高中集合教案
作為一位杰出的老師,可能需要進(jìn)行教案編寫工作,教案是教學(xué)藍(lán)圖,可以有效提高教學(xué)效率。那么應(yīng)當(dāng)如何寫教案呢?下面是小編為大家收集的高中集合教案,僅供參考,大家一起來看看吧。
高中集合教案1
目的: 通過實(shí)例及圖形讓學(xué)生理解交集與并集的概念及有關(guān)性質(zhì)。
過程:
復(fù)習(xí):子集、補(bǔ)集與全集的概念及其表示方法
提問(板演):U={x|0≤x<6,x(Z} A={1,3,5} B={1,4}
求:CuA= {0,2,4}. CuB= {0,2,3,5}.
新授:
1、實(shí)例: A={a,b,c,d} B={a,b,e,f}
圖
公共部分 A∩B 合并在一起 A∪B
2、定義: 交集: A∩B ={x|x(A且x(B} 符號、讀法
并集: A∪B ={x|x(A或x(B}
見課本P10--11 定義 (略)
3、例題:課本P11例一至例五
練習(xí)P12
補(bǔ)充: 例一、設(shè)A={2,-1,x2-x+1}, B={2y,-4,x+4}, C={-1,7} 且A∩B=C求x,y。
解:由A∩B=C知 7(A ∴必然 x2-x+1=7 得
x1=-2, x2=3
由x=-2 得 x+4=2(C ∴x(-2
∴x=3 x+4=7(C 此時 2y=-1 ∴y=-
∴x=3 , y=-
例二、已知A={x|2x2=sx-r}, B={x|6x2+(s+2)x+r=0} 且 A∩B={ }求A∪B。
解:
∵ (A且 (B ∴
解之得 s= (2 r= (
∴A={ ( } B={ ( }
∴A∪B={ ( ,( }
三、小結(jié): 交集、并集的'定義
高中集合教案2
教材:集合的概念
目的:要求學(xué)生初步理解集合的概念,知道常用數(shù)集及其記法;初步了解集合的分類及性質(zhì)。
過程:
一、引言:(實(shí)例)用到過的“正數(shù)的集合”、“負(fù)數(shù)的集合”
如:2x-1>3 x>2所有大于2的實(shí)數(shù)組成的集合稱為這個不等式的解集。
如:幾何中,圓是到定點(diǎn)的距離等于定長的點(diǎn)的集合。
如:自然數(shù)的集合 0,1,2,3,……
如:高一(5)全體同學(xué)組成的集合。
結(jié)論: 某些指定的對象集在一起就成為一個集合,其中每一個對象叫元素。
指出:“集合”如點(diǎn)、直線、平面一樣是不定義概念。
二、集合的表示: { … } 如{我校的籃球隊(duì)員},{太平洋、大西洋、印度洋、北冰洋}
用拉丁字母表示集合:A={我校的籃球隊(duì)員} ,B={1,2,3,4,5}
常用數(shù)集及其記法:
非負(fù)整數(shù)集(即自然數(shù)集) 記作:N
正整數(shù)集 N或 N+
整數(shù)集 Z
有理數(shù)集 Q
實(shí)數(shù)集 R
集合的三要素: 1。元素的確定性; 2。元素的互異性; 3。元素的無序性
(例子 略)
三、關(guān)于“屬于”的概念
集合的元素通常用小寫的拉丁字母表示,如:a是集合A的元素,就說a屬于集A 記作 a(A ,相反,a不屬于集A 記作 a(A (或a(A)
例: 見P4—5中例
四、練習(xí) P5 略
五、集合的表示方法:列舉法與描述法
列舉法:把集合中的元素一一列舉出來。
例:由方程x2-1=0的所有解組成的集合可表示為{(1,1}
例;所有大于0且小于10的奇數(shù)組成的集合可表示為{1,3,5,7,9}
描述法:用確定的條件表示某些對象是否屬于這個集合的方法。
語言描述法:例{不是直角三角形的三角形}再見P6例
數(shù)學(xué)式子描述法:例 不等式x-3>2的解集是{x(R| x-3>2}或{x| x-3>2}或{x:x-3>2} 再見P6例
六、集合的分類
有限集 含有有限個元素的集合
無限集 含有無限個元素的集合 例題略
空集 不含任何元素的集合 (
七、用圖形表示集合 P6略
八、練習(xí) P6
小結(jié):概念、符號、分類、表示法
九、作業(yè) P7習(xí)題
第二教時
教材: 1、復(fù)習(xí) 2、《課課練》及《教學(xué)與測試》中的有關(guān)內(nèi)容
目的: 復(fù)習(xí)集合的概念;鞏固已經(jīng)學(xué)過的內(nèi)容,并加深對集合的理解。
過程:
復(fù)習(xí):(結(jié)合提問)
集合的概念 含集合三要素
集合的'表示、符號、常用數(shù)集、列舉法、描述法
集合的分類:有限集、無限集、空集、單元集、二元集
關(guān)于“屬于”的概念
例一 用適當(dāng)?shù)姆椒ū硎鞠铝屑希?/p>
平方后仍等于原數(shù)的數(shù)集
解:{x|x2=x}={0,1}
比2大3的數(shù)的集合
解:{x|x=2+3}={5}
不等式x2-x-6<0的整數(shù)解集
解:{x(Z| x2-x-6<0}={x(Z| -2
過原點(diǎn)的直線的集合
解:{(x,y)|y=kx}
方程4x2+9y2-4x+12y+5=0的解集
解:{(x,y)| 4x2+9y2-4x+12y+5=0}={(x,y)| (2x-1)2+(3y+2)2=0}={(x,y)| (1/2,-2/3)}
使函數(shù)y= 有意義的實(shí)數(shù)x的集合
解:{x|x2+x-6(0}={x|x(2且x(3,x(R}
處理蘇大《教學(xué)與測試》第一課 含思考題、備用題
處理《課課練》
作業(yè) 《教學(xué)與測試》 第一課 練習(xí)題
第三教時
教材: 子集
目的: 讓學(xué)生初步了解子集的概念及其表示法,同時了解等集與真子集的有關(guān)概念.
過程:
一 提出問題:現(xiàn)在開始研究集合與集合之間的關(guān)系.
存在著兩種關(guān)系:“包含”與“相等”兩種關(guān)系.
二 “包含”關(guān)系—子集
實(shí)例: A={1,2,3} B={1,2,3,4,5} 引導(dǎo)觀察.
結(jié)論: 對于兩個集合A和B,如果集合A的任何一個元素都是集合B的元素,則說:集合A包含于集合B,或集合B包含集合A,記作A(B (或B(A)
也說: 集合A是集合B的子集.
反之: 集合A不包含于集合B,或集合B不包含集合A,記作A(B (或B(A)
注意: (也可寫成(;(也可寫成(;( 也可寫成(;(也可寫成(。
規(guī)定: 空集是任何集合的子集 . φ(A
三 “相等”關(guān)系
實(shí)例:設(shè) A={x|x2-1=0} B={-1,1} “元素相同”
結(jié)論:對于兩個集合A與B,如果集合A的任何一個元素都是集合B的元素,同時,集合B的任何一個元素都是集合A的元素,我們就說集合A等于集合B, 即: A=B
、 任何一個集合是它本身的子集。 A(A
、 真子集:如果A(B ,且A( B那就說集合A是集合B的真子集,記作A B
、 空集是任何非空集合的真子集。
、 如果 A(B, B(C ,那么 A(C
證明:設(shè)x是A的任一元素,則 x(A
A(B, x(B 又 B(C x(C 從而 A(C
同樣;如果 A(B, B(C ,那么 A(C
、 如果A(B 同時 B(A 那么A=B
四 例題: P8 例一,例二 (略) 練習(xí) P9
補(bǔ)充例題 《課課練》 課時2 P3
五 小結(jié):子集、真子集的概念,等集的概念及其符號
幾個性質(zhì): A(A
A(B, B(C (A(C
A(B B(A( A=B
作業(yè):P10 習(xí)題 1,2,3 《課課練》 課時中選擇
第四教時
教材:全集與補(bǔ)集
目的:要求學(xué)生掌握全集與補(bǔ)集的概念及其表示法
過程:
一 復(fù)習(xí):子集的概念及有關(guān)符號與性質(zhì)。
提問(板演):用列舉法表示集合:A={6的正約數(shù)},B={10的正約數(shù)},C={6與10的正公約數(shù)},并用適當(dāng)?shù)姆柋硎舅鼈冎g的關(guān)系。
解: A=(1,2,3,6}, B={1,2,5,10}, C={1,2}
C(A,C(B
二 補(bǔ)集
實(shí)例:S是全班同學(xué)的集合,集合A是班上所有參加校運(yùn)會同學(xué)的集合,集合B是班上所有沒有參加校運(yùn)動會同學(xué)的集合。
集合B是集合S中除去集合A之后余下來的集合。
結(jié)論:設(shè)S是一個集合,A是S的一個子集(即 ),由S中所有不屬于A的元素組成的集合,叫做S中子集A的補(bǔ)集(或余集)
記作: CsA 即 CsA ={x ( x(S且 x(A}
例:S={1,2,3,4,5,6} A={1,3,5} CsA ={2,4,6}
三 全集
定義: 如果集合S含有我們所要研究的各個集合的全部元素,這個集合就可以看作一個全集。通常用U來表示。
如:把實(shí)數(shù)R看作全集U, 則有理數(shù)集Q的補(bǔ)集CUQ是全體無理數(shù)的集合。
四 練習(xí):P10(略)
【高中教案】相關(guān)文章:
高中教案教案03-05
高中教學(xué)教案02-03
高中教案模板04-05
高中氯氣的教案03-07
高中雷雨教案03-30
高中功率的教案11-06
高中籃球教案02-16
勸學(xué)高中教案04-01
高中勸學(xué)教案04-01
高中概率教案01-07