當(dāng)前位置:育文網(wǎng)>教學(xué)文檔>教案> 高中不等式教案

高中不等式教案

時(shí)間:2024-11-08 17:10:01 教案 我要投稿

高中不等式教案(經(jīng)典10篇)

  作為一名教學(xué)工作者,時(shí)常要開展教案準(zhǔn)備工作,教案有利于教學(xué)水平的提高,有助于教研活動(dòng)的開展。那么你有了解過教案嗎?以下是小編精心整理的高中不等式教案,希望能夠幫助到大家。

高中不等式教案(經(jīng)典10篇)

高中不等式教案1

  教學(xué)目標(biāo):

  1.進(jìn)一步熟練掌握比較法證明不等式;

  2.了解作商比較法證明不等式;

  3.提高學(xué)生解題時(shí)應(yīng)變能力.

  教學(xué)重點(diǎn)

  比較法的應(yīng)用

  教學(xué)難點(diǎn)

  常見解題技巧

  教學(xué)方法啟發(fā)引導(dǎo)式

  教學(xué)活動(dòng)

 。ㄒ唬⿲(dǎo)入新課

  (教師活動(dòng))教師打出字幕(復(fù)習(xí)提問),請(qǐng)三位同學(xué)回答問題,教師點(diǎn)評(píng).

  (學(xué)生活動(dòng))思考問題,回答.

 。圩帜唬1.比較法證明不等式的步驟是怎樣的?

  2.比較法證明不等式的步驟中,依據(jù)、手段、目的各是什么?

  3.用比較法證明不等式的步驟中,最關(guān)鍵的是哪一步?學(xué)了哪些常用的變形方法?對(duì)式子的變形還有其它方法嗎?

  [點(diǎn)評(píng)]用比較法證明不等式步驟中,關(guān)鍵是對(duì)差式的變形.在我們所學(xué)的知識(shí)中,對(duì)式子變形的常用方法除了配方、通分,還有因式分解.這節(jié)課我們將繼續(xù)學(xué)習(xí)比較法證明不等式,積累對(duì)差式變形的常用方法和比較法思想的應(yīng)用.(板書課題)

  設(shè)計(jì)意圖:復(fù)習(xí)鞏固已學(xué)知識(shí),銜接新知識(shí),引入本節(jié)課學(xué)習(xí)的內(nèi)容.

 。ǘ┬抡n講授

  【嘗試探索,建立新知】

 。ń處熁顒(dòng))提出問題,引導(dǎo)學(xué)生研究解決問題,并點(diǎn)評(píng).

 。▽W(xué)生活動(dòng))嘗試解決問題.

  [問題]

  1.化簡(jiǎn)

  2.比較與()的大小.

 。▽W(xué)生解答問題)

 。埸c(diǎn)評(píng)]

  ①問題1,我們采用了因式分解的方法進(jìn)行簡(jiǎn)化.

 、谕ㄟ^學(xué)習(xí)比較法證明不等式,我們不難發(fā)現(xiàn),比較法的思想方法還可用來(lái)比較兩個(gè)式子的大。

  設(shè)計(jì)意圖:?jiǎn)l(fā)學(xué)生研究問題,建立新知,形成新的知識(shí)體系.

  【例題示范,學(xué)會(huì)應(yīng)用】

 。ń處熁顒(dòng))教師打出字幕(例題),引導(dǎo)、啟發(fā)學(xué)生研究問題,井點(diǎn)評(píng)解題過程.

  (學(xué)生活動(dòng))分析,研究問題.

  [字幕]例題3已知 a , b 是正數(shù),且,求證

  [分析]依題目特點(diǎn),作差后重新組項(xiàng),采用因式分解來(lái)變形.

  證明:(見課本)

  [點(diǎn)評(píng)]因式分解也是對(duì)差式變形的一種常用方法.此例將差式變形為幾個(gè)因式的積的形式,在確定符號(hào)中,表達(dá)過程較復(fù)雜,如何書寫證明過程,例3給出了一個(gè)好的示范.

 。埸c(diǎn)評(píng)]解這道題在判斷符號(hào)時(shí)用了分類討論,分類討論是重要的數(shù)學(xué) 思想方法.要理解為什么分類,怎樣分類.分類時(shí)要不重不漏.

 。圩帜唬堇5甲、乙兩人同時(shí)同地沿同一條路線走到同一地點(diǎn).甲有一半時(shí)間以速度 m 行走,另一半時(shí)間以速度 n 行走;有一半路程乙以速度 m 行走,另一半路程以速度 n 行走,如果,問甲、乙兩人誰(shuí)先到達(dá)指定地點(diǎn).

  [分析]設(shè)從出發(fā)地點(diǎn)至指定地點(diǎn)的路程為,甲、乙兩人走完這段路程用的時(shí)間分別為,要回答題目中的問題,只要比較、的大小就可以了.

  解:(見課本)

  [點(diǎn)評(píng)]此題是一個(gè)實(shí)際問題,學(xué)習(xí)了如何利用比較法證明不等式的思想方法解決有關(guān)實(shí)際問題.要培養(yǎng)自己學(xué)數(shù)學(xué),用數(shù)學(xué)的良好品質(zhì).

  設(shè)計(jì)意圖:鞏固比較法證明不等式的方法,掌握因式分解的變形方法和分類討論確定符號(hào)的方法.培養(yǎng)學(xué)生應(yīng)用知識(shí)解決實(shí)際問題的能力.

  【課堂練習(xí)】

  (教師活動(dòng))教師打出字幕練習(xí),要求學(xué)生獨(dú)立思考,完成練習(xí);請(qǐng)甲、乙兩位學(xué)生板演;巡視學(xué)生的解題情況,對(duì)正確的給予肯定,對(duì)偏差及時(shí)糾正;點(diǎn)評(píng)練習(xí)中存在的問題.

  (學(xué)生活動(dòng))在筆記本上完成練習(xí),甲、乙兩位同學(xué)板演.

 。圩帜唬菥毩(xí):1.設(shè),比較與的大。

  2.已知,求證

  設(shè)計(jì)意圖:掌握比較法證明不等式及思想方法的'應(yīng)用.靈活掌握因式分解法對(duì)差式的變形和分類討論確定符號(hào).反饋信息,調(diào)節(jié)課堂教學(xué).

  【分析歸納、小結(jié)解法】

 。ń處熁顒(dòng))分析歸納例題的解題過程,小結(jié)對(duì)差式變形、確定符號(hào)的常用方法和利用不等式解決實(shí)際問題的解題步驟.

 。▽W(xué)生活動(dòng))與教師一道小結(jié),并記錄在筆記本上.

  1.比較法不僅是證明不等式的一種基本、重要的方法,也是比較兩個(gè)式子大小的一種重要方法.

  2.對(duì)差式變形的常用方法有:配方法,通分法,因式分解法等.

  3.會(huì)用分類討論的方法確定差式的符號(hào).

  4.利用不等式解決實(shí)際問題的解題步驟:①類比列方程解應(yīng)用題的步驟.②分析題意,設(shè)未知數(shù),找出數(shù)量關(guān)系(函數(shù)關(guān)系,相等關(guān)系或不等關(guān)系),③列出函數(shù)關(guān)系、等式或不等式,④求解,作答.

  設(shè)計(jì)意圖:培養(yǎng)學(xué)生分析歸納問題的能力,掌握用比較法證明不等式的知識(shí)體系.

 。ㄈ┬〗Y(jié)

 。ń處熁顒(dòng))教師小結(jié)本節(jié)課所學(xué)的知識(shí)及數(shù)學(xué) 思想與方法.

 。▽W(xué)生活動(dòng))與教師一道小結(jié),并記錄筆記.

  本節(jié)課學(xué)習(xí)了對(duì)差式變形的一種常用方法因式分解法;對(duì)符號(hào)確定的分類討論法;應(yīng)用比較法的思想解決實(shí)際問題.

  通過學(xué)習(xí)比較法證明不等式,要明確比較法證明不等式的理論依據(jù),理解轉(zhuǎn)化,使問題簡(jiǎn)化是比較法證明不等式中所蘊(yùn)含的重要數(shù)學(xué)思想,掌握求差后對(duì)差式變形以及判斷符號(hào)的重要方法,并在以后的學(xué)習(xí)中繼續(xù)積累方法,培養(yǎng)用數(shù)學(xué)知識(shí)解決實(shí)際問題的能力.

  設(shè)計(jì)意圖:培養(yǎng)學(xué)生對(duì)所學(xué)的知識(shí)進(jìn)行概括歸納的能力,鞏固所學(xué)的知識(shí),領(lǐng)會(huì)化歸、類比、分類討論的重要數(shù)學(xué) 思想方法.

  (四)布置作業(yè)

  1.課本作業(yè):P17 7、8。

  2,思考題:已知,求證

  3.研究性題:對(duì)于同樣的距離,船在流水中來(lái)回行駛一次的時(shí)間和船在靜水中來(lái)回行駛一次的時(shí)間是否相等?(假設(shè)船在流水中的速度和部在靜水中的速度保持不變)

  設(shè)計(jì)意圖:思考題讓學(xué)生了解商值比較法,掌握分類討論的思想.研究性題是使學(xué)生理論聯(lián)系實(shí)際,用數(shù)學(xué)解決實(shí)際問題,提高應(yīng)用數(shù)學(xué)的能力.

 。ㄎ澹┱n后點(diǎn)評(píng)

  1.教學(xué)評(píng)價(jià)、反饋調(diào)節(jié)措施的構(gòu)想:本節(jié)課采用啟發(fā)引導(dǎo),講練結(jié)合的授課方式,發(fā)揮教師主導(dǎo)作用,體現(xiàn)學(xué)生主體地位,通過啟發(fā)誘導(dǎo)學(xué)生深入思考問題,解決問題,反饋學(xué)習(xí)信息,調(diào)節(jié)教學(xué)活動(dòng).

  2.教學(xué)措施的設(shè)計(jì):由于對(duì)差式變形,確定符號(hào)是掌握比較法證明不等式的關(guān)鍵,本節(jié)課在上節(jié)課的基礎(chǔ)上繼續(xù)學(xué)習(xí)差式變形的方法和符號(hào)的確定,例3和例4分別使學(xué)生掌握因式分解變形和分類討論確定符號(hào),例5使學(xué)生對(duì)所學(xué)的知識(shí)會(huì)應(yīng)用.例題設(shè)計(jì)目的在于突出重點(diǎn),突破難點(diǎn),學(xué)會(huì)應(yīng)用

高中不等式教案2

  教學(xué)任務(wù)分析

  教學(xué)目標(biāo)

  知識(shí)技能

  1.了解不等式及一元一次不等式概念。

  2.理解不等式的解、解集,能正確表示不等式的解集。

  數(shù)學(xué)思考

  通過類比等式的對(duì)應(yīng)知識(shí),探索不等式的概念和解,體會(huì)不等式與等式的異同,初步掌握類比的思想方法。

  解決問題

  1.經(jīng)歷把實(shí)際問題抽象為不等式的過程,能夠列出不等關(guān)系式。

  2.初步體會(huì)不等式(組)是刻畫現(xiàn)實(shí)世界中不等關(guān)系的一種有效數(shù)學(xué)模型,培養(yǎng)學(xué)生的建模意識(shí)。

  情感態(tài)度

  通過對(duì)不等式概念及其解集等有關(guān)概念的探索,培養(yǎng)學(xué)生的知識(shí)遷移能力和建模意識(shí),加強(qiáng)同學(xué)之間的使用與交流。

  重點(diǎn)

  不等式相關(guān)概念的理解和不等式的解集的表示。

  難點(diǎn)

  不等式解集的理解。

  教學(xué)流程安排

  活動(dòng)流程圖

  活動(dòng)內(nèi)容和目的

  活動(dòng)一:

  感知不等關(guān)系,了解不等式的概念。

  通過實(shí)例,讓學(xué)生認(rèn)識(shí)到不等關(guān)系在生活中的存在,通過問題的解答,讓學(xué)生了解不等式的概念,體會(huì)不等式是解決實(shí)際問題的有效工具。

  活動(dòng)二:

  通過類比方程,繼續(xù)探索出不等式的解、解集及其表示方法。

  通過解決上個(gè)環(huán)節(jié)的問題,得出不等式的解,再引導(dǎo)學(xué)生觀察解的特點(diǎn),探索出解集的兩種表示方法(符號(hào)表示、數(shù)軸表示),并且培養(yǎng)學(xué)生用估算方法求解集的技能。

  活動(dòng)三:

  繼續(xù)探索,歸納出一元一次不等式的.意義。

  針對(duì)所學(xué)的不等式,讓學(xué)生歸納出特點(diǎn),得到一元一次不等式的概念,并對(duì)概念進(jìn)行辨析。

  活動(dòng)四:

  拓展探究,深化新知。

  運(yùn)用本節(jié)所學(xué)的知識(shí),解決實(shí)際問題,使學(xué)生經(jīng)歷將實(shí)際問題轉(zhuǎn)化為數(shù)學(xué)問題,再加以解決的過程,實(shí)現(xiàn)對(duì)所學(xué)知識(shí)的鞏固和深化。

  活動(dòng)五:

  小結(jié)、布置作業(yè)

  讓學(xué)生通過自我反思和互相質(zhì)疑提問,歸納總結(jié)本節(jié)課的主要內(nèi)容,交流在概念、解及解集學(xué)習(xí)中的心得和體會(huì),不斷積累數(shù)學(xué)活動(dòng)經(jīng)驗(yàn),教師應(yīng)主動(dòng)參與學(xué)生小結(jié)中,作好引導(dǎo)工作,布置好作業(yè),并作及時(shí)反饋。

  教學(xué)過程設(shè)計(jì)

  問題與情境

  師生行為

  設(shè)計(jì)意圖

  [活動(dòng)1]

  1、(多媒體展示情境)

  小強(qiáng)準(zhǔn)備隨父母乘車去武當(dāng)山春游。

 、旁谲嚿峡吹絻和I票所需的測(cè)身高標(biāo)識(shí)線。

  問題:若x表示一名兒童的身高,那么

  ①x滿足______時(shí),他可免票。

 、趚滿足______時(shí),他該買全票。

 、埔阎宸c武當(dāng)山的距離為150千米,他們上午10點(diǎn)鐘從襄樊出發(fā),汽車勻速行駛。

  ①若該車計(jì)劃中午12點(diǎn)準(zhǔn)時(shí)到達(dá)武當(dāng)山,車速應(yīng)滿足什么條件?

  設(shè)車速為x千米/小時(shí),可列式子:______________。

 、谌粼撥噷(shí)際上在中午12點(diǎn)之前已到達(dá)武當(dāng)山,車速應(yīng)滿足什么條件?

  設(shè)車速為x千米/小時(shí),可列式子:______________。

  2、歸納不等式的概念和意義。

  3、鞏固練習(xí)

  用不等式表示:

  ⑴a是正數(shù);⑵a是負(fù)數(shù);⑶a與5的和小于7;⑷a與2的差大于—1;

  ⑸a的4倍大于8;

 、蔭的一半小于3。

  學(xué)生回答①這兩個(gè)由實(shí)際生活情境設(shè)置的問題,應(yīng)非常容易.問題②相對(duì)①難度加大了,難在題意中的條件不象上面那樣直接明了,并且可從距離和時(shí)間兩個(gè)角度來(lái)分析、解決問題,而七年級(jí)學(xué)生恰恰缺乏閱讀分析題意、多維度思考解決問題的能力,所以采用小組討論交流的形式解決問題②

  學(xué)生討論角度估計(jì)大都集中在距離這一角度,教師可深入小組討論中,認(rèn)真聽聽同學(xué)們的思路,應(yīng)鼓勵(lì)學(xué)生多發(fā)表意見,并適當(dāng)點(diǎn)撥,直到得出兩種不等式。

  此次活動(dòng)中,教師應(yīng)重點(diǎn)關(guān)注:討論要有足夠的時(shí)間和空間,學(xué)生在小組討論交流時(shí),是否敢于發(fā)表自己的想法。

  再給出不等式概念:

  像前面式子一樣用“”或“”號(hào)表示大小關(guān)系的式子,叫著不等式。

  教師可要求學(xué)生舉出一些表示大小的式子,學(xué)生舉出的不等式中,可能會(huì)有一些不含未知數(shù)的,如53等。教師此時(shí)應(yīng)總結(jié):不等式中可含有未知數(shù),也可不含未知數(shù)。

  教師根據(jù)學(xué)生舉例給出表示不等關(guān)系的第三種符號(hào)“≠”,并強(qiáng)調(diào):像前面式子一樣用“≠”表示不等關(guān)系的式子也是不等式。

  鞏固練習(xí)是讓學(xué)生用不等式來(lái)刻畫題中6個(gè)簡(jiǎn)單的不等關(guān)系。學(xué)生得出答案并不難,所以該環(huán)節(jié)讓學(xué)生獨(dú)立完成、互相評(píng)價(jià),教師可深入到學(xué)生的解題過程中,觀察指導(dǎo)學(xué)生的解題思路,傾聽學(xué)生的評(píng)價(jià)。

  問題1在課本中起導(dǎo)入新課作用,考慮學(xué)生實(shí)際情況(分析應(yīng)用題能力尚欠缺)和題目難度,所以設(shè)置問題串,降低難度。這樣編排教材我認(rèn)為更能體現(xiàn)知識(shí)呈現(xiàn)的序列性,從易到難,讓學(xué)生“列不等式”能力實(shí)現(xiàn)螺旋上升。

  問題3作用僅僅起鞏固上面所學(xué)的知識(shí),所以采用書中的一組習(xí)題,讓學(xué)生獨(dú)立完成,進(jìn)一步培養(yǎng)學(xué)生列不等式能力。

  采用學(xué)生熟悉的生活情境作為導(dǎo)入內(nèi)容,然后層層推進(jìn),步步設(shè)問,環(huán)環(huán)相扣,直至推出不等式的概念及概念理解中應(yīng)注意的地方。這樣實(shí)現(xiàn)了:讓學(xué)生從已有的數(shù)學(xué)經(jīng)驗(yàn)出發(fā),從生活中建構(gòu)數(shù)學(xué)模型,為后面利用“不等式”這一模型解決生活中實(shí)際問題作好鋪墊,體現(xiàn)了數(shù)學(xué)生活化、生活

高中不等式教案3

  教學(xué)目標(biāo)

  1、知識(shí)與能力目標(biāo):理解掌握基本不等式,并能運(yùn)用基本不等式解決一些簡(jiǎn)單的求最值問題;理解算數(shù)平均數(shù)與幾何平均數(shù)的概念,學(xué)會(huì)構(gòu)造條件使用基本不等式;培養(yǎng)學(xué)生探究能力以及分析問題解決問題的能力。

  2、過程與方法目標(biāo):按照創(chuàng)設(shè)情景,提出問題→剖析歸納證明→幾何解釋→應(yīng)用(最值的求法、實(shí)際問題的解決)的過程呈現(xiàn)。啟動(dòng)觀察、分析、歸納、總結(jié)、抽象概括等思維活動(dòng),培養(yǎng)學(xué)生的思維能力,體會(huì)數(shù)學(xué)概念的學(xué)習(xí)方法,通過運(yùn)用多媒體的教學(xué)手段,引領(lǐng)學(xué)生主動(dòng)探索基本不等式性質(zhì),體會(huì)學(xué)習(xí)數(shù)學(xué)規(guī)律的方法,體驗(yàn)成功的樂趣。

  3、情感與態(tài)度目標(biāo):通過問題情境的設(shè)置,使學(xué)生認(rèn)識(shí)到數(shù)學(xué)是從實(shí)際中來(lái),培養(yǎng)學(xué)生用數(shù)學(xué)的眼光看世界,通過數(shù)學(xué)思維認(rèn)知世界,從而培養(yǎng)學(xué)生善于思考、勤于動(dòng)手的良好品質(zhì)。

  教學(xué)重難點(diǎn)

  1、基本不等式成立時(shí)的三個(gè)限制條件(簡(jiǎn)稱一正、二定、三相等);

  2、利用基本不等式求解實(shí)際問題中的最大值和最小值。

  教學(xué)過程

  一、創(chuàng)設(shè)情景,提出問題;

  設(shè)計(jì)意圖:數(shù)學(xué)教育必須基于學(xué)生的“數(shù)學(xué)現(xiàn)實(shí)”,現(xiàn)實(shí)情境問題是數(shù)學(xué)教學(xué)的平臺(tái),數(shù)學(xué)教師的任務(wù)之一就是幫助學(xué)生構(gòu)造數(shù)學(xué)現(xiàn)實(shí),并在此基礎(chǔ)上發(fā)展他們的數(shù)學(xué)現(xiàn)實(shí).基于此,設(shè)置如下情境:

  上圖是在北京召開的第24屆國(guó)際數(shù)學(xué)家大會(huì)的會(huì)標(biāo),會(huì)標(biāo)是根據(jù)中國(guó)古代數(shù)學(xué)家趙爽的弦圖設(shè)計(jì)的,顏色的明暗使它看上去像一個(gè)風(fēng)車,代表中國(guó)人民熱情好客。

  [問]你能在這個(gè)圖中找出一些相等關(guān)系或不等關(guān)系嗎?

  本背景意圖在于利用圖中相關(guān)面積間存在的數(shù)量關(guān)系,抽象出不等式

  在此基礎(chǔ)上,引導(dǎo)學(xué)生認(rèn)識(shí)基本不等式。

  三、理解升華:

  1、文字語(yǔ)言敘述:

  兩個(gè)正數(shù)的算術(shù)平均數(shù)不小于它們的幾何平均數(shù)。

  2、聯(lián)想數(shù)列的知識(shí)理解基本不等式

  已知a,b是正數(shù),A是a,b的等差中項(xiàng),G是a,b的正的等比中項(xiàng),A與G有無(wú)確定的大小關(guān)系?

  兩個(gè)正數(shù)的等差中項(xiàng)不小于它們正的`等比中項(xiàng)。

  3、符號(hào)語(yǔ)言敘述:

  4、探究基本不等式證明方法:

  [問]如何證明基本不等式?

  (意圖在于引領(lǐng)學(xué)生從感性認(rèn)識(shí)基本不等式到理性證明,實(shí)現(xiàn)從感性認(rèn)識(shí)到理性認(rèn)識(shí)的升華,前面是從幾何圖形中的面積關(guān)系獲得不等式的,下面用代數(shù)的思想,利用不等式的性質(zhì)直接推導(dǎo)這個(gè)不等式。)

  方法一:作差比較或由

  展開證明。

  方法二:分析法(完成課本填空)

  設(shè)計(jì)依據(jù):課本是學(xué)生了解世界的窗口和工具,所以,課本必須成為學(xué)生賴以學(xué)會(huì)學(xué)習(xí)的文本.在教學(xué)中要讓學(xué)生學(xué)會(huì)認(rèn)真看書、用心思考,養(yǎng)成講講議議、

  動(dòng)手動(dòng)筆、仔細(xì)觀察、用心體會(huì)的好習(xí)慣,真正學(xué)會(huì)讀“數(shù)學(xué)書”。

  點(diǎn)評(píng):證明方法叫做分析法,實(shí)際上是尋找結(jié)論的充分條件,執(zhí)果索因的一種思維方法.

  5、探究基本不等式的幾何意義:

  借助初中階段學(xué)生熟知的幾何圖形,引導(dǎo)學(xué)生

  幾何解釋實(shí)質(zhì)可認(rèn)為是:在同一半圓中,半徑不小于半弦(直徑是最長(zhǎng)的弦);或者認(rèn)為是,直角三角形斜邊的一半不小于斜邊上的高。

  四、探究歸納

  下列命題中正確的是

  結(jié)論:

  若兩正數(shù)的乘積為定值,則當(dāng)且僅當(dāng)兩數(shù)相等時(shí),它們的和有最小值;

  若兩正數(shù)的和為定值,則當(dāng)且僅當(dāng)兩數(shù)相等時(shí),它們的乘積有最大值。

  簡(jiǎn)記為:“一正、二定、三相等”。

  五、領(lǐng)悟練習(xí):

  公式應(yīng)用之二:(最優(yōu)化問題)

  設(shè)計(jì)意圖:新穎有趣、簡(jiǎn)單易懂、貼近生活的問題,不僅極大地增強(qiáng)學(xué)生的興趣,拓寬學(xué)生的視野,更重要的是調(diào)動(dòng)學(xué)生探究鉆研的興趣,引導(dǎo)學(xué)生加強(qiáng)對(duì)生活的關(guān)注,讓學(xué)生體會(huì):數(shù)學(xué)就在我們身邊的生活中

  (1)在學(xué)農(nóng)期間,生態(tài)園中有一塊面積為100m2的矩形茶地,為了保護(hù)茶葉的健康生長(zhǎng),學(xué)校決定用籬笆圍起來(lái),問這個(gè)矩形的長(zhǎng)、寬各為多少時(shí),所用籬笆最短。最短的籬笆是多少?

  (2)現(xiàn)在學(xué)校倉(cāng)庫(kù)有一段長(zhǎng)為36m的籬笆,要圍成一個(gè)矩形菜園,問這個(gè)矩形的長(zhǎng)、寬各為多少時(shí),菜園的面積最大。最大面積是多少?

  六、反思總結(jié),整合新知:

  通過本節(jié)課的學(xué)習(xí)你有什么收獲?取得了哪些經(jīng)驗(yàn)教訓(xùn)?還有哪些問題需要

  請(qǐng)教?

  設(shè)計(jì)意圖:通過反思、歸納,培養(yǎng)概括能力;幫助學(xué)生總結(jié)經(jīng)驗(yàn)教訓(xùn),鞏固知識(shí)技能,提高認(rèn)知水平.

  老師根據(jù)情況完善如下:

  兩種思想:數(shù)形結(jié)合思想、歸納類比思想。

  三個(gè)注意:基本不等式求函數(shù)的最大(小)值是注意:“一正二定三相等”

高中不等式教案4

  一、教學(xué)目標(biāo)

  (一)知識(shí)與技能

  1.了解從實(shí)際情境中抽象出二元一次不等式(組)模型的過程

  2.掌握簡(jiǎn)單的二元線性規(guī)劃問題的解法

  3.了解數(shù)學(xué)建模的整個(gè)過程

  (二)過程與方法

  1.通過對(duì)實(shí)際問題的探索,培養(yǎng)學(xué)生用數(shù)學(xué)眼光去觀察生活、并且能提出問題、分析問題、解決問題的能力.

  2.增強(qiáng)學(xué)生的協(xié)作能力.

  (三) 情感、態(tài)度與價(jià)值觀

  1.通過學(xué)生自主探索、合作交流,親身體驗(yàn)數(shù)學(xué)模型的發(fā)現(xiàn),培養(yǎng)學(xué)生勇于探索、善于發(fā)現(xiàn)、不畏艱辛的品質(zhì),增強(qiáng)學(xué)習(xí)的成功心理,激發(fā)學(xué)習(xí)數(shù)學(xué)的興趣,深刻體會(huì)數(shù)學(xué)是有用的

  2.通過實(shí)例的社會(huì)意義,培養(yǎng)學(xué)生愛護(hù)環(huán)境的責(zé)任心.

  二、教學(xué)重點(diǎn)、難點(diǎn)

  重點(diǎn):從具體生活情境中提煉出簡(jiǎn)單的二元線性規(guī)劃問題,并且用數(shù)學(xué)方法解決問題.

  難點(diǎn):從具體生活情境中提煉出約束條件和目標(biāo)函數(shù).

  三、教學(xué)設(shè)想

  本節(jié)課采用探究式課堂教學(xué)模式,即在教學(xué)過程中,在教師的啟發(fā)引導(dǎo)下,以學(xué)生獨(dú)立自主和合作交流為前提,以二元一次不等式(組)模型的發(fā)現(xiàn)為基本探究?jī)?nèi)容,以周圍世界和生活實(shí)際為對(duì)象,為學(xué)生提供充分自由表達(dá)、質(zhì)疑、探究、討論問題的機(jī)會(huì),讓學(xué)生通過個(gè)人、小組、集體等多種解難釋疑的嘗試活動(dòng),將自己所學(xué)知識(shí)應(yīng)用于對(duì)實(shí)際問題的深入探討.讓學(xué)生在“活動(dòng)”中學(xué)習(xí),在“主動(dòng)”中發(fā)展,在“合作”中增知,在“探究”中創(chuàng)新.設(shè)計(jì)思路如下:

  創(chuàng)設(shè)情境→方案討論→數(shù)據(jù)篩選→建立模型→解決模型→反饋實(shí)際

  四、教學(xué)過程:

  引入

  (1)如圖,小明與小聰玩蹺蹺板,大家都不用力時(shí),蹺蹺板左低右高.小明的身體質(zhì)量為 p(kg),小聰?shù)纳眢w質(zhì)量為q(kg),書包的質(zhì)量為2kg,怎樣表示p 、q之間的關(guān)系?

  (2)上圖是公路上對(duì)汽車的限速標(biāo)志,表示汽車在該路段行使的速度不得超過40km /h.若用v (km /h)表示車的速度,那么v與40之間的數(shù)量關(guān)系用怎樣的式子表示?

  (3)據(jù)科學(xué)家測(cè)定,太陽(yáng)表面的溫度不低于6000 ℃.設(shè)太陽(yáng)表面的溫度為t (℃),怎樣表示t 與6000之間的關(guān)系?

  歸納:數(shù)學(xué)作用之一,我們可以用數(shù)學(xué)語(yǔ)言描述客觀世界的'某些現(xiàn)象

  當(dāng)然,數(shù)學(xué)作用不僅于此,我們還可以通過數(shù)學(xué)解決現(xiàn)實(shí)生活中的問題.

  (一)情景設(shè)置

  我校環(huán)境優(yōu)美,毗鄰江水,校園內(nèi)四季常青,但是遠(yuǎn)眺圍墻外,有一座小山,那是一座垃圾山.楊府山垃圾場(chǎng)有他的歷史作用和意義,現(xiàn)在已經(jīng)完成了它的歷史使命,而且現(xiàn)在有了負(fù)面影響,市委市政府打算對(duì)其進(jìn)行改造.經(jīng)過專家論證,有如下方案可行:發(fā)電、制磚

  (二)處理方案討論

  現(xiàn)同時(shí)用兩種措施對(duì)垃圾山進(jìn)行改造處理,如果你是項(xiàng)目經(jīng)理,給你500萬(wàn)采購(gòu)發(fā)電設(shè)備以及制磚設(shè)備,你該如何去實(shí)施?

  (學(xué)生自主發(fā)言)

  學(xué)生問題一、怎樣安排資金?買幾臺(tái)發(fā)電設(shè)備,幾臺(tái)制磚設(shè)備?如何決策?

  引導(dǎo):?jiǎn)栴}轉(zhuǎn)化為如何安排資金,能取得最大效益?即兩種方案生產(chǎn)產(chǎn)品的利潤(rùn)(售價(jià)減去成本)

  學(xué)生問題二、如何知道這些信息?(產(chǎn)品售價(jià)、設(shè)備的單價(jià)等)

  引導(dǎo)(先提問學(xué)生):上網(wǎng)查詢、市場(chǎng)調(diào)查、向已建廠取經(jīng)、參觀展銷會(huì)等等.

  (三)數(shù)據(jù)的篩選

  由于教室條件限制,不能現(xiàn)場(chǎng)查取,所以老師幫你們收集了一些資料,希望對(duì)你們有所幫助.請(qǐng)分析以下信息,提取你認(rèn)為有用的數(shù)據(jù).

  信息一、

  信息二、

  焚燒垃圾重量直接關(guān)系到垃圾發(fā)電企業(yè)的經(jīng)濟(jì)效益.在BOT的模式下,企業(yè)的效益這樣來(lái)保障:

  1.每處理1噸垃圾,政府補(bǔ)貼發(fā)電企業(yè)73.8元,

  2.保證以0.52元/千瓦時(shí)的價(jià)格收購(gòu)全部垃圾發(fā)電量,

  3.一臺(tái)發(fā)電設(shè)備每處理1噸垃圾平均費(fèi)用為123元

  4.一臺(tái)發(fā)電設(shè)備日處理垃圾能力為225噸,

  5.1噸垃圾可發(fā)電300千瓦時(shí),其中30%為自用電

  信息三、

  發(fā)電設(shè)備:120萬(wàn)/臺(tái) 制磚設(shè)備:35萬(wàn)/臺(tái)

  機(jī)房總面積為7畝,每臺(tái)設(shè)備有各自平均占地,其中發(fā)電設(shè)備每臺(tái)平均占地1畝,制磚機(jī)每臺(tái)平占地1畝

  (四)建立模型

  你能從以上信息中提煉出你所需要的信息,并用數(shù)學(xué)語(yǔ)言表示出來(lái)嗎?

  (學(xué)生動(dòng)手)

  引導(dǎo):我們剛才處理的問題即應(yīng)用題:

  例 一工廠欲生產(chǎn)甲乙兩種產(chǎn)品,已知生產(chǎn)一件甲產(chǎn)品利潤(rùn)為60元,一臺(tái)甲設(shè)備價(jià)格為120萬(wàn),占地1畝,年生產(chǎn)能力為82125件;生產(chǎn)一件乙產(chǎn)品利潤(rùn)為0.12元,一臺(tái)乙設(shè)備價(jià)格為35萬(wàn),占地1畝,年生產(chǎn)能力為15000000件.現(xiàn)有資金500萬(wàn),廠房7畝,該廠該如何添置甲乙兩種設(shè)備,使得年利潤(rùn)最大?

  (五)解決模型

  該問題即我們上節(jié)課剛學(xué)過的線性規(guī)劃問題,請(qǐng)大家動(dòng)手解決.

  (六)反饋實(shí)際

  我們可以將我們的成果發(fā)到市長(zhǎng)信箱,為城市建設(shè)出謀劃策,貢獻(xiàn)自己的一份力量.

  五、歸納小結(jié)

  (一)解決生活問題的步驟:

  創(chuàng)設(shè)情境→方案討論→數(shù)據(jù)篩選→建立模型→解決模型→反饋實(shí)際

  現(xiàn)實(shí)問題:給你資金和地皮,購(gòu)置設(shè)備

  方案討論:通過1.上網(wǎng)查詢 2.市場(chǎng)調(diào)查3.吸收已建廠經(jīng)驗(yàn)等方法收集信息.

  數(shù)據(jù)篩選及建立模型:將收集到的信息用數(shù)學(xué)語(yǔ)言表示出來(lái).

  解決模型:用已學(xué)過的數(shù)學(xué)知識(shí)進(jìn)行分析、處理,得出結(jié)論.

  反饋實(shí)際:將結(jié)論應(yīng)用于實(shí)際問題當(dāng)中.

  (二)順利解決生活問題體要具備的能力

  我們要具備信息收集及處理能力、生活語(yǔ)言轉(zhuǎn)化成數(shù)學(xué)語(yǔ)言的能力以及扎實(shí)的數(shù)學(xué)解題能力.

高中不等式教案5

  教材分析

  本節(jié)課是在系統(tǒng)的學(xué)習(xí)了不等關(guān)系和不等式性質(zhì),掌握了不等式性質(zhì)的基礎(chǔ)上展開的,作為重要的基本不等式之一,為后續(xù)的學(xué)習(xí)奠定基礎(chǔ)。要進(jìn)一步了解不等式的性質(zhì)及運(yùn)用,研究最值問題,此時(shí)基本不等式是必不可缺的;静坏仁皆谥R(shí)體系中起了承上啟下的作用,同時(shí)在生活及生產(chǎn)實(shí)際中有著廣泛的應(yīng)用,因此它也是對(duì)學(xué)生進(jìn)行情感價(jià)值觀教育的好素材,所以基本不等式應(yīng)重點(diǎn)研究。

  教學(xué)中注意用新課程理念處理教材,學(xué)生的數(shù)學(xué)學(xué)習(xí)活動(dòng)不僅要接受、記憶、模仿和練習(xí),而且要自主探索、動(dòng)手實(shí)踐、合作交流、閱讀自學(xué),師生互動(dòng),教師發(fā)揮組織者、引導(dǎo)者、合作者的作用,引導(dǎo)學(xué)生主體參與、揭示本質(zhì)、經(jīng)歷過程。通過本節(jié)學(xué)習(xí)體會(huì)數(shù)學(xué)來(lái)源于生活,提高學(xué)習(xí)數(shù)學(xué)的樂趣。

  課程目標(biāo)分析

  依據(jù)《新課程標(biāo)準(zhǔn)》對(duì)《不等式》學(xué)段的目標(biāo)要求和學(xué)生的實(shí)際情況,特確定如下目標(biāo):

  1、知識(shí)與能力目標(biāo):理解掌握基本不等式,并能運(yùn)用基本不等式解決一些簡(jiǎn)單的求最值問題;理解算數(shù)平均數(shù)與幾何平均數(shù)的概念,學(xué)會(huì)構(gòu)造條件使用基本不等式;培養(yǎng)學(xué)生探究能力以及分析問題解決問題的能力。

  2、過程與方法目標(biāo):按照創(chuàng)設(shè)情景,提出問題→剖析歸納證明→幾何解釋→應(yīng)用(最值的求法、實(shí)際問題的解決)的過程呈現(xiàn)。啟動(dòng)觀察、分析、歸納、總結(jié)、抽象概括等思維活動(dòng),培養(yǎng)學(xué)生的思維能力,體會(huì)數(shù)學(xué)概念的學(xué)習(xí)方法,通過運(yùn)用多媒體的教學(xué)手段,引領(lǐng)學(xué)生主動(dòng)探索基本不等式性質(zhì),體會(huì)學(xué)習(xí)數(shù)學(xué)規(guī)律的方法,體驗(yàn)成功的樂趣。

  3、情感與態(tài)度目標(biāo):通過問題情境的設(shè)置,使學(xué)生認(rèn)識(shí)到數(shù)學(xué)是從實(shí)際中來(lái),培養(yǎng)學(xué)生用數(shù)學(xué)的眼光看世界,通過數(shù)學(xué)思維認(rèn)知世界,從而培養(yǎng)學(xué)生善于思考、勤于動(dòng)手的良好品質(zhì)。

  教學(xué)重、難點(diǎn)分析

  重點(diǎn):應(yīng)用數(shù)形結(jié)合的思想理解基本不等式,并從不同角度探索基本不等式的證明過程及應(yīng)用。

  難點(diǎn):1、基本不等式成立時(shí)的三個(gè)限制條件(簡(jiǎn)稱一正、二定、三相等);

  2、利用基本不等式求解實(shí)際問題中的最大值和最小值。

  教法分析

  本節(jié)課采用觀察——感知——抽象——?dú)w納——探究;啟發(fā)誘導(dǎo)、講練結(jié)合的教學(xué)方法,以學(xué)生為主體,以基本不等式為主線,從實(shí)際問題出發(fā),放手讓學(xué)生探究思索。以現(xiàn)代信息技術(shù)多媒體課件作為教學(xué)輔助手段,加深學(xué)生對(duì)基本不等式的理解。

  教學(xué)準(zhǔn)備

  多媒體課件、板書

  教學(xué)過程

  教學(xué)過程設(shè)計(jì)以問題為中心,以探究解決問題的方法為主線展開。這種安排強(qiáng)調(diào)過程,符合學(xué)生的認(rèn)知規(guī)律,使數(shù)學(xué)教學(xué)過程成為學(xué)生對(duì)知識(shí)的再創(chuàng)造、再發(fā)現(xiàn)的過程,從而培養(yǎng)學(xué)生的'創(chuàng)新意識(shí)。

  具體過程安排如下:

  創(chuàng)設(shè)情景,提出問題;

  設(shè)計(jì)意圖:數(shù)學(xué)教育必須基于學(xué)生的“數(shù)學(xué)現(xiàn)實(shí)”,現(xiàn)實(shí)情境問題是數(shù)學(xué)教學(xué)的平臺(tái),數(shù)學(xué)教師的任務(wù)之一就是幫助學(xué)生構(gòu)造數(shù)學(xué)現(xiàn)實(shí),并在此基礎(chǔ)上發(fā)展他們的數(shù)學(xué)現(xiàn)實(shí).基于此,設(shè)置如下情境:

  上圖是在北京召開的第24屆國(guó)際數(shù)學(xué)家大會(huì)的會(huì)標(biāo),會(huì)標(biāo)是根據(jù)中國(guó)古代數(shù)學(xué)家趙爽的弦圖設(shè)計(jì)的,顏色的明暗使它看上去像一個(gè)風(fēng)車,代表中國(guó)人民熱情好客。

  [問]你能在這個(gè)圖中找出一些相等關(guān)系或不等關(guān)系嗎?

  本背景意圖在于利用圖中相關(guān)面積間存在的數(shù)量關(guān)系,抽象出不等式。在此基礎(chǔ)上,引導(dǎo)學(xué)生認(rèn)識(shí)基本不等式。

  二、抽象歸納:

  一般地,對(duì)于任意實(shí)數(shù)a,b,有,當(dāng)且僅當(dāng)a=b時(shí),等號(hào)成立。

  [問]你能給出它的證明嗎?

  學(xué)生在黑板上板書。

  特別地,當(dāng)a>0,b>0時(shí),在不等式中,以、分別代替a、b,得到什么?

  設(shè)計(jì)依據(jù):類比是學(xué)習(xí)數(shù)學(xué)的一種重要方法,此環(huán)節(jié)不僅讓學(xué)生理解了基本不等式不等式的來(lái)源,突破了重點(diǎn)和難點(diǎn),而且感受了其中的函數(shù)思想,為今后學(xué)習(xí)奠定基礎(chǔ).

  答案:。

  【歸納總結(jié)】

  如果a,b都是正數(shù),那么,當(dāng)且僅當(dāng)a=b時(shí),等號(hào)成立。

  我們稱此不等式為基本不等式。其中稱為a,b的算術(shù)平均數(shù),稱為a,b的幾何平均數(shù)。

  三、理解升華:

  1、文字語(yǔ)言敘述:

  兩個(gè)正數(shù)的算術(shù)平均數(shù)不小于它們的幾何平均數(shù)。

  2、聯(lián)想數(shù)列的知識(shí)理解基本不等式

  已知a,b是正數(shù),A是a,b的等差中項(xiàng),G是a,b的正的等比中項(xiàng),A與G有無(wú)確定的大小關(guān)系?

  兩個(gè)正數(shù)的等差中項(xiàng)不小于它們正的等比中項(xiàng)。

  3、符號(hào)語(yǔ)言敘述:

  若,則有,當(dāng)且僅當(dāng)a=b時(shí),。

  [問]怎樣理解“當(dāng)且僅當(dāng)”?(學(xué)生小組討論,交流看法,師生總結(jié))

  “當(dāng)且僅當(dāng)a=b時(shí),等號(hào)成立”的含義是:

高中不等式教案6

  各位評(píng)委、各位專家,大家好!今天,我說課的內(nèi)容是人民教育出版社全日制普通高級(jí)中學(xué)教科書(必修)《數(shù)學(xué)》第一章第五節(jié)“一元二次不等式解法”。

  下面從教材分析、教學(xué)目標(biāo)分析、教學(xué)重難點(diǎn)分析、教法與學(xué)法、課堂設(shè)計(jì)、效果評(píng)價(jià)六方面進(jìn)行說課。

  一、教材分析

 。ㄒ唬┙滩牡牡匚缓妥饔

  “一元二次不等式解法”既是初中一元一次不等式解法在知識(shí)上的延伸和發(fā)展,又是本章集合知識(shí)的運(yùn)用與鞏固,也為下一章函數(shù)的定義域和值域教學(xué)作鋪墊,起著鏈條的作用。同時(shí),這部分內(nèi)容較好地反映了方程、不等式、函數(shù)知識(shí)的內(nèi)在聯(lián)系和相互轉(zhuǎn)化,蘊(yùn)含著歸納、轉(zhuǎn)化、數(shù)形結(jié)合等豐富的數(shù)學(xué)思想方法,能較好地培養(yǎng)學(xué)生的觀察能力、概括能力、探究能力及創(chuàng)新意識(shí)。

 。ǘ┙虒W(xué)內(nèi)容

  本節(jié)內(nèi)容分2課時(shí)學(xué)習(xí)。本課時(shí)通過二次函數(shù)的圖象探索一元二次不等式的解集。通過復(fù)習(xí)“三個(gè)一次”的關(guān)系,即一次函數(shù)與一元一次方程、一元一次不等式的關(guān)系;以舊帶新尋找“三個(gè)二次”的關(guān)系,即二次函數(shù)與一元二次方程、一元二次不等式的關(guān)系;采用“畫、看、說、用”的思維模式,得出一元二次不等式的解集,品味數(shù)學(xué)中的和諧美,體驗(yàn)成功的樂趣。

  二、教學(xué)目標(biāo)分析

  根據(jù)教學(xué)大綱的要求、本節(jié)教材的特點(diǎn)和高一學(xué)生的認(rèn)知規(guī)律,本節(jié)課的教學(xué)目標(biāo)確定為:

  知識(shí)目標(biāo)——理解“三個(gè)二次”的關(guān)系;掌握看圖象找解集的方法,熟悉一元二次不等式的解法。

  能力目標(biāo)——通過看圖象找解集,培養(yǎng)學(xué)生“從形到數(shù)”的轉(zhuǎn)化能力,“從具體到抽象”、“從特殊到一般”的歸納概括能力。

  情感目標(biāo)——?jiǎng)?chuàng)設(shè)問題情景,激發(fā)學(xué)生觀察、分析、探求的學(xué)習(xí)激情、強(qiáng)化學(xué)生參與意識(shí)及主體作用。

  三、重難點(diǎn)分析

  一元二次不等式是高中數(shù)學(xué)中最基本的不等式之一,是解決許多數(shù)學(xué)問題的重要工具。本節(jié)課的重點(diǎn)確定為:一元二次不等式的解法。

  要把握這個(gè)重點(diǎn)。關(guān)鍵在于理解并掌握利用二次函數(shù)的圖象確定一元二次不等式解集的方法——圖象法,其本質(zhì)就是要能利用數(shù)形結(jié)合的思想方法認(rèn)識(shí)方程的解,不等式的解集與函數(shù)圖象上對(duì)應(yīng)點(diǎn)的橫坐標(biāo)的內(nèi)在聯(lián)系。由于初中沒有專門研究過這類問題,高一學(xué)生比較陌生,要真正掌握有一定的難度。因此,本節(jié)課的難點(diǎn)確定為:“三個(gè)二次”的關(guān)系。要突破這個(gè)難點(diǎn),讓學(xué)生歸納“三個(gè)一次”的關(guān)系作鋪墊。

  四、教法與學(xué)法分析

 。ㄒ唬⿲W(xué)法指導(dǎo)

  教學(xué)矛盾的主要方面是學(xué)生的學(xué)。學(xué)是中心,會(huì)學(xué)是目的。因此在教學(xué)中要不斷指導(dǎo)學(xué)生學(xué)會(huì)學(xué)習(xí)。本節(jié)課主要是教給學(xué)生“動(dòng)手畫、動(dòng)眼看、動(dòng)腦想、動(dòng)口說、善提煉、勤鉆研”的研討式學(xué)習(xí)方法,這樣做增加了學(xué)生自主參與,合作交流的機(jī)會(huì),教給了學(xué)生獲取知識(shí)的途徑、思考問題的方法,使學(xué)生真正成了教學(xué)的主體;只有這樣做,才能使學(xué)生“學(xué)”有新“思”,“思”有新“得”,“練”有新“獲”,學(xué)生也才會(huì)逐步感受到數(shù)學(xué)的美,會(huì)產(chǎn)生一種成功感,從而提高學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣;也只有這樣做,課堂教學(xué)才富有時(shí)代特色,才能適應(yīng)素質(zhì)教育下培養(yǎng)“創(chuàng)新型”人才的需要。

 。ǘ┙谭ǚ治

  本節(jié)課設(shè)計(jì)的指導(dǎo)思想是:現(xiàn)代認(rèn)知心理學(xué)——建構(gòu)主義學(xué)習(xí)理論。

  建構(gòu)主義學(xué)習(xí)理論認(rèn)為:應(yīng)把學(xué)習(xí)看成是學(xué)生主動(dòng)的建構(gòu)活動(dòng),學(xué)生應(yīng)與一定的知識(shí)背景即情景相聯(lián)系,在實(shí)際情景下進(jìn)行學(xué)習(xí),可以使學(xué)生利用已有知識(shí)與經(jīng)驗(yàn)同化和索引出當(dāng)前要學(xué)習(xí)的新知識(shí),這樣獲取的知識(shí),不但便于保持,而且易于遷移到陌生的問題情景中。

  本節(jié)課采用“誘思引探教學(xué)法”。把問題作為出發(fā)點(diǎn),指導(dǎo)學(xué)生“畫、看、說、用”。較好地探求一元二次不等式的解法。

  五、課堂設(shè)計(jì)

  本節(jié)課的教學(xué)設(shè)計(jì)充分體現(xiàn)以學(xué)生發(fā)展為本,培養(yǎng)學(xué)生的觀察、概括和探究能力,遵循學(xué)生的認(rèn)知規(guī)律,體現(xiàn)理論聯(lián)系實(shí)際、循序漸進(jìn)和因材施教的教學(xué)原則,通過問題情境的創(chuàng)設(shè),激發(fā)興趣,使學(xué)生在問題解決的探索過程中,由學(xué)會(huì)走向會(huì)學(xué),由被動(dòng)答題走向主動(dòng)探究。

 。ㄒ唬﹦(chuàng)設(shè)情景,引出“三個(gè)一次”的關(guān)系

  本節(jié)課開始,先讓學(xué)生解一元二次方程x2-x-6=0,如果我把“=”改成“”則變成一元二次不等式x2-x-60讓學(xué)生解,學(xué)生肯定感到很突然。但是“思維往往是從驚奇和疑問開始”,這樣直奔主題,目的在于構(gòu)造懸念,激活學(xué)生的思維興趣。

  為此,我設(shè)計(jì)了以下幾個(gè)問題:

  1、請(qǐng)同學(xué)們解以下方程和不等式:

 、2x-7=0;②2x-70;③2x-70

  學(xué)生回答,我板書。

  2、我指出:2x-70和2x-70的解實(shí)際上只需利用不等式基本性質(zhì)就容易得到。

  3、接著我提出:我們能否利用不等式的基本性質(zhì)來(lái)解一元二次不等式呢?學(xué)生可能感到很困惑。

  4、為此,我引入一次函數(shù)y=2x-7,借助動(dòng)畫從圖象上直觀認(rèn)識(shí)方程和不等式的解,得出以下三組重要關(guān)系:

  ①2x-7=0的解恰是函數(shù)y=2x-7的'圖象與x軸

  交點(diǎn)的橫坐標(biāo)。

 、2x-70的解集正是函數(shù)y=2x-7的圖象

  在x軸的上方的點(diǎn)的橫坐標(biāo)的集合。

  ③2x-70的解集正是函數(shù)y=2x-7的圖象

  在x軸的下方的點(diǎn)的橫坐標(biāo)的集合。

  三組關(guān)系的得出,實(shí)際上讓學(xué)生找到了利用“一次函數(shù)的圖象”來(lái)解一元一次方程和一元一次不等式的方法。讓學(xué)生看到了解決一元二次不等式的希望,大大激發(fā)了學(xué)生解決新問題的興趣。此時(shí),學(xué)生很自然聯(lián)想到利用函數(shù)y=x2-x-6的圖象來(lái)求不等式x2-x-60的解集。

  (二)比舊悟新,引出“三個(gè)二次”的關(guān)系

  為此我引導(dǎo)學(xué)生作出函數(shù)y=x2-x-6的圖象,按照“看一看 說一說 問一問”的思路進(jìn)行探究。

  看函數(shù)y=x2-x-6的圖象并說出:

  ①方程x2-x-6=0的解是

  x=-2或x=3 ;

 、诓坏仁絰2-x-60的解集是

  {x|x-2,或x3};

 、鄄坏仁絰2-x-60的解集是

  {x|-23}。

  此時(shí),學(xué)生已經(jīng)沖出了困惑,找到了利用二次函數(shù)的圖象來(lái)解一元二次不等式的方法。

  學(xué)生沉浸在成功的喜悅中,不妨趁熱打鐵問一問:如果把函數(shù)y=x2-x-6變?yōu)閥=ax2+bx+c(a0),那么圖象與x軸的位置關(guān)系又怎樣呢?(學(xué)生回答:△0時(shí),圖象與x軸有兩個(gè)交點(diǎn);△=0時(shí),圖象與x軸只有一個(gè)交點(diǎn);△0時(shí),圖象與x輛沒有交點(diǎn)。)請(qǐng)同學(xué)們討論:ax2+bx+c0與ax2+bx+c0的解集與函數(shù)y=ax2+bx+c的圖象有怎樣的關(guān)系?

 。ㄈw納提煉,得出“三個(gè)二次”的關(guān)系

  1、引導(dǎo)學(xué)生根據(jù)圖象與x軸的相對(duì)位置關(guān)系,寫出相關(guān)不等式的解集。

  2、此時(shí)提出:若a0時(shí),怎樣求解不等式ax2+bx+c0及ax2+bx+c0?(經(jīng)討論之后,有的學(xué)生得出:將二次項(xiàng)系數(shù)由負(fù)化正,轉(zhuǎn)化為上述模式求解,教師應(yīng)予以強(qiáng)調(diào);也有的學(xué)生提出畫出相應(yīng)的二次函數(shù)圖象,根據(jù)圖象寫出解集,教師應(yīng)給予肯定。)

 。ㄋ模⿷(yīng)用新知,熟練掌握一元二次不等式的解集

  借助二次函數(shù)的圖象,得到一元二次不等式的解集,學(xué)生形成了感性認(rèn)識(shí),為鞏固所學(xué)知識(shí),我們一起來(lái)完成以下例題:

  例1、解不等式2x2-3x-20

  解:因?yàn)棣?,方程2x2-3x-2=0的解是

  x1= ,x2=2

  所以,不等式的解集是

  { x| x ,或x2}

  例1的解決達(dá)到了兩個(gè)目的:一是鞏固了一元二次不等式解集的應(yīng)用;二是規(guī)范了一元二次不等式的解題格式。

  下面我們接著學(xué)習(xí)課本例2。

  例2 解不等式-3x2+6x2

  課本例2的出現(xiàn)恰當(dāng)好處,一方面突出了“對(duì)于二次項(xiàng)系數(shù)是負(fù)數(shù)(即a0)的一元二次不等式,可以先把二次項(xiàng)系數(shù)化為正數(shù),再求解”;另一方面,學(xué)生對(duì)此例的解答極易出現(xiàn)寫錯(cuò)解集(如出現(xiàn)“或”與“且”的錯(cuò)誤)。

  通過例1、例2的解決,學(xué)生與我一起總結(jié)了解一元二次不等式的一般步驟:一化正—二算△—三求根—四寫解集。

  例3 解不等式4x2-4x+10

  例4 解不等式-x2+2x-30

  分別突出了“△=0”、“△0”對(duì)不等式解集的影響。這兩例由學(xué)生練習(xí),教師巡視、指導(dǎo),講評(píng)學(xué)生完成情況,尋找學(xué)生中的閃光點(diǎn),給予熱情表?yè)P(yáng)。

  4道例題,具有典型性、層次性和學(xué)生的可接受性。為了避免學(xué)生學(xué)后“一團(tuán)亂麻”、“一盤散沙”的局面,我和學(xué)生一起總結(jié)。

  (五)總結(jié)

  解一元二次不等式的“四部曲”:

  (1)把二次項(xiàng)的系數(shù)化為正數(shù)

  (2)計(jì)算判別式Δ

  (3)解對(duì)應(yīng)的一元二次方程

  (4)根據(jù)一元二次方程的根,結(jié)合圖像(或口訣),寫出不等式的解集。概括為:一化正→二算Δ→三求根→四寫解集

 。┳鳂I(yè)布置

  為了使所有學(xué)生鞏固所學(xué)知識(shí),我布置了“必做題”;又為學(xué)有余力者留有自由發(fā)展的空間,我布置了“探究題”。

  (1)必做題:習(xí)題1.5的1、3題

 。2)探究題:①若a、b不同時(shí)為零,記ax2+bx+c=0的解集為P,ax2+bx+c0的解集為M,ax2+bx+c0的解集為N,那么P∪M∪N=______________;②已知不等式(k2+4k-5)x2+4(1-k)x+30的解集是R,求實(shí)數(shù)k的取值范圍。

 。ㄆ撸┌鍟O(shè)計(jì)

  一元二次不等式解法(1)

  五、教學(xué)效果評(píng)價(jià)

  本節(jié)課立足課本,著力挖掘,設(shè)計(jì)合理,層次分明。以“三個(gè)一次關(guān)系→三個(gè)二次關(guān)系→一元二次不等式解法”為主線,以“從形到數(shù),從具體到抽象,從特殊到一般”為靈魂,以“畫、看、說、用”為特色,把握重點(diǎn),突破難點(diǎn)。在教學(xué)思想上既注重知識(shí)形成過程的教學(xué),還特別突出學(xué)生學(xué)習(xí)方法的指導(dǎo),探究能力的訓(xùn)練,創(chuàng)新精神的培養(yǎng),引導(dǎo)學(xué)生發(fā)現(xiàn)數(shù)學(xué)的美,體驗(yàn)求知的樂趣。

高中不等式教案7

  一、教學(xué)目標(biāo)

  【知識(shí)與技能】

  掌握求解一元二次不等式的簡(jiǎn)單方法,能正確求解一元二次不等式的解集。

  【過程與方法】

  在探究一元二次不等式的解法的過程中,提升邏輯推理能力。

  【情感、態(tài)度與價(jià)值觀】

  感受數(shù)學(xué)知識(shí)的前后聯(lián)系,提升學(xué)習(xí)數(shù)學(xué)的熱情。

  二、教學(xué)重難點(diǎn)

  【重點(diǎn)】一元二次不等式的'解法。

  【難點(diǎn)】一元二次不等式的解法的探究過程。

  三、教學(xué)過程

  (一)導(dǎo)入新課

  回顧一元二次不等式的一般形式,組織學(xué)生舉例一些簡(jiǎn)單的一元二次不等式。

  提問:如何求解?引出課題。

  (二)講解新知

  結(jié)合課前回顧的一元二次不等式的一般形式,對(duì)比之前所學(xué)內(nèi)容,引導(dǎo)學(xué)生發(fā)現(xiàn)其與一元二次方程和二次函數(shù)的共同特點(diǎn)。

高中不等式教案8

  問題與情境

  師生行為

  設(shè)計(jì)意圖

  [活動(dòng)2]

  問題1.(幻燈片展示)

  ①判斷下列數(shù)中哪些滿足不等式2x/350:

  76、73、79、80、74.9、75.1、90、60

 、跐M足不等式的未知數(shù)的值還有嗎?若有,還有多少?請(qǐng)舉出2—3例。

 、.上問中的不等式的解有什么共同特點(diǎn)?若有,怎么表示?

 、.②中答案在數(shù)軸上怎么表示?

 、.通過前面的學(xué)習(xí),你對(duì)求不等式解集有什么方法?

  問題2:(幻燈片展示)直接想出不等式的解集,并在數(shù)軸上表示出來(lái):⑴x+36⑵2x8⑶x—20

  教師出示問題,學(xué)生獨(dú)立思考并解答。

  教師引導(dǎo)學(xué)生共同評(píng)價(jià),得出答案。教師在①②問完成后,類比方程,給出不等式的解的概念:

  使不等式成立的未知數(shù)的值叫做不等式的解。

  在②問完成后,強(qiáng)調(diào)不等式與方程的區(qū)別:不等式的解不止一個(gè)。

  本次活動(dòng)教師應(yīng)重點(diǎn)關(guān)注:學(xué)生是否積極嘗試探究?在探究②問時(shí),是否按“觀察特點(diǎn)——猜想結(jié)論——驗(yàn)證猜想”的思路展開,避免盲目性。

 、蹎柦處煾鶕(jù)學(xué)生思考情況,作適當(dāng)?shù)匾龑?dǎo)、講解,找出特點(diǎn)并表示,教學(xué)時(shí)可先用舉例法,再用性質(zhì)描述法,最后再給出不等式解集定義:一個(gè)含有未知數(shù)的`不等式的所有解,組成這個(gè)不等式的解集。

 、軉柦處熞龑(dǎo)學(xué)生完成。

 、輪柨上茸寣W(xué)生先行討論,教師深入小組,仔細(xì)傾聽學(xué)生意見,參與學(xué)生討論,最后師生共同探究。

  本次活動(dòng)教師應(yīng)重點(diǎn)關(guān)注:

  ⑴學(xué)生討論是否有時(shí)效性、針對(duì)性。

 、茖W(xué)生是否積極展示自己想法,敘述是否有條理,語(yǔ)言是否準(zhǔn)確。

 、菍W(xué)生是否能熟練用數(shù)軸表示解集。

  通過簡(jiǎn)單代值運(yùn)算,使每名學(xué)生都動(dòng)起來(lái),邊代、邊算、邊答、邊交流,調(diào)動(dòng)學(xué)生的學(xué)習(xí)興趣,為每位學(xué)生都創(chuàng)造在數(shù)學(xué)活動(dòng)中獲取成功的體驗(yàn)機(jī)會(huì),并培養(yǎng)學(xué)生觀察能力和數(shù)感。

  本環(huán)節(jié)主要任務(wù)是突出重點(diǎn)和突破難點(diǎn)。通過對(duì)學(xué)生已有的數(shù)學(xué)知識(shí)進(jìn)行拓展延伸,解釋不等式的解,然后遞進(jìn)到不等式的解集,最后發(fā)展到解集的兩種表述方法,這樣設(shè)計(jì)活動(dòng),符合知識(shí)發(fā)生發(fā)展形成過程。

  雖然解不等式不是本節(jié)課教學(xué)目標(biāo),但問題1的第⑤問設(shè)計(jì)意圖是想在一元一次方程的解與同它對(duì)應(yīng)的一元一次不等式的解之間建立一種聯(lián)系,這樣設(shè)計(jì)充分發(fā)揮學(xué)習(xí)心理學(xué)中正向遷移的作用,借助已有的方程知識(shí),可以為學(xué)習(xí)不等式提供一條學(xué)習(xí)之路。

  [活動(dòng)3]

  1、讓學(xué)生找出下列不等式的特點(diǎn):

  x1.1x1.4

  2x150x+36

  2x8x—20

  辨析:

  下列哪些不等式是一元一次不等式

 、賦+2y1②x2+23

 、2/x1④x/2+1x

  學(xué)生總結(jié)不等式特點(diǎn),教師再讓學(xué)生類比一元一次方程命名,得到一元一次不等式概念。

  含有一個(gè)未知數(shù)、未知數(shù)次數(shù)是1的不等式叫做一元一次不等式。

  通過探索一元一次不等式的概念,讓學(xué)生體會(huì)類比思想。

  問題與情境

  師生行為

  設(shè)計(jì)意圖

  [活動(dòng)4]

  1、讓學(xué)生找出易拉罐中不等式關(guān)系,并表示出來(lái)。

  2、某班同學(xué)經(jīng)調(diào)查發(fā)現(xiàn),1個(gè)易拉罐瓶可賣0.1元,1名山區(qū)貧困生一年生活費(fèi)用大約是500元。該班同學(xué)今年計(jì)劃資助兩名山區(qū)貧困生一年生活費(fèi)用,他們已集資了450元,不足部分準(zhǔn)備靠回收易拉罐所得。那么他們一年至少要回收多少個(gè)易拉罐?

  學(xué)生獨(dú)立探索,互動(dòng)交流。

  教師對(duì)問題2可采取靈活處理的方式,可讓學(xué)生合作完成、分段完成。

  通過對(duì)學(xué)生熟悉的生活背景進(jìn)行處理,讓學(xué)生體會(huì)數(shù)學(xué)生活化,能將實(shí)際問題轉(zhuǎn)化為數(shù)學(xué)問題加以解決,培養(yǎng)學(xué)生應(yīng)用意識(shí)。

  [活動(dòng)5]

  問題:你對(duì)本節(jié)知識(shí)內(nèi)容有何認(rèn)識(shí)?

  布置作業(yè):P140.T2

  學(xué)生獨(dú)立思考、自我反思與小組合作交流、互相提問相結(jié)合,教師適時(shí)點(diǎn)拔總結(jié)。

  本次活動(dòng)中教師應(yīng)重點(diǎn)關(guān)注:⑴不同學(xué)生總結(jié)知識(shí)程度;⑵小組合作情況;⑶學(xué)生梳理知識(shí)能力。

  學(xué)生課后完成,教師批改總結(jié)。

  教師應(yīng)關(guān)注:

 、挪煌瑢哟蔚膶W(xué)生對(duì)知識(shí)的理解掌握程度并系統(tǒng)分析。

 、茖(duì)反饋的《不等式及其解集》教學(xué)設(shè)計(jì)信息及時(shí)處理。

  通過學(xué)習(xí)自我反思、小組交流、引導(dǎo)學(xué)生自主完成對(duì)本節(jié)重要知識(shí)技能和思想方法的小結(jié),讓學(xué)生養(yǎng)成“反思”的好習(xí)慣,并培養(yǎng)學(xué)生語(yǔ)言表述能力。

  及時(shí)了解學(xué)生的學(xué)習(xí)效果,并據(jù)此調(diào)整教學(xué)安排。

高中不等式教案9

  [學(xué)習(xí)目標(biāo)]

  1.了解不等式概念,理解不等式的解集,能正確表示不等式的解集

  2.培養(yǎng)學(xué)生的數(shù)感,滲透數(shù)形結(jié)合的思想.

  [學(xué)習(xí)重點(diǎn)與難點(diǎn)]

  重點(diǎn):不等式的解集的表示.

  難點(diǎn):不等式解集的確定.

  [學(xué)習(xí)過程]

  一.春耕(問題探知)

  某班同學(xué)去植樹,原計(jì)劃每位同學(xué)植樹4棵,但由于某組的10名同學(xué)另有任務(wù),未能參加植樹,其余同學(xué)每位植樹6棵,結(jié)果仍未能完成計(jì)劃任務(wù),若以該班同學(xué)的人數(shù)為x,此時(shí)的x應(yīng)滿足怎樣的關(guān)系式?

  二.夏耘

  1.不等式:學(xué)_______________________________________*

  解析:(1)用≠表示不等關(guān)系的式子也叫不等式

 。2)不等式中含有未知數(shù),也可以不含有未知數(shù);

 。3)注意不大于和不小于的說法

  例1用不等式表示

 。1)a與1的和是正數(shù);

 。2)y的2倍與1的和大于3;

 。3)x的一半與x的2倍的和是非正數(shù);

 。4)c與4的.和的30%不大于—2;

 。5)x除以2的商加上2,至多為5;

 。6)a與b兩數(shù)的和的平方不可能大于3.

  2.不等式的解:學(xué)_______________________________________*

  解析:不等式的解可能不止一個(gè).

  例2下列各數(shù)中,哪些是不等是x+13的解?哪些不是?

  —3,—1,0,1,1.5,2.5,3,3.5

  練習(xí):1.判斷數(shù):—3,—2,—1,0,1,2,3,是不是不等式2x+35的解?再找出另外的小于0的解兩個(gè).

  2.下列各數(shù):—5,—4,—3,—2,—1,0,1,2,3,4,5中,同時(shí)適合x+57和2x+20的有哪幾個(gè)數(shù)?

  3.不等式的解集:學(xué)_______________________________________*

  含有一個(gè)未知數(shù),未知數(shù)的次數(shù)是1的不等式,叫做一元一次不等式.

  例3下列說法中正確的是()

  A.x=3是不是不等式2x1的解

  B.x=3是不是不等式2x1的唯一解;

  C.x=3不是不等式2x1的解;

  D.x=3是不等式2x1的解集

  4.不等式解集的表示方法

  例4在數(shù)軸上表示下列不等式的解集

 。1)x—1;(2)x≥—1;(3)x—1;(4)x≤—1

  解:

  注意:

  三.秋收

  1.練習(xí):如圖,表示的是不等式的解集,其中錯(cuò)誤的是()

  2.在數(shù)軸上表示下列不等式的解集

  (1)x3(2)x2(3)y≥—1(4)y≤0(5)x≠4

  3.教材128:1,2,3

  第3題:要求試著在數(shù)軸上表示

  四.冬藏

  1.不等式的解和解集;

  2.不等式解集的表示方法.

  3.錯(cuò)題回顧

高中不等式教案10

  [教學(xué)目標(biāo)]

  1.了解不等式概念,理解不等式的解集,能正確表示不等式的解集

  2.培養(yǎng)學(xué)生的數(shù)感,滲透數(shù)形結(jié)合的思想.

  [教學(xué)重點(diǎn)與難點(diǎn)]

  重點(diǎn):不等式的解集的表示.

  難點(diǎn):不等式解集的確定.

  [教學(xué)設(shè)計(jì)]

  [設(shè)計(jì)說明]一.問題探知

  某班同學(xué)去植樹,原計(jì)劃每位同學(xué)植樹4棵,但由于某組的10名同學(xué)另有任務(wù),未能參加植樹,其余同學(xué)每位植請(qǐng)

  樹6棵,結(jié)果仍未能完成計(jì)劃任務(wù),若以該班同學(xué)的人數(shù)為x,此時(shí)的x應(yīng)滿足怎樣的關(guān)系式?

  依題意得4x6(x—10)

  1.不等式:用“”或“”號(hào)表示大小關(guān)系的式子,叫不等式.

  解析:(1)用≠表示不等關(guān)系的式子也叫不等式

 。2)不等式中含有未知數(shù),也可以不含有未知數(shù);

 。3)注意不大于和不小于的說法

  例1用不等式表示

 。1)a與1的和是正數(shù);

 。2)y的2倍與1的和大于3;

 。3)x的一半與x的2倍的和是非正數(shù);

 。4)c與4的和的30%不大于—2;

 。5)x除以2的商加上2,至多為5;

 。6)a與b兩數(shù)的和的平方不可能大于3.

  二.不等式的解

  不等式的解:能使不等式成立的未知數(shù)的值,叫不等式的解.

  解析:不等式的解可能不止一個(gè).

  例2下列各數(shù)中,哪些是不等是x+13的解?哪些不是?

  —3,—1,0,1,1.5,2.5,3,3.5

  解:略.

  練習(xí):1.判斷數(shù):—3,—2,—1,0,1,2,3,是不是不等式2x+35的解?再找出另外的小于0的解兩個(gè).

  2.下列各數(shù):—5,—4,—3,—2,—1,0,1,2,3,4,5中,同時(shí)適合x+57和2x+20的有哪幾個(gè)數(shù)?

  三.不等式的解集

  1.不等式的解集:一個(gè)含有未知數(shù)的不等式的所有解組成這個(gè)不等式的解集.

  含有一個(gè)未知數(shù),未知數(shù)的次數(shù)是1的不等式,叫做一元一次不等式.

  分析不等關(guān)系,滲透不等式的列法

  學(xué)生列出不等式,教師注意糾正錯(cuò)誤

  明確驗(yàn)證解的方法,引入不等式的解集概念

  解析:解集是個(gè)范圍

  例3下列說法中正確的是()

  A.x=3是不是不等式2x1的解

  B.x=3是不是不等式2x1的唯一解;

  C.x=3不是不等式2x1的解;

  D.x=3是不等式2x1的解集

  2.不等式解集的表示方法

  例4在數(shù)軸上表示下列不等式的解集

 。1)x—1;(2)x≥—1;(3)x—1;(4)x≤—1

  分析:按畫數(shù)軸,定界點(diǎn),走方向的步驟答

  解:

  注意:1.實(shí)心點(diǎn)表示包括這個(gè)點(diǎn),空心點(diǎn)表示不包括這個(gè)點(diǎn)

  2.大于向右走,小于向左走.

  練習(xí):如圖,表示的是不等式的解集,其中錯(cuò)誤的是()

  練習(xí):

  1.在數(shù)軸上表示下列不等式的解集

 。1)x3(2)x2(3)y≥—1(4)y≤0(5)x≠4

  2.教材128:1,2,3

  第3題:要求試著在數(shù)軸上表示

  [小結(jié)]

  1.不等式的解和解集;

  2.不等式解集的表示方法.

  [作業(yè)]

  必做題:教科書134頁(yè)習(xí)題:2題

  指導(dǎo)辨析

  總結(jié)規(guī)律和方法

  延伸閱讀

  9.1.1不等式及其解集

  9.1.1不等式及其解集

  教學(xué)目標(biāo)1、感受生活中存在著大量的不等關(guān)系,了解不等式和一元一次不等式的意義,通過解決簡(jiǎn)單的實(shí)際問題,使學(xué)生自發(fā)地

  尋找不等式的解,會(huì)把不等式的解集正確地表示到數(shù)軸上;

  2、經(jīng)歷由具體實(shí)例建立不等模型的過程,經(jīng)歷探究不等式解與解集的不同意義的過程,滲透數(shù)形結(jié)合思想;

  3、通過對(duì)不等式、不等式解與解集的探究,引導(dǎo)學(xué)生在獨(dú)立思考的基礎(chǔ)上積極參與對(duì)數(shù)學(xué)問題的討論,培養(yǎng)他們的合作交流意識(shí);讓學(xué)生充分體會(huì)到生活中處處有數(shù)學(xué),并能將它們應(yīng)用到生活的各個(gè)領(lǐng)域。

  教學(xué)難點(diǎn)正確理解不等式、不等式解與解集的意義,把不等式的解集正確地表示到數(shù)軸上。

  知識(shí)重點(diǎn)建立方程解決實(shí)際問題,會(huì)解“ax+b=cx+d”類型的一元一次方程

  教學(xué)過程(師生活動(dòng))設(shè)計(jì)理念

  提出問題多媒體演示:

  1、兩個(gè)體重相同的孩子正在蹺蹺板上做游戲.現(xiàn)在換了一個(gè)小胖子上去,蹺蹺板發(fā)生了傾斜,游戲無(wú)法繼續(xù)進(jìn)行下去了.這是什么原因呢?

  2、一輛勻速行駛的汽車在11:20時(shí)距離A地50千米。要在12:00以前駛過A地,車速應(yīng)該具備什么條件?若設(shè)車速為每小時(shí)x千米,能用一個(gè)式子表示嗎?通過實(shí)例創(chuàng)設(shè)情境,從“等”過渡到“不等”,培養(yǎng)學(xué)生的觀察能力,激發(fā)他們的學(xué)習(xí)興趣.

  探究新知(一)不等式、一元一次不等式的概念

  1、在學(xué)生充分發(fā)表自己意見的基礎(chǔ)上,2、師生共同3、歸納得出:用“<”或“>”表示大小關(guān)系的式子叫做不4、等式;用“并”表示不5、等關(guān)系的式子也是不6、等式。

  2、下列式子中哪些是不等式?

 。1)a+b=b+a(2)-3>-5(3)x≠l

 。4)x十36(5)2mn(6)2x—3

  上述不等式中,有些不含未知數(shù),有些含有未知數(shù).我們把那些類似于一元一次方程,含有一個(gè)未知數(shù)且未知數(shù)的次數(shù)是1的不等式,叫做一元一次不等式.

  3、小組交流:說說生活中的不等關(guān)系.

  分組活動(dòng).先獨(dú)立思考,然后小組內(nèi)互相交流并做記錄,最后各組選派代表發(fā)言,在此基礎(chǔ)上引出不等號(hào)“≥”和“≤”.補(bǔ)充說明:用“≥”和“≤”表示不等關(guān)系的式子也是不等式.

 。ǘ┎坏仁降慕、不等式的解集

  問題1.要使汽車在12:00以前駛過A地,你認(rèn)為車速應(yīng)該為多少呢?

  問題2.車速可以是每小時(shí)85千米嗎?每小時(shí)82千米呢?每小時(shí)75.1千米呢?每小時(shí)74千米呢?

  問題3.我們?cè)?jīng)學(xué)過“使方程兩邊相等的未知數(shù)的值就是方程的解”,我們也可以把使不等式成立的未知數(shù)的值叫做不等式的解.剛才同學(xué)們所說的這些數(shù),哪些是不等式50的解?

  問題4,數(shù)中哪些是不等式50的解:

  76,73,79,80,74.9,75.1,90,60

  你能找出這個(gè)不等式其他的'解嗎?它到底有多少個(gè)解?你從中發(fā)現(xiàn)了什么規(guī)律?

  討論后得出:當(dāng)x75時(shí),不等式50成立;當(dāng)x75或x=75時(shí),不等式50不成立。這就是說,任何一個(gè)大于75的數(shù)都是不等式50的解,這樣的解有無(wú)數(shù)個(gè)。因此,x75表示了能使不等式50成立的“x”的取值范圍。我們把它叫做不等式50的解的集合,簡(jiǎn)稱解集.這個(gè)解集還可以用數(shù)軸來(lái)表示(教師示范表示方法).回到前面的問題,要使汽車在12:00以前駛過A地,車速必須大于每小時(shí)75千米。

  一般地,一個(gè)含有未知數(shù)的不等式的所有的解,組成這個(gè)不等式的解集.求不等式的解集的過程叫做解不等式.

  引導(dǎo)學(xué)生仔細(xì)觀察并歸納出不等式的意義。

  在甄別不等式的過程中,加深對(duì)不等式意義的理解,引出一元一次不等式的概念.

  培養(yǎng)學(xué)生主動(dòng)參與、合作交流的意識(shí),同時(shí)體會(huì)到在現(xiàn)實(shí)生活中,不等關(guān)系要比相等關(guān)系多得多.“補(bǔ)充說明”是為了讓學(xué)生能完整地理解不等式的定義.

  讓學(xué)生充分發(fā)表意見,并通過計(jì)算、動(dòng)手驗(yàn)證、動(dòng)腦思考,初步體會(huì)不等式解的意義以及不等式解與方程解的不同之處.

  遵循學(xué)生的認(rèn)知規(guī)律,有意識(shí)、有計(jì)劃、有條理地設(shè)計(jì)一些引人入勝的問題,可讓學(xué)生始終處在積極的思維狀態(tài),不知不覺中接受了新知識(shí),分散了難點(diǎn).

  鞏固新知1、下列哪些是不2、等式x+36的解?哪些不3、是?

 。4,-2.5,0,1,2.5,3,3.2,4.8,8,12

  2、直接想出不等式的解集,并在數(shù)軸上表示出來(lái):

 。1)x+36(2)2x8(3)x-20

  拓廣探索

  比較分析對(duì)于問題1還有不同的未知數(shù)的設(shè)法嗎?

  學(xué)生思考回答:若設(shè)去年購(gòu)買計(jì)算機(jī)x臺(tái),得方程

  若設(shè)今年購(gòu)買計(jì)算機(jī)x臺(tái),得方程

  鞏固對(duì)不等式解的概念的理解。鞏固對(duì)不等式解集概念的理解,并會(huì)在數(shù)軸上表示不等式的解集。

  解決問題某開山工程正在進(jìn)行爆破作業(yè).已知導(dǎo)火索燃燒的速度是每秒0.8厘米,人跑開的速度是每秒4米.為了使放炮的工人在爆炸時(shí)能跑到100米以外的安全地帶,導(dǎo)火索的長(zhǎng)度應(yīng)超過多少厘米?進(jìn)一步鞏固所學(xué)知識(shí),感受新知識(shí)的用途。

  總結(jié)歸納1、不等式與一元一次不等式的概念;

  2、不等式的解與不等式的解集;

  3、不等式的解集在數(shù)軸上的表示.通過總結(jié)歸納,完善學(xué)生已有的知識(shí)結(jié)構(gòu)。

  小結(jié)與作業(yè)

  布置作業(yè)1、必做題:教科書第134頁(yè)習(xí)題9.1第1、2題

  2、選做題:教科書第134頁(yè)習(xí)題9.1第3題.

  3、備選題:

 。1)用不等式表示下列數(shù)量關(guān)系:

 、賏比1大;

 、趚與一3的差是正數(shù);

 、踴的4倍與5的和是負(fù)數(shù)

 。2)在-4,-2,-1,0,1,3中,找出使不等式成立的x值:

 。1)x+53,(2)3x5

 。3)在數(shù)軸上表示下列不等式的解集:

 、賦2②x>-3

 。4)不等式x5有多少個(gè)解?有多少個(gè)正整數(shù)解?

  本課教育評(píng)注(課堂設(shè)計(jì)理念,實(shí)際教學(xué)效果及改進(jìn)設(shè)想)

  本課設(shè)置了豐富的實(shí)際情境,比如蹺蹺板游戲、爆破問題等,研究這些問題,可以使學(xué)生體會(huì)到現(xiàn)實(shí)生活中存在著大量的不等關(guān)系,不等式是現(xiàn)實(shí)世界中不等關(guān)系的一種數(shù)學(xué)表示形式,它也是刻畫現(xiàn)實(shí)世界中量與量之間關(guān)系的有效模型.

  教學(xué)中要突出知識(shí)之間的內(nèi)在聯(lián)系.不等式與方程一樣,都是反映客觀事物變化規(guī)律及其關(guān)系的模型.在教學(xué)中,類比已經(jīng)學(xué)過的方程知識(shí),引導(dǎo)學(xué)生自己去探索、發(fā)現(xiàn)、甄別,從而得出一元一次不等式、不等式的解與解集的意義.

  教學(xué)過程也是學(xué)生的認(rèn)知過程,只有學(xué)生積極地參與教學(xué)活動(dòng)才能收到良好的效果.因此,本課采用啟發(fā)誘導(dǎo)、實(shí)例探究、講練結(jié)合的教學(xué)方法,揭示知識(shí)的發(fā)生和形成過程.這種教學(xué)方法以“生動(dòng)探索”為基礎(chǔ),先“引導(dǎo)發(fā)現(xiàn)”,后“講評(píng)點(diǎn)撥”,讓學(xué)生在克服困難與障礙的過程中充分發(fā)揮自己的觀察力、想象力和思維力,再加上多媒體的運(yùn)用,使學(xué)生真正成為學(xué)習(xí)的主體。

  不等式及其解集導(dǎo)學(xué)案

【高中不等式教案】相關(guān)文章:

高中不等式教案11-05

不等式教學(xué)反思06-09

《不等式的性質(zhì)》說課稿11-20

一元二次不等式教案11-19

一元一次不等式教案02-23

《一元一次不等式組》教案02-22

不等式的性質(zhì)教學(xué)反思02-23

不等式的性質(zhì)教學(xué)反思05-24

基本不等式說課稿06-20