當前位置:育文網(wǎng)>高中>高中數(shù)學(xué)> 高中數(shù)學(xué)知識點總結(jié)

高中數(shù)學(xué)知識點總結(jié)

時間:2022-11-14 13:12:34 高中數(shù)學(xué) 我要投稿

高中數(shù)學(xué)知識點總結(jié)(15篇)

  總結(jié)是指對某一階段的工作、學(xué)習(xí)或思想中的經(jīng)驗或情況進行分析研究,做出帶有規(guī)律性結(jié)論的書面材料,它可以使我們更有效率,為此要我們寫一份總結(jié)。那么總結(jié)應(yīng)該包括什么內(nèi)容呢?下面是小編收集整理的高中數(shù)學(xué)知識點總結(jié),希望對大家有所幫助。

高中數(shù)學(xué)知識點總結(jié)(15篇)

高中數(shù)學(xué)知識點總結(jié)1

  1.定義法:

  判斷B是A的條件,實際上就是判斷B=>A或者A=>B是否成立,只要把題目中所給的條件按邏輯關(guān)系畫出箭頭示意圖,再利用定義判斷即可.

  2.轉(zhuǎn)換法:

  當所給命題的充要條件不易判斷時,可對命題進行等價裝換,例如改用其逆否命題進行判斷.

  3.集合法

  在命題的條件和結(jié)論間的.關(guān)系判斷有困難時,可從集合的角度考慮,記條件p、q對應(yīng)的集合分別為A、B,則:

  若A∩B,則p是q的充分條件.

  若A∪B,則p是q的必要條件.

  若A=B,則p是q的充要條件.

  若A∈B,且B∈A,則p是q的既不充分也不必要條件.

高中數(shù)學(xué)知識點總結(jié)2

  一、求導(dǎo)數(shù)的方法

 。1)基本求導(dǎo)公式

  (2)導(dǎo)數(shù)的四則運算

 。3)復(fù)合函數(shù)的導(dǎo)數(shù)

  設(shè)在點x處可導(dǎo),y=在點處可導(dǎo),則復(fù)合函數(shù)在點x處可導(dǎo),且即

  二、關(guān)于極限

  1、數(shù)列的極限:

  粗略地說,就是當數(shù)列的項n無限增大時,數(shù)列的項無限趨向于A,這就是數(shù)列極限的描述性定義。記作:=A。如:

  2、函數(shù)的極限:

  當自變量x無限趨近于常數(shù)時,如果函數(shù)無限趨近于一個常數(shù),就說當x趨近于時,函數(shù)的極限是,記作

  三、導(dǎo)數(shù)的概念

  1、在處的'導(dǎo)數(shù)。

  2、在的導(dǎo)數(shù)。

  3。函數(shù)在點處的導(dǎo)數(shù)的幾何意義:

  函數(shù)在點處的導(dǎo)數(shù)是曲線在處的切線的斜率,

  即k=,相應(yīng)的切線方程是

  注:函數(shù)的導(dǎo)函數(shù)在時的函數(shù)值,就是在處的導(dǎo)數(shù)。

  例、若=2,則=()A—1B—2C1D

  四、導(dǎo)數(shù)的綜合運用

 。ㄒ唬┣的切線

  函數(shù)y=f(x)在點處的導(dǎo)數(shù),就是曲線y=(x)在點處的切線的斜率。由此,可以利用導(dǎo)數(shù)求曲線的切線方程。具體求法分兩步:

  (1)求出函數(shù)y=f(x)在點處的導(dǎo)數(shù),即曲線y=f(x)在點處的切線的斜率k=

 。2)在已知切點坐標和切線斜率的條件下,求得切線方程為x。

高中數(shù)學(xué)知識點總結(jié)3

 。1)不等關(guān)系

  感受在現(xiàn)實世界和日常生活中存在著大量的不等關(guān)系,了解不等式(組)的實際背景。

 。2)一元二次不等式

 、俳(jīng)歷從實際情境中抽象出一元二次不等式模型的過程。

 、谕ㄟ^函數(shù)圖象了解一元二次不等式與相應(yīng)函數(shù)、方程的聯(lián)系。

  ③會解一元二次不等式,對給定的`一元二次不等式,嘗試設(shè)計求解的程序框圖。

  (3)二元一次不等式組與簡單線性規(guī)劃問題

 、購膶嶋H情境中抽象出二元一次不等式組。

 、诹私舛淮尾坏仁降膸缀我饬x,能用平面區(qū)域表示二元一次不等式組(參見例2)。

 、蹚膶嶋H情境中抽象出一些簡單的二元線性規(guī)劃問題,并能加以解決(參見例3)。

 。4)基本不等式

 、偬剿鞑⒘私饣静坏仁降淖C明過程。

 、跁没静坏仁浇鉀Q簡單的(。┲祮栴}。

高中數(shù)學(xué)知識點總結(jié)4

  等比數(shù)列公式性質(zhì)知識點

  1.等比數(shù)列的有關(guān)概念

  (1)定義:

  如果一個數(shù)列從第2項起,每一項與它的前一項的比等于同一個常數(shù)(不為零),那么這個數(shù)列就叫做等比數(shù)列.這個常數(shù)叫做等比數(shù)列的公比,通常用字母q表示,定義的表達式為an+1/an=q(n∈N_,q為非零常數(shù)).

  (2)等比中項:

  如果a、G、b成等比數(shù)列,那么G叫做a與b的等比中項.即:G是a與b的等比中項a,G,b成等比數(shù)列G2=ab.

  2.等比數(shù)列的有關(guān)公式

  (1)通項公式:an=a1qn-1.

  3.等比數(shù)列{an}的常用性質(zhì)

  (1)在等比數(shù)列{an}中,若m+n=p+q=2r(m,n,p,q,r∈N_),則am·an=ap·aq=a.

  特別地,a1an=a2an-1=a3an-2=….

  (2)在公比為q的等比數(shù)列{an}中,數(shù)列am,am+k,am+2k,am+3k,…仍是等比數(shù)列,公比為qk;數(shù)列Sm,S2m-Sm,S3m-S2m,…仍是等比數(shù)列(此時q≠-1);an=amqn-m.

  4.等比數(shù)列的特征

  (1)從等比數(shù)列的定義看,等比數(shù)列的任意項都是非零的',公比q也是非零常數(shù).

  (2)由an+1=qan,q≠0并不能立即斷言{an}為等比數(shù)列,還要驗證a1≠0.

  5.等比數(shù)列的前n項和Sn

  (1)等比數(shù)列的前n項和Sn是用錯位相減法求得的,注意這種思想方法在數(shù)列求和中的運用.

  (2)在運用等比數(shù)列的前n項和公式時,必須注意對q=1與q≠1分類討論,防止因忽略q=1這一特殊情形導(dǎo)致解題失誤.

  等比數(shù)列知識點

  1.等比中項

  如果在a與b中間插入一個數(shù)G,使a,G,b成等比數(shù)列,那么G叫做a與b的等比中項。

  有關(guān)系:

  注:兩個非零同號的`實數(shù)的等比中項有兩個,它們互為相反數(shù),所以G2=ab是a,G,b三數(shù)成等比數(shù)列的必要不充分條件。

  2.等比數(shù)列通項公式

  an=a1_q’(n-1)(其中首項是a1,公比是q)

  an=Sn-S(n-1)(n≥2)

  前n項和

  當q≠1時,等比數(shù)列的前n項和的公式為

  Sn=a1(1-q’n)/(1-q)=(a1-a1_q’n)/(1-q)(q≠1)

  當q=1時,等比數(shù)列的前n項和的公式為

  Sn=na1

  3.等比數(shù)列前n項和與通項的關(guān)系

  an=a1=s1(n=1)

  an=sn-s(n-1)(n≥2)

  4.等比數(shù)列性質(zhì)

  (1)若m、n、p、q∈N_,且m+n=p+q,則am·an=ap·aq;

  (2)在等比數(shù)列中,依次每k項之和仍成等比數(shù)列。

  (3)從等比數(shù)列的定義、通項公式、前n項和公式可以推出:a1·an=a2·an-1=a3·an-2=…=ak·an-k+1,k∈{1,2,…,n}

  (4)等比中項:q、r、p成等比數(shù)列,則aq·ap=ar2,ar則為ap,aq等比中項。

  記πn=a1·a2…an,則有π2n-1=(an)2n-1,π2n+1=(an+1)2n+1

  另外,一個各項均為正數(shù)的等比數(shù)列各項取同底指數(shù)冪后構(gòu)成一個等差數(shù)列;反之,以任一個正數(shù)C為底,用一個等差數(shù)列的各項做指數(shù)構(gòu)造冪Can,則是等比數(shù)列。在這個意義下,我們說:一個正項等比數(shù)列與等差數(shù)列是“同構(gòu)”的。

  (5)等比數(shù)列前n項之和Sn=a1(1-q’n)/(1-q)

  (6)任意兩項am,an的關(guān)系為an=am·q’(n-m)

  (7)在等比數(shù)列中,首項a1與公比q都不為零。

  注意:上述公式中a’n表示a的n次方。

  等比數(shù)列知識點總結(jié)

  等比數(shù)列:如果一個數(shù)列從第2項起,每一項與它的前一項的比等于同一個常數(shù),這個數(shù)列就叫做等比數(shù)列。這個常數(shù)叫做等比數(shù)列的公比,公比通常用字母q表示(q≠0)。

  1:等比數(shù)列通項公式:an=a1_q^(n-1);推廣式:an=am·q^(n-m);

  2:等比數(shù)列求和公式:等比求和:Sn=a1+a2+a3+.......+an

 、佼攓≠1時,Sn=a1(1-q^n)/(1-q)或Sn=(a1-an×q)÷(1-q)

 、诋攓=1時,Sn=n×a1(q=1)記πn=a1·a2…an,則有π2n-1=(an)2n-1,π2n+1=(an+1)2n+1

  3:等比中項:aq·ap=ar^2,ar則為ap,aq等比中項。

  4:性質(zhì):

 、偃鬽、n、p、q∈N,且m+n=p+q,則am·an=ap_aq;

 、谠诘缺葦(shù)列中,依次每k項之和仍成等比數(shù)列.

  例題:設(shè)ak,al,am,an是等比數(shù)列中的第k、l、m、n項,若k+l=m+n,求證:ak_al=am_an

  證明:設(shè)等比數(shù)列的首項為a1,公比為q,則ak=a1·q^(k-1),al=a1·q^(l-1),am=a1·q^(m-1),an=a1·q^(n-1)

  所以:ak_al=a^2_q^(k+l-2),am_an=a^2_q(m+n-2),故:ak_al=am_an

  說明:這個例題是等比數(shù)列的一個重要性質(zhì),它在解題中常常會用到。它說明等比數(shù)列中距離兩端(首末兩項)距離等遠的兩項的乘積等于首末兩項的乘積,即:a(1+k)·a(n-k)=a1·an

  對于等差數(shù)列,同樣有:在等差數(shù)列中,距離兩端等這的兩項之和等于首末兩項之和。即:a(1+k)+a(n-k)=a1+an

高中數(shù)學(xué)知識點總結(jié)5

  (一)導(dǎo)數(shù)第一定義

  設(shè)函數(shù) y = f(x) 在點 x0 的某個領(lǐng)域內(nèi)有定義,當自變量 x 在 x0 處有增量 △x ( x0 + △x 也在該鄰域內(nèi) ) 時,相應(yīng)地函數(shù)取得增量 △y = f(x0 + △x) - f(x0) ;如果 △y 與 △x 之比當 △x→0 時極限存在,則稱函數(shù) y = f(x) 在點 x0 處可導(dǎo),并稱這個極限值為函數(shù) y = f(x) 在點 x0 處的導(dǎo)數(shù)記為 f'(x0) ,即導(dǎo)數(shù)第一定義

  (二)導(dǎo)數(shù)第二定義

  設(shè)函數(shù) y = f(x) 在點 x0 的某個領(lǐng)域內(nèi)有定義,當自變量 x 在 x0 處有變化 △x ( x - x0 也在該鄰域內(nèi) ) 時,相應(yīng)地函數(shù)變化 △y = f(x) - f(x0) ;如果 △y 與 △x 之比當 △x→0 時極限存在,則稱函數(shù) y = f(x) 在點 x0 處可導(dǎo),并稱這個極限值為函數(shù) y = f(x) 在點 x0 處的導(dǎo)數(shù)記為 f'(x0) ,即 導(dǎo)數(shù)第二定義

  (三)導(dǎo)函數(shù)與導(dǎo)數(shù)

  如果函數(shù) y = f(x) 在開區(qū)間 I 內(nèi)每一點都可導(dǎo),就稱函數(shù)f(x)在區(qū)間 I 內(nèi)可導(dǎo)。這時函數(shù) y = f(x) 對于區(qū)間 I 內(nèi)的每一個確定的 x 值,都對應(yīng)著一個確定的導(dǎo)數(shù),這就構(gòu)成一個新的函數(shù),稱這個函數(shù)為原來函數(shù) y = f(x) 的導(dǎo)函數(shù),記作 y', f'(x), dy/dx, df(x)/dx。導(dǎo)函數(shù)簡稱導(dǎo)數(shù)。

  (四)單調(diào)性及其應(yīng)用

  1.利用導(dǎo)數(shù)研究多項式函數(shù)單調(diào)性的.一般步驟

  (1)求f(x)

  (2)確定f(x)在(a,b)內(nèi)符號 (3)若f(x)>0在(a,b)上恒成立,則f(x)在(a,b)上是增函數(shù);若f(x)<0在(a,b)上恒成立,則f(x)在(a,b)上是減函數(shù)

  2.用導(dǎo)數(shù)求多項式函數(shù)單調(diào)區(qū)間的一般步驟

  (1)求f(x)

  (2)f(x)>0的解集與定義域的交集的對應(yīng)區(qū)間為增區(qū)間; f(x)<0的解集與定義域的交集的對應(yīng)區(qū)間為減區(qū)間

  學(xué)習(xí)了導(dǎo)數(shù)基礎(chǔ)知識點,接下來可以學(xué)習(xí)高二數(shù)學(xué)中涉及到的導(dǎo)數(shù)應(yīng)用的部分。

高中數(shù)學(xué)知識點總結(jié)6

  一、平面的基本性質(zhì)與推論

  1、平面的基本性質(zhì):

  公理1如果一條直線的兩點在一個平面內(nèi),那么這條直線在這個平面內(nèi);

  公理2過不在一條直線上的三點,有且只有一個平面;

  公理3如果兩個不重合的平面有一個公共點,那么它們有且只有一條過該點的公共直線。

  2、空間點、直線、平面之間的位置關(guān)系:

  直線與直線—平行、相交、異面;

  直線與平面—平行、相交、直線屬于該平面(線在面內(nèi),最易忽視);

  平面與平面—平行、相交。

  3、異面直線:

  平面外一點A與平面一點B的連線和平面內(nèi)不經(jīng)過點B的直線是異面直線(判定);

  所成的角范圍(0,90)度(平移法,作平行線相交得到夾角或其補角);

  兩條直線不是異面直線,則兩條直線平行或相交(反證);

  異面直線不同在任何一個平面內(nèi)。

  求異面直線所成的角:平移法,把異面問題轉(zhuǎn)化為相交直線的夾角

  二、空間中的平行關(guān)系

  1、直線與平面平行(核心)

  定義:直線和平面沒有公共點

  判定:不在一個平面內(nèi)的一條直線和平面內(nèi)的一條直線平行,則該直線平行于此平面(由線線平行得出)

  性質(zhì):一條直線和一個平面平行,經(jīng)過這條直線的平面和這個平面相交,則這條直線就和兩平面的.交線平行

  2、平面與平面平行

  定義:兩個平面沒有公共點

  判定:一個平面內(nèi)有兩條相交直線平行于另一個平面,則這兩個平面平行

  性質(zhì):兩個平面平行,則其中一個平面內(nèi)的直線平行于另一個平面;如果兩個平行平面同時與第三個平面相交,那么它們的交線平行。

  3、常利用三角形中位線、平行四邊形對邊、已知直線作一平面找其交線

  三、空間中的垂直關(guān)系

  1、直線與平面垂直

  定義:直線與平面內(nèi)任意一條直線都垂直

  判定:如果一條直線與一個平面內(nèi)的兩條相交的直線都垂直,則該直線與此平面垂直

  性質(zhì):垂直于同一直線的兩平面平行

  推論:如果在兩條平行直線中,有一條垂直于一個平面,那么另一條也垂直于這個平面

  直線和平面所成的角:【0,90】度,平面內(nèi)的一條斜線和它在平面內(nèi)的射影說成的銳角,特別規(guī)定垂直90度,在平面內(nèi)或者平行0度

  2、平面與平面垂直

  定義:兩個平面所成的二面角(從一條直線出發(fā)的兩個半平面所組成的圖形)是直二面角(二面角的平面角:以二面角的棱上任一點為端點,在兩個半平面內(nèi)分別作垂直于棱的兩條射線所成的角)

  判定:一個平面過另一個平面的垂線,則這兩個平面垂直

  性質(zhì):兩個平面垂直,則一個平面內(nèi)垂直于交線的直線與另一個平面垂直

高中數(shù)學(xué)知識點總結(jié)7

  軌跡,包含兩個方面的問題:凡在軌跡上的點都符合給定的條件,這叫做軌跡的純粹性(也叫做必要性);凡不在軌跡上的點都不符合給定的條件,也就是符合給定條件的點必在軌跡上,這叫做軌跡的完備性(也叫做充分性)。

  一、求動點的軌跡方程的基本步驟。

  1、建立適當?shù)淖鴺讼,設(shè)出動點M的坐標;

  2、寫出點M的集合;

  3、列出方程=0;

  4、化簡方程為最簡形式;

  5、檢驗。

  二、求動點的軌跡方程的常用方法:求軌跡方程的方法有多種,常用的有直譯法、定義法、相關(guān)點法、參數(shù)法和交軌法等。

  1、直譯法:直接將條件翻譯成等式,整理化簡后即得動點的軌跡方程,這種求軌跡方程的方法通常叫做直譯法。

  2、定義法:如果能夠確定動點的軌跡滿足某種已知曲線的定義,則可利用曲線的定義寫出方程,這種求軌跡方程的方法叫做定義法。

  3、相關(guān)點法:用動點Q的坐標x,y表示相關(guān)點P的坐標x0、y0,然后代入點P的坐標(x0,y0)所滿足的`曲線方程,整理化簡便得到動點Q軌跡方程,這種求軌跡方程的方法叫做相關(guān)點法。

  4、參數(shù)法:當動點坐標x、y之間的直接關(guān)系難以找到時,往往先尋找x、y與某一變數(shù)t的關(guān)系,得再消去參變數(shù)t,得到方程,即為動點的軌跡方程,這種求軌跡方程的方法叫做參數(shù)法。

  5、交軌法:將兩動曲線方程中的參數(shù)消去,得到不含參數(shù)的方程,即為兩動曲線交點的軌跡方程,這種求軌跡方程的方法叫做交軌法。

  求動點軌跡方程的一般步驟:

 、俳ㄏ怠⑦m當?shù)淖鴺讼?

  ②設(shè)點——設(shè)軌跡上的任一點P(x,y);

  ③列式——列出動點p所滿足的關(guān)系式;

  ④代換——依條件的特點,選用距離公式、斜率公式等將其轉(zhuǎn)化為關(guān)于X,Y的方程式,并化簡;

 、葑C明——證明所求方程即為符合條件的動點軌跡方程。

高中數(shù)學(xué)知識點總結(jié)8

  空間兩條直線只有三種位置關(guān)系:平行、相交、異面

  按是否共面可分為兩類:

  (1)共面:平行、相交

  (2)異面:

  異面直線的定義:不同在任何一個平面內(nèi)的兩條直線或既不平行也不相交。

  異面直線判定定理:用平面內(nèi)一點與平面外一點的直線,與平面內(nèi)不經(jīng)過該點的直線是異面直線。

  兩異面直線所成的角:范圍為(0°,90°)esp.空間向量法

  兩異面直線間距離:公垂線段(有且只有一條)esp.空間向量法

  若從有無公共點的角度看可分為兩類:

  (1)有且僅有一個公共點——相交直線;

  (2)沒有公共點——平行或異面

  直線和平面的位置關(guān)系:

  直線和平面只有三種位置關(guān)系:在平面內(nèi)、與平面相交、與平面平行

 、僦本在平面內(nèi)——有無數(shù)個公共點

  ②直線和平面相交——有且只有一個公共點

  直線與平面所成的角:平面的一條斜線和它在這個平面內(nèi)的射影所成的銳角。

  空間向量法(找平面的法向量)

  規(guī)定:

  a、直線與平面垂直時,所成的角為直角,

  b、直線與平面平行或在平面內(nèi),所成的.角為0°角

  由此得直線和平面所成角的取值范圍為[0°,90°]

  最小角定理:斜線與平面所成的角是斜線與該平面內(nèi)任一條直線所成角中的最小角

  三垂線定理及逆定理:如果平面內(nèi)的一條直線,與這個平面的一條斜線的射影垂直,那么它也與這條斜線垂直

  直線和平面垂直

  直線和平面垂直的定義:如果一條直線a和一個平面內(nèi)的任意一條直線都垂直,我們就說直線a和平面互相垂直.直線a叫做平面的垂線,平面叫做直線a的垂面。

  直線與平面垂直的判定定理:如果一條直線和一個平面內(nèi)的兩條相交直線都垂直,那么這條直線垂直于這個平面。

  直線與平面垂直的性質(zhì)定理:如果兩條直線同垂直于一個平面,那么這兩條直線平行。③直線和平面平行——沒有公共點

  直線和平面平行的定義:如果一條直線和一個平面沒有公共點,那么我們就說這條直線和這個平面平行。

  直線和平面平行的判定定理:如果平面外一條直線和這個平面內(nèi)的一條直線平行,那么這條直線和這個平面平行。

  直線和平面平行的性質(zhì)定理:如果一條直線和一個平面平行,經(jīng)過這條直線的平面和這個平面相交,那么這條直線和交線平行。

高中數(shù)學(xué)知識點總結(jié)9

  一、集合、簡易邏輯

  1、集合;

  2、子集;

  3、補集;

  4、交集;

  5、并集;

  6、邏輯連結(jié)詞;

  7、四種命題;

  8、充要條件。

  二、函數(shù)

  1、映射;

  2、函數(shù);

  3、函數(shù)的單調(diào)性;

  4、反函數(shù);

  5、互為反函數(shù)的函數(shù)圖象間的關(guān)系;

  6、指數(shù)概念的擴充;

  7、有理指數(shù)冪的運算;

  8、指數(shù)函數(shù);

  9、對數(shù);

  10、對數(shù)的運算性質(zhì);

  11、對數(shù)函數(shù)。

  12、函數(shù)的應(yīng)用舉例。

  三、數(shù)列(12課時,5個)

  1、數(shù)列;

  2、等差數(shù)列及其通項公式;

  3、等差數(shù)列前n項和公式;

  4、等比數(shù)列及其通頂公式;

  5、等比數(shù)列前n項和公式。

  四、三角函數(shù)

  1、角的概念的推廣;

  2、弧度制;

  3、任意角的三角函數(shù);

  4、單位圓中的三角函數(shù)線;

  5、同角三角函數(shù)的基本關(guān)系式;

  6、正弦、余弦的誘導(dǎo)公式;

  7、兩角和與差的正弦、余弦、正切;

  8、二倍角的正弦、余弦、正切;

  9、正弦函數(shù)、余弦函數(shù)的圖象和性質(zhì);

  10、周期函數(shù);

  11、函數(shù)的奇偶性;

  12、函數(shù)的圖象;

  13、正切函數(shù)的圖象和性質(zhì);

  14、已知三角函數(shù)值求角;

  15、正弦定理;

  16、余弦定理;

  17、斜三角形解法舉例。

  五、平面向量

  1、向量;

  2、向量的加法與減法;

  3、實數(shù)與向量的積;

  4、平面向量的坐標表示;

  5、線段的定比分點;

  6、平面向量的數(shù)量積;

  7、平面兩點間的距離;

  8、平移。

  六、不等式

  1、不等式;

  2、不等式的基本性質(zhì);

  3、不等式的證明;

  4、不等式的解法;

  5、含絕對值的不等式。

  七、直線和圓的方程

  1、直線的.傾斜角和斜率;

  2、直線方程的點斜式和兩點式;

  3、直線方程的一般式;

  4、兩條直線平行與垂直的條件;

  5、兩條直線的交角;

  6、點到直線的距離;

  7、用二元一次不等式表示平面區(qū)域;

  8、簡單線性規(guī)劃問題;

  9、曲線與方程的概念;

  10、由已知條件列出曲線方程;

  11、圓的標準方程和一般方程;

  12、圓的參數(shù)方程。

  八、圓錐曲線

  1、橢圓及其標準方程;

  2、橢圓的簡單幾何性質(zhì);

  3、橢圓的參數(shù)方程;

  4、雙曲線及其標準方程;

  5、雙曲線的簡單幾何性質(zhì);

  6、拋物線及其標準方程;

  7、拋物線的簡單幾何性質(zhì)。

  九、直線、平面、簡單何體

  1、平面及基本性質(zhì);

  2、平面圖形直觀圖的畫法;

  3、平面直線;

  4、直線和平面平行的判定與性質(zhì);

  5、直線和平面垂直的判定與性質(zhì);

  6、三垂線定理及其逆定理;

  7、兩個平面的位置關(guān)系;

  8、空間向量及其加法、減法與數(shù)乘;

  9、空間向量的坐標表示;

  10、空間向量的數(shù)量積;

  11、直線的方向向量;

  12、異面直線所成的角;

  13、異面直線的公垂線;

  14、異面直線的距離;

  15、直線和平面垂直的性質(zhì);

  16、平面的法向量;

  17、點到平面的距離;

  18、直線和平面所成的角;

  19、向量在平面內(nèi)的射影;

  20、平面與平面平行的性質(zhì);

  21、平行平面間的距離;

  22、二面角及其平面角;

  23、兩個平面垂直的判定和性質(zhì);

  24、多面體;

  25、棱柱;

  26、棱錐;

  27、正多面體;

  28、球。

  十、排列、組合、二項式定理

  1、分類計數(shù)原理與分步計數(shù)原理;

  2、排列;

  3、排列數(shù)公式;

  4、組合;

  5、組合數(shù)公式;

  6、組合數(shù)的兩個性質(zhì);

  7、二項式定理;

  8、二項展開式的性質(zhì)。

  十一、概率

  1、隨機事件的概率;

  2、等可能事件的概率;

  3、互斥事件有一個發(fā)生的概率;

  4、相互獨立事件同時發(fā)生的概率;

  5、獨立重復(fù)試驗。

高中數(shù)學(xué)知識點總結(jié)10

  高中數(shù)學(xué)(文)包含5本必修、2本選修,(理)包含5本必修、3本選修,每學(xué)期學(xué)**兩本書。

  必修一:1、集合與函數(shù)的概念 (這部分知識抽象,較難理解)2、基本的初等函數(shù)(指數(shù)函數(shù)、對數(shù)函數(shù))3、函數(shù)的性質(zhì)及應(yīng)用 (比較抽象,較難理解)

  必修二:1、立體幾何(1)、證明:垂直(多考查面面垂直)、平行(2)、求解:主要是夾角問題,包括線面角和面面角

  這部分知識是高一學(xué)生的難點,比如:一個角實際上是一個銳角,但是在圖中顯示的鈍角等等一些問題,需要學(xué)生的立體意識較強。這部分知識高考占22---27分

  2、直線方程:高考時不單獨命題,易和圓錐曲線結(jié)合命題

  3、圓方程:

  必修三:1、算法初步:高考必考內(nèi)容,5分(選擇或填空)2、統(tǒng)計:3、概率:高考必考內(nèi)容,09年理科占到15分,文科數(shù)學(xué)占到5分

  必修四:1、三角函數(shù):(圖像、性質(zhì)、高中重難點,)必考大題:15---20分,并且經(jīng)常和其他函數(shù)混合起來考查

  2、平面向量:高考不單獨命題,易和三角函數(shù)、圓錐曲線結(jié)合命題。09年理科占到5分,文科占到13分

  必修五:1、解三角形:(正、余弦定理、三角恒等變換)高考中理科占到22分左右,文科數(shù)學(xué)占到13分左右2、數(shù)列:高考必考,17---22分3、不等式:(線性規(guī)劃,聽課時易理解,但做題較復(fù)雜,應(yīng)掌握技巧。高考必考5分)不等式不單獨命題,一般和函數(shù)結(jié)合求最值、解集。

  文科:選修1—1、1—2

  選修1--1:重點:高考占30分

  1、邏輯用語:一般不考,若考也是和集合放一塊考2、圓錐曲線:3、導(dǎo)數(shù)、導(dǎo)數(shù)的應(yīng)用(高考必考)

  選修1--2:1、統(tǒng)計:2、推理證明:一般不考,若考會是填空題3、復(fù)數(shù):(新課標比老課本難的多,高考必考內(nèi)容)

  理科:選修2—1、2—2、2—3

  選修2--1:1、邏輯用語2、圓錐曲線3、空間向量:(利用空間向量可以把立體幾何做題簡便化)

  選修2--2:1、導(dǎo)數(shù)與微積分2、推理證明:一般不考3、復(fù)數(shù)

  選修2--3:1、計數(shù)原理:(排列組合、二項式定理)掌握這部分知識點需要大量做題找規(guī)律,無技巧。高考必考,10分2、隨機變量及其分布:不單獨命題3、統(tǒng)計:

  高考的知識板塊

  集合與簡單邏輯:5分或不考

  函數(shù):高考60分:①、指數(shù)函數(shù) ②對數(shù)函數(shù) ③二次函數(shù) ④三次函數(shù) ⑤三角函數(shù) ⑥抽象函數(shù)(無函數(shù)表達式,不易理解,難點)

  平面向量與解三角形

  立體幾何:22分左右

  不等式:(線性規(guī)則)5分必考

  數(shù)列:17分 (一道大題+一道選擇或填空)易和函數(shù)結(jié)合命題

  平面解析幾何:(30分左右)

  計算原理:10分左右

  概率統(tǒng)計:12分----17分

  復(fù)數(shù):5分

  推理證明

  一般高考大題分布

  1、17題:三角函數(shù)

  2、18、19、20 三題:立體幾何 、概率 、數(shù)列

  3、21、22 題:函數(shù)、圓錐曲線

  成績不理想一般是以下幾種情況:

  做題不細心,(會做,做不對)

  基礎(chǔ)知識沒有掌握

  解決問題不全面,知識的運用沒有系統(tǒng)化(如:一道題綜合了多個知識點)

  心理素質(zhì)不好

  總之學(xué)**數(shù)學(xué)一定要掌握科學(xué)的學(xué)**方法:1、筆記:記老師講的課本上沒有的知識點,尤其是數(shù)列性質(zhì),課本上沒有,但做題經(jīng)常用到 2、錯題收集、歸納總結(jié)

  高一年級

  必修一

  第一章 集合與函數(shù)概念

  第二章 基本初等函數(shù)(Ⅰ)

  第三章 函數(shù)的應(yīng)用

  必修二

  第一章 空間幾何體

  第二章 點、直線、平面之間的位置關(guān)系

  第三章 直線與方程

  必修三

  第一章 算法初步

  第二章 統(tǒng)計

  第三章 概率

  必修四

  第一章 三角函數(shù)

  第二章 平面向量

  第三章 三角恒等變換

  (二)教學(xué)要求

  在教學(xué)中,由于集合、函數(shù)等內(nèi)容比較抽象,三角函數(shù)在高考中占據(jù)重要地位,平面向量又是高考中數(shù)學(xué)必考內(nèi)容,教師在備課組協(xié)作的基礎(chǔ)上應(yīng)注意對各章知識的重難點的講解和釋疑,減輕學(xué)生自學(xué)的壓力,增強學(xué)生學(xué)好數(shù)學(xué)的信心。

  首先,在高中數(shù)學(xué)中,集合的初步知識以及與其它內(nèi)容的密切聯(lián)系。它們是學(xué)**、掌握和使用數(shù)學(xué)語言的基礎(chǔ),是高中數(shù)學(xué)學(xué)**的出發(fā)點。在教學(xué)中,應(yīng)注重引導(dǎo)學(xué)生更好的理解數(shù)學(xué)中出現(xiàn)的集合語言,使學(xué)生更好的使用集合語言表述數(shù)學(xué)問題,并且可以使學(xué)生運用集合的觀點,研究、處理數(shù)學(xué)問題。因此集合的基本概念、函數(shù)等有關(guān)內(nèi)容是教師重點講解的內(nèi)容。

  其次,函數(shù)作為中學(xué)數(shù)學(xué)中最重要的基本概念之一,教師應(yīng)注意運用有關(guān)的概念和函數(shù)的性質(zhì),培養(yǎng)學(xué)生的思維能力;通過指數(shù)與對數(shù),指數(shù)函數(shù)與對數(shù)函數(shù)之間的內(nèi)在聯(lián)系,對學(xué)生進行辯證唯物主義觀點的教育;通過聯(lián)系實際的'引入問題和解決帶有實際意義的某些問題,培養(yǎng)學(xué)生的實踐能力和創(chuàng)新意識。

  第三,通過對三角函數(shù)的學(xué)**,學(xué)生將進一步了解符號與變元、集合與對應(yīng)、數(shù)形結(jié)合等基本的數(shù)學(xué)思想在研究三角函數(shù)時所起的重要作用,在式子與圖形的變化中,教師應(yīng)引導(dǎo)學(xué)生通過分析、探索、劃歸、類比、平行移動、伸長和縮短等常用的基本方法的學(xué)**,使學(xué)生在學(xué)**數(shù)學(xué)和應(yīng)用數(shù)學(xué)方面達到一個新的層次。

  第四,學(xué)**平面向量,不但應(yīng)注意平面向量基本知識的講解,更要充分挖掘平面向量的工具作用,提高學(xué)生應(yīng)用數(shù)學(xué)知識解決實際問題的能力和實際操作的能力,使學(xué)生學(xué)會提出問題,明確研究方向,使學(xué)生學(xué)會交流,體驗數(shù)學(xué)活動的過程,培養(yǎng)創(chuàng)新精神和應(yīng)用能力。

  第五、在學(xué)**空間幾何體、點、直線、平面之間的位置關(guān)系時,重點要幫助學(xué)生逐步形成空間想象能力,嚴格遵循從整體到局部,從具體到抽象的原則,逐步掌握解決空間幾何體的相關(guān)問題。

  第六、要在平面解析幾何初步教學(xué)中,幫助學(xué)生經(jīng)歷如下的過程:首先將幾何問題代數(shù)化,用代數(shù)的語言描述幾何要素及其關(guān)系,進而將幾何問題轉(zhuǎn)化為代數(shù)問題;處理代數(shù)問題;分析代數(shù)結(jié)果的幾何含義,最終解決幾何問題。這種思想應(yīng)貫穿平面解析幾何教學(xué)的始終,幫助學(xué)生不斷地體會“數(shù)形結(jié)合”的思想方法。

  第七、在學(xué)**算法初步、統(tǒng)計等內(nèi)容的時候,要注意順序漸進,不可追求一步到位,特別要注意其思想的重要性。

  高二年級

  必修五

  第一章 解三角形

  第二章 數(shù)列

  第三章 不等式

  選修1-1

  第一章 常用邏輯用語

  第二章 圓錐曲線與方程

  第三章 導(dǎo)數(shù)及其應(yīng)用

  選修1-2

  第一章 統(tǒng)計案例

  第二章 推理與證明

  第三章 數(shù)系的擴充與復(fù)數(shù)的引入

  第四章 框圖

  選修2-1

  第一章 常用邏輯用語

  第二章 圓錐曲線與方程

  第三章 空間向量與立體幾何

  選修2-2

  第一章 導(dǎo)數(shù)及其應(yīng)用

  第二章 推理與證明

  第三章 數(shù)系的擴充與復(fù)數(shù)的引入

  選修2-3

  第一章 計數(shù)原理

  第二章 隨機變量及其分布

  第三章 統(tǒng)計案例

  (二)教學(xué)要求

  高二上

  必修5

  學(xué)生將在已有知識的基礎(chǔ)上,通過對任意三角形邊角關(guān)系的探究,發(fā)現(xiàn)并掌握三角形中的邊長與角度之間的數(shù)量關(guān)系,并認識到運用它們可以解決一些與測量和幾何計算有關(guān)的實際問題。

  數(shù)列作為一種特殊的函數(shù),是反映自然規(guī)律的基本數(shù)學(xué)模型。在本模塊中,學(xué)生將通過對日常生活中大量實際問題的分析,建立等差數(shù)列和等比數(shù)列這兩種數(shù)列模型,探索并掌握它們的一些基本數(shù)量關(guān)系,感受這兩種數(shù)列模型的廣泛應(yīng)用,并利用它們解決一些實際問題。

  不等關(guān)系與相等關(guān)系都是客觀事物的基本數(shù)量關(guān)系,是數(shù)學(xué)研究的重要內(nèi)容。建立不等觀念、處理不等關(guān)系與處理等量問題是同樣重要的。在本模塊中,學(xué)生將通過具體情境,感受在現(xiàn)實世界和日常生活中存在著大量的不等關(guān)系,理解不等式(組)對于刻畫不等關(guān)系的意義和價值;掌握求解一元二次不等式的基本方法,并能解決一些實際問題;能用二元一次不等式組表示平面區(qū)域,并嘗試解決一些簡單的二元線性規(guī)劃問題;認識基本不等式及其簡單應(yīng)用;體會不等式、方程及函數(shù)之間的聯(lián)系。

  選修1—1(文科)

  在本模塊中,學(xué)生將在義務(wù)教育階段的基礎(chǔ)上,學(xué)**常用邏輯用語,體會邏輯用語在表述和論證中的作用,利用這些邏輯用語準確地表達數(shù)學(xué)內(nèi)容,更好地進行交流。

  在必修課程學(xué)**平面解析幾何初步的基礎(chǔ)上,在本模塊中,學(xué)生將學(xué)**圓錐曲線與方程,了解圓錐曲線與二次方程的關(guān)系,掌握圓錐曲線的基本幾何性質(zhì),感受圓錐曲線在刻畫現(xiàn)實世界和解決實際問題中的作用,進一步體會數(shù)形結(jié)合的思想。

  在本模塊中,學(xué)生將通過大量實例,經(jīng)歷由平均變化率到瞬時變化率的過程,刻畫現(xiàn)實問題,理解導(dǎo)數(shù)的含義,體會導(dǎo)數(shù)的思想及其內(nèi)涵;應(yīng)用導(dǎo)數(shù)探索函數(shù)的單調(diào)、極值等性質(zhì)及其在實際中的應(yīng)用,感受導(dǎo)數(shù)在解決數(shù)學(xué)問題和實際問題中的作用,體會微積分的產(chǎn)生對人類文化發(fā)展的價值。

  選修2-1(理科)

  在本模塊中,學(xué)生將學(xué)**常用邏輯用語、圓錐曲線與方程、空間中的向量(簡稱空間向量)與立體幾何。

  在本模塊中,學(xué)生將在義務(wù)教育階段的基礎(chǔ)上,學(xué)**常用邏輯用語,體會邏輯用語在表述和論證中的作用,利用這些邏輯用語準確地表達數(shù)學(xué)內(nèi)容,從而更好地進行交流。

  在必修階段學(xué)**平面解析幾何初步的基礎(chǔ)上,在本模塊中,學(xué)生將學(xué)**圓錐曲線與方程,了解圓錐曲線與二次方程的關(guān)系,掌握圓錐曲線的基本幾何性質(zhì),感受圓錐曲線在刻畫現(xiàn)實世界和解決實際問題中的作用。結(jié)合已學(xué)過的曲線及其方程的實例,了解曲線與方程的對應(yīng)關(guān)系,進一步體會數(shù)形結(jié)合的思想。

  在本模塊中,學(xué)生將在學(xué)**平面向量的基礎(chǔ)上,把平面向量及其運算推廣到空間,運用空間向量解決有關(guān)直線、平面位置關(guān)系的問題,體會向量方法在研究幾何圖形中的作用,進一步發(fā)展空間想像能力和幾何直觀能力。

高中數(shù)學(xué)知識點總結(jié)11

  一、圓及圓的相關(guān)量的定義

  1.平面上到定點的距離等于定長的所有點組成的圖形叫做圓。定點稱為圓心,定長稱為半徑。

  2.圓上任意兩點間的部分叫做圓弧,簡稱弧。大于半圓的弧稱為優(yōu)弧,小于半圓的弧稱為劣弧。連接圓上任意兩點的線段叫做弦。經(jīng)過圓心的弦叫

  做直徑。

  3.頂點在圓心上的角叫做圓心角。頂點在圓周上,且它的兩邊分別與圓有另一個交點的角叫做圓周角。

  4.過三角形的三個頂點的圓叫做三角形的外接圓,其圓心叫做三角形的外心。和三角形三邊都相切的圓叫做這個三角形的內(nèi)切圓,其圓心稱為內(nèi)心。

  5.直線與圓有3種位置關(guān)系:無公共點為相離;有2個公共點為相交;圓與直線有唯一公共點為相切,這條直線叫做圓的切線,這個唯一的公共點叫做切點。

  6.兩圓之間有5種位置關(guān)系:無公共點的,一圓在另一圓之外叫外離,在之內(nèi)叫內(nèi)含;有唯一公共點的,一圓在另一圓之外叫外切,在之內(nèi)叫內(nèi)切;有2個公共點的叫相交。兩圓圓心之間的距離叫做圓心距。

  7.在圓上,由2條半徑和一段弧圍成的圖形叫做扇形。圓錐側(cè)面展開圖是一個扇形。這個扇形的半徑成為圓錐的母線。

  二、有關(guān)圓的字母表示方法

  圓--⊙ 半徑—r 弧--⌒ 直徑—d

  扇形弧長/圓錐母線—l 周長—C 面積—S三、有關(guān)圓的基本性質(zhì)與定理(27個)

  1.點P與圓O的位置關(guān)系(設(shè)P是一點,則PO是點到圓心的距離):

  P在⊙O外,PO>r;P在⊙O上,PO=r;P在⊙O內(nèi),PO

  2.圓是軸對稱圖形,其對稱軸是任意一條過圓心的直線。圓也是中心對稱圖形,其對稱中心是圓心。

  3.垂徑定理:垂直于弦的直徑平分這條弦,并且平分弦所對的弧。逆定

  理:平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的弧。

  4.在同圓或等圓中,如果2個圓心角,2個圓周角,2條弧,2條弦中有一組量相等,那么他們所對應(yīng)的其余各組量都分別相等。

  5.一條弧所對的圓周角等于它所對的圓心角的一半。

  6.直徑所對的圓周角是直角。90度的圓周角所對的弦是直徑。

  7.不在同一直線上的3個點確定一個圓。

  8.一個三角形有唯一確定的外接圓和內(nèi)切圓。外接圓圓心是三角形各邊垂直平分線的交點,到三角形3個頂點距離相等;內(nèi)切圓的圓心是三角形各內(nèi)角平分線的交點,到三角形3邊距離相等。

  9.直線AB與圓O的位置關(guān)系(設(shè)OP⊥AB于P,則PO是AB到圓心的距

  離):

  AB與⊙O相離,PO>r;AB與⊙O相切,PO=r;AB與⊙O相交,PO

  10.圓的切線垂直于過切點的直徑;經(jīng)過直徑的一端,并且垂直于這條直徑的直線,是這個圓的切線。

  11.圓與圓的位置關(guān)系(設(shè)兩圓的半徑分別為R和r,且R≥r,圓心距為P):

  外離P>R+r;外切P=R+r;相交R-r

  三、有關(guān)圓的計算公式

  1.圓的周長C=2πr=πd

  2.圓的面積S=s=πr?

  3.扇形弧長l=nπr/180

  4.扇形面積S=nπr? /360=rl/2

  5.圓錐側(cè)面積S=πrl

  四、圓的方程

  1.圓的標準方程

  在平面直角坐標系中,以點O(a,b)為圓心,以r為半徑的圓的標準方程是

 。▁-a)^2+(y-b)^2=r^2

  2.圓的一般方程

  把圓的標準方程展開,移項,合并同類項后,可得圓的一般方程是

  x^2+y^2+Dx+Ey+F=0

  和標準方程對比,其實D=-2a,E=-2b,F=a^2+b^2

  相關(guān)知識:圓的離心率e=0.在圓上任意一點的曲率半徑都是r.

  五、圓與直線的位置關(guān)系判斷

  平面內(nèi),直線Ax+By+C=O與圓x^2+y^2+Dx+Ey+F=0的位置關(guān)系判斷一般方法是

  討論如下2種情況:

 。1)由Ax+By+C=O可得y=(-C-Ax)/B,[其中B不等于0],

  代入x^2+y^2+Dx+Ey+F=0,即成為一個關(guān)于x的一元二次方程f(x)=0.

  利用判別式b^2-4ac的符號可確定圓與直線的位置關(guān)系如下:

  如果b^2-4ac>0,則圓與直線有2交點,即圓與直線相交

  如果b^2-4ac=0,則圓與直線有1交點,即圓與直線相切

  如果b^2-4ac<0,則圓與直線有0交點,即圓與直線相離

  (2)如果B=0即直線為Ax+C=0,即x=-C/A.它平行于y軸(或垂直于x軸)

  將x^2+y^2+Dx+Ey+F=0化為(x-a)^2+(y-b)^2=r^2

  令y=b,求出此時的兩個x值x1,x2,并且我們規(guī)定x1

  當x=-C/Ax2時,直線與圓相離

  當x1

  當x=-C/A=x1或x=-C/A=x2時,直線與圓相切

  圓的定理:

  1.不在同一直線上的三點確定一個圓。

  2.垂徑定理 垂直于弦的直徑平分這條弦并且平分弦所對的兩條弧

  推論1.①平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條弧

 、谙业拇怪逼椒志經(jīng)過圓心,并且平分弦所對的兩條弧

 、燮椒窒宜鶎Φ囊粭l弧的直徑,垂直平分弦,并且平分弦所對的另一條弧

  推論2.圓的兩條平行弦所夾的弧相等

  3.圓是以圓心為對稱中心的中心對稱圖形

  4.圓是定點的距離等于定長的點的集合

  5.圓的內(nèi)部可以看作是圓心的距離小于半徑的點的集合

  6.圓的外部可以看作是圓心的距離大于半徑的點的集合

  7.同圓或等圓的半徑相等

  8.到定點的距離等于定長的點的軌跡,是以定點為圓心,定長為半徑的圓

  9.定理 在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦 相等,所對的弦的`弦心距相等

  10.推論 在同圓或等圓中,如果兩個圓心角、兩條弧、兩條弦或兩 弦的弦心距中有一組量相等那么它們所對應(yīng)的其余各組量都相等

  11.定理 圓的內(nèi)接四邊形的對角互補,并且任何一個外角都等于它 的內(nèi)對角

  12.①直線L和⊙O相交 d

 、谥本L和⊙O相切 d=r

 、壑本L和⊙O相離 d>r

  13.切線的判定定理 經(jīng)過半徑的外端并且垂直于這條半徑的直線是圓的切線

  14.切線的性質(zhì)定理 圓的切線垂直于經(jīng)過切點的半徑

  15.推論1 經(jīng)過圓心且垂直于切線的直線必經(jīng)過切點

  16.推論2 經(jīng)過切點且垂直于切線的直線必經(jīng)過圓心

  17.切線長定理 從圓外一點引圓的兩條切線,它們的切線長相等, 圓心和這一點的連線平分兩條切線的夾角

  18.圓的外切四邊形的兩組對邊的和相等 外角等于內(nèi)對角

  19.如果兩個圓相切,那么切點一定在連心線上

  20.①兩圓外離 d>R+r ②兩圓外切 d=R+r

 、蹆蓤A相交 R-rr)

 、軆蓤A內(nèi)切 d=R-r(R>r) ⑤兩圓內(nèi)含dr)

  21.定理 相交兩圓的連心線垂直平分兩圓的公共弦

  22.定理 把圓分成n(n≥3):

 。1)依次連結(jié)各分點所得的多邊形是這個圓的內(nèi)接正n邊形

 。2)經(jīng)過各分點作圓的切線,以相鄰切線的交點為頂點的多邊形是這個圓的外切正n邊形

  23.定理 任何正多邊形都有一個外接圓和一個內(nèi)切圓,這兩個圓是同心圓

  24.正n邊形的每個內(nèi)角都等于(n-2)×180°/n

  25.定理 正n邊形的半徑和邊心距把正n邊形分成2n個全等的直角三角形

  26.正n邊形的面積Sn=pnrn/2 p表示正n邊形的周長

  27.正三角形面積√3a/4 a表示邊長

  28.如果在一個頂點周圍有k個正n邊形的角,由于這些角的和應(yīng)為 360°,因此k×(n-2)180°/n=360°化為(n-2)(k-2)=4

  29.弧長計算公式:L=n兀R/180

  30.扇形面積公式:S扇形=n兀R^2/360=LR/2

  31.內(nèi)公切線長= d-(R-r) 外公切線長= d-(R+r)

  32.定理 一條弧所對的圓周角等于它所對的圓心角的一半

  33.推論1 同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等

  34.推論2 半圓(或直徑)所對的圓周角是直角;90°的圓周角所 對的弦是直徑

  35.弧長公式 l=a*r a是圓心角的弧度數(shù)r >0 扇形面積公式 s=1/2*l*r

高中數(shù)學(xué)知識點總結(jié)12

  有界性

  設(shè)函數(shù)f(x)在區(qū)間X上有定義,如果存在M>0,對于一切屬于區(qū)間X上的x,恒有|f(x)|≤M,則稱f(x)在區(qū)間X上有界,否則稱f(x)在區(qū)間上無界.

  單調(diào)性

  設(shè)函數(shù)f(x)的定義域為D,區(qū)間I包含于D.如果對于區(qū)間上任意兩點x1及x2,當x1f(x2),則稱函數(shù)f(x)在區(qū)間I上是單調(diào)遞減的.單調(diào)遞增和單調(diào)遞減的函數(shù)統(tǒng)稱為單調(diào)函數(shù).

  奇偶性

  設(shè)為一個實變量實值函數(shù),若有f(—x)=—f(x),則f(x)為奇函數(shù).

  幾何上,一個奇函數(shù)關(guān)于原點對稱,亦即其圖像在繞原點做180度旋轉(zhuǎn)后不會改變.

  奇函數(shù)的例子有x、sin(x)、sinh(x)和erf(x).

  設(shè)f(x)為一實變量實值函數(shù),若有f(x)=f(—x),則f(x)為偶函數(shù).

  幾何上,一個偶函數(shù)關(guān)于y軸對稱,亦即其圖在對y軸映射后不會改變.

  偶函數(shù)的例子有|x|、x2、cos(x)和cosh(x).

  偶函數(shù)不可能是個雙射映射.

  連續(xù)性

  在數(shù)學(xué)中,連續(xù)是函數(shù)的.一種屬性.直觀上來說,連續(xù)的函數(shù)就是當輸入值的變化足夠小的時候,輸出的變化也會隨之足夠小的函數(shù).如果輸入值的某種微小的變化會產(chǎn)生輸出值的一個突然的跳躍甚至無法定義,則這個函數(shù)被稱為是不連續(xù)的函數(shù)(或者說具有不連續(xù)性).

高中數(shù)學(xué)知識點總結(jié)13

  ★高中數(shù)學(xué)導(dǎo)數(shù)知識點

  一、早期導(dǎo)數(shù)概念————特殊的形式大約在1629年法國數(shù)學(xué)家費馬研究了作曲線的切線和求函數(shù)極值的方法1637年左右他寫一篇手稿《求最大值與最小值的方法》。在作切線時他構(gòu)造了差分f(A+E)—f(A),發(fā)現(xiàn)的因子E就是我們所說的導(dǎo)數(shù)f(A)。

  二、17世紀————廣泛使用的“流數(shù)術(shù)”17世紀生產(chǎn)力的發(fā)展推動了自然科學(xué)和技術(shù)的發(fā)展在前人創(chuàng)造性研究的基礎(chǔ)上大數(shù)學(xué)家牛頓、萊布尼茨等從不同的角度開始系統(tǒng)地研究微積分。牛頓的微積分理論被稱為“流數(shù)術(shù)”他稱變量為流量稱變量的變化率為流數(shù)相當于我們所說的導(dǎo)數(shù)。牛頓的有關(guān)“流數(shù)術(shù)”的主要著作是《求曲邊形面積》、《運用無窮多項方程的計算法》和《流數(shù)術(shù)和無窮級數(shù)》流數(shù)理論的實質(zhì)概括為他的'重點在于一個變量的函數(shù)而不在于多變量的方程在于自變量的變化與函數(shù)的變化的比的構(gòu)成最在于決定這個比當變化趨于零時的極限。

  三、19世紀導(dǎo)數(shù)————逐漸成熟的理論1750年達朗貝爾在為法國科學(xué)家院出版的《百科全書》第五版寫的“微分”條目中提出了關(guān)于導(dǎo)數(shù)的一種觀點可以用現(xiàn)代符號簡單表示{dy/dx)=lim(oy/ox)。1823年柯西在他的《無窮小分析概論》中定義導(dǎo)數(shù)如果函數(shù)y=f(x)在變量x的兩個給定的界限之間保持連續(xù)并且我們?yōu)檫@樣的變量指定一個包含在這兩個不同界限之間的值那么是使變量得到一個無窮小增量。19世紀60年代以后魏爾斯特拉斯創(chuàng)造了ε—δ語言對微積分中出現(xiàn)的各種類型的極限重加表達導(dǎo)數(shù)的定義也就獲得了今天常見的形式。

  四、實無限將異軍突起微積分第二輪初等化或成為可能微積分學(xué)理論基礎(chǔ)大體可以分為兩個部分。一個是實無限理論即無限是一個具體的東西一種真實的存在另一種是潛無限指一種意識形態(tài)上的過程比如無限接近。就歷史來看兩種理論都有一定的道理。其中實無限用了150年后來極限論就是現(xiàn)在所使用的。光是電磁波還是粒子是一個物理學(xué)長期爭論的問題后來由波粒二象性來統(tǒng)一。微積分無論是用現(xiàn)代極限論還是150年前的理論都不是最好的手段。

  高中數(shù)學(xué)導(dǎo)數(shù)要點

  1、求函數(shù)的單調(diào)性:

  利用導(dǎo)數(shù)求函數(shù)單調(diào)性的基本方法:設(shè)函數(shù)yf(x)在區(qū)間(a,b)內(nèi)可導(dǎo),(1)如果恒f(x)0,則函數(shù)yf(x)在區(qū)間(a,b)上為增函數(shù);(2)如果恒f(x)0,則函數(shù)yf(x)在區(qū)間(a,b)上為減函數(shù);(3)如果恒f(x)0,則函數(shù)yf(x)在區(qū)間(a,b)上為常數(shù)函數(shù)。

  利用導(dǎo)數(shù)求函數(shù)單調(diào)性的基本步驟:①求函數(shù)yf(x)的定義域;②求導(dǎo)數(shù)f(x);③解不等式f(x)0,解集在定義域內(nèi)的不間斷區(qū)間為增區(qū)間;④解不等式f(x)0,解集在定義域內(nèi)的不間斷區(qū)間為減區(qū)間。

  反過來,也可以利用導(dǎo)數(shù)由函數(shù)的單調(diào)性解決相關(guān)問題(如確定參數(shù)的取值范圍):設(shè)函數(shù)yf(x)在區(qū)間(a,b)內(nèi)可導(dǎo),

 。1)如果函數(shù)yf(x)在區(qū)間(a,b)上為增函數(shù),則f(x)0(其中使f(x)0的x值不構(gòu)成區(qū)間);

 。2)如果函數(shù)yf(x)在區(qū)間(a,b)上為減函數(shù),則f(x)0(其中使f(x)0的x值不構(gòu)成區(qū)間);

 。3)如果函數(shù)yf(x)在區(qū)間(a,b)上為常數(shù)函數(shù),則f(x)0恒成立。

  2、求函數(shù)的極值:

  設(shè)函數(shù)yf(x)在x0及其附近有定義,如果對x0附近的所有的點都有f(x)f(x0)(或f(x)f(x0)),則稱f(x0)是函數(shù)f(x)的極小值(或極大值)。

  可導(dǎo)函數(shù)的極值,可通過研究函數(shù)的單調(diào)性求得,基本步驟是:

 。1)確定函數(shù)f(x)的定義域;(2)求導(dǎo)數(shù)f(x);(3)求方程f(x)0的全部實根,x1x2xn,順次將定義域分成若干個小區(qū)間,并列表:x變化時,f(x)和f(x)值的

  變化情況:

 。4)檢查f(x)的符號并由表格判斷極值。

  3、求函數(shù)的最大值與最小值:

  如果函數(shù)f(x)在定義域I內(nèi)存在x0,使得對任意的xI,總有f(x)f(x0),則稱f(x0)為函數(shù)在定義域上的最大值。函數(shù)在定義域內(nèi)的極值不一定唯一,但在定義域內(nèi)的最值是唯一的。

  求函數(shù)f(x)在區(qū)間[a,b]上的最大值和最小值的步驟:(1)求f(x)在區(qū)間(a,b)上的極值;

 。2)將第一步中求得的極值與f(a),f(b)比較,得到f(x)在區(qū)間[a,b]上的最大值與最小值。

  4、解決不等式的有關(guān)問題:

 。1)不等式恒成立問題(絕對不等式問題)可考慮值域。

  f(x)(xA)的值域是[a,b]時,

  不等式f(x)0恒成立的充要條件是f(x)max0,即b0;

  不等式f(x)0恒成立的充要條件是f(x)min0,即a0。

  f(x)(xA)的值域是(a,b)時,

  不等式f(x)0恒成立的充要條件是b0;不等式f(x)0恒成立的充要條件是a0。

 。2)證明不等式f(x)0可轉(zhuǎn)化為證明f(x)max0,或利用函數(shù)f(x)的單調(diào)性,轉(zhuǎn)化為證明f(x)f(x0)0。

  5、導(dǎo)數(shù)在實際生活中的應(yīng)用:

  實際生活求解最大(。┲祮栴},通常都可轉(zhuǎn)化為函數(shù)的最值。在利用導(dǎo)數(shù)來求函數(shù)最值時,一定要注意,極值點唯一的單峰函數(shù),極值點就是最值點,在解題時要加以說明。

高中數(shù)學(xué)知識點總結(jié)14

  什么是不等式?

  一般地,用純粹的大于號“>”、小于號“<”連接的不等式稱為嚴格不等式,用不小于號(大于或等于號)“≥”、不大于號(小于或等于號)“≤”連接的不等式稱為非嚴格不等式,或稱廣義不等式?偟膩碚f,用不等號(<,>,≥,≤,≠)連接的式子叫做不等式。

  通常不等式中的數(shù)是實數(shù),字母也代表實數(shù),不等式的一般形式為F(x,y,……,z)≤G(x,y,……,z)(其中不等號也可以為<,≤,≥,>中某一個),兩邊的解析式的公共定義域稱為不等式的`定義域,不等式既可以表達一個命題,也可以表示一個問題。

  數(shù)學(xué)知識點1、不等式性質(zhì)比較大小方法:

  (1)作差比較法(2)作商比較法

  不等式的基本性質(zhì)

 、賹ΨQ性:a > b,b > a

 、趥鬟f性:a > b,b > ca > c

 、劭杉有裕篴 > b a + c > b + c

 、芸煞e性:a > b,c > 0,ac > bc

 、菁臃ǚ▌t:a > b,c > d,a + c > b + d

 、蕹朔ǚ▌t:a > b > 0,c > d > 0,ac > bd

 、叱朔椒▌t:a > b > 0,an > bn(n∈N)

 、嚅_方法則:a > b > 0

  數(shù)學(xué)知識點2、算術(shù)平均數(shù)與幾何平均數(shù)定理:

 。1)如果a、b∈R,那么a2 + b2 ≥2ab;(當且僅當a=b時等號)

 。2)如果a、b∈R+,那么(當且僅當a=b時等號)推廣:

  如果為實數(shù),則重要結(jié)論

 。1)如果積xy是定值P,那么當x=y時,和x+y有最小值2;

 。2)如果和x+y是定值S,那么當x=y時,和xy有最大值S2/4。

  數(shù)學(xué)知識點3、證明不等式的常用方法:

  比較法:比較法是最基本、最重要的方法。

  當不等式的兩邊的差能分解因式或能配成平方和的形式,則選擇作差比較法;當不等式的兩邊都是正數(shù)且它們的商能與1比較大小,則選擇作商比較法;碰到絕對值或根式,我們還可以考慮作平方差。

  綜合法:從已知或已證明過的不等式出發(fā),根據(jù)不等式的性質(zhì)推導(dǎo)出欲證的不等式。綜合法的放縮經(jīng)常用到均值不等式。

  分析法:不等式兩邊的聯(lián)系不夠清楚,通過尋找不等式成立的充分條件,逐步將欲證的不等式轉(zhuǎn)化,直到尋找到易證或已知成立的結(jié)論。

高中數(shù)學(xué)知識點總結(jié)15

  一、高中數(shù)列基本公式:

  1、一般數(shù)列的通項an與前n項和Sn的關(guān)系:an=

  2、等差數(shù)列的通項公式:an=a1+(n-1)d an=ak+(n-k)d (其中a1為首項、ak為已知的第k項) 當d≠0時,an是關(guān)于n的一次式;當d=0時,an是一個常數(shù)。

  3、等差數(shù)列的前n項和公式:Sn=

  Sn=

  Sn=

  當d≠0時,Sn是關(guān)于n的二次式且常數(shù)項為0;當d=0時(a1≠0),Sn=na1是關(guān)于n的正比例式。

  4、等比數(shù)列的通項公式: an= a1qn-1an= akqn-k

  (其中a1為首項、ak為已知的第k項,an≠0)

  5、等比數(shù)列的前n項和公式:當q=1時,Sn=n a1 (是關(guān)于n的正比例式);

  當q≠1時,Sn=

  Sn=

  二、高中數(shù)學(xué)中有關(guān)等差、等比數(shù)列的結(jié)論

  1、等差數(shù)列{an}的任意連續(xù)m項的和構(gòu)成的數(shù)列Sm、S2m-Sm、S3m-S2m、S4m- S3m、……仍為等差數(shù)列。

  2、等差數(shù)列{an}中,若m+n=p+q,則

  3、等比數(shù)列{an}中,若m+n=p+q,則

  4、等比數(shù)列{an}的任意連續(xù)m項的.和構(gòu)成的數(shù)列Sm、S2m-Sm、S3m-S2m、S4m- S3m、……仍為等比數(shù)列。

  5、兩個等差數(shù)列{an}與{bn}的和差的數(shù)列{an+bn}、{an-bn}仍為等差數(shù)列。

  6、兩個等比數(shù)列{an}與{bn}的積、商、倒數(shù)組成的數(shù)列仍為等比數(shù)列。

  7、等差數(shù)列{an}的任意等距離的項構(gòu)成的數(shù)列仍為等差數(shù)列。

  8、等比數(shù)列{an}的任意等距離的項構(gòu)成的數(shù)列仍為等比數(shù)列。

  9、三個數(shù)成等差數(shù)列的設(shè)法:a-d,a,a+d;四個數(shù)成等差的設(shè)法:a-3d,a-d,,a+d,a+3d

  10、三個數(shù)成等比數(shù)列的設(shè)法:a/q,a,aq;

  四個數(shù)成等比的錯誤設(shè)法:a/q3,a/q,aq,aq3 (為什么?)

【高中數(shù)學(xué)知識點總結(jié)】相關(guān)文章:

高中數(shù)學(xué)全部知識點總結(jié)04-25

高中數(shù)學(xué)統(tǒng)計知識點總結(jié)10-21

高中數(shù)學(xué)知識點總結(jié)11-12

高中數(shù)學(xué)導(dǎo)數(shù)知識點總結(jié)05-09

高中數(shù)學(xué)知識點總結(jié)04-07

文科高中數(shù)學(xué)知識點總結(jié)04-25

高中數(shù)學(xué)學(xué)考知識點總結(jié)04-25

高中數(shù)學(xué)必修1知識點總結(jié)04-25

2022高中數(shù)學(xué)知識點總結(jié)04-25

高中數(shù)學(xué)高二知識點總結(jié)04-25