高中數(shù)學教案(15篇)
作為一位杰出的老師,編寫教案是必不可少的,借助教案可以恰當?shù)剡x擇和運用教學方法,調(diào)動學生學習的積極性。我們應該怎么寫教案呢?下面是小編整理的高中數(shù)學教案,希望能夠幫助到大家。
高中數(shù)學教案1
各位評委、各位專家,大家好!今天,我說課的內(nèi)容是人民教育出版社全日制普通高級中學教科書(必修)《數(shù)學》第一章第五節(jié)“一元二次不等式解法”。
下面從教材分析、教學目標分析、教學重難點分析、教法與學法、課堂設計、效果評價六方面進行說課。
一、教材分析
。ㄒ唬┙滩牡牡匚缓妥饔
“一元二次不等式解法”既是初中一元一次不等式解法在知識上的延伸和發(fā)展,又是本章集合知識的運用與鞏固,也為下一章函數(shù)的定義域和值域教學作鋪墊,起著鏈條的作用。同時,這部分內(nèi)容較好地反映了方程、不等式、函數(shù)知識的內(nèi)在聯(lián)系和相互轉(zhuǎn)化,蘊含著歸納、轉(zhuǎn)化、數(shù)形結合等豐富的數(shù)學思想方法,能較好地培養(yǎng)學生的觀察能力、概括能力、探究能力及創(chuàng)新意識。
。ǘ┙虒W內(nèi)容
本節(jié)內(nèi)容分2課時學習。本課時通過二次函數(shù)的圖象探索一元二次不等式的解集。通過復習“三個一次”的關系,即一次函數(shù)與一元一次方程、一元一次不等式的關系;以舊帶新尋找“三個二次”的關系,即二次函數(shù)與一元二次方程、一元二次不等式的關系;采用“畫、看、說、用”的思維模式,得出一元二次不等式的解集,品味數(shù)學中的和諧美,體驗成功的樂趣。
二、教學目標分析
根據(jù)教學大綱的要求、本節(jié)教材的特點和高一學生的認知規(guī)律,本節(jié)課的教學目標確定為:
知識目標——理解“三個二次”的關系;掌握看圖象找解集的方法,熟悉一元二次不等式的解法。
能力目標——通過看圖象找解集,培養(yǎng)學生“從形到數(shù)”的轉(zhuǎn)化能力,“從具體到抽象”、“從特殊到一般”的歸納概括能力。
情感目標——創(chuàng)設問題情景,激發(fā)學生觀察、分析、探求的學習激情、強化學生參與意識及主體作用。
三、重難點分析
一元二次不等式是高中數(shù)學中最基本的不等式之一,是解決許多數(shù)學問題的重要工具。本節(jié)課的重點確定為:一元二次不等式的解法。
要把握這個重點。關鍵在于理解并掌握利用二次函數(shù)的圖象確定一元二次不等式解集的方法——圖象法,其本質(zhì)就是要能利用數(shù)形結合的思想方法認識方程的解,不等式的解集與函數(shù)圖象上對應點的橫坐標的內(nèi)在聯(lián)系。由于初中沒有專門研究過這類問題,高一學生比較陌生,要真正掌握有一定的難度。因此,本節(jié)課的難點確定為:“三個二次”的關系。要突破這個難點,讓學生歸納“三個一次”的關系作鋪墊。
四、教法與學法分析
。ㄒ唬⿲W法指導
教學矛盾的主要方面是學生的學。學是中心,會學是目的。因此在教學中要不斷指導學生學會學習。本節(jié)課主要是教給學生“動手畫、動眼看、動腦想、動口說、善提煉、勤鉆研”的研討式學習方法,這樣做增加了學生自主參與,合作交流的機會,教給了學生獲取知識的途徑、思考問題的方法,使學生真正成了教學的主體;只有這樣做,才能使學生“學”有新“思”,“思”有新“得”,“練”有新“獲”,學生也才會逐步感受到數(shù)學的美,會產(chǎn)生一種成功感,從而提高學生學習數(shù)學的興趣;也只有這樣做,課堂教學才富有時代特色,才能適應素質(zhì)教育下培養(yǎng)“創(chuàng)新型”人才的需要。
(二)教法分析
本節(jié)課設計的指導思想是:現(xiàn)代認知心理學——建構主義學習理論。
建構主義學習理論認為:應把學習看成是學生主動的建構活動,學生應與一定的知識背景即情景相聯(lián)系,在實際情景下進行學習,可以使學生利用已有知識與經(jīng)驗同化和索引出當前要學習的新知識,這樣獲取的知識,不但便于保持,而且易于遷移到陌生的問題情景中。
本節(jié)課采用“誘思引探教學法”。把問題作為出發(fā)點,指導學生“畫、看、說、用”。較好地探求一元二次不等式的解法。
五、課堂設計
本節(jié)課的教學設計充分體現(xiàn)以學生發(fā)展為本,培養(yǎng)學生的.觀察、概括和探究能力,遵循學生的認知規(guī)律,體現(xiàn)理論聯(lián)系實際、循序漸進和因材施教的教學原則,通過問題情境的創(chuàng)設,激發(fā)興趣,使學生在問題解決的探索過程中,由學會走向會學,由被動答題走向主動探究。
。ㄒ唬﹦(chuàng)設情景,引出“三個一次”的關系
本節(jié)課開始,先讓學生解一元二次方程x2-x-6=0,如果我把“=”改成“”則變成一元二次不等式x2-x-60讓學生解,學生肯定感到很突然。但是“思維往往是從驚奇和疑問開始”,這樣直奔主題,目的在于構造懸念,激活學生的思維興趣。
為此,我設計了以下幾個問題:
1、請同學們解以下方程和不等式:
、2x-7=0;②2x-70;③2x-70
學生回答,我板書。
2、我指出:2x-70和2x-70的解實際上只需利用不等式基本性質(zhì)就容易得到。
3、接著我提出:我們能否利用不等式的基本性質(zhì)來解一元二次不等式呢?學生可能感到很困惑。
4、為此,我引入一次函數(shù)y=2x-7,借助動畫從圖象上直觀認識方程和不等式的解,得出以下三組重要關系:
、2x-7=0的解恰是函數(shù)y=2x-7的圖象與x軸
交點的橫坐標。
、2x-70的解集正是函數(shù)y=2x-7的圖象
在x軸的上方的點的橫坐標的集合。
、2x-70的解集正是函數(shù)y=2x-7的圖象
在x軸的下方的點的橫坐標的集合。
三組關系的得出,實際上讓學生找到了利用“一次函數(shù)的圖象”來解一元一次方程和一元一次不等式的方法。讓學生看到了解決一元二次不等式的希望,大大激發(fā)了學生解決新問題的興趣。此時,學生很自然聯(lián)想到利用函數(shù)y=x2-x-6的圖象來求不等式x2-x-60的解集。
。ǘ┍扰f悟新,引出“三個二次”的關系
為此我引導學生作出函數(shù)y=x2-x-6的圖象,按照“看一看 說一說 問一問”的思路進行探究。
看函數(shù)y=x2-x-6的圖象并說出:
、俜匠蘹2-x-6=0的解是
x=-2或x=3 ;
、诓坏仁絰2-x-60的解集是
{x|x-2,或x3};
、鄄坏仁絰2-x-60的解集是
{x|-23}。
此時,學生已經(jīng)沖出了困惑,找到了利用二次函數(shù)的圖象來解一元二次不等式的方法。
學生沉浸在成功的喜悅中,不妨趁熱打鐵問一問:如果把函數(shù)y=x2-x-6變?yōu)閥=ax2+bx+c(a0),那么圖象與x軸的位置關系又怎樣呢?(學生回答:△0時,圖象與x軸有兩個交點;△=0時,圖象與x軸只有一個交點;△0時,圖象與x輛沒有交點。)請同學們討論:ax2+bx+c0與ax2+bx+c0的解集與函數(shù)y=ax2+bx+c的圖象有怎樣的關系?
。ㄈw納提煉,得出“三個二次”的關系
1、引導學生根據(jù)圖象與x軸的相對位置關系,寫出相關不等式的解集。
2、此時提出:若a0時,怎樣求解不等式ax2+bx+c0及ax2+bx+c0?(經(jīng)討論之后,有的學生得出:將二次項系數(shù)由負化正,轉(zhuǎn)化為上述模式求解,教師應予以強調(diào);也有的學生提出畫出相應的二次函數(shù)圖象,根據(jù)圖象寫出解集,教師應給予肯定。)
。ㄋ模⿷眯轮炀氄莆找辉尾坏仁降慕饧
借助二次函數(shù)的圖象,得到一元二次不等式的解集,學生形成了感性認識,為鞏固所學知識,我們一起來完成以下例題:
例1、解不等式2x2-3x-20
解:因為Δ0,方程2x2-3x-2=0的解是
x1= ,x2=2
所以,不等式的解集是
{ x| x ,或x2}
例1的解決達到了兩個目的:一是鞏固了一元二次不等式解集的應用;二是規(guī)范了一元二次不等式的解題格式。
下面我們接著學習課本例2。
例2 解不等式-3x2+6x2
課本例2的出現(xiàn)恰當好處,一方面突出了“對于二次項系數(shù)是負數(shù)(即a0)的一元二次不等式,可以先把二次項系數(shù)化為正數(shù),再求解”;另一方面,學生對此例的解答極易出現(xiàn)寫錯解集(如出現(xiàn)“或”與“且”的錯誤)。
通過例1、例2的解決,學生與我一起總結了解一元二次不等式的一般步驟:一化正—二算△—三求根—四寫解集。
例3 解不等式4x2-4x+10
例4 解不等式-x2+2x-30
分別突出了“△=0”、“△0”對不等式解集的影響。這兩例由學生練習,教師巡視、指導,講評學生完成情況,尋找學生中的閃光點,給予熱情表揚。
4道例題,具有典型性、層次性和學生的可接受性。為了避免學生學后“一團亂麻”、“一盤散沙”的局面,我和學生一起總結。
。ㄎ澹┛偨Y
解一元二次不等式的“四部曲”:
(1)把二次項的系數(shù)化為正數(shù)
(2)計算判別式Δ
(3)解對應的一元二次方程
(4)根據(jù)一元二次方程的根,結合圖像(或口訣),寫出不等式的解集。概括為:一化正→二算Δ→三求根→四寫解集
。┳鳂I(yè)布置
為了使所有學生鞏固所學知識,我布置了“必做題”;又為學有余力者留有自由發(fā)展的空間,我布置了“探究題”。
。1)必做題:習題1.5的1、3題
(2)探究題:①若a、b不同時為零,記ax2+bx+c=0的解集為P,ax2+bx+c0的解集為M,ax2+bx+c0的解集為N,那么P∪M∪N=______________;②已知不等式(k2+4k-5)x2+4(1-k)x+30的解集是R,求實數(shù)k的取值范圍。
。ㄆ撸┌鍟O計
一元二次不等式解法(1)
五、教學效果評價
本節(jié)課立足課本,著力挖掘,設計合理,層次分明。以“三個一次關系→三個二次關系→一元二次不等式解法”為主線,以“從形到數(shù),從具體到抽象,從特殊到一般”為靈魂,以“畫、看、說、用”為特色,把握重點,突破難點。在教學思想上既注重知識形成過程的教學,還特別突出學生學習方法的指導,探究能力的訓練,創(chuàng)新精神的培養(yǎng),引導學生發(fā)現(xiàn)數(shù)學的美,體驗求知的樂趣。
高中數(shù)學教案2
第一章:空間幾何體
1.1.1柱、錐、臺、球的結構特征
一、教學目標
1.知識與技能
。1)通過實物操作,增強學生的直觀感知。
(2)能根據(jù)幾何結構特征對空間物體進行分類。
。3)會用語言概述棱柱、棱錐、圓柱、圓錐、棱臺、圓臺、球的結構特征。
(4)會表示有關于幾何體以及柱、錐、臺的分類。
2.過程與方法
。1)讓學生通過直觀感受空間物體,從實物中概括出柱、錐、臺、球的幾何結構特征。
(2)讓學生觀察、討論、歸納、概括所學的知識。
3.情感態(tài)度與價值觀
。1)使學生感受空間幾何體存在于現(xiàn)實生活周圍,增強學生學習的積極性,同時提高學生的觀察能力。
(2)培養(yǎng)學生的空間想象能力和抽象括能力。
二、教學重點、難點
重點:讓學生感受大量空間實物及模型、概括出柱、錐、臺、球的結構特征。
難點:柱、錐、臺、球的結構特征的概括。
三、教學用具
。1)學法:觀察、思考、交流、討論、概括。
。2)實物模型、投影儀
四、教學思路
。ㄒ唬﹦(chuàng)設情景,揭示課題
1.教師提出問題:在我們生活周圍中有不少有特色的建筑物,你能舉出一些例子嗎?這些建筑的幾何結構特征如何?引導學生回憶,舉例和相互交流。教師對學生的活動及時給予評價。
2.所舉的建筑物基本上都是由這些幾何體組合而成的,(展示具有柱、錐、臺、球結構特征的空間物體),你能通過觀察。根據(jù)某種標準對這些空間物體進行分類嗎?這是我們所要學習的內(nèi)容。
。ǘ⒀刑叫轮
1.引導學生觀察物體、思考、交流、討論,對物體進行分類,分辯棱柱、圓柱、棱錐。
2.觀察棱柱的幾何物件以及投影出棱柱的圖片,它們各自的特點是什么?它們的共同特點是什么?
3.組織學生分組討論,每小組選出一名同學發(fā)表本組討論結果。在此基礎上得出棱柱的主要結構特征。(1)有兩個面互相平行;(2)其余各面都是平行四邊形;(3)每相鄰兩上四邊形的公共邊互相平行。概括出棱柱的概念。
4.教師與學生結合圖形共同得出棱柱相關概念以及棱柱的表示。
5.提出問題:各種這樣的棱柱,主要有什么不同?可不可以根據(jù)不同對棱柱分類?請列舉身邊具有已學過的幾何結構特征的物體,并說出組成這些物體的幾何結構特征?它們由哪些基本幾何體組成的?
6.以類似的方法,讓學生思考、討論、概括出棱錐、棱臺的結構特征,并得出相關的概念,分類以及表示。
7.讓學生觀察圓柱,并實物模型演示,如何得到圓柱,從而概括出圓標的概念以及相關的概念及圓柱的表示。
8.引導學生以類似的方法思考圓錐、圓臺、球的結構特征,以及相關概念和表示,借助實物模型演示引導學生思考、討論、概括。
9.教師指出圓柱和棱柱統(tǒng)稱為柱體,棱臺與圓臺統(tǒng)稱為臺體,圓錐與棱錐統(tǒng)稱為錐體。
10.現(xiàn)實世界中,我們看到的物體大多由具有柱、錐、臺、球等幾何結構特征的物體組合而成。請列舉身邊具有已學過的幾何結構特征的物體,并說出組成這些物體的幾何結構特征?它們由哪些基本幾何體組成的?
。ㄈ┵|(zhì)疑答辯,排難解惑,發(fā)展思維,教師提出問題,讓學生思考。
1.有兩個面互相平行,其余后面都是平行四邊形的幾何體是不是棱柱(舉反例說明,如圖)
2.棱柱的何兩個平面都可以作為棱柱的底面嗎?
3.課本P8,習題1.1A組第1題。
4.圓柱可以由矩形旋轉(zhuǎn)得到,圓錐可以由直角三角形旋轉(zhuǎn)得到,圓臺可以由什么圖形旋轉(zhuǎn)得到?如何旋轉(zhuǎn)?
5.棱臺與棱柱、棱錐有什么關系?圓臺與圓柱、圓錐呢?
四、鞏固深化
練習:課本P7練習1、2(1)(2)
課本P8習題1.1第2、3、4題
五、歸納整理
由學生整理學習了哪些內(nèi)容
六、布置作業(yè)
課本P8練習題1.1B組第1題
課外練習課本P8習題1.1B組第2題
1.2.1空間幾何體的三視圖(1課時)
一、教學目標
1.知識與技能
(1)掌握畫三視圖的基本技能
。2)豐富學生的空間想象力
2.過程與方法
主要通過學生自己的親身實踐,動手作圖,體會三視圖的作用。
3.情感態(tài)度與價值觀
。1)提高學生空間想象力
。2)體會三視圖的作用
二、教學重點、難點
重點:畫出簡單組合體的三視圖
難點:識別三視圖所表示的空間幾何體
三、學法與教學用具
1.學法:觀察、動手實踐、討論、類比
2.教學用具:實物模型、三角板
四、教學思路
。ㄒ唬﹦(chuàng)設情景,揭開課題
“橫看成嶺側(cè)看成峰”,這說明從不同的角度看同一物體視覺的效果可能不同,要比較真實反映出物體,我們可從多角度觀看物體,這堂課我們主要學習空間幾何體的三視圖。
在初中,我們已經(jīng)學習了正方體、長方體、圓柱、圓錐、球的三視圖(正視圖、側(cè)視圖、俯視圖),你能畫出空間幾何體的三視圖嗎?
。ǘ⿲嵺`動手作圖
1.講臺上放球、長方體實物,要求學生畫出它們的三視圖,教師巡視,學生畫完后可交流結果并討論;
2.教師引導學生用類比方法畫出簡單組合體的三視圖
。1)畫出球放在長方體上的三視圖
(2)畫出礦泉水瓶(實物放在桌面上)的三視圖
學生畫完后,可把自己的作品展示并與同學交流,總結自己的作圖心得。
作三視圖之前應當細心觀察,認識了它的基本結構特征后,再動手作圖。
3.三視圖與幾何體之間的相互轉(zhuǎn)化。
(1)投影出示圖片(課本P10,圖1.2-3)
請同學們思考圖中的三視圖表示的幾何體是什么?
。2)你能畫出圓臺的三視圖嗎?
。3)三視圖對于認識空間幾何體有何作用?你有何體會?
教師巡視指導,解答學生在學習中遇到的困難,然后讓學生發(fā)表對上述問題的看法。
4.請同學們畫出1.2-4中其他物體表示的空間幾何體的三視圖,并與其他同學交流。
。ㄈ╈柟叹毩
課本P12練習1、2P18習題1.2A組1
。ㄋ模w納整理
請學生回顧發(fā)表如何作好空間幾何體的三視圖
(五)課外練習
1.自己動手制作一個底面是正方形,側(cè)面是全等的三角形的棱錐模型,并畫出它的三視圖。
2.自己制作一個上、下底面都是相似的正三角形,側(cè)面是全等的等腰梯形的棱臺模型,并畫出它的三視圖。
1.2.2空間幾何體的直觀圖(1課時)
一、教學目標
1.知識與技能
(1)掌握斜二測畫法畫水平設置的平面圖形的直觀圖。
。2)采用對比的方法了解在平行投影下畫空間圖形與在中心投影下畫空間圖形兩種方法的各自特點。
2.過程與方法
學生通過觀察和類比,利用斜二測畫法畫出空間幾何體的直觀圖。
3.情感態(tài)度與價值觀
。1)提高空間想象力與直觀感受。
。2)體會對比在學習中的作用。
。3)感受幾何作圖在生產(chǎn)活動中的應用。
二、教學重點、難點
重點、難點:用斜二測畫法畫空間幾何值的直觀圖。
三、學法與教學用具
1.學法:學生通過作圖感受圖形直觀感,并自然采用斜二測畫法畫空間幾何體的過程。
2.教學用具:三角板、圓規(guī)
四、教學思路
。ㄒ唬﹦(chuàng)設情景,揭示課題
1.我們都學過畫畫,這節(jié)課我們畫一物體:圓柱
把實物圓柱放在講臺上讓學生畫。
2.學生畫完后展示自己的結果并與同學交流,比較誰畫的效果更好,思考怎樣才能畫好物體的直觀圖呢?這是我們這節(jié)主要學習的內(nèi)容。
。ǘ┭刑叫轮
1.例1,用斜二測畫法畫水平放置的正六邊形的直觀圖,由學生閱讀理解,并思考斜二測畫法的關鍵步驟,學生發(fā)表自己的見解,教師及時給予點評。
畫水平放置的多邊形的直觀圖的'關鍵是確定多邊形頂點的位置,因為多邊形頂點的位置一旦確定,依次連結這些頂點就可畫出多邊形來,因此平面多邊形水平放置時,直觀圖的畫法可以歸結為確定點的位置的畫法。強調(diào)斜二測畫法的步驟。
練習反饋
根據(jù)斜二測畫法,畫出水平放置的正五邊形的直觀圖,讓學生獨立完成后,教師檢查。
2.例2,用斜二測畫法畫水平放置的圓的直觀圖
教師引導學生與例1進行比較,與畫水平放置的多邊形的直觀圖一樣,畫水平放置的圓的直觀圖,也是要先畫出一些有代表性的點,由于不能像多邊那樣直接以頂點為代表點,因此需要自己構造出一些點。
教師組織學生思考、討論和交流,如何構造出需要的一些點,與學生共同完成例2并詳細板書畫法。
3.探求空間幾何體的直觀圖的畫法
。1)例3,用斜二測畫法畫長、寬、高分別是4cm、3cm、2cm的長方體ABCD-A’B’C’D’的直觀圖。
教師引導學生完成,要注意對每一步驟提出嚴格要求,讓學生按部就班地畫好每一步,不能敷衍了事。
。2)投影出示幾何體的三視圖、課本P15圖1.2-9,請說出三視圖表示的幾何體?并用斜二測畫法畫出它的直觀圖。教師組織學生思考,討論和交流完成,教師巡視幫不懂的同學解疑,引導學生正確把握圖形尺寸大小之間的關系。
4.平行投影與中心投影
投影出示課本P17圖1.2-12,讓學生觀察比較概括在平行投影下畫空間圖形與在中心投影下畫空間圖形的各自特點。
5.鞏固練習,課本P16練習1(1),2,3,4
三、歸納整理
學生回顧斜二測畫法的關鍵與步驟
四、作業(yè)
1.書畫作業(yè),課本P17練習第5題
2.課外思考課本P16,探究(1)(2)
高中數(shù)學教案3
1. 幽默風趣的你,平時在班里話語不多,也不張揚,但是,你在無意中的表現(xiàn)仍然贏得了很好的人際關系,學習上你認真刻苦,也能及時的完成作業(yè),但是我覺得你總是沒把全部的心思用在學習上,不然以你的聰明,應該保持在前三名才對啊,加油吧,也許關注學習成績對你才是更有意義的事!
2. 身為紀律委員的你,認真負責,以身作則,生活上的你平易近人,與同學關系融洽,學習上你勤奮刻苦,尤其在英語的學習上,顯示出了你的語言天賦,我覺得,假如你能把這份自信和興趣用到其他的學科學習中,也一定會收獲很多的!加油吧!
3. 你能嚴格遵守校規(guī),上課認真聽講,作業(yè)完成認真,樂于助人,愿意幫助同學,大掃除時你不怕苦,不怕累,但是英語方面還不夠給力,所以,如果再投入一點,定會取得更好的結果,而且你還是一個愿意動腦筋的好學生,如果繼續(xù)保持下去定會取得驕人的成績!
4. 你是個懂禮貌明事理的孩子,你能嚴格遵守班級紀律,熱愛集體,對待學習態(tài)度端正,上課能夠?qū)P穆犞v,課下能夠認真完成作業(yè)。你的學習方法有待改進,若能做到學習時心無旁騖就好了,掌握知識也不夠牢固,思維能力要進一步培養(yǎng)和提高,平時善于多動筆認真作好筆記,多開動腦筋,相信你一定能在下學期更得更大的進步! 你學習認真刻苦,也能善于思考,更十分活潑,并能嚴格遵守班級和宿舍紀律,上課你能認真聽講,做作業(yè)時你十分專注,常常愿意花功夫鉆研難題,與同學相處也十分融洽,但若能在認真做作業(yè)的同時,將速度提上去,我相信你會做得更好。要多講究學習方法,不能靠熬夜來完成學習任務,提高學習效率,老師相信你一定能通過自己的努力取得更好的成績!
5. 雖然你個頭小,但每次你領讀時的那股認真勁兒,令老師暗暗稱贊。你尊敬老師,和同學能和睦相處。甜美可愛的你,經(jīng)過不斷的努力,你會更出色的!
6. 你是個活潑可愛的孩子,課堂上,你非常投入地學習著,朗讀課文時數(shù)你最有感情。中午你還主動給老師捶背,真是個會關心人的孩子,老師謝謝你。你十分喜愛讀課外書,不過課上可不能偷看啊!愿書成為你的.好朋友。
7. 學習中你能嚴格要求自己,這是你永不落敗的秘訣。老師希望你能借助良好的學習方法,抓緊一切時間,笑在最后的一定是你!
8. 許麗君——你思想上進,踏實穩(wěn)重,誠實謙虛,尊敬老師。黑板報中有你傾注的心血,集體榮譽簿里有你的功勞。但學習的主動精神不夠,競爭意識不強,也很少看到你向老師請教,成績進步不明顯。請相信:世上沒有比腳更長的路,也沒有比心更高的山!望今后大膽進取,多思多問,發(fā)揮你的聰明才智,進一步激發(fā)活力,提高學習效率,持之以恒,美好的明天屬于你!
9. 每天你都背著書包高高興興地來上學,學到了不少的知識,可惜只能記住很少的一部分。希望你改進學習方法,提高學習效率,在下學期有更大的進步!
10. 你言語不多,但待人誠懇、禮貌,作風踏實,品學兼優(yōu),熱愛班級,關愛同學,勤奮好學,思維敏捷,成績優(yōu)秀。愿你扎實各科基礎,堅持不懈,!一定能考上重點! 優(yōu)秀的男生肯定是逗人喜歡的,老師希望你能一如既往的優(yōu)秀,把這種優(yōu)秀保持在你人生的每一階段中。你的人生就是輝煌如意的!
高中數(shù)學教案4
1.課題
填寫課題名稱(高中代數(shù)類課題)
2.教學目標
(1)知識與技能:
通過本節(jié)課的學習,掌握......知識,提高學生解決實際問題的能力;
(2)過程與方法:
通過......(討論、發(fā)現(xiàn)、探究),提高......(分析、歸納、比較和概括)的能力;
(3)情感態(tài)度與價值觀:
通過本節(jié)課的學習,增強學生的學習興趣,將數(shù)學應用到實際生活中,增加學生數(shù)學學習的樂趣。
3.教學重難點
(1)教學重點:本節(jié)課的知識重點
(2)教學難點:易錯點、難以理解的知識點
4.教學方法(一般從中選擇3個就可以了)
(1)討論法
(2)情景教學法
(3)問答法
(4)發(fā)現(xiàn)法
(5)講授法
5.教學過程
(1)導入
簡單敘述導入課題的方式和方法(例:復習、類比、情境導出本節(jié)課的課題)
(2)新授課程(一般分為三個小步驟)
、俸唵沃v解本節(jié)課基礎知識點(例:奇函數(shù)的定義)。
、跉w納總結該課題中的重點知識內(nèi)容,尤其對該注意的一些情況設置易錯點,進行強調(diào)?梢栽O計分組討論環(huán)節(jié)(分組判斷幾組函數(shù)圖像是否為奇函數(shù),并歸納奇函數(shù)圖像的特點。設置定義域不關于原點對稱的函數(shù)是否為奇函數(shù)的易錯點)。
③拓展延伸,將所學知識拓展延伸到實際題目中,去解決實際生活中的問題。
。ㄔ谛率谡n里面一定要表下出講課的大體流程,但是不必太過詳細。)
(3)課堂小結
教師提問,學生回答本節(jié)課的收獲。
(4)作業(yè)提高
布置作業(yè)(盡量與實際生活相聯(lián)系,有所創(chuàng)新)。
6.教學板書
2.高中數(shù)學教案格式
一.課題(說明本課名稱)
二.教學目的(或稱教學要求,或稱教學目標,說明本課所要完成的教學任務)
三.課型(說明屬新授課,還是復習課)
四.課時(說明屬第幾課時)
五.教學重點(說明本課所必須解決的關鍵性問題)
六.教學難點(說明本課的學習時易產(chǎn)生困難和障礙的知識傳授與能力培養(yǎng)點)
七.教學方法要根據(jù)學生實際,注重引導自學,注重啟發(fā)思維
八.教學過程(或稱課堂結構,說明教學進行的內(nèi)容、方法步驟)
九.作業(yè)處理(說明如何布置書面或口頭作業(yè))
十.板書設計(說明上課時準備寫在黑板上的內(nèi)容)
十一.教具(或稱教具準備,說明輔助教學手段使用的工具)
十二.教學反思:(教者對該堂課教后的感受及學生的收獲、改進方法)
3.高中數(shù)學教案范文
【教學目標】
1.知識與技能
(1)理解等差數(shù)列的定義,會應用定義判斷一個數(shù)列是否是等差數(shù)列:
(2)賬務等差數(shù)列的通項公式及其推導過程:
(3)會應用等差數(shù)列通項公式解決簡單問題。
2.過程與方法
在定義的理解和通項公式的推導、應用過程中,培養(yǎng)學生的觀察、分析、歸納能力和嚴密的邏輯思維的能力,體驗從特殊到一般,一般到特殊的認知規(guī)律,提高熟悉猜想和歸納的能力,滲透函數(shù)與方程的思想。
3.情感、態(tài)度與價值觀
通過教師指導下學生的自主學習、相互交流和探索活動,培養(yǎng)學生主動探索、用于發(fā)現(xiàn)的求知精神,激發(fā)學生的學習興趣,讓學生感受到成功的喜悅。在解決問題的過程中,使學生養(yǎng)成細心觀察、認真分析、善于總結的良好習慣。
【教學重點】
、俚炔顢(shù)列的概念;
、诘炔顢(shù)列的通項公式
【教學難點】
、倮斫獾炔顢(shù)列“等差”的特點及通項公式的含義;
、诘炔顢(shù)列的通項公式的推導過程.
【學情分析】
我所教學的學生是我校高一(7)班的學生(平行班學生),經(jīng)過一年的高中數(shù)學學習,大部分學生知識經(jīng)驗已較為豐富,他們的智力發(fā)展已到了形式運演階段,具備了較強的抽象思維能力和演繹推理能力,但也有一部分學生的基礎較弱,學習數(shù)學的興趣還不是很濃,所以我在授課時注重從具體的生活實例出發(fā),注重引導、啟發(fā)、研究和探討以符合這類學生的心理發(fā)展特點,從而促進思維能力的進一步發(fā)展。
【設計思路】
1、教法
①啟發(fā)引導法:這種方法有利于學生對知識進行主動建構;有利于突出重點,突破難點;有利于調(diào)動學生的主動性和積極性,發(fā)揮其創(chuàng)造性.
、诜纸M討論法:有利于學生進行交流,及時發(fā)現(xiàn)問題,解決問題,調(diào)動學生的積極性.
、壑v練結合法:可以及時鞏固所學內(nèi)容,抓住重點,突破難點.
2、學法
引導學生首先從三個現(xiàn)實問題(數(shù)數(shù)問題、水庫水位問題、儲蓄問題)概括出數(shù)組特點并抽象出等差數(shù)列的概念;接著就等差數(shù)列概念的特點,推導出等差數(shù)列的通項公式;可以對各種能力的同學引導認識多元的推導思維方法.
【教學過程】
一、創(chuàng)設情境,引入新課
1、從0開始,將5的倍數(shù)按從小到大的順序排列,得到的數(shù)列是什么?
2、水庫管理人員為了保證優(yōu)質(zhì)魚類有良好的生活環(huán)境,用定期放水清庫的辦法清理水庫中的雜魚.如果一個水庫的水位為18m,自然放水每天水位降低2.5m,最低降至5m.那么從開始放水算起,到可以進行清理工作的那天,水庫每天的水位(單位:m)組成一個什么數(shù)列?
3、我國現(xiàn)行儲蓄制度規(guī)定銀行支付存款利息的方式為單利,即不把利息加入本息計算下一期的利息.按照單利計算本利和的公式是:本利和=本金×(1+利率×存期).按活期存入10000元錢,年利率是0.72%,那么按照單利,5年內(nèi)各年末的本利和(單位:元)組成一個什么數(shù)列?
教師:以上三個問題中的數(shù)蘊涵著三列數(shù).
學生:
、0,5,10,15,20,25,….
②18,15.5,13,10.5,8,5.5.
、10072,10144,10216,10288,10360.
(設置意圖:從實例引入,實質(zhì)是給出了等差數(shù)列的現(xiàn)實背景,目的是讓學生感受到等差數(shù)列是現(xiàn)實生活中大量存在的.數(shù)學模型.通過分析,由特殊到一般,激發(fā)學生學習探究知識的自主性,培養(yǎng)學生的歸納能力.
二、觀察歸納,形成定義
、0,5,10,15,20,25,….
、18,15.5,13,10.5,8,5.5.
、10072,10144,10216,10288,10360.
思考1上述數(shù)列有什么共同特點?
思考2根據(jù)上數(shù)列的共同特點,你能給出等差數(shù)列的一般定義嗎?
思考3你能將上述的文字語言轉(zhuǎn)換成數(shù)學符號語言嗎?
教師:引導學生思考這三列數(shù)具有的共同特征,然后讓學生抓住數(shù)列的特征,歸納得出等差數(shù)列概念.
學生:分組討論,可能會有不同的答案:前數(shù)和后數(shù)的差符合一定規(guī)律;這些數(shù)都是按照一定順序排列的…只要合理教師就要給予肯定.
教師引導歸納出:等差數(shù)列的定義;另外,教師引導學生從數(shù)學符號角度理解等差數(shù)列的定義.
(設計意圖:通過對一定數(shù)量感性材料的觀察、分析,提煉出感性材料的本質(zhì)屬性;使學生體會到等差數(shù)列的規(guī)律和共同特點;一開始抓住:“從第二項起,每一項與它的前一項的差為同一常數(shù)”,落實對等差數(shù)列概念的準確表達.)
三、舉一反三,鞏固定義
1、判定下列數(shù)列是否為等差數(shù)列?若是,指出公差d.
(1)1,1,1,1,1;
(2)1,0,1,0,1;
(3)2,1,0,-1,-2;
(4)4,7,10,13,16.
教師出示題目,學生思考回答.教師訂正并強調(diào)求公差應注意的問題.
注意:公差d是每一項(第2項起)與它的前一項的差,防止把被減數(shù)與減數(shù)弄顛倒,而且公差可以是正數(shù),負數(shù),也可以為0.
(設計意圖:強化學生對等差數(shù)列“等差”特征的理解和應用).
2、思考4:設數(shù)列{an}的通項公式為an=3n+1,該數(shù)列是等差數(shù)列嗎?為什么?
(設計意圖:強化等差數(shù)列的證明定義法)
四、利用定義,導出通項
1、已知等差數(shù)列:8,5,2,…,求第200項?
2、已知一個等差數(shù)列{an}的首項是a1,公差是d,如何求出它的任意項an呢?
教師出示問題,放手讓學生探究,然后選擇列式具有代表性的上去板演或投影展示.根據(jù)學生在課堂上的具體情況進行具體評價、引導,總結推導方法,體會歸納思想以及累加求通項的方法;讓學生初步嘗試處理數(shù)列問題的常用方法.
(設計意圖:引導學生觀察、歸納、猜想,培養(yǎng)學生合理的推理能力.學生在分組合作探究過程中,可能會找到多種不同的解決辦法,教師要逐一點評,并及時肯定、贊揚學生善于動腦、勇于創(chuàng)新的品質(zhì),激發(fā)學生的創(chuàng)造意識.鼓勵學生自主解答,培養(yǎng)學生運算能力)
五、應用通項,解決問題
1、判斷100是不是等差數(shù)列2,9,16,…的項?如果是,是第幾項?
2、在等差數(shù)列{an}中,已知a5=10,a12=31,求a1,d和an.
3、求等差數(shù)列3,7,11,…的第4項和第10項
教師:給出問題,讓學生自己操練,教師巡視學生答題情況.
學生:教師叫學生代表總結此類題型的解題思路,教師補充:已知等差數(shù)列的首項和公差就可以求出其通項公式
(設計意圖:主要是熟悉公式,使學生從中體會公式與方程之間的聯(lián)系.初步認識“基本量法”求解等差數(shù)列問題.)
六、反饋練習:教材13頁練習1
七、歸納總結:
1、一個定義:
等差數(shù)列的定義及定義表達式
2、一個公式:
等差數(shù)列的通項公式
3、二個應用:
定義和通項公式的應用
教師:讓學生思考整理,找?guī)讉代表發(fā)言,最后教師給出補充
(設計意圖:引導學生去聯(lián)想本節(jié)課所涉及到的各個方面,溝通它們之間的聯(lián)系,使學生能在新的高度上去重新認識和掌握基本概念,并靈活運用基本概念.)
【設計反思】
本設計從生活中的數(shù)列模型導入,有助于發(fā)揮學生學習的主動性,增強學生學習數(shù)列的興趣.在探索的過程中,學生通過分析、觀察,歸納出等差數(shù)列定義,然后由定義導出通項公式,強化了由具體到抽象,由特殊到一般的思維過程,有助于提高學生分析問題和解決問題的能力.本節(jié)課教學采用啟發(fā)方法,以教師提出問題、學生探討解決問題為途徑,以相互補充展開教學,總結科學合理的知識體系,形成師生之間的良性互動,提高課堂教學效率.
高中數(shù)學教案5
一、教學目標:
掌握向量的概念、坐標表示、運算性質(zhì),做到融會貫通,能應用向量的有關性質(zhì)解決諸如平面幾何、解析幾何等的問題。
二、教學重點:
向量的性質(zhì)及相關知識的.綜合應用。
三、教學過程:
。ㄒ唬┲饕R:
1、掌握向量的概念、坐標表示、運算性質(zhì),做到融會貫通,能應用向量的有關性質(zhì)解決諸如平面幾何、解析幾何等的問題。
。ǘ├}分析:略
四、小結:
1、進一步熟練有關向量的運算和證明;能運用解三角形的知識解決有關應用問題,
2、滲透數(shù)學建模的思想,切實培養(yǎng)分析和解決問題的能力。
五、作業(yè):
略
高中數(shù)學教案6
猴子搬香蕉
一個小猴子邊上有100根香蕉,它要走過50米才能到家,每次它最多搬50根香蕉,(多了就被壓死了),它每走1米就要吃掉一根,請問它最多能把多少根香蕉搬到家里?
解答:
100只香蕉分兩次,一次運50只,走1米,再回去搬另外50只,這樣走了1米的時候,前50只吃掉了兩只,后50只吃掉了1只,剩下48+49只;兩米的時候剩下46+48只;...到16米的時候剩下(50-2×16)+(50-16)=18+34只;17米的時候剩下16+33只,共49只;然后把剩下的這49只一次運回去,要走剩下的33米,每米吃一個,到家還有16個香蕉。
河岸的距離
兩艘輪船在同一時刻駛離河的兩岸,一艘從A駛往B,另一艘從B開往A,其中一艘開得比另一艘快些,因此它們在距離較近的岸500公里處相遇。到達預定地點后,每艘船要停留15分鐘,以便讓乘客上下船,然后它們又返航。這兩艘渡輪在距另一岸100公里處重新相遇。試問河有多寬?
解答:
當兩艘渡輪在x點相遇時,它們距A岸500公里,此時它們走過的距離總和等于河的寬度。當它們雙方抵達對岸時,走過的總長度
等于河寬的兩倍。在返航中,它們在z點相遇,這時兩船走過的距離之和等于河寬的三倍,所以每一艘渡輪現(xiàn)在所走的距離應該等于它們第一次相遇時所走的距離的三倍。在兩船第一次相遇時,有一艘渡輪走了500公里,所以當它到達z點時,已經(jīng)走了三倍的距離,即1500公里,這個距離比河的寬度多100公里。所以,河的寬度為1400公里。每艘渡輪的上、下客時間對答案毫無影響。
變量交換
不使用任何其他變量,交換a,b變量的值?
分析與解答
a = a+b
b = a-b
a= a-b
步行時間
某公司的辦公大樓在市中心,而公司總裁溫斯頓的家在郊區(qū)一個小鎮(zhèn)的附近。他每次下班以后都是乘同一次市郊火車回小鎮(zhèn)。小鎮(zhèn)車站離家還有一段距離,他的私人司機總是在同一時刻從家里開出轎車,去小鎮(zhèn)車站接總裁回家。由于火車與轎車都十分準時,因此,火車與轎車每次都是在同一時刻到站。
有一次,司機比以往遲了半個小時出發(fā)。溫斯頓到站后,找不到
他的車子,又怕回去晚了遭老婆罵,便急匆匆沿著公路步行往家里走,途中遇到他的轎車正風馳電掣而來,立即招手示意停車,跳上車子后也顧不上罵司機,命其馬上掉頭往回開;氐郊抑,果不出所料,他老婆大發(fā)雷霆:“又到哪兒鬼混去啦!你比以往足足晚回了22分鐘??”。溫斯頓步行了多長時間?
解答:
假如溫斯頓一直在車站等候,那么由于司機比以往晚了半小時出發(fā),因此,也將晚半小時到達車站。也就是說,溫斯頓將在車站空等半小時,等他的轎車到達后坐車回家,從而他將比以往晚半小時到家。而現(xiàn)在溫斯頓只比平常晚22分鐘到家,這縮短下來的8分鐘是如果總裁在火車站死等的話,司機本來要花在從現(xiàn)在遇到溫斯頓總裁的地點到火車站再回到這個地點上的時間。這意味著,如果司機開車從現(xiàn)在遇到總裁的地點趕到火車站,單程所花的時間將為4分鐘。因此,如果溫斯頓等在火車站,再過4分鐘,他的轎車也到了。也就是說,他如果等在火車站,那么他也已經(jīng)等了30-4=26分鐘了。但是懼內(nèi)的溫斯頓總裁畢竟沒有等,他心急火燎地趕路,把這26分鐘全都花在步行上了。
因此,溫斯頓步行了26分鐘。
付清欠款
有四個人借錢的數(shù)目分別是這樣的:阿伊庫向貝爾借了10美元;
貝爾向查理借了20美元;查理向迪克借了30美元;迪克又向阿伊庫借了40美元。碰巧四個人都在場,決定結個賬,請問最少只需要動用多少美金就可以將所有欠款一次付清?
解答:
貝爾、查理、迪克各自拿出10美元給阿伊庫就可解決問題了。這樣的話只動用了30美元。最笨的辦法就是用100美元來一一付清。
貝爾必須拿出10美元的欠額,查理和迪克也一樣;而阿伊庫則要收回借出的30美元。再復雜的問題只要有條理地分析就會很簡單。養(yǎng)成經(jīng)常性地歸納整理、摸索實質(zhì)的好習慣。
一美元紙幣
注:美國貨幣中的硬幣有1美分、5美分、10美分、25美分、50美分和1美元這幾種面值。
一家小店剛開始營業(yè),店堂中只有三位男顧客和一位女店主。當這三位男士同時站起來付帳的時候,出現(xiàn)了以下的情況:
(1)這四個人每人都至少有一枚硬幣,但都不是面值為1美分或1美元的硬幣。
(2)這四人中沒有一人能夠兌開任何一枚硬幣。
。3)一個叫盧的男士要付的賬單款額最大,一位叫莫的男士要
付的.帳單款額其次,一個叫內(nèi)德的男士要付的賬單款額最小。
。4)每個男士無論怎樣用手中所持的硬幣付賬,女店主都無法找清零錢。
(5)如果這三位男士相互之間等值調(diào)換一下手中的硬幣,則每個人都可以付清自己的賬單而無需找零。
(6)當這三位男士進行了兩次等值調(diào)換以后,他們發(fā)現(xiàn)手中的硬幣與各人自己原先所持的硬幣沒有一枚面值相同。
。7)隨著事情的進一步發(fā)展,又出現(xiàn)如下的情況:
(8)在付清了賬單而且有兩位男士離開以后,留下的男士又買了一些糖果。這位男士本來可以用他手中剩下的硬幣付款,可是女店主卻無法用她現(xiàn)在所持的硬幣找清零錢。于是,這位男士用1美元的紙幣付了糖果錢,但是現(xiàn)在女店主不得不把她的全部硬幣都找給了他。
現(xiàn)在,請你不要管那天女店主怎么會在找零上屢屢遇到麻煩,這三位男士中誰用1美元的紙幣付了糖果錢?
解答:
對題意的以下兩點這樣理解:
(2)中不能換開任何一個硬幣,指的是如果任何一個人不能有2個5分,否則他能換1個10分硬幣。
(6)中指如果A,B換過,并且A,C換過,這就是兩次交換。
高中數(shù)學教案7
[學習目標]
。1)會用坐標法及距離公式證明Cα+β;
。2)會用替代法、誘導公式、同角三角函數(shù)關系式,由Cα+β推導Cα—β、Sα±β、Tα±β,切實理解上述公式間的關系與相互轉(zhuǎn)化;
。3)掌握公式Cα±β、Sα±β、Tα±β,并利用簡單的三角變換,解決求值、化簡三角式、證明三角恒等式等問題。
[學習重點]
兩角和與差的正弦、余弦、正切公式
[學習難點]
余弦和角公式的推導
[知識結構]
1、兩角和的余弦公式是三角函數(shù)一章和、差、倍公式系列的基礎。其公式的'證明是用坐標法,利用三角函數(shù)定義及平面內(nèi)兩點間的距離公式,把兩角和α+β的余弦,化為單角α、β的三角函數(shù)(證明過程見課本)
2、通過下面各組數(shù)的值的比較:①cos(30°—90°)與cos30°—cos90°②sin(30°+60°)和sin30°+sin60°。我們應該得出如下結論:一般情況下,cos(α±β)≠cosα±cosβ,sin(α±β)≠sinα±sinβ。但不排除一些特例,如sin(0+α)=sin0+sinα=sinα。
3、當α、β中有一個是的整數(shù)倍時,應首選誘導公式進行變形。注意兩角和與差的三角函數(shù)是誘導公式等的基礎,而誘導公式是兩角和與差的三角函數(shù)的特例。
4、關于公式的正用、逆用及變用
高中數(shù)學教案8
教學目的:掌握圓的標準方程,并能解決與之有關的問題
教學重點:圓的標準方程及有關運用
教學難點:標準方程的.靈活運用
教學過程:
一、導入新課,探究標準方程
二、掌握知識,鞏固練習
練習:⒈說出下列圓的方程
、艌A心(3,-2)半徑為5⑵圓心(0,3)半徑為3
、仓赋鱿铝袌A的圓心和半徑
、牛▁-2)2+(y+3)2=3
⑵x2+y2=2
、莤2+y2-6x+4y+12=0
、撑袛3x-4y-10=0和x2+y2=4的位置關系
、磮A心為(1,3),并與3x-4y-7=0相切,求這個圓的方程
三、引伸提高,講解例題
例1、圓心在y=-2x上,過p(2,-1)且與x-y=1相切求圓的方程(突出待定系數(shù)的數(shù)學方法)
練習:1、某圓過(-2,1)、(2,3),圓心在x軸上,求其方程。
2、某圓過A(-10,0)、B(10,0)、C(0,4),求圓的方程。
例2:某圓拱橋的跨度為20米,拱高為4米,在建造時每隔4米加一個支柱支撐,求A2P2的長度。
例3、點M(x0,y0)在x2+y2=r2上,求過M的圓的切線方程(一題多解,訓練思維)
四、小結練習P771,2,3,4
五、作業(yè)P811,2,3,4
高中數(shù)學教案9
教學目標:
1.理解流程圖的選擇結構這種基本邏輯結構.
2.能識別和理解簡單的框圖的功能.
3. 能運用三種基本邏輯結構設計流程圖以解決簡單的問題.
教學方法:
1. 通過模仿、操作、探索,經(jīng)歷設計流程圖表達求解問題的過程,加深對流程圖的感知.
2. 在具體問題的解決過程中,掌握基本的流程圖的畫法和流程圖的三種基本邏輯結構.
教學過程:
一、問題情境
1.情境:
某鐵路客運部門規(guī)定甲、乙兩地之間旅客托運行李的費用為
其中(單位:)為行李的重量.
試給出計算費用(單位:元)的一個算法,并畫出流程圖.
二、學生活動
學生討論,教師引導學生進行表達.
解 算法為:
輸入行李的重量;
如果,那么,
否則;
輸出行李的重量和運費.
上述算法可以用流程圖表示為:
教師邊講解邊畫出第10頁圖1-2-6.
在上述計費過程中,第二步進行了判斷.
三、建構數(shù)學
1.選擇結構的概念:
先根據(jù)條件作出判斷,再決定執(zhí)行哪一種
操作的結構稱為選擇結構.
如圖:虛線框內(nèi)是一個選擇結構,它包含一個判斷框,當條件成立(或稱條件為“真”)時執(zhí)行,否則執(zhí)行.
2.說明:(1)有些問題需要按給定的條件進行分析、比較和判斷,并按判
斷的不同情況進行不同的操作,這類問題的實現(xiàn)就要用到選擇結構的設計;
。2)選擇結構也稱為分支結構或選取結構,它要先根據(jù)指定的`條件進行判斷,再由判斷的結果決定執(zhí)行兩條分支路徑中的某一條;
。3)在上圖的選擇結構中,只能執(zhí)行和之一,不可能既執(zhí)行,又執(zhí)
行,但或兩個框中可以有一個是空的,即不執(zhí)行任何操作;
。4)流程圖圖框的形狀要規(guī)范,判斷框必須畫成菱形,它有一個進入點和
兩個退出點.
3.思考:教材第7頁圖所示的算法中,哪一步進行了判斷?
高中數(shù)學教案10
1.1.1 任意角
教學目標
。ㄒ唬 知識與技能目標
理解任意角的概念(包括正角、負角、零角) 與區(qū)間角的概念.
。ǘ 過程與能力目標
會建立直角坐標系討論任意角,能判斷象限角,會書寫終邊相同角的集合;掌握區(qū)間角的集合的書寫.
。ㄈ 情感與態(tài)度目標
1. 提高學生的推理能力;
2.培養(yǎng)學生應用意識. 教學重點
任意角概念的理解;區(qū)間角的集合的書寫. 教學難點
終邊相同角的集合的表示;區(qū)間角的集合的書寫.
教學過程
一、引入:
1.回顧角的定義
①角的第一種定義是有公共端點的兩條射線組成的圖形叫做角.
、诮堑牡诙N定義是角可以看成平面內(nèi)一條射線繞著端點從一個位置旋轉(zhuǎn)到另一個位置所形成的圖形.
二、新課:
1.角的有關概念:
、俳堑亩x:
角可以看成平面內(nèi)一條射線繞著端點從一個位置旋轉(zhuǎn)到另一個位置所形成的圖形.
、诮堑拿Q:
③角的分類: A
正角:按逆時針方向旋轉(zhuǎn)形成的角 零角:射線沒有任何旋轉(zhuǎn)形成的角
負角:按順時針方向旋轉(zhuǎn)形成的角
、茏⒁猓
、旁诓灰鸹煜那闆r下,“角α ”或“∠α ”可以簡化成“α ”;
⑵零角的終邊與始邊重合,如果α是零角α =0°;
⑶角的概念經(jīng)過推廣后,已包括正角、負角和零角.
、菥毩暎赫堈f出角α、β、γ各是多少度?
2.象限角的概念:
、俣x:若將角頂點與原點重合,角的始邊與x軸的非負半軸重合,那么角的終邊(端點除外)在第幾象限,我們就說這個角是第幾象限角.
例1.在直角坐標系中,作出下列各角,并指出它們是第幾象限的角.
、 60°; ⑵ 120°; ⑶ 240°; ⑷ 300°; ⑸ 420°; ⑹ 480°;
答:分別為1、2、3、4、1、2象限角.
3.探究:教材P3面
終邊相同的角的表示:
所有與角α終邊相同的角,連同α在內(nèi),可構成一個集合S={ β | β = α +
k·360° ,
k∈Z},即任一與角α終邊相同的角,都可以表示成角α與整個周角的和. 注意: ⑴ k∈Z
、 α是任一角;
、 終邊相同的角不一定相等,但相等的角終邊一定相同.終邊相同的角有無限個,它們相差
360°的整數(shù)倍;
、 角α + k·720°與角α終邊相同,但不能表示與角α終邊相同的所有角.
例2.在0°到360°范圍內(nèi),找出與下列各角終邊相等的角,并判斷它們是第幾象限角.
⑴-120°;
、640°;
⑶-950°12’.
答:⑴240°,第三象限角;
、280°,第四象限角;
、129°48’,第二象限角;
例4.寫出終邊在y軸上的角的集合(用0°到360°的角表示) . 解:{α | α = 90°+ n·180°,n∈Z}.
例5.寫出終邊在y?x上的角的集合S,并把S中適合不等式-360°≤β<720°的元素β寫出來.
4.課堂小結
、俳堑亩x;
②角的分類:
正角:按逆時針方向旋轉(zhuǎn)形成的角 零角:射線沒有任何旋轉(zhuǎn)形成的角
負角:按順時針方向旋轉(zhuǎn)形成的角
、巯笙藿牵
、芙K邊相同的角的表示法.
5.課后作業(yè):
、匍喿x教材P2-P5;
、诮滩腜5練習第1-5題;
、劢滩腜.9習題1.1第1、2、3題 思考題:已知α角是第三象限角,則2α,
解:??角屬于第三象限,
? k·360°+180°<α<k·360°+270°(k∈Z)
因此,2k·360°+360°<2α<2k·360°+540°(k∈Z) 即(2k +1)360°<2α<(2k +1)360°+180°(k∈Z)
故2α是第一、二象限或終邊在y軸的非負半軸上的角. 又k·180°+90°<
各是第幾象限角?
<k·180°+135°(k∈Z) .
。糿·360°+135°(n∈Z) ,
當k為偶數(shù)時,令k=2n(n∈Z),則n·360°+90°<此時,
屬于第二象限角
<n·360°+315°(n∈Z) ,
當k為奇數(shù)時,令k=2n+1 (n∈Z),則n·360°+270°<此時,
屬于第四象限角
因此
屬于第二或第四象限角.
1.1.2弧度制
。ㄒ唬
教學目標
。ǘ 知識與技能目標
理解弧度的意義;了解角的集合與實數(shù)集R之間的可建立起一一對應的關系;熟記特殊角的弧度數(shù).
。ㄈ 過程與能力目標
能正確地進行弧度與角度之間的換算,能推導弧度制下的弧長公式及扇形的`面積公式,并能運用公式解決一些實際問題
。ㄋ模 情感與態(tài)度目標
通過新的度量角的單位制(弧度制)的引進,培養(yǎng)學生求異創(chuàng)新的精神;通過對弧度制與角度制下弧長公式、扇形面積公式的對比,讓學生感受弧長及扇形面積公式在弧度制下的簡潔美. 教學重點
弧度的概念.弧長公式及扇形的面積公式的推導與證明. 教學難點
“角度制”與“弧度制”的區(qū)別與聯(lián)系.
教學過程
一、復習角度制:
初中所學的角度制是怎樣規(guī)定角的度量的? 規(guī)定把周角的作為1度的角,用度做單位來度量角的制度叫做角度制.
二、新課:
1.引 入:
由角度制的定義我們知道,角度是用來度量角的, 角度制的度量是60進制的,運用起來不太方便.在數(shù)學和其他許多科學研究中還要經(jīng)常用到另一種度量角的制度—弧度制,它是如何定義呢?
2.定 義
我們規(guī)定,長度等于半徑的弧所對的圓心角叫做1弧度的角;用弧度來度量角的單位制叫做弧度制.在弧度制下, 1弧度記做1rad.在實際運算中,常常將rad單位省略.
3.思考:
。1)一定大小的圓心角?所對應的弧長與半徑的比值是否是確定的?與圓的半徑大小有關嗎?
。2)引導學生完成P6的探究并歸納: 弧度制的性質(zhì):
、侔雸A所對的圓心角為
②整圓所對的圓心角為
、壅堑幕《葦(shù)是一個正數(shù).
、茇摻堑幕《葦(shù)是一個負數(shù).
、萘憬堑幕《葦(shù)是零.
、藿铅恋幕《葦(shù)的絕對值|α|= .
4.角度與弧度之間的轉(zhuǎn)換:
、賹⒔嵌然癁榛《龋
、趯⒒《然癁榻嵌龋
5.常規(guī)寫法:
、 用弧度數(shù)表示角時,常常把弧度數(shù)寫成多少π 的形式, 不必寫成小數(shù).
、 弧度與角度不能混用.
弧長等于弧所對應的圓心角(的弧度數(shù))的絕對值與半徑的積.
例1.把67°30’化成弧度.
例2.把? rad化成度.
例3.計算:
(1)sin4
(2)tan1.5.
8.課后作業(yè):
、匍喿x教材P6 –P8;
、诮滩腜9練習第1、2、3、6題;
、劢滩腜10面7、8題及B2、3題.
高中數(shù)學教案11
教學目標
(1)了解算法的含義,體會算法思想。
(2)會用自然語言和數(shù)學語言描述簡單具體問題的算法;
(3)學習有條理地、清晰地表達解決問題的步驟,培養(yǎng)邏輯思維能力與表達能力。
教學重難點
重點:算法的含義、解二元一次方程組的算法設計。
難點:把自然語言轉(zhuǎn)化為算法語言。
情境導入
電影《神槍手》中描述的凌靖是一個天生的狙擊手,他百發(fā)百中,最難打的位置對他來說也是輕而易舉,是香港警察狙擊手隊伍的第一神槍手、作為一名狙擊手,要想成功地完成一次狙擊任務,一般要按步驟完成以下幾步:
第一步:觀察、等待目標出現(xiàn)(用望遠鏡或瞄準鏡);
第二步:瞄準目標;
第三步:計算(或估測)風速、距離、空氣濕度、空氣密度;
第四步:根據(jù)第三步的結果修正彈著點;
第五步:開槍;
第六步:迅速轉(zhuǎn)移(或隱蔽)
以上這種完成狙擊任務的方法、步驟在數(shù)學上我們叫算法。
課堂探究
預習提升
1、定義:算法可以理解為由基本運算及規(guī)定的運算順序所構成的完整的解題步驟,或者看成按照要求設計好的有限的確切的計算序列,并且這樣的步驟或序列能夠解決一類問題。
2、描述方式
自然語言、數(shù)學語言、形式語言(算法語言)、框圖。
3、算法的要求
(1)寫出的算法,必須能解決一類問題,且能重復使用;
(2)算法過程要能一步一步執(zhí)行,每一步執(zhí)行的操作,必須確切,不能含混不清,而且經(jīng)過有限步后能得出結果。
4、算法的特征
(1)有限性:一個算法應包括有限的操作步驟,能在執(zhí)行有窮的操作步驟之后結束。
(2)確定性:算法的計算規(guī)則及相應的計算步驟必須是唯一確定的。
(3)可行性:算法中的每一個步驟都是可以在有限的時間內(nèi)完成的基本操作,并能得到確定的結果。
(4)順序性:算法從初始步驟開始,分為若干個明確的步驟,前一步是后一步的前提,后一步是前一步的后續(xù),且除了最后一步外,每一個步驟只有一個確定的后續(xù)。
(5)不唯一性:解決同一問題的算法可以是不唯一的
課堂典例講練
命題方向1對算法意義的理解
例1、下列敘述中,
、僦矘湫枰\苗、挖坑、栽苗、澆水這些步驟;
、诎错樞蜻M行下列運算:1+1=2,2+1=3,3+1=4,…99+1=100;
、蹚那鄭u乘動車到濟南,再從濟南乘飛機到倫敦觀看奧運會開幕式;
、3x>x+1;
⑤求所有能被3整除的正數(shù),即3,6,9,12。
能稱為算法的個數(shù)為( )
A、2
B、3
C、4
D、5
【解析】根據(jù)算法的含義和特征:①②③都是算法;④⑤不是算法、其中④,3x>x+1不是一個明確的步驟,不符合明確性;⑤的步驟是無窮的,與算法的有限性矛盾。
【答案】B
[規(guī)律總結]
1、正確理解算法的概念及其特點是解決問題的關鍵、
2、針對判斷語句是否是算法的問題,要看它的步驟是否是明確的和有效的,而且能在有限步驟之內(nèi)解決這一問題、
【變式訓練】下列對算法的理解不正確的是________
①一個算法應包含有限的步驟,而不能是無限的
②算法可以理解為由基本運算及規(guī)定的運算順序構成的完整的解題步驟
、鬯惴ㄖ械腵每一步都應當有效地執(zhí)行,并得到確定的結果
、芤粋問題只能設計出一個算法
【解析】由算法的有限性指包含的步驟是有限的故①正確;
由算法的明確性是指每一步都是確定的故②正確;
由算法的每一步都是確定的,且每一步都應有確定的結果故③正確;
由對于同一個問題可以有不同的算法故④不正確。
【答案】④
命題方向2解方程(組)的算法
例2、給出求解方程組的一個算法。
[思路分析]解線性方程組的常用方法是加減消元法和代入消元法,這兩種方法沒有本質(zhì)的差別,為了適用于解一般的線性方程組,以便于在計算機上實現(xiàn),我們用高斯消元法(即先將方程組化為一個三角形方程組,再通過回代方程求出方程組的解)解線性方程組、
[規(guī)范解答]方法一:算法如下:
第一步,①×(-2)+②,得(-2+5)y=-14+11
即方程組可化為
第二步,解方程③,可得y=-1,④
第三步,將④代入①,可得2x-1=7,x=4
第四步,輸出4,-1
方法二:算法如下:
第一步,由①式可以得到y(tǒng)=7-2x,⑤
第二步,把y=7-2x代入②,得x=4
第三步,把x=4代入⑤,得y=-1
第四步,輸出4,-1
[規(guī)律總結]1、本題用了2種方法求解,對于問題的求解過程,我們既要強調(diào)對“通法、通解”的理解,又要強調(diào)對所學知識的靈活運用。
2、設計算法時,經(jīng)常遇到解方程(組)的問題,一般是按照數(shù)學上解方程(組)的方法進行設計,但應注意全面考慮方程解的情況,即先確定方程(組)是否有解,有解時有幾個解,然后根據(jù)求解步驟設計算法步驟。
【變式訓練】
【解】算法如下:S1,①+2×②得5x=1;③
S2,解③得x=;
S3,②-①×2得5y=3;④
S4,解④得y=;
命題方向3篩選問題的算法設計
例3、設計一個算法,對任意3個整數(shù)a、b、c,求出其中的最小值、
[思路分析]比較a,b比較m與c―→最小數(shù)
[規(guī)范解答]算法步驟如下:
1、比較a與b的大小,若a
2、比較m與c的大小,若m
[規(guī)律總結]求最小(大)數(shù)就是從中篩選出最小(大)的一個,篩選過程中的每一步都是比較兩個數(shù)的大小,保證了篩選的可行性,這種方法可以推廣到從多個不同數(shù)中篩選出滿足要求的一個。
【變式訓練】在下列數(shù)字序列中,寫出搜索89的算法:
21,3,0,9,15,72,89,91,93
[解析]1、先找到序列中的第一個數(shù)m,m=21;
2、將m與89比較,是否相等,如果相等,則搜索到89;
3、如果m與89不相等,則往下執(zhí)行;
4、繼續(xù)將序列中的其他數(shù)賦給m,重復第2步,直到搜索到89。
命題方向4非數(shù)值性問題的算法
例4、一個人帶三只狼和三只羚羊過河,只有一條船,同船可以容一個人和兩只動物,沒有人在的時候,如果狼的數(shù)量不少于羚羊的數(shù)量,狼就會吃掉羚羊。
(1)設計安全渡河的算法;
(2)思考每一步算法所遵循的共同原則是什么?
高中數(shù)學教案12
教材分析:
三角函數(shù)的誘導公式是普通高中課程標準實驗教科書(人教B版)數(shù)學必修四,第一章第二節(jié)內(nèi)容,其主要內(nèi)容是公式(一)至公式(四)。本節(jié)課是第二課時,教學內(nèi)容是公式(三)。教材要求通過學生在已經(jīng)掌握的任意角的三角函數(shù)定義和公式(一)(二)的基礎上,發(fā)現(xiàn)他們與單位圓的交點坐標之間關系,進而發(fā)現(xiàn)三角函數(shù)值的關系。同時教材滲透了轉(zhuǎn)化與化歸等數(shù)學思想方法。
教案背景:
通過學生在已經(jīng)掌握的任意角的三角函數(shù)定義和公式(一)(二)的基礎上,發(fā)現(xiàn)他們與單位圓的交點坐標之間關系,進而發(fā)現(xiàn)三角函數(shù)值的關系。同時教材滲透了轉(zhuǎn)化與化歸等數(shù)學思想方法,為培養(yǎng)學生養(yǎng)成良好的學習習慣提出了要求。因此本節(jié)內(nèi)容在三角函數(shù)中占有非常重要的地位.
教學方法:
以學生為主題,以發(fā)現(xiàn)為主線,盡力滲透類比、化歸、數(shù)形結合等數(shù)學思想方法,采用提出問題、啟發(fā)引導、共同探究、綜合應用等教學模式。
教學目標:
借助單位圓探究誘導公式。
能正確運用誘導公式將任意角的三角函數(shù)化為銳角三角函數(shù)。
教學重點:
誘導公式(三)的推導及應用。
教學難點:
誘導公式的應用。
教學手段:
多媒體。
教學情景設計:
一.復習回顧:
1. 誘導公式(一)(二)。
2. 角 (終邊在一條直線上)
3. 思考:下列一組角有什么特征?( )能否用式子來表示?
二.新課:
已知 由
可知
而 (課件演示,學生發(fā)現(xiàn))
所以
于是可得: (三)
設計意圖:結合幾何畫板的演示利用同一點的坐標變換,導出公式。
由公式(一)(三)可以看出,角 角 相等。即:
.
公式(一)(二)(三)都叫誘導公式。利用誘導公式可以求三角函數(shù)式的值或化簡三角函數(shù)式。
設計意圖:結合學過的公式(一)(二),發(fā)現(xiàn)特點,總結公式。
1. 練習
(1)
設計意圖:利用公式解決問題,發(fā)現(xiàn)新問題,小組研究討論,得到新公式。
(學生板演,老師點評,用彩色粉筆強調(diào)重點,引導學生總結公式。)
三.例題
例3:求下列各三角函數(shù)值:
(1)
(2)
(3)
(4)
例4:化簡
設計意圖:利用公式解決問題。
練習:
(1)
(2) (學生板演,師生點評)
設計意圖:觀察公式特點,選擇公式解決問題。
四.課堂小結:將任意角三角函數(shù)轉(zhuǎn)化為銳角三角函數(shù),體現(xiàn)轉(zhuǎn)化化歸,數(shù)形結合思想的應用,培養(yǎng)了學生分析問題、解決問題的能力,熟練應用解決問題。
五.課后作業(yè):課后練習A、B組
六.課后反思與交流
很榮幸大家來聽我的課,通過這課,我學習到如下的東西:
1.要認真的研讀新課標,對教學的目標,重難點把握要到位
2.注意板書設計,注重細節(jié)的東西,語速需要改正
3.進一步的'學習網(wǎng)頁制作,讓你的網(wǎng)頁更加的完善,學生更容易操作
4.盡可能讓你的學生自主提出問題,自主的思考,能夠化被動學習為主動學習,充分享受學習數(shù)學的樂趣
5.上課的生動化,形象化需要加強
聽課者評價:
1.評議者:網(wǎng)絡輔助教學,起到了很好的效果;教態(tài)大方,作為新教師,開設校際課,勇氣可嘉!建議:感覺到老師有點緊張,其實可以放開點的,相信效果會更好的!重點不夠清晰,有引導數(shù)學時,最好值有個側(cè)重點;網(wǎng)絡設計上,網(wǎng)頁上公開的推導公式為上,留有更大的空間讓學生來思考。
2.評議者:網(wǎng)絡教學效果良好,給學生自主思考,學習的空間發(fā)揮,教學設計得好;建議:課堂講課聲音,語調(diào)可以更有節(jié)奏感一些,抑揚頓挫應注意課堂例題練習可以多兩題。
3.評議者:學科網(wǎng)絡平臺的使用;建議:應重視引導學生將一些唾手可得的有用結論總結出來,并形成自我的經(jīng)驗。
4.評議者:引導學生通過網(wǎng)絡進行探究。
建議:課件制作在線測評部分,建議不能重復選擇,應全部做完后,顯示結果,再重復測試;多提問學生。
( 1)給學生思考的時間較長,語調(diào)相對平緩,總結時,給學生一些激勵的語言更好
( 2)這樣子的教學可以提高上課效率,讓學生更多的時間思考
( 3)網(wǎng)絡平臺的使用,使得學生的參與度明顯提高,存在問題:1.公式對稱性的誘導,點與點的對稱的誘導,終邊的關系的誘導,要進一步的修正;2.公式的概括要注意引導學生怎么用,學習這個誘導公式的作用
( 4)給學生答案,這個網(wǎng)頁要進一步的修正,答案能否不要一點就出來
( 5)1.板書設計要進一步的加強,2.語速相對是比較快的3.練習量比較少
( 6)讓學生多探究,課堂會更熱鬧
( 7)注意引入的過程要帶有目的,帶著問題來教學,學生帶著問題來學習
( 8)教學模式相對簡單重復
( 9)思路較為清晰,規(guī)范化的推理
高中數(shù)學教案13
教學目標:
1.結合實際問題情景,理解分層抽樣的必要性和重要性;
2.學會用分層抽樣的方法從總體中抽取樣本;
3.并對簡單隨機抽樣、系統(tǒng)抽樣及分層抽樣方法進行比較,揭示其相互關系.
教學重點:
通過實例理解分層抽樣的方法.
教學難點:
分層抽樣的步驟.
教學過程:
一、問題情境
1.復習簡單隨機抽樣、系統(tǒng)抽樣的概念、特征以及適用范圍.
2.實例:某校高一、高二和高三年級分別有學生名,為了了解全校學生的視力情況,從中抽取容量為的樣本,怎樣抽取較為合理?
二、學生活動
能否用簡單隨機抽樣或系統(tǒng)抽樣進行抽樣,為什么?
指出由于不同年級的學生視力狀況有一定的差異,用簡單隨機抽樣或系統(tǒng)抽樣進行抽樣不能準確反映客觀實際,在抽樣時不僅要使每個個體被抽到的機會相等,還要注意總體中個體的層次性.
由于樣本的容量與總體的個體數(shù)的比為100∶2500=1∶25,
所以在各年級抽取的個體數(shù)依次是,,,即40,32,28.
三、建構數(shù)學
1.分層抽樣:當已知總體由差異明顯的幾部分組成時,為了使樣本更客觀地反映總體的`情況,常將總體按不同的特點分成層次比較分明的幾部分,然后按各部分在總體中所占的比進行抽樣,這種抽樣叫做分層抽樣,其中所分成的各部分叫“層”.
說明:①分層抽樣時,由于各部分抽取的個體數(shù)與這一部分個體數(shù)的比等于樣本容量與總體的個體數(shù)的比,每一個個體被抽到的可能性都是相等的;
、谟捎诜謱映闃映浞掷昧宋覀兯莆盏男畔,使樣本具有較好的代表性,而且在各層抽樣時可以根據(jù)具體情況采取不同的抽樣方法,所以分層抽樣在實踐中有著非常廣泛的應用.
2.三種抽樣方法對照表:
類別
共同點
各自特點
相互聯(lián)系
適用范圍
簡單隨機抽樣
抽樣過程中每個個體被抽取的概率是相同的
從總體中逐個抽取
總體中的個體數(shù)較少
系統(tǒng)抽樣
將總體均分成幾個部分,按事先確定的規(guī)則在各部分抽取
在第一部分抽樣時采用簡單隨機抽樣
總體中的個體數(shù)較多
分層抽樣
將總體分成幾層,分層進行抽取
各層抽樣時采用簡單隨機抽樣或系統(tǒng)
總體由差異明顯的幾部分組成
3.分層抽樣的步驟:
。1)分層:將總體按某種特征分成若干部分.
。2)確定比例:計算各層的個體數(shù)與總體的個體數(shù)的比.
。3)確定各層應抽取的樣本容量.
(4)在每一層進行抽樣(各層分別按簡單隨機抽樣或系統(tǒng)抽樣的方法抽。,綜合每層抽樣,組成樣本.
四、數(shù)學運用
1.例題.
例1(1)分層抽樣中,在每一層進行抽樣可用_________________.
。2)①教育局督學組到學校檢查工作,臨時在每個班各抽調(diào)2人參加座談;
、谀嘲嗥谥锌荚囉15人在85分以上,40人在60-84分,1人不及格.現(xiàn)欲從中抽出8人研討進一步改進教和學;
、勰嘲嘣┚蹠a(chǎn)生兩名“幸運者”.
對這三件事,合適的抽樣方法為()
A.分層抽樣,分層抽樣,簡單隨機抽樣
B.系統(tǒng)抽樣,系統(tǒng)抽樣,簡單隨機抽樣
C.分層抽樣,簡單隨機抽樣,簡單隨機抽樣
D.系統(tǒng)抽樣,分層抽樣,簡單隨機抽樣
例2某電視臺在因特網(wǎng)上就觀眾對某一節(jié)目的喜愛程度進行調(diào)查,參加調(diào)查的總?cè)藬?shù)為12000人,其中持各種態(tài)度的人數(shù)如表中所示:
很喜愛
喜愛
一般
不喜愛
2435
4567
3926
1072
電視臺為進一步了解觀眾的具體想法和意見,打算從中抽取60人進行更為詳細的調(diào)查,應怎樣進行抽樣?
解:抽取人數(shù)與總的比是60∶12000=1∶200,
則各層抽取的人數(shù)依次是12.175,22.835,19.63,5.36,
取近似值得各層人數(shù)分別是12,23,20,5.
然后在各層用簡單隨機抽樣方法抽。
答用分層抽樣的方法抽取,抽取“很喜愛”、“喜愛”、“一般”、“不喜愛”的人
數(shù)分別為12,23,20,5.
說明:各層的抽取數(shù)之和應等于樣本容量,對于不能取整數(shù)的情況,取其近似值.
。3)某學校有160名教職工,其中教師120名,行政人員16名,后勤人員24名.為了了解教職工對學校在校務公開方面的某意見,擬抽取一個容量為20的樣本.
分析:(1)總體容量較小,用抽簽法或隨機數(shù)表法都很方便.
。2)總體容量較大,用抽簽法或隨機數(shù)表法都比較麻煩,由于人員沒有明顯差異,且剛好32排,每排人數(shù)相同,可用系統(tǒng)抽樣.
。3)由于學校各類人員對這一問題的看法可能差異較大,所以應采用分層抽樣方法.
五、要點歸納與方法小結
本節(jié)課學習了以下內(nèi)容:
1.分層抽樣的概念與特征;
2.三種抽樣方法相互之間的區(qū)別與聯(lián)系.
高中數(shù)學教案14
教學準備
1.教學目標
1、知識與技能:
函數(shù)是描述客觀世界變化規(guī)律的重要數(shù)學模型.高中階段不僅把函數(shù)看成變量之間的依
賴關系,同時還用集合與對應的語言刻畫函數(shù),高中階段更注重函數(shù)模型化的思想與意識.
2、過程與方法:
。1)通過實例,進一步體會函數(shù)是描述變量之間的依賴關系的重要數(shù)學模型,在此基礎上學習用集合與對應的語言來刻畫函數(shù),體會對應關系在刻畫函數(shù)概念中的作用;
。2)了解構成函數(shù)的要素;
(3)會求一些簡單函數(shù)的定義域和值域;
。4)能夠正確使用“區(qū)間”的符號表示函數(shù)的定義域;
3、情感態(tài)度與價值觀,使學生感受到學習函數(shù)的必要性和重要性,激發(fā)學習的積極性.
教學重點/難點
重點:理解函數(shù)的模型化思想,用集合與對應的語言來刻畫函數(shù);
難點:符號“y=f(x)”的含義,函數(shù)定義域和值域的區(qū)間表示;
教學用具
多媒體
4.標簽
函數(shù)及其表示
教學過程
。ㄒ唬﹦(chuàng)設情景,揭示課題
1、復習初中所學函數(shù)的概念,強調(diào)函數(shù)的模型化思想;
2、閱讀課本引例,體會函數(shù)是描述客觀事物變化規(guī)律的數(shù)學模型的思想:
。1)炮彈的射高與時間的變化關系問題;
(2)南極臭氧空洞面積與時間的變化關系問題;
。3)“八五”計劃以來我國城鎮(zhèn)居民的恩格爾系數(shù)與時間的變化關系問題.
3、分析、歸納以上三個實例,它們有什么共同點;
4、引導學生應用集合與對應的語言描述各個實例中兩個變量間的依賴關系;
5、根據(jù)初中所學函數(shù)的概念,判斷各個實例中的兩個變量間的關系是否是函數(shù)關系.
。ǘ┭刑叫轮
1、函數(shù)的有關概念
。1)函數(shù)的概念:
設A、B是非空的數(shù)集,如果按照某個確定的對應關系f,使對于集合A中的任意一個數(shù)x,在集合B中都有唯一確定的數(shù)f(x)和它對應,那么就稱f:A→B為從集合A到集合B的.一個函數(shù)(function).
記作:y=f(x),x∈A.
其中,x叫做自變量,x的取值范圍A叫做函數(shù)的定義域(domain);與x的值相對應的y值叫做函數(shù)值,函數(shù)值的集合{f(x)|x∈A}叫做函數(shù)的值域(range).
注意:
、佟皔=f(x)”是函數(shù)符號,可以用任意的字母表示,如“y=g(x)”;
②函數(shù)符號“y=f(x)”中的f(x)表示與x對應的函數(shù)值,一個數(shù),而不是f乘x.
。2)構成函數(shù)的三要素是什么?
定義域、對應關系和值域
。3)區(qū)間的概念
①區(qū)間的分類:開區(qū)間、閉區(qū)間、半開半閉區(qū)間;
、跓o窮區(qū)間;
③區(qū)間的數(shù)軸表示.
。4)初中學過哪些函數(shù)?它們的定義域、值域、對應法則分別是什么?
通過三個已知的函數(shù):y=ax+b(a≠0)
y=ax2+bx+c(a≠0)
y=(k≠0)比較描述性定義和集合,與對應語言刻畫的定義,談談體會.
師:歸納總結
。ㄈ┵|(zhì)疑答辯,排難解惑,發(fā)展思維。
1、如何求函數(shù)的定義域
例1:已知函數(shù)f(x)=+
。1)求函數(shù)的定義域;
(2)求f(-3),f()的值;
。3)當a>0時,求f(a),f(a-1)的值.
分析:函數(shù)的定義域通常由問題的實際背景確定,如前所述的三個實例.如果只給出解析式y(tǒng)=f(x),而沒有指明它的定義域,那么函數(shù)的定義域就是指能使這個式子有意義的實數(shù)的集合,函數(shù)的定義域、值域要寫成集合或區(qū)間的形式.
例2、設一個矩形周長為80,其中一邊長為x,求它的面積關于x的函數(shù)的解析式,并寫出定義域.
分析:由題意知,另一邊長為x,且邊長x為正數(shù),所以0<x<40.
所以s==(40-x)x(0<x<40)
引導學生小結幾類函數(shù)的定義域:
。1)如果f(x)是整式,那么函數(shù)的定義域是實數(shù)集R.
2)如果f(x)是分式,那么函數(shù)的定義域是使分母不等于零的實數(shù)的集合.
。3)如果f(x)是二次根式,那么函數(shù)的定義域是使根號內(nèi)的式子大于或等于零的實數(shù)的集合.
。4)如果f(x)是由幾個部分的數(shù)學式子構成的,那么函數(shù)定義域是使各部分式子都有意義的實數(shù)集合.(即求各集合的交集)
。5)滿足實際問題有意義.
鞏固練習:課本P19第1
2、如何判斷兩個函數(shù)是否為同一函數(shù)
例3、下列函數(shù)中哪個與函數(shù)y=x相等?
分析:
1構成函數(shù)三個要素是定義域、對應關系和值域.由于值域是由定義域和對應關系決定的,所以,如果兩個函數(shù)的定義域和對應關系完全一致,即稱這兩個函數(shù)相等(或為同一函數(shù))
2兩個函數(shù)相等當且僅當它們的定義域和對應關系完全一致,而與表示自變量和函數(shù)值的字母無關。
解:
課本P18例2
。ㄋ模w納小結
、購木唧w實例引入了函數(shù)的概念,用集合與對應的語言描述了函數(shù)的定義及其相關概念;②初步介紹了求函數(shù)定義域和判斷同一函數(shù)的基本方法,同時引出了區(qū)間的概念.
。ㄎ澹┰O置問題,留下懸念
1、課本P24習題1.2(A組)第1—7題(B組)第1題
2、舉出生活中函數(shù)的例子(三個以上),并用集合與對應的語言來描述函數(shù),同時說出函數(shù)的定義域、值域和對應關系.
課堂小結
高中數(shù)學教案15
教學準備
教學目標
熟悉兩角和與差的正、余公式的'推導過程,提高邏輯推理能力。
掌握兩角和與差的正、余弦公式,能用公式解決相關問題。
教學重難點
熟練兩角和與差的正、余弦公式的正用、逆用和變用技巧。
教學過程
復習
兩角差的余弦公式
用- B代替B看看有什么結果?
【高中數(shù)學教案】相關文章:
高中數(shù)學教案03-20
高中數(shù)學教案09-28
高中高二數(shù)學教案10-13
高中數(shù)學教案【熱門】02-27
【熱門】高中數(shù)學教案03-03
高中數(shù)學教案(精選15篇)12-30
高中數(shù)學教案精選15篇01-10
高中數(shù)學教案15篇04-11
高中數(shù)學教案(合集15篇)08-18