當前位置:育文網(wǎng)>教學文檔>教案> 北師版七年級數(shù)學下冊教案

北師版七年級數(shù)學下冊教案

時間:2024-01-03 07:45:06 教案 我要投稿

北師版七年級數(shù)學下冊教案范文

  作為一位杰出的老師,時常需要用到教案,教案有助于順利而有效地開展教學活動。那么你有了解過教案嗎?以下是小編為大家整理的北師版七年級數(shù)學下冊教案范文,歡迎閱讀與收藏。

北師版七年級數(shù)學下冊教案范文

北師版七年級數(shù)學下冊教案范文1

  一、素質(zhì)教育目標

  (一)知識教學點

  1.了解有理數(shù)除法的定義.

  2.理解倒數(shù)的意義.

  3.掌握有理數(shù)除法法則,會進行運算.

  (二)能力訓練點

  1.通過有理數(shù)除法法則的導出及運算,讓學生體會轉化思想.

  2.培養(yǎng)學生運用數(shù)學思想指導思維活動的能力.

  (三)德育滲透點

  通過學習有理數(shù)除法運算、感知數(shù)學知識具有普遍聯(lián)系性、相互轉化性.

  (四)美育滲透點

  把小學算術里的乘法法則推廣到有理數(shù)范圍內(nèi),體現(xiàn)了知識體系的完整美.

  二、學法引導

  1.教學方法:遵循啟發(fā)式教學原則,注意創(chuàng)設問題情境,精心構思啟發(fā)導語 并及時點撥,使學生主動發(fā)展思維和能力.

  2.學生學法:通過練習探索新知→歸納除法法則→鞏固練習

  三、重點、難點、疑點及解決辦法

  1.重點:除法法則的靈活運用和倒數(shù)的概念.

  2.難點:有理數(shù)除法確定商的符號后,怎樣根據(jù)不同的情況來取適當?shù)姆椒ㄇ笊痰慕^對值.

  3.疑點:對零不能作除數(shù)與零沒有倒數(shù)的理解.

  四、課時安排

  1課時

  五、教具學具準備

  投影儀、自制膠片、彩粉筆.

  六、師生互動活動設計

  教師出示探索性練習,學生討論歸納除法法則,教師出示鞏固性練習,學生以多種形式完成.

  七、教學步驟

  (一)創(chuàng)設情境,復習導入

  師:以上我們學習了有理數(shù)的乘法,這節(jié)我們應該學習,板書課題.

  【教法說明】同小學算術中除法一樣—除以一個數(shù)等于乘以這個數(shù)的倒數(shù),所以必須以學好求一個有理數(shù)的倒數(shù)為基礎學習.

  (二)探索新知,講授新課

  1.倒數(shù).

  (出示投影1)

  4×( )=1; ×( )=1; 0.5×( )=1;

  0×( )=1; -4×( )=1; ×( )=1.

  學生活動:口答以上題目.

  【教法說明】在有理數(shù)乘法的基礎上,學生很容易地做出這幾個題目,在題目的選擇上,注意了數(shù)的全面性,即有正數(shù)、0、負數(shù),又有整數(shù)、分數(shù),在數(shù)的變化中,讓學生回憶、體會出求各種數(shù)的倒數(shù)的方法.

  師問:兩個數(shù)乘積是1,這兩個數(shù)有什么關系?

  學生活動:乘積是1的兩個數(shù)互為倒數(shù).(板書)

  師問:0有倒數(shù)嗎?為什么?

  學生活動:通過題目0×( )=1得出0乘以任何數(shù)都不得1,0沒有倒數(shù).

  師:引入負數(shù)后,乘積是1的兩個負數(shù)也互為倒數(shù),如-4與,與互為倒數(shù),即的倒數(shù)是.

  提出問題:根據(jù)以上題目,怎樣求整數(shù)、分數(shù)、小數(shù)的倒數(shù)?

  【教法說明】教師注意創(chuàng)設問題情境,讓學生參與思考,循序漸進地引出,對于有理數(shù)也有倒數(shù)是.對于怎樣求整數(shù)、分數(shù)、小數(shù)的倒數(shù),學生還很難總結出方法,提出這個問題是讓學生帶著問題來做下組練習.

  (出示投影2)

  求下列各數(shù)的倒數(shù):

  (1); (2); (3);

  (4); (5)-5; (6)1.

  學生活動:通過思考口答這6小題,討論后得出,求整數(shù)的倒數(shù)是用1除以它,求分數(shù)的倒數(shù)是分子分母顛倒位置;求小數(shù)的倒數(shù)必須先化成分數(shù)再求.

  2.

  計算:8÷(-4).

  計算:8×()=? (-2)

  ∴8÷(-4)=8×().

  再嘗試:-16÷(-2)=? -16×()=?

  師:根據(jù)以上題目,你能說出怎樣計算嗎?能用含字母的式子表示嗎?

  學生活動:同桌互相討論.(一個學生回答)

  師強調(diào)后板書:

  [板書]

  【教法說明】通過學生親自演算和教師的引導,對有理數(shù)除法法則及字母表示有了非常清楚的認識,教師放手讓學生總結法則,尤其是字母表示,訓練學生的歸納及口頭表達能力.

  (三)嘗試反饋,鞏固練習

  師在黑板上出示例題.

  計算(1)(-36)÷9, (2)()÷().

  學生嘗試做此題目.

  (出示投影3)

  1.計算:

  (1)(-18)÷6; (2)(-63)÷(-7); (3)(-36)÷6;

  (4)1÷(-9); (5)0÷(-8); (6)16÷(-3).

  2.計算:

  (1)()÷(); (2)(-6.5)÷0.13;

  (3)()÷(); (4)÷(-1).

  學生活動:1題讓學生搶答,教師用復合膠片顯示結果.2題在練習本上演示,兩個同學板演(教師訂正).

  【教法說明】此組練習中兩個題目都是對的直接應用.1題是整數(shù),利用口答形式訓練學生速算能力.2題是小數(shù)、分數(shù)略有難度,要求學生自行演算,加強運算的準確性,2題(2)小題必須把小數(shù)都化成分數(shù)再轉化成乘法來計算.

  提出問題:(1)兩數(shù)相除,商的符號怎樣確定,商的絕對值呢?(2)0不能做除數(shù),0做被除數(shù)時商是多少?

  學生活動:分組討論,1—2個同學回答.

  [板書]

  2.兩數(shù)相除,同號得正,異號得負,并把絕對值相除.

  0除以任何不等于0的數(shù),都得0.

  【教法說明】通過上組練習的結果,不難看出與有理數(shù)乘法有類似的法則,這個法則的得出為計算有理數(shù)除法又添了一種方法,這時教師要及時指出,在做有理數(shù)除法的題目時,要根據(jù)具體情況,靈活運用這兩種方法.

  (四)變式訓練,培養(yǎng)能力

  回顧例1 計算:(1)(-36)÷9; (2)()÷().

  提出問題:每個題目你想采用哪種法則計算更簡單?

  學生活動:(1)題采用兩數(shù)相除,異號得負并把絕對值相除的方法較簡單.

  (2)題仍用除以一個數(shù)等于乘以這個數(shù)的'倒數(shù)較簡單.

  提出問題:-36:9=?;:()=?它們都屬于除法運算嗎?

  學生活動:口答出答案.

  (出示投影4)

  例2 化簡下列分數(shù)

  (1); (2); (3)或3:(-36)

  (4); (5).

  例3 計算

  (1)()÷(-6); (2)-3.5÷×();

  (3)(-6)÷(-4)×().

  學生活動:例2讓學生口答,例3全體同學獨立計算,三個學生板演.

  【教法說明】例2是檢查學生對有理數(shù)除法法則的靈活運用能力,并滲透了除法、分數(shù)、比可互相轉化,并且通過這種轉化,常?赡芎喕嬎.例3培養(yǎng)學生分析問題的能力,優(yōu)化學生思維品質(zhì):

  如在(1)()÷(-6)中.

  根據(jù)方法①()÷(-6)=×()=.

  根據(jù)方法②()÷(-6)=(24+)×=4+=.

  讓學生區(qū)分方法的差異,點明方法②非常簡便,肯定當除法轉化成乘法時,可以利用有理數(shù)乘法運算律簡化運算.(2)(3)小題也是如此.

  (五)歸納小結

  師:今天我們學習了及倒數(shù)的概念,回答問題:

  1.的倒數(shù)是__________________();

  2.;

  3.若、同號,則;

  若、異號,則;

  若,時,則;

  學生活動:分組討論,三個學生口答.

  【教法說明】對這節(jié)課全部知識點的回顧不是教師單純地總結,而是讓學生在思考回答的過程中自己把整節(jié)內(nèi)容進行了梳理,并且上升到了用字母表示的數(shù)學式子,逐步培養(yǎng)學生用數(shù)學語言表達數(shù)學規(guī)律的能力.

  八、隨堂練習

  1.填空題

  (1)的倒數(shù)為__________,相反數(shù)為____________,絕對值為___________

  (2)(-18)÷(-9)=_____________;

  (3)÷(-2.5)=_____________;

  (4);

  (5)若,是;

  (6)若、互為倒數(shù),則;

  (7)或、互為相反數(shù)且,則,;

  (8)當時,有意義;

  (9)當時,;

  (10)若,則,和符號是_________,___________.

  2.計算

  (1)-4.5÷()×;

  (2)(-12)÷〔(-3)+(-15)〕÷(+5).

  九、布置作業(yè)

  (一)必做題:1.仿照例1、例2自編2道題,同桌交換解答.

  2.計算:(1)()×()÷();

  (2)-6÷(-0.25)×.

  3.當,時求的值.

  (二)選做題:1.填空:用“>”“<”“=”號填空

  (1)如果,則,;

  (2)如果,則,;

  (3)如果,則,;

  (4)如果,則,;

  2.判斷:正確的打“√”錯的打“×”

  (1)( );

  (2)( ).

  3.(1)倒數(shù)等于它本身的數(shù)是______________.

  (2)互為相反數(shù)的數(shù)(0除外)商是________________.

  【教法說明】必做題為本節(jié)的重點內(nèi)容,首先在這節(jié)課學習的基礎上讓同學仿照例題編題,學生也有這方面的能力,極大調(diào)動了學生積極性,提高了學生運用知識的能力.

  選作題是對這節(jié)課重點內(nèi)容的進一步理解和運用,為學有余力的學生提供了展示自己的機會.

  十、板書設計

北師版七年級數(shù)學下冊教案范文2

  一、素質(zhì)教育目標

  (一)知識教學點

  能按照有理數(shù)的運算順序,正確熟練地進行有理數(shù)的加、減、乘、除、乘方的混合運算.

  (二)能力訓練點

  培養(yǎng)學生的觀察能力和運算能力.

  (三)德育滲透點

  培養(yǎng)學生在計算前認真審題,確定運算順序,計算中按步驟審慎進行,最后要驗算的好的習慣.

  (四)美育滲透點

  通過本節(jié)課的學習,學生會認識到小學算術里的四則混合運算順序同樣適用于有理數(shù)系,學生會感受到知識的普適性美.

  二、學法引導

  1.教學方法:嘗試指導法,以學生為主體,以訓練為主線.

  2.學生學法:

  三、重點、難點、疑點及解決辦法

  重點和難點是如何按有理數(shù)的運算順序,正確而合理地進行有理數(shù)混合計算.

  四、課時安排

  1課時

  五、教具學具準備

  投影儀、自制膠片.

  六、師生互動活動設計

  教師用投影出示練習題,學生用多種形式完成.

  七、教學步驟

  (一)復習提問

  (出示投影1)

  1.有理數(shù)的運算順序是什么?

  2.計算:(口答)

 、 , ② , ③ , ④ ,⑤ , ⑥ .

  【教法說明】2題都是學生運算中容易出錯的題目,學生口答后,如果答對,追問為什么?如果不對,先讓他自己找錯誤原因,若找不出來,讓其他同學糾正,使學生真正明白發(fā)生錯誤的原因,從而達到培養(yǎng)運算能力的目的

  (二)講授新課

  1.例2 計算

  師生共同分析:觀察題目中有乘法、除法、減法運算,還有小括號.

  思考:首先計算小括號里的減法,然后再按照從左到右的順序進行乘除運算,這樣運算的步驟基本清楚了.帶分數(shù)進行乘除運算時,必須化成假分數(shù).

  動筆:按思考的步驟進行計算,在計算時不要“跳步”太多,最后再檢查這個計算結果是否正確.

  一個學生板演,其他學生做在練習本上,教師巡回指導,然后師生共同訂正.

  【教法說明】通過此題的分析,引導學生在進行有理數(shù)混合運算時,遵循“觀察—思考—動筆—檢查”的程序進行計算,有助于培養(yǎng)學生嚴謹?shù)膶W風和良好的學習習慣.

  2.嘗試反饋,鞏固練習(出示投影2)

  計算:

 、 ;

 、 .

  【教法說明】讓學生仿照例題的形式,自己動腦進行分析,然后做在練習本上,兩個學生板演.由于此兩題涉及負數(shù)較多,應提醒學生注意符號問題.教師根據(jù)學生練習情況,作適當評價,并對學生普遍出現(xiàn)的錯誤,及時進行變式訓練.

  3.例3 計算: .

  教師引導學生分析:觀察題目中有乘方、乘法、除法、加法、減法運算.

  思考:容易看到 , 是彼此獨立的.,可以首先分別計算,然后再進行加減運算.

  動筆:按思考的步驟進行計算,在計算時強調(diào)不要“跳步”太多.

  檢查計算結果是否正確.

  一個學生口述解題過程,教師予以指正并板書做示范,強調(diào)解題的規(guī)范性.

  4.嘗試反饋,鞏固練習(出示投影3)

  計算:① ;

 、 ;

  ③ ;

 、 .

  首先要求學生觀察思考上述題目考查的知識點有哪些?然后再動筆完成解題過程.四個學生板演,其他同學做在練習本上.

  說明:1小題主要考查乘方、除法、減法運算法則及運算順序等知識,學生容易出現(xiàn) 的錯誤.通過此題讓學生注意運算順序.3題主要考查:相反數(shù)、負數(shù)的奇次冪、偶次冪運算法則及運算順序等知識點.讓學生搞清 與 的區(qū)別; , .計算此題要特別注意符號問題;4題主要考查相反數(shù)運算法則及運算順序等知識.本題要特別注意運算順序.

  【教法說明】習題的設計分層次,由易到難,循序漸進,符合學生的認知規(guī)律.注重培養(yǎng)學生的觀察分析能力和運算能力.通過變式訓練,也培養(yǎng)學生的思維能力.學生做練習時,教師巡回指導,及時獲得反饋信息,對學生出現(xiàn)錯誤較多的問題,教師要進行回授講解,然后再出一些變式訓練進行鞏固.

  (三)歸納小結

  師:今天我們學習了,要求大家做題時必須遵循“觀察—分析—動筆—檢查”的程序進行計算.

  【教法說明】小結起到“畫龍點睛”的作用,教給學生運算的方法、步驟,培養(yǎng)學生良好的學習習慣,提高運算的準確率.

  (四)反饋檢測(出示投影4)

  (1)計算① ; ②

 、 ; ④ ;

  ⑤ .

  (2)已知 , 時,求下列代數(shù)式的值

 、 ; ② .

  以小組為單位計分,積分的組為優(yōu)勝組.

  【教法說明】通過反饋檢測,既鍛煉學生綜合應用所學知識的能力,又調(diào)動學生學習的積極性和主動性,增強學生積極參與教學活動的意識和集體榮譽感.

  八、隨堂練習

  1.選擇題

  (1)下列各組數(shù)中,其值相等的是( )

  A. 和 B. 和

  C. 和 D. 和

  (2)下列各式計算正確的是( )

  A. B.

  C. D.

  (4)下列說法正確的是( )

  A. 與 互為相反數(shù)

  B.當 是負數(shù)時, 必為正數(shù)

  C. 與 的值相等

  D.5的相反數(shù)與 的倒數(shù)差大于-2.

  2.計算

  (1) ;

  (2) .

  九、布置作業(yè)

  (一)必做題:課本第118頁3.(4)、(5);4.(6)、(7)、(8).

  (二)選做題:課本第119頁B組1.

  十、板書設計

北師版七年級數(shù)學下冊教案范文3

  教學目的:

  理解一元一次方程解簡單應用題的方法和步驟;并會列一元一次方程解簡單應用題。

  重點、難點

  1、重點:弄清應用題題意列出方程。

  2、難點:弄清應用題題意列出方程。

  教學過程

  一、復習

  1、什么叫一元一次方程?

  2、解一元一次方程的理論根據(jù)是什么?

  二、新授。

  例1、如圖(課本第10頁)天平的兩個盤內(nèi)分別盛有51克,45克食鹽,問應該從盤A內(nèi)拿出多少鹽放到月盤內(nèi),才能兩盤所盛的鹽的質(zhì)量相等?

  分析:等量關系;A盤現(xiàn)有鹽=B盤現(xiàn)有鹽

  檢驗所求出的解是否合理。 培養(yǎng)學生自覺反思求解過程和自覺檢驗方程的解是否正確的良好習慣。

  例2.學校團委組織65名團員為學校建花壇搬磚,初一同學每人搬6塊,其他年級同學每人搬8塊,總共搬了1400塊,問初一同學有多少人參加了搬磚?

  1.題目中有哪些已知量?

  (1)參加搬磚的初一同學和其他年級同學共65名。

  (2)初一同學每人搬6塊,其他年級同學每人搬8塊。

  (3)初一和其他年級同學一共搬了1400塊。

  2.求什么?

  初一同學有多少人參加搬磚?

  3.等量關系是什么?

  初一同學搬磚的塊數(shù)十其他年級同學的搬磚數(shù)=1400

  三、鞏固練習

  教科書第12頁練習1、2、3

  四、小結

  列方程解應用題的關鍵在于抓住能表示問題含意的一個主要等量關系,對于這個等量關系中涉及的.量,哪些是已知的,哪些是未知的,用字母表示適當?shù)奈粗獢?shù)(設元),再將其余未知量用這個字母的代數(shù)式表示,最后根據(jù)等量關系,得到方程,解這個方程求得未知數(shù)的值,并檢驗是否合理。最后寫出答案。

  五、作業(yè)

北師版七年級數(shù)學下冊教案范文4

  一、素質(zhì)教育目標

  (一)知識教學點

  1.理解有理數(shù)乘方的意義.

  2.掌握有理數(shù)乘方的運算.

  (二)能力訓練點

  1.培養(yǎng)學生觀察、分析、比較、歸納、概括的能力.

  2.滲透轉化思想.

  (三)德育滲透點:培養(yǎng)學生勤思、認真和勇于探索的精神.

  (四)美育滲透點

  把記成,顯示了乘方符號的簡潔美.

  二、學法引導

  1.教學方法:引導探索法,嘗試指導,充分體現(xiàn)學生主體地位.

  2.學生學法:探索的性質(zhì)→練習鞏固

  三、重點、難點、疑點及解決辦法

  1.重點:運算.

  2.難點:運算的符號法則.

  3.疑點:①乘方和冪的區(qū)別.

 、谂c的區(qū)別.

  四、課時安排

  1課時

  五、教具學具準備

  投影儀、自制膠片.

  六、師生互動活動設計

  教師引導類比,學生討論歸納乘方的概念,教師出示探索性練習,學生討論歸納乘方的性質(zhì),教師出示鞏固性練習,學生多種形式完成.

  七、教學步驟

  (一)創(chuàng)設情境,導入 新課

  師:在小學我們已經(jīng)學過:記作,讀作的平方(或的二次方);記作,讀作的立方(或的三次方);那么可以記作什么?讀作什么?

  生:可以記作,讀作的四次方.

  師:呢?

  生:可以記作,讀作的五次方.

  師:(為正整數(shù))呢?

  生:可以記作,讀作的'次方.

  師:很好!把個相乘,記作,既簡單又明確.

  【教法說明】教師給學生創(chuàng)設問題情境,鼓勵學生積極參與,大大調(diào)動了學生學習的積極性.同時,使學生認識到數(shù)學的發(fā)展是不斷進行推廣的,是由計算正方形的面積得到的,是由計算正方體和體積得到的,而,……是學生通過類推得到的

  師:在小學對底數(shù),我們只能取正數(shù).進入中學以后我們學習了有理數(shù),那么還可取哪些數(shù)呢?請舉例說明.

  生:還可取負數(shù)和零.例如:0×0×0記,(-2)×(-2)×(-2)×(-2)記作.

  非常好!對于中的,不僅可以取正數(shù),還可以取0和負數(shù),也就是說可以取任意有理數(shù),這就是我們今天研究的課題:(板書).

  【教法說明】對于的范圍,是在教師的引導下,學生積極動腦參與,并且根據(jù)初一學生的認知水平,分層逐步說明可以取正數(shù),可以取零,可以取負數(shù),最后總結出可以取任意有理數(shù).

  (二)探索新知,講授新課

  1.求個相同因數(shù)的積的運算,叫做乘方.

  乘方的結果叫做冪,相同的因數(shù)叫做底數(shù),相同的因數(shù)的個數(shù)叫做指數(shù).一般地,在中,取任意有理數(shù),取正整數(shù).

  注意:乘方是一種運算,冪是乘方運算的結果.看作是的次方的結果時,也可讀作的次冪.

  鞏固練習(出示投影1)

  (1)在中,底數(shù)是__________,指數(shù)是___________,讀作__________或讀作___________;

  (2)在中,-2是__________,4是__________,讀作__________或讀作__________;

  (3)在中,底數(shù)是_________,指數(shù)是__________,讀作__________;

  (4)5,底數(shù)是___________,指數(shù)是_____________.

  【教法說明】此組練習是鞏固乘方的有關概念,及時反饋學生掌握情況.(2)、(3)小題的區(qū)別表示底數(shù)是-2,指數(shù)是4的冪;而表示底數(shù)是2,指數(shù)是4的冪的相反數(shù).為后面的計算做鋪墊.通過第(4)小題指出一個數(shù)可以看作這個數(shù)本身的一次方,如5就是,指數(shù)1通常省略不寫.

  師:到目前為止,對有理數(shù)業(yè)說,我們已經(jīng)學過幾種運算?分別是什么?其運算結果叫什么?

  學生活動:同學們思考,前后桌同學互相討論交流,然后舉手回答.

  生:到目前為止,已經(jīng)學習過五種運算,它們是:

  運算:加、減、乘、除、乘方;

  運算結果:和、差、積、商、冪;

  教師對學生的回答給予評價并鼓勵.

  【教法說明】注重學生在認知過程中的思維.主動參與,通過學生討論、歸納得出的知識,比教師的單獨講解要記得牢,同時也培養(yǎng)學生歸納、總結的能力.

  師:我們知道,乘方和加、減、乘、除一樣,也是一種運算,如何進行乘方運算?請舉例說明.

  學生活動:學生積極思考,同桌相互討論,并在練習本上舉例.

  【教法說明】通過學生積極動腦,主動參與,得出可以利用有理數(shù)的乘法運算來進行有理數(shù)乘方的運算.向?qū)W生滲透轉化的思想.

  2.練習:(出示投影2)

  計算:1.(1)2, (2), (3), (4).

  2.(1),.

  (2)-2,.

  3.(1)0, (2), (3), (4).

  學生活動:學生獨立完成解題過程,請三個學生板演,教師巡回指導,待學生完成后,師生共同評價對錯,并予以鼓勵.

  師:請同學們觀察、分析、比較這三組題中,每組題中底數(shù)、指數(shù)和冪之間有什么聯(lián)系?

  先讓學生獨立思考,教師邊巡視邊做適當提示.然后讓學生討論,老師加入某一小組.

  生:正數(shù)的任何次冪都是正數(shù);負數(shù)的奇次冪是負數(shù),負數(shù)的偶次冪是正數(shù),零的任何次冪都是零.

  師:請同學們繼續(xù)觀察與,與中,底數(shù)、指數(shù)和冪之間有何聯(lián)系?你能得出什么結論呢?

  學生活動:學生積極思考,同桌之間、前后桌之間互相討論.

  生:互為相反數(shù)的兩個數(shù)的奇次冪仍互為相反數(shù),偶次冪相等.

  師:請同學思考一個問題,任何一個數(shù)的偶次冪是什么數(shù)?

  生:任何一個數(shù)的偶次冪是非負數(shù).

  師:你能把上述結論用數(shù)學符號表示嗎?

  生:(1)當時,(為正整數(shù));

  (2)當

  (3)當時,(為正整數(shù));

  (4)(為正整數(shù));

  (為正整數(shù));

  (為正整數(shù),為有理數(shù)).

  【教法說明】教師把重點放在教學情境的設計上,通過學生自己探索,獲取知識.教師要始終給學生創(chuàng)造發(fā)揮的機會,注重學生參與.學生通過特殊問題歸納出一般性的結論,既訓練學生歸納總結的能力和口頭表達的能力,又能使學生對法則記得牢,領會的深刻.

北師版七年級數(shù)學下冊教案范文5

  教學目標

  1.理解有理數(shù)除法的意義,熟練掌握有理數(shù)除法法則,會進行運算;

  2.了解倒數(shù)概念,會求給定有理數(shù)的倒數(shù);

  3.通過將除法運算轉化為乘法運算,培養(yǎng)學生的轉化的思想;通過運算,培養(yǎng)學生的運算能力。

  教學建議

  (一)重點、難點分析

  本節(jié)教學的重點是熟練進行運算,教學難點 是理解法則。

  1.有理數(shù)除法有兩種法則。法則1:除以一個數(shù)等于乘以這個數(shù)的倒數(shù)。是把除法轉化為乘法來解決問題。法則2是把有理數(shù)除法納入有理數(shù)運算的統(tǒng)一程序:一確定符號;二計算絕對值。如:按法則1計算:原式;按法則2計算:原式。

  2.對于除法的兩個法則,在計算時可根據(jù)具體的`情況選用,一般在不能整除的情況下應用第一法則。如;在有整除的情況下,應用第二個法則比較方便,如;在能整除的情況下,應用第二個法則比較方便,如,如寫成就麻煩了。

  (二)知識結構

  (三)教法建議

  1.學生實際運算時,老師要強調(diào)先確定商的符號,然后在根據(jù)不同情況采取適當?shù)姆椒ㄇ笊痰慕^對值,求商的絕對值時,可以直接除,也可以乘以除數(shù)的倒數(shù)。

  2.關于0不能做除數(shù)的問題,讓學生結合小學的知識接受這一認識就可以了,不必具體講述0為什么不能做除數(shù)的理由。

  3.理解倒數(shù)的概念

  (1)根據(jù)定義乘積為1的兩個數(shù)互為倒數(shù),即:,則互為倒數(shù)。如:,則2與,-2與互為倒數(shù)。

  (2)由倒數(shù)的定義,我們可以得到求已知數(shù)倒數(shù)的一種基本方法:即用1除以已知數(shù),所得商就是已知數(shù)的倒數(shù)。如:求的倒數(shù):計算,-2就是的倒數(shù)。一般我們求已知數(shù)的倒數(shù)很少用這種方法,實際應用時我們常把已知數(shù)看作分數(shù)形式,然后把分子、分母顛倒位置,所得新數(shù)就是原數(shù)的倒數(shù)。如-2可以看作,分子、分母顛倒位置后為,就是的倒數(shù)。

  (3)倒數(shù)與相反數(shù)這兩個概念很容易混淆。要注意區(qū)分。首先倒數(shù)是指乘積為1的兩個數(shù),而相反數(shù)是指和為0的兩個數(shù)。如:,2與互為倒數(shù),2與-2互為相反數(shù)。其次互為倒數(shù)的兩個數(shù)符號相同,而互為相反數(shù)符號相反。如:-2的倒數(shù)是,-2的相反數(shù)是+2;另外0沒有倒數(shù),而0的相反數(shù)是0。

  4.關于倒數(shù)的求法要注意:

  (1)求分數(shù)的倒數(shù),只要把這個分數(shù)的分子、分母顛倒位置即可.

  (2)正數(shù)的倒數(shù)是正數(shù),負數(shù)的倒數(shù)仍是負數(shù).

  (3)負倒數(shù)的定義:乘積是-1的兩個數(shù)互為負倒數(shù).

北師版七年級數(shù)學下冊教案范文6

  教學目的:

  掌握坐標變化與圖形平移的關系;

  發(fā)展學生的形象思維能力和數(shù)形結合意識。

  教學重點:掌握圖形平移前后的坐標變化規(guī)律,教學難點:利用圖形平移解決相關問題。

  教學過程:

  復習引入

  1、什么叫平移?

  把一個圖形整體沿某一方向移動一定的距離,這種移動叫做平移。

  2、平移有什么性質(zhì)?

  (1)把一個圖形整體沿某一直線方向移動,會得到一個新的圖形,新圖形與原圖形的形狀和大小完全相同。

  (2)新圖形中的每一點,都是原圖形中某一點移動后得到的,這兩個點是對應點,連接各組對應點的線段平行且相等。

  (3)問:一個點平移后的坐標會發(fā)生變化嗎?

  二、新授

  1、平面直角坐標系內(nèi)有一點a(-2,-3)

  1將點a(-2,-3)向右平移5個單位后,得到點 a1的坐標是什么?

  2將點a(-2,-3)向上平移4個單位后,得到點 a2的坐標是什么?

  2、歸納:

  在平面直角坐標系中,將點(x,y)向右(或左)平移a個單位長度,可以得到對應點(x+a,y)(或(x-a,y));

  將點(x,y)向上(或下)平移 b個單位長度,可以得到對應點(x,y+b)(或(x,y-b)) 。

  簡稱:橫移縱不變,縱移橫不變。

  3、問:線段ab兩個端點的坐標分別是a(-5,3),b(-3,0).將線段ab兩個端點的橫坐標都加上6,縱坐標不變分別得到點a1 、 b1 , 連接a1 、b1 ,所得線段與原線段的大小和位置上有什么關系?

  4、例題:三角形abc三個頂點的坐標分別是a(4,3)b(3,1)c(1,2)

  (1)將三角形abc三個頂點的橫坐標都減去6,縱坐標不變,分別得到點a1、b1、c1,依次連接各點,所得三角形a1 b1 c1與三角形a b c的大小、形狀和位置上有什么關系?

  (2)將三角形abc三個頂點的縱坐標都減去5,橫坐標不變,分別得到點a2 、b2 、c2 ,依次連接各點,所得三角形a2b2c2與三角形abc的大小、形狀和位置上有什么關系?

  5、歸納:

  在平面直角坐標系內(nèi):

  如果把一個圖形各個點的橫坐標都加(或減去)一個正數(shù) a,相應的新圖形就是把原圖形向右(或向左)平移a個單位長度;

  如果把它各個點的縱坐標都加(或減去)一個正數(shù) a,相應的新圖形就是把原圖形向上(或向下 )平移 a個單位長度.

  6、思考:如果將三角形abc三個頂點的'橫坐標都減去6,同時縱坐標都減去5,這時圖形在哪兒?把它畫出來!(有幾種平移方法)

  7、p53t1:圖中三架飛機p、q、r保持編隊飛行,分別寫出它們的坐標。30秒后,飛機p飛到p`位置,飛機q、r飛到了什么位置?分別寫出這三架飛機新位置的坐標。

  8、課內(nèi)練習:

  1p53練習;

  2口答:p53習題t2、3、4、6。

  9、小結:

  1在平面直角坐標系中,將點(x,y)向右(或左)平移a個單位長度,可以得到對應點(x+a,y)(或(x-a,y));

  將點(x,y)向上(或下)平移 b個單位長度,可以得到對應點(x,y+b)(或(x,y-b)) 。

  2在平面直角坐標系內(nèi):

  如果把一個圖形各個點的橫坐標都加(或減去)一個正數(shù) a,相應的新圖形就是把原圖形向右(或向左)平移a個單位長度;

  如果把它各個點的縱坐標都加(或減去)一個正數(shù) a,相應的新圖形就是把原圖形向上(或向下 )平移 a個單位長度.

  10、作業(yè):p55t7、8

【北師版七年級數(shù)學下冊教案】相關文章:

北師大版小學數(shù)學下冊教案11-05

北師大版數(shù)學七年級下冊教案模板01-03

北師大版數(shù)學下冊教學反思04-04

北師版四年級數(shù)學下冊教案11-07

四年級下冊數(shù)學北師版教案02-04

北師版小學數(shù)學六年級下冊教案范文11-06

北師版四年級下冊數(shù)學教案02-04

北師大版數(shù)學三年級下冊教案02-04

北師版四年級數(shù)學下冊數(shù)學教案03-26