),坐標(biāo)。y叫做點(diǎn)M的縱坐標(biāo),z叫做點(diǎn)M的豎
z4.3.2空間兩點(diǎn)間的距離公式1、空間中任意一點(diǎn)P1(x1,y1,z1)到點(diǎn)P2(x2,y2,z2)之間的距離公式P1P2P1P2(x1x2)(y1y2)(z1z2)222N1xOM1MM2HN2yN
【高中數(shù)學(xué)知識(shí)點(diǎn)總結(jié) 】相關(guān)文章:
高中數(shù)學(xué)統(tǒng)計(jì)知識(shí)點(diǎn)總結(jié)10-21
高中數(shù)學(xué)知識(shí)點(diǎn)的總結(jié)03-07
高中數(shù)學(xué)復(fù)數(shù)知識(shí)點(diǎn)總結(jié)05-10
高中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)05-15
高中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)[精選]06-09
高中數(shù)學(xué)基本的知識(shí)點(diǎn)總結(jié)05-17
高中數(shù)學(xué)導(dǎo)數(shù)知識(shí)點(diǎn)總結(jié)04-10
高中數(shù)學(xué)重點(diǎn)知識(shí)點(diǎn)總結(jié)11-18