當前位置:育文網>教學文檔>教案> 因數(shù)和倍數(shù)的教案

因數(shù)和倍數(shù)的教案

時間:2024-10-03 21:38:43 教案 我要投稿

因數(shù)和倍數(shù)的教案

  作為一名教學工作者,總歸要編寫教案,教案是保證教學取得成功、提高教學質量的基本條件。教案應該怎么寫呢?下面是小編為大家整理的因數(shù)和倍數(shù)的教案,希望能夠幫助到大家。

因數(shù)和倍數(shù)的教案

因數(shù)和倍數(shù)的教案1

  劉浩中心小學許夏敏

  教學目標:1進一步加深學生對方程意義的理解,鞏固用等式的性質解簡易方程的方法,理解簡單實際問題中數(shù)量關系,并能根據(jù)等量關系解決實際問題。

  2進一步理解公倍數(shù)和公因數(shù),最小公倍數(shù)和最大公因數(shù)的意義,掌握求最大公因數(shù)和最小公倍數(shù)的方法。

  3通過小組合作交流,培養(yǎng)學生的數(shù)學交流能力和合作能力。

  教學重點:理解方程的意義,鞏固解方程的方法,進一步掌握求最小公倍數(shù)和最大公因數(shù)的方法。

  教學難點:理解實際問題中的數(shù)量關系,根據(jù)數(shù)量關系列方程解答。

  教學實施:一、疏通概念

  1、同學們,本學期的內容已經全部學完了。從今天開始,我們要對所有的知識進行與復習。首先讓我們一起走進“數(shù)的世界”,在十個單元中哪些是與數(shù)打交道呢?根據(jù)學生回答板書方程

  公倍數(shù)與公因數(shù)

  認識分數(shù)

  分數(shù)的基本性質

  分數(shù)的加減法

  2、揭題

  今天這節(jié)課我們先來復習方程,公倍數(shù)與公因數(shù)(出示課題)

  3、討論與思考:本學期學習了方程的哪些知識?

  什么是公倍數(shù)與公因數(shù)?

  怎樣求兩個數(shù)的最小公倍數(shù)和最大公因數(shù)?

  二、專項練習

  1、方程的復習

 、排c練習第1題,在方程下面打√,集體匯報時說出為什么不是方程?

  等式

  方程

  X+2.5<828-12=165a分別叫什么?你覺得方程與等式有什么關系?你能用一副圖來表示嗎?

 、婆c復習第2題

  提問:根據(jù)什么來解方程?指名4人板演,校對時說說是怎么想的?

  出示練一練,找出括號中方程的解

 、3x=1.5(x=0.5x=2)

  ②x-210=30(x=240x=180)

 、踴÷5=120(x=24x=600)

 、橇蟹匠探鉀Q實際問題

 ?米11.7平方米?米

  2.7米

  6.9米3.9米

  學生獨立完成,集體訂正時說說根據(jù)什么數(shù)量關系式列方程的?

  教師,用方程計算可以使很多問題變的簡單,容易解決。

 、扰c復習第4題學生讀題后獨立用方程解決。

  2、公倍數(shù)和公因數(shù)的復習

  對公倍數(shù)和公因數(shù)你有那些了解?怎樣求兩個數(shù)的最小公倍數(shù)和最大公因數(shù)呢?

  出示練習①寫出每組數(shù)的最小公倍數(shù)

  6和94和82和3

 、趯懗雒拷M數(shù)的.最大公因數(shù)

  18和2415和602和3

  請做得快的同學介紹經驗

  三、全課

  今天我們復習了什么,你有哪些收獲?

  四、課堂作業(yè)

  與復習第3題、第5題、第6題。

  教學反思

  這是一堂復習課,主要復習方程、公倍數(shù)和公因數(shù)兩個單元的內容。由于課堂時間有限,因此對知識的回顧與還不是很系統(tǒng)。特別是對潛能生而言,教師的提問不能及時溝起他們對知識概念的回憶,因此跟基礎較好的同學相比就形成了鮮明的落差。

  在列方程解決實際問題時,正確掌握題中的數(shù)量關系是關鍵,也是學生理解中的難點。大部分學生在列方程時,因為沒能找出題中的數(shù)量關系而把方程列錯,或者方程列到了,卻不能把方程抽象成數(shù)量關系式。諸如這些現(xiàn)象,主要是學生的抽象能力還不夠完善,分析問題的能力還不夠仔細,深入,有待進一步的發(fā)展。

  在公倍數(shù)和公因數(shù)一單元中,問題不大,主要是求兩個數(shù)的最小公倍數(shù)和最大公因數(shù)。對較大的兩個數(shù),如求100以內兩個數(shù)的最小公倍數(shù)和最大公因數(shù),出錯率較大。因此課后還應多補充一些相應的練習。

因數(shù)和倍數(shù)的教案2

  教學目標:

  1、通過操作活動得出相應的乘除法算式,幫助學生理解倍數(shù)和因數(shù)的意義;探索求個數(shù)的倍數(shù)和因數(shù)的方法,發(fā)現(xiàn)一個數(shù)倍數(shù)和因數(shù)的某些特征。

  2、在探索一個數(shù)的倍數(shù)和因數(shù)的過程中培養(yǎng)學生觀察、分析、概括能力,培養(yǎng)有序思考能力。

  3、通過倍數(shù)和因數(shù)之間的互相依存關系使學生感受數(shù)學知識的內在聯(lián)系,體會到數(shù)學內容的奇妙、有趣。

  教學重點:理解倍數(shù)和因數(shù)的意義。

  教學難點:探索求一個數(shù)的倍數(shù)和因數(shù)的方法。

  教學準備:每桌準各12個一樣大小的正方形,每人準備一張自己學號的卡片。

  設計理念:通過竟猜、操作、比一比誰寫得多,找朋友等形式多樣的活動激發(fā)學生持續(xù)的學習興趣;學生通過獨立思考、合作文流進行自主探索;教師引導學生掌握數(shù)學思考的方法。

  教學過程:

  一、智力競猜 引入新課

  1、讓學生進行智力競猜春暖花香的季節(jié),公園里許多人在劃船,一條船上有兩個父親兩個兒子,但總共只有3個人,這是怎么回事呢?(部分學生能猜出三個人分別是孫子、爸爸、和爺爺)

  2、孫子、爸爸、爺爺?shù)拿址謩e是韓韓,韓有才、韓廣發(fā)。請學生以韓有才為中心介紹下三個人的關系。學生可能會說出韓有才.是爸爸,韓有才是兒子的語句,這時引導學生說出誰是誰的爸爸誰是準的兒子。

  3、上述父子關系是一種互相依存的關系,在表述時一定要完整。并向學生說明自然數(shù)中某兩個數(shù)之間也有這種類似的依存關系倍數(shù)和因數(shù)。

  設計說明:智力競猜走學生喜歡的形式,因為每個學生都有爭強好勝之心,競猜有兩個作用,一是激發(fā)學生的學習興趣,二是以此引出相互依存的關系,為理解倍數(shù)和因數(shù)的相互依存關系作鋪墊。

  二、操作發(fā)現(xiàn) 理解概念

  1、師:智慧從手指問流出,通過操作我們能發(fā)現(xiàn)許多的知識。請同桌同學拿出課前準備的12個同樣大小的正方形,試一試能擺出幾個不同的長方形,并思考一下其中蘊涵著哪些不同的乘除法算式。

  2、請學生匯報不同的擺法,以及相應的乘除法算式。(乘法算式和除法算式分開寫)再向學生說明:如果一個圖形經過旋轉后和另一個圖形一樣,我們就認為這兩個圖形是一樣的,讓學生特重復的圖形和算式去掉。(板書三十乘法算式,和幾十相應的除法算式)

  設計說明;讓學生寫出蘊涵的乘除法算式符合學生的知識基礎,學生有的可能用乘法表示,也有的可能用除法表示;讓學生將旋轉后相同的去掉,這是一次簡化,很多學生并不知道,需要指導,這樣可以使學生認識到事物的本質。

  3、讓學生一起看乘法算式43=12,向學生指出:12是4的倍數(shù),12也是3的倍數(shù),4是12的因數(shù),3也是12的因數(shù)。

  4、先請一個學生站起來說一說.然后同桌的同學再互相說一說。

  5、讓學生仿照說出62=12和121=12中哪個數(shù)是哪個數(shù)的倍數(shù),哪個數(shù)是哪個數(shù)的因數(shù)。

  6、學生相互出一道乘法算式,并說一說誰是誰的倍數(shù),誰是誰的因數(shù)。學生可能會出現(xiàn)0( )=0的情況,借此向學生說明我們研究因敷和倍數(shù)一般指不是0的自然數(shù)。

  設計說明:倍數(shù)和因數(shù)是全新的概念,需要教師的傳授、講解,需要學生的適當記憶重復、仿照。當然,要使學生真正理解還必須舉一反三,通過互相舉例可以逐步完善學生對倍數(shù)和因數(shù)的認識,同時使學生明確倍數(shù)和因數(shù)的研究范圍。

  7、以43=12與123=4為例,向學生說明后面的除法算式是由前面的乘法算式得到的,根據(jù)這個除法算式可以說誰是誰的倍數(shù),誰是誰的因數(shù),說好后再讓學生試一試其他幾個除法算式中的關系。

  8、練習:根據(jù)下面的算式,說說哪個數(shù)是哪個數(shù)的因數(shù),哪個數(shù)是哪個數(shù)的倍數(shù)

  54=20 357=5 3+4=7

  (1)學生回答后引發(fā)學生思考:能不能說20是倍數(shù),4是因數(shù)。使學生進一步理解倍數(shù)是兩個數(shù)之間的一種相互依存的關系,必須說哪個是哪個的倍數(shù),因數(shù)也同樣如此。

  (2)通過3+4=7使學生進一步理解倍數(shù)和因數(shù)都是建立在乘法或除法的基礎之上的。

  設計說明:乘法和除法是一種互逆的關系,在學習中應該溝通它們之間的聯(lián)系;通過三道練習可以鞏固剛剛獲得的對倍數(shù)和因數(shù)的認識,將融會貫通落到實處。

  三、探索方法 發(fā)現(xiàn)特征

  1、找一個數(shù)的因數(shù)。

  (1)聯(lián)系板書的乘除法算式觀察思考12的`因數(shù)有哪些,井想辦法找出15的所有因數(shù)。

  (2)學生獨立思考,明白根據(jù)一個乘法(除法)算式可以找出15的兩個因數(shù),在學生充分交流的基礎上引導學生有條理的一對一對說出15的因數(shù)。

  (3)用一對一對的方法找出36的所有因數(shù)。可能有的學生根據(jù)乘法算式找的,也有的學生是根據(jù)除法算式找的,都應該給予肯定。

  (4)引導學生觀察12、15、36的因數(shù),說一說有什么發(fā)現(xiàn)。一個數(shù)的因數(shù)個數(shù)是有限的,其中最小的因數(shù)都是1,最大的都是它本身。

  設計說明:先安排學生找一個數(shù)的因數(shù)可以使學生利用操作得到的算式進行,觀察,這樣比較自然,而且為于找一個數(shù)的因數(shù)指明了方向。學生交流時突出了方法的多樣性,既可以根據(jù)乘法算式想,也可以根據(jù)除法算式想,交流后引導學生一對一對的找是必要的,它可以培養(yǎng)學生的有序思考。最后引導學生觀察。使學生自主發(fā)現(xiàn)、歸納出一個數(shù)的因數(shù)的某些特征。

  2、找一個數(shù)的倍數(shù)。

  (1)讓學生找3的倍數(shù),比一比誰找得多。

  (2)學生匯報后,引導學生有序思考,并得出3的倍數(shù)可以用3乘連續(xù)的自然數(shù)1、2、3,3的倍數(shù)的個數(shù)是無限的,所以寫3的倍數(shù)時要借助省略號表示結果。

  (3)找出2的倍數(shù)和5的倍數(shù),并引導學生觀察3、2、5的倍數(shù)情況,說一說有什么發(fā)現(xiàn)。一個數(shù)的倍數(shù)個數(shù)是無限的,其中最小的倍數(shù)是它本身,沒有最大的倍數(shù)。

  設計說明:讓學生比一比誰找的倍數(shù)多,可以使學生產生認知沖突,認識到一個數(shù)的倍數(shù)個數(shù)是無限的,在學生匯報后同樣需要引導學生的有序思考,需要引導學生自主發(fā)現(xiàn)、歸納一個數(shù)倍數(shù)的特征。

  四、鞏固練習

  師;剛才同學們認識了倍數(shù)和因數(shù),并且探索了求一個數(shù)因數(shù)和倍數(shù)的方法,想不想檢查一下自己掌握得如何?

  1、想想做做的第l題。學生表述后強調哪個是哪個的倍數(shù)(或因數(shù))。

  2、想想做做的第2題。學生填好后引導學生說一說:表中的應付元數(shù)其實都是什么?表格中為什么用省略號?

  3、想想做做的第3題。學生填好后引導學生說一說:表格中所有數(shù)都是什么?這個表格中為什么沒有省略號?

  4、游戲找朋友。讓學生拿出各自的學號卡片,找出自己學號數(shù)的所有因數(shù),使學生發(fā)現(xiàn)每個學號數(shù)的因數(shù)都在全班的學號數(shù)以內;再讓學生找一找自己學號數(shù)的倍數(shù),井說一說能不能在全班學號數(shù)內部找到一個,還有其他的嗎?

  設計說明:第l題是基礎練習.可以鞏固對倍數(shù)和因數(shù)的認識,2、3兩題聯(lián)系實際,使學生感悟到其中蘊藏著求一個數(shù)倍數(shù)和因數(shù)的方法,以及倍數(shù)和因數(shù)的某些特征。第4題通過游戲活動進一步激發(fā)學生持續(xù)的學習熱情,而且可以綜合應用求倍數(shù)和因數(shù)的方法,再次認識到倍數(shù)和因數(shù)的某些特征。

  五、自我梳理 探索延伸

  1、通過這節(jié)課的學習你有什么收獲?向你的同伴介紹一下。

  2、生活中許多現(xiàn)象與我們學習的倍數(shù)和因數(shù)的知識有關,課后同學們可以利用今天所學的知識探索一下1小時等于60分的好處。通過探索使學生明白由于60的因數(shù)是兩位數(shù)中最多的,可以方便計算。

  設計說明:向同伴介紹自己的收獲可以將課堂中學到的知識進行自我梳理,同時通過探索1小時等于60分的好處,可以鞏固倍數(shù)和因數(shù)的相關知識,溝通知識間的聯(lián)系,拓展學生的知識面,使學生認識到數(shù)學知識的應用價值。

因數(shù)和倍數(shù)的教案3

  描述目標:

  1、知識目標:①結合整數(shù)乘、除法運算初步認識因數(shù)和倍數(shù)的含義;②探索求一個數(shù)的因數(shù)和倍數(shù)的方法;③通過列舉法,發(fā)現(xiàn)并概括出一個數(shù)的因數(shù)和一個數(shù)的倍數(shù)的特點;④能找出一個數(shù)的因數(shù)、一個數(shù)的倍數(shù)。

  2、能力目標:使同學在認識因數(shù)和倍數(shù)以和探索一個數(shù)的因數(shù)或倍數(shù)的過程中,進一步體會數(shù)學知識之間的內在聯(lián)系,提高數(shù)學考慮的水平。

  3、情感目標:培養(yǎng)同學觀察、分析、籠統(tǒng)概括能力,體會教學內容的有趣,發(fā)生對數(shù)學的好奇心。

  教學重點:結合整數(shù)乘、除法運算體會和理解因數(shù)和倍數(shù)的含義,探索求一個數(shù)的因數(shù)數(shù)或倍數(shù)的方法。

  教學難點:引導同學探索并理解因數(shù)數(shù)和倍數(shù)之間的相互依存的關系。

  教學過程;

  一、導入。

  1.同桌用12塊完全一樣的小正方形拼成一個長方形,有幾種拼法?要求:能想象的就想象,不能想象的才借助小正方形擺一擺。

  2.同學動手操作,并與同桌交流擺法。

  3.請用乘法算式表達你的擺法。

  二、理解新知。

  1.理解因數(shù)和倍數(shù)。

 。1)觀察3×4=12

  今天我們研究的內容就在這里。咱們就以第一道乘法算式為例,3×4=12,數(shù)學上3是12的因數(shù),那4(也是12的因數(shù),)倒過來12是3的倍數(shù),12(也是4的倍數(shù))。同學們很有遷移的能力,這就是我們今天所要研究的因數(shù)和倍數(shù)。

  師板書:因數(shù)和倍數(shù)

  (2)用因數(shù)和倍數(shù)說一說算式l×12=12,2×6=12中三個數(shù)的關系。

 。3) 提問:在4+3=7中我們能說7是4和3的倍數(shù),4和3都是7的因數(shù)嗎?(同學討論)

  【設計意圖:通過講解、設疑、討論等形式讓同學從其內涵上加深對因數(shù)和倍數(shù)的理解,明確因數(shù)和倍數(shù)是相互依存的概念,不能獨立存在!

  (4)歸納:

 、僖驍(shù)和倍數(shù)都是表示兩個數(shù)之間的關系,不能單獨說那個數(shù)是因數(shù),那個數(shù)是倍數(shù)。

 、谥挥幸粋自然數(shù)是兩個自然數(shù)的乘積時候才干談上它們之間具有因數(shù)和倍數(shù)的關系。

 、垩芯恳驍(shù)和倍數(shù)時,所指的數(shù)是整數(shù)(一般不包括O)。

 。5) 討論:板書:24÷4=6

  提問:能說4、6是24的因數(shù),24是4、6的倍數(shù)嗎?

  同學各說自身的理由,討論后統(tǒng)一。

  提示:4×6=24(教師板書),這樣你看出來了嗎?

  (6)練習:①21×3=63, 是 的因數(shù), 是 的倍數(shù);6是18的 ,是3的 。

 、谙扰袛嘞旅娴乃闶街械臄(shù)有因數(shù)倍數(shù)的關系。假如有因數(shù)和倍數(shù)關系,請說一說誰是誰的因數(shù),誰是誰的倍數(shù)。7+5=12 7×5=35 20-13=7 8÷4=2

  【設計意圖:提高對因數(shù)和倍數(shù)的意義的認識。】

  2.求一個數(shù)的因數(shù)。

  (1)出示2,5,12,15,36。從這些數(shù)中找一找誰是誰的因數(shù)。

  請同學們找出36的所有因數(shù)。

  出示要求:

 、倏瑟毩⑼瓿桑部赏篮献。

  ②可借助剛才找出12的.所有因數(shù)的方法。

  ③寫出36的所有因數(shù)。

  ④想一想,怎樣找才干保證既不重復,又不遺漏。

 。2)比較喜歡哪一種答案?為什么?

  用什么方法找既不重復又不遺漏。(按順序一對一對找,一直找到兩個因數(shù)相差很小或相等為止)

 。3)練習:①對口令游戲。②16的因數(shù)有哪些? 11的因數(shù)有哪些?

 。4)發(fā)現(xiàn)因數(shù)特點:36、16、11的因數(shù)你有什么發(fā)現(xiàn)嗎?

  師:雖然個數(shù)不相等,但它們的個數(shù)都是有限的。

  小結:一個數(shù)的最小因數(shù)是1,最大的因數(shù)是它自身。一個數(shù)的因數(shù)個數(shù)是有限的。(同學總結不出此點不要急于點撥)

 。5)練習:說特點猜數(shù)。

  3.求一個數(shù)的倍數(shù)。

  (1)3的倍數(shù)有:——,怎樣有序地找,有多少個?

 。2)練一練:6的倍數(shù)有;5的倍數(shù)有。

  (3)發(fā)現(xiàn)倍數(shù)特點:找得對嗎?我們一起來說一說。下面請大家仔細觀察,你發(fā)現(xiàn)一個數(shù)的倍數(shù)有什么特點?可以前后四人小組討論討論。(導:發(fā)現(xiàn)最小的特征后問:那么7最小的倍數(shù)是幾?10呢?)一個數(shù)的倍數(shù)還有怎樣的特點?這些數(shù)的倍數(shù)你寫得完嗎?也就是說明一個數(shù)的倍數(shù)的個數(shù)是無限的。那么也沒有最大的倍數(shù)。剛才大家發(fā)現(xiàn)了——,簡單地說就是——

  小結:一個數(shù)的最小倍數(shù)是自身,沒有最大的倍數(shù),一個數(shù)的倍數(shù)的個數(shù)是無限的。(和一個數(shù)的因數(shù)特點進行對比)

  【設計意圖:這個環(huán)節(jié)的教學主要把小組討論和自主探索結合起來,讓同學在討論中體會過程、總結方法、提升水平,發(fā)現(xiàn)有關倍數(shù)的一些規(guī)律。】

 。4)練習:判斷題

  四、拓展應用。

  1.選用4,6,8,24,1,5中的一些數(shù)字,用今天學習的知識說一句話。

  2.舉座位號起立游戲。

  (1)5的倍數(shù)。(2)48的因數(shù)。(3)既是9的倍數(shù),又是36的因數(shù)。

  (4)怎樣說一句話讓還坐著的同學全部起立。

  五、黃金二分鐘。

  達標檢測:

  1、理解因數(shù)和倍數(shù):練習:①21×3=63, 是 的因數(shù), 是 的倍數(shù);6是18的 ,是3的 。

 、谙扰袛嘞旅娴乃闶街械臄(shù)有因數(shù)倍數(shù)的關系。假如有因數(shù)和倍數(shù)關系,請說一說誰是誰的因數(shù),誰是誰的倍數(shù)。7+5=12 7×5=35 20-13=7 8÷4=2

  【設計意圖:提高對因數(shù)和倍數(shù)的意義的認識,達成知識目標中的第①個目標】

  【評價規(guī)范:同學能正確理解和掌握因數(shù)和倍數(shù)的意義,尤其能通過算式找出一個數(shù)的因數(shù)和倍數(shù)】

  2、會找一個數(shù)的因數(shù):①對口令游戲。②16的因數(shù)有哪些? 11的因數(shù)有哪些?③說特點猜數(shù)。

  【設計意圖:通過對口令提升同學找因數(shù)的方法的方法訓練,達成知識目標中的第②③個目標】

  【評價規(guī)范:同學能用正確的方法,快速、正確的找出一個數(shù)的所有因數(shù)】

  3、會找一個數(shù)的倍數(shù):我會辯。【設計意圖:達成知識目標中的第④個目標】

  【評價規(guī)范:同學能用正確的方法,快速、正確的找出一個數(shù)的倍數(shù)】

因數(shù)和倍數(shù)的教案4

  課前思考:

  1.概念揭示變邏輯演繹為活動建構。因數(shù)和倍數(shù),傳統(tǒng)教材是按數(shù)學知識的邏輯系統(tǒng)(除法整除約數(shù)和倍數(shù))來安排的,這種概念的揭示,從抽象到抽象,沒有學生親身經歷的過程,也無須學生借助原有經驗的自主建構,學生獲得的概念是刻板、冰冷的。如果能借助學生的操作和想象活動,喚起學生的因倍意識,自主建構起因數(shù)和倍數(shù)的意義,那么學生獲得的概念必然是生動的、有意義的。

  2.解決問題變關注結果為對話生成。要找出一個數(shù)的幾個因數(shù)并不難,難就難在找出這個數(shù)的所有因數(shù)。這里有一個方法問題。是把方法簡單地告訴學生,迫切地尋求結果,還是給學生充分的探究時間,讓他們通過獨立思考、交流討論,從而發(fā)現(xiàn)問題、解決問題呢?很多成功的教學表明,在教學中為學生營造出一個對話場,在生生、師生多角度、多層面的對話中,能讓師生彼此分享經驗、溝通思考,生成新的看法。

  3.教學宗旨變關注知識為啟迪智慧。知識關乎事物,智慧關乎人生;知識是理念的外化,智慧是人生的反觀。從知識課堂走向智慧課堂,為學生的智慧成長而教,應成為我們數(shù)學教學的傾心追求。怎樣通過對因數(shù)和倍數(shù)內涵的深度挖掘,在教給學生數(shù)學知識的同時,更教會他們數(shù)學思考的方法,讓他們在數(shù)學課堂上釋放潛能,開啟心智?這是我設計因數(shù)和倍數(shù)這堂課的宗旨所在。

  教學目標:

  1.通過活動建構,使學生領會因數(shù)和倍數(shù)的意義;通過獨立思考、交流談論,初步掌握求一個數(shù)所有因數(shù)的方法。

  2.在解決問題的過程中,培養(yǎng)學生思維的有序性、條理性,增強學生的探究意識和求索精神。

  3.通過教學,讓學生從中感受到數(shù)學思考的魅力,體驗到數(shù)學學習的樂趣。教學準備:

  練習紙、學號卡等。

  教學重、難點:

  掌握求一個數(shù)的所有因數(shù)的方法,學會有序地進行思考。

  教學流程:

  一、意義建構

  1.用12個同樣的小正方形擺一個長方形,可以怎樣擺?能不能舉一道簡單的乘法算式,把你心目中的擺法表示出來?(請一位學生回答)

  2.猜猜他可能是怎樣擺的?

  (根據(jù)學生回答依次出現(xiàn)相應的兩種擺法,隨后隱去第二種)

  3.還可以怎樣擺?同樣用一道乘法算式表示出來。

 。ㄔ僬堃晃粚W生回答)

  4.他又可能是怎樣擺的?

  (根據(jù)學生回答屏幕顯示另外兩種擺法,隨后隱去第二種)

  5.還可以怎樣擺?

  (請學生回答)

  6.能想象出他的擺法嗎?

  (根據(jù)學生回答屏幕顯示最后兩種擺法,隨后隱去第二種)

  此時屏幕上出現(xiàn)三種擺法。在三種擺法右側分別出現(xiàn)三道乘法算式。

  7.通過剛才的學習,我們發(fā)現(xiàn),用12個同樣的小正方形,可以擺出三種不同的長方形,由此我們還得出三道不一樣的乘法算式。以43=12為例,43=12,從數(shù)學的角度看,我們可以說4是12的因數(shù),3也是她的因數(shù)。反過來,我們還可以說,12是4的倍數(shù),12也是3的倍數(shù)。這就是我們今天要研究的因數(shù)和倍數(shù)。

  (板書課題:因數(shù)和倍數(shù))

  8.結合另外兩道乘法算式,你能分別說一說誰是誰的因數(shù),誰是誰的倍數(shù)嗎?

  (請同座兩個學生相互說一說)

  9.為了研究的方便,在研究因數(shù)和倍數(shù)時,我們所說的數(shù)專指不是零的自然數(shù)。

  [設計理念:因數(shù)與倍數(shù)這節(jié)內容,傳統(tǒng)教材是按數(shù)學知識的邏輯系統(tǒng)安排的,在除法和整除的基礎上,由整除直接演繹推理出來的。這種概念的揭示從抽象到抽象,沒有學生經歷的過程,學生獲得的概念是刻板的、冰冷的。而本環(huán)節(jié)設計旨在讓學生借助表象進行操作和想像活動,自主體驗數(shù)與形的結合以及其中的因倍關系,進而生成因數(shù)和倍數(shù)的意義。這種意義的建構是基于學生原有經驗之上的,是學生自主操作、積極思考的結果。]

  二、方法滲透

  1.根據(jù)44=16、40016=25這兩個算式,你能分別說一說誰是誰的因數(shù),誰是誰的倍數(shù)嗎?

  (指名回答)

  2.當兩個因數(shù)相同時,通常只需要說出或寫出一個,這是數(shù)學上的規(guī)定。我們能不能說16是因數(shù),或者說16是倍數(shù)?

  (組織學生討論)

  3.因數(shù)和倍數(shù)它們是一種相互依存的關系。

  (板書:相互依存)

  4.下面我們一塊來找一找100的因數(shù)有哪些?同學們可以同座兩人合作,也可以獨立思考。

  (教師巡視。并選擇一份作業(yè),用實物投影展示出來)

  5.對照你們自己找出的100的所有因數(shù),你想對這位同學說些什么?

  (根據(jù)學生回答,教師相機進行引導、評價)

  6.對于剛才幾位同學的回答,你們還有沒有什么需要補充的或提問的?

  7.比較這幾種方法,你發(fā)現(xiàn)了什么?

  8.回顧剛才的過程,你覺得要找出一個數(shù)的所有因數(shù),有什么訣竅?

  (通過對話、討論,讓學生體會思考的合理性、有序性)

  9.當然,如果要找出一個很大數(shù)目的所有因數(shù),用這種方法可能會比較麻煩,我們將在今后的學習中進一步來研究。

  [設計理念:如何找出100的所有因數(shù),教學中,教師沒有急切地認定結果,也沒有簡單地把方法告訴學生,而是先讓學生或同座兩人合作,或獨立思考。通過多角度、多層面的交流與對話,師生之間彼此分享經驗、溝通思考。在解決問題的過程中,學生的思維能力得到了提高,情感、態(tài)度、價值觀得到了升華。]

  三、鞏固深化

  (課件顯示:下面哪些數(shù)一定是□□的因數(shù)。

  1、2、3、4、5、6、7、8、9、10)

  1.方框后面藏著個兩位數(shù),看誰能很快說出下面10個數(shù)中,哪些是它的.因數(shù)?

  (單擊一下,出示21)

  2.接著出示□4,哪些是它的因數(shù)呢?說說你的想法?

  3.要使這個數(shù)一定有因數(shù)2,那么個位上還可以是哪些數(shù)字?

  4.出示□0。你知道除了1和2外,還有哪些數(shù)也是它的因數(shù)?

  5.最后出示□□。這一次,十位和個位上的數(shù)字都看不清了,你還能找到答案嗎?

  [設計理念:設計這一組變式練習,一方面使學生進一步掌握找一個數(shù)的因數(shù)的方法,另一方面又巧妙滲透了能被2整除的數(shù)的特征,體現(xiàn)了數(shù)學學習的綜合性、連貫性。]

  四、360度的優(yōu)點

  1.我們已經知道了一直角等于90度,一圓周角等于360度?墒悄銈冎绬?從前,法國人曾將一直角定為100度,這樣一圓周角就是400度。但是后來卻沒有能行得通。這是什么道理呢?一圓周角等于360度又有什么優(yōu)點呢?

  2.我們先來找一找360和400的因數(shù)各有多少個?

  (分別出示360和400的所有因數(shù)。)

  3.原來其中一個重要的原因,就是360的因數(shù)比400的因數(shù)多,多9個。一圓周角定為360度,當我們需要計算一圓周角的幾分之一時,可以在23種情況下得到整度數(shù)。

  課件顯示:

  2等分:360/2=180;3等分:360/3=120;

  4等分:360/4=90;5等分:360/5=72;

  90等分:360/90=4;120等分:360/120=3;

  180等分:360/180=2;360等分:360/360=1)

  而如果把一圓周角定為400度,那么只有在14種等分情況下才能得到整度數(shù)。相比之下,當然360度要方便多了。

  [設計理念:為什么法國人將一圓周角定分400度沒能行得通?一圓周角定為360度有什么優(yōu)點?學生通過猜想、比較,了解到這些竟然與因數(shù)的多少有關,從中學生真切地感受到數(shù)學的有趣、神奇。數(shù)學在學生心目中不再是陌生、晦澀的,而是生動有趣的,她就在你我的身邊。]

  五、游戲中的發(fā)現(xiàn)

  1.請學生拿出學號卡,在紙上寫下你的學號數(shù)的所有因數(shù)。

  2.在這些數(shù)中,因數(shù)的個數(shù)最少的是幾?(對1)雖然1是因數(shù)個數(shù)最少的一個數(shù),但它卻又是最受歡迎的一個數(shù),你們知道為什么嗎?

  3.除了1以外,你覺得還有哪些數(shù)比較特別的?

  (找2或5號同學。)

  4.你這個數(shù)特別在哪兒?像這樣的數(shù)還有哪些?請把學號卡舉起來。

  (課件顯示:只有兩個因數(shù)的有:2、3、5、7、11)

  5.除了這些數(shù)外,其余的數(shù)各有多少個因數(shù)?(對4)你有?(對6)你呢?

  6.這些數(shù),它們的因數(shù)個數(shù)多少不一,各不相同。同學們猜一猜在它們中間因數(shù)個數(shù)最多的是那一個?你覺得?理由是?你有什么辦法可以把這個數(shù)盡快地找出來?

  7.如果讓同學們將這51個數(shù)按照它們因數(shù)個數(shù)的不同,來分一分類,你們準備怎樣分?其實不光這51個數(shù),把所有的自然數(shù)按照因數(shù)個數(shù)的不同來分類,都可以分成這樣的三類。

  8.今天這節(jié)課我們就上到這兒,關于因數(shù)和倍數(shù),還有許多的知識等著我們去學習,去研究,去探索

  9.組織學生分批退場。

  (1)請學號數(shù)不少于三個因數(shù)的同學先退場;

  (2)請學號數(shù)只有兩個因數(shù)的同學退場;

  (3)請學號數(shù)只有一個因數(shù)的同學跟我一起離場。

  [設計理念:通過尋找自己學號數(shù)的所有因數(shù),既使學生進一步熟悉找一個數(shù)的因數(shù)的方法,又讓學生感知到自然數(shù)的因數(shù)個數(shù)各有不同,為后面學習質數(shù)與合數(shù)埋下伏筆;組織學生分批退場,既檢驗了學生學習的效果,又營造了一種輕松、愉悅的氣氛。正所謂課已畢,趣猶在。]

因數(shù)和倍數(shù)的教案5

  設計說明

  1.動手操作,激發(fā)學生的學習興趣。

  由于數(shù)學知識比較抽象,學生不易理解,缺乏興趣,而興趣是學生獲取知識,提高學習質量的動力。對于小學生來說,動手操作是激發(fā)學生興趣切實可行的好方法,新課伊始,利用數(shù)字卡片組除法算式引入,不僅可以激發(fā)學生的學習興趣,同時還能使學生初步感知算式中各數(shù)的關系是相互的,為學生探究新知奠定基礎。

  2.合作學習,培養(yǎng)合作意識,形成自學能力。

  數(shù)學教學要緊密聯(lián)系學生的生活,創(chuàng)設有助于學生自主學習、合作交流的情境。教學中結合除法算式設計小組同學自學倍數(shù)與因數(shù)的概念的活動,并通過知識的遷移,要求學生利用18的乘法算式說說誰是18的因數(shù)。這樣學生在閱讀、質疑、交流中,逐步形成自學能力,體驗自主學習的快樂。

  課前準備

  教師準備PPT課件

  學生準備數(shù)字卡片

  教學過程

  ⊙活動導入

  1.用下面的數(shù)字卡片組除法算式。(生認真觀察并列出算式)

  2.導入:可別小看這些除法算式,今天我們要研究的因數(shù)和倍數(shù)就在這里。

  設計意圖:通過組除法算式,為學生自主建構概念提供準備,同時溝通與新知識的聯(lián)系。把學生引入新內容的情境,并讓學生明確本節(jié)課的學習目標。

  ⊙自學因數(shù)和倍數(shù)的概念

  1.學生獨立把上面的算式分類,并閱讀教材5頁的內容,自學因數(shù)和倍數(shù)的概念。

  2.通過討論明確:

  (1)為了方便,在研究因數(shù)和倍數(shù)的時候,我們所說的數(shù)指的是自然數(shù)(一般不包括0)。

  (2)在這節(jié)課我們所說的因數(shù)不是以前乘法算式中的'因數(shù),二者不能混淆。

  3.匯報:

  (1)看黑板上的算式,說說誰是誰的因數(shù),誰是誰的倍數(shù)。

  (2)出示算式c÷a=b,(a,b,c都是不為0的自然數(shù))讓學生說說在這個算式中誰是誰的因數(shù),誰是誰的倍數(shù)。

  4.強調:因數(shù)和倍數(shù)是相互依存的。闡述因數(shù)和倍數(shù)時,一定要說清楚誰是誰的因數(shù),誰是誰的倍數(shù)。

  ⊙探究找一個數(shù)的因數(shù)和倍數(shù)的方法

  一、探究找一個數(shù)的因數(shù)的方法。

  1.出示教材6頁例2:18的因數(shù)有哪幾個?

  (1)提問:怎樣去找18的因數(shù)呢?(同桌互相討論,然后匯報)

  (2)匯報:第一種方法,列出積是18的乘法算式,得到18的因數(shù)有1,2,3,6,9,18;第二種方法,列出被除數(shù)是18的除法算式,得到18的因數(shù)有1,2,3,6,9,18。

  (3)討論:無論是乘法算式還是除法算式,在思考時都要注意什么?(要從最小的數(shù)找起,都是非0的自然數(shù))

  (4)書寫:在書寫一個數(shù)的因數(shù)時要注意什么?(要注意一頭一尾地成對寫因數(shù),這樣做不容易漏寫)

  (5)介紹集合圖:18的因數(shù)也可以像這樣表示,如圖:18的因數(shù)

  我們稱它為集合圖,這就是用集合圖表示因數(shù)的方法。

  2.練習。

  教材7頁2題(1)。

因數(shù)和倍數(shù)的教案6

  教學內容:

  義務教育課程標準小學數(shù)學五年級下冊第二章《因數(shù)和倍數(shù)》第1節(jié)例1(教材第13頁)及練習二的第2題,第四題的前部分。

  教材分析:

  本節(jié)教學是在學生學習掌握了因數(shù)和倍數(shù)兩個概念的基礎上,在教師的引導下,讓學生運用乘法算式及除法中的整除自主嘗試、探究“求一個數(shù)的因數(shù)”的方法。同時,通過多種形式的訓練,使學生能熟練找全一個數(shù)的因數(shù)。另外,通過引導學生用集合的形式表示一個數(shù)的因數(shù),一方面給學生滲透集合思想,更重要的是為后面教學求兩個數(shù)的公因數(shù)做準備。

  教學目標:

  1、應用嘗試教學法鼓勵學生自主嘗試探究求一個數(shù)的因數(shù)的方法及規(guī)律特點,并能熟練找全一個數(shù)的因數(shù);

  2、逐步培養(yǎng)學生從個別到全體、從具體到一般的抽象歸納的思想方法。

  教學重點:

  探究求一個數(shù)的因數(shù)的方法及規(guī)律特點。

  教學難點:

  用求一個數(shù)的因數(shù)的方法熟練找全一個數(shù)的因數(shù)。

  教具準備:

  投影儀、小黑板、卡片

  教學課時:一課時

  教學設想:

  運用嘗試教學法,從學生已有的知識經驗出發(fā),通過教師引導、學生自學例1,自主嘗試、探究求一個數(shù)的因數(shù)的方法方法,并能運用所獲得的方法、經驗找全一個數(shù)的'因數(shù)。

  教學過程:

  一、復習舊知

  師:同學們,前面學習了因數(shù)和倍數(shù)的概念,老師很想考考你們學得怎么樣,可以嗎?

  生:(預設)可以!

  師:出示小黑板。

  1、利用因數(shù)和倍數(shù)的相互依存關系說一說下面各組數(shù)的相互關系。

  21和7 2×7=14 30÷6=5

  2、判斷。

  (1)12是倍數(shù),2是因數(shù)。 ( )

  (2)1是14的因數(shù),14是1的倍數(shù)。 ( )

  (3)因為6×0.5=3,所以,6和0.5是3的因數(shù),3是6和0.5的倍數(shù)。( )

  教師根據(jù)學生完成練習的情況對學生進行恰當?shù)谋頁P激勵,同時進入新課教學:……

  二、新課教學

  過程一:嘗試訓練。

  (一)出示問題

  師:同學們,老師有一個新問題,想請大家?guī)椭鉀Q,行嗎?

  生:行!(預設)

  嘗試題:14的因數(shù)有哪幾個?

  (二)學生解決問題,教師巡視并根據(jù)實際適時輔導學困生。

  (三)信息反饋。

  板書:

  1×14

  14 2×7

  14÷2

  14的因數(shù)有:1,2,7,14

  過程二:自學課本(P13例1)。

  (一)學生自學例1。

  教師提出自學要求(投影):

  1、18有哪些因數(shù)?

  2、文中的小朋友是怎樣找出18的因數(shù)的?他們找完了嗎?如果沒有,請幫助他們完成。

  3、你還有別的找法嗎?請試一試,并用自己喜歡的方式寫出18所有的因數(shù)。

  (二)信息反饋

  1、反饋自學要求情況;

  板書:

  1×18

  18 2×9

  3×6

  18的因數(shù)有1,2,3,6,9,18。

  還可以這樣表示: 18的因數(shù)

  2、知識對比,探索發(fā)現(xiàn)規(guī)律。

  (1)師:同學們,根據(jù)求14和18的因數(shù)時獲得的體驗,再思考下面問題:

  投影出示問題:

  思考一:你用什么方法找出?

  (2)學生思考,教師適時引導。

  (3)同桌交流思考結果。

  (4)師生互動?偨Y方法、點出課題。

  求一個數(shù)的因數(shù)的方法:用乘法計算或除法計算(整除)

  過程三:嘗試練習

  (一)用小黑板出示練習題

  1、找出30的因數(shù)有哪些?36的因數(shù)有哪些?

  2、結合14、18、30、36的因數(shù)個數(shù),請你談談一個數(shù)的因數(shù)有什么特點?〖提示:一個數(shù)的最小因數(shù)是( ),的因數(shù)是( )。〗

  (二)信息反饋:師生互動總結特點。

  板書:

  一個數(shù)的因數(shù)的個數(shù)是有限的。它的最小因數(shù)是1,的因數(shù)是它本身。

  三、課堂作業(yè)

  練習二第2題和第4題前半部分。

  四、課堂延伸

  猜一猜:(卡片)只有一個因數(shù)的數(shù)是誰?

  五、課堂小結

  師:今天你學會了求一個數(shù)的因數(shù)的方法嗎?你知道一個數(shù)的因數(shù)特點嗎?

  生:……

  板書設計:

  求一個數(shù)的因數(shù)的方法

  1×14

  14 2×7 方法:用乘法計算或除法計算(整除)

  14÷2

  14的因數(shù)有:1,2,7,14

  1×18

  18 2×9

  3×6

  18的因數(shù)有:1,2,3,6,9,18 特點:一個數(shù)的因數(shù)的個數(shù)是有限的。

  還可以表示為:

  它的最小因數(shù)是1,的因數(shù)是它本身。

因數(shù)和倍數(shù)的教案7

  一、教學內容

  教材第30~51頁的“例1~例12”以及練習五~七。

  二、教材分析

  本單元主要教學因數(shù)和倍數(shù),以及公因數(shù)和公倍數(shù)等內容。本單元內容大體分三段安排:第一段,認識因數(shù)和倍數(shù),學習在1~100的自然數(shù)中有序地找出10以內某個數(shù)的所有倍數(shù),以及100以內某個數(shù)的所有因數(shù);探索2、5、和3的倍數(shù)的特征,學習判斷一個數(shù)是不是2、5或3的倍數(shù),同時認識奇數(shù)和偶數(shù)。第二段,認識質數(shù)、合數(shù)和質因數(shù),學習把一個合數(shù)分解質因數(shù)。第三段,認識公因數(shù)和最大公因數(shù),探索求兩個數(shù)的最大公因數(shù)的方法;認識公倍數(shù)和最小公倍數(shù),探索求兩個數(shù)的最小公倍數(shù)的方法。最后,安排了全單元內容的整理與練習。

  三、學情分析

  本單元內容是在學生已經認識了億以內的數(shù),以及學習了整數(shù)四則運算的基礎上進行教學的。學習本單元內容,又為后續(xù)學習分數(shù)的基本性質、約分和通分,以及分數(shù)四則運算打下基礎。

  四、教學目標

  1.使學生經歷探索非0自然數(shù)的有關特征的.活動,知道因數(shù)和倍數(shù)的含義;能找出100以內某個自然數(shù)的所有因數(shù),能在1~100的自然數(shù)中找出10以內某個數(shù)的所有倍數(shù);知道2、5和3的倍數(shù)的特征,能判斷一個數(shù)是不是2、5或3的倍數(shù);了解奇數(shù)和偶數(shù)、質數(shù)和合數(shù)的含義,會分解質因數(shù)。

  2.使學生通過具體的操作和交流活動,認識公因數(shù)與最大公因數(shù)、公倍數(shù)與最小公倍數(shù);會求100以內兩個數(shù)的最大公因數(shù)和10以內兩個數(shù)的最小公倍數(shù)。

  3.使學生在探索和發(fā)現(xiàn)數(shù)學知識的過程中,積累數(shù)學活動的經驗,培養(yǎng)觀察、比較、分析和歸納的能力,感受一些簡單的數(shù)學思想,進一步發(fā)展數(shù)感。

  4.使學生在參與學習活動的過程中,培養(yǎng)主動與他人合作交流的意識,體驗數(shù)學學習活動的樂趣,增強對數(shù)學學習的自信心。

  五、教學重、難點

  教學重點:掌握倍數(shù)和倍數(shù)、質數(shù)和合數(shù)、最大公因數(shù)和最小公倍數(shù)等概念的聯(lián)系和區(qū)別,掌握求兩個數(shù)最大公因數(shù)和最小公倍數(shù)的基本方法。

  教學難點:根據(jù)數(shù)的特點合理靈活地確定兩個數(shù)的最大公因數(shù)和最小公倍數(shù),以及根據(jù)對最大公因數(shù)和最小公倍數(shù)的理解正確解答相關的實際問題。

  六、課時安排

  因數(shù)和倍數(shù)…………………………………………1課時

  2和5的倍數(shù)的特征………………………………1課時

  3的倍數(shù)的特征……………………………………1課時

  因數(shù)和倍數(shù)練習……………………………………1課時

  質數(shù)和和合數(shù)………………………………………1課時

  分解質因數(shù)…………………………………………1課時

  公因數(shù)和最大公因數(shù)………………………………2課時

  公倍數(shù)和最小公倍數(shù)………………………………2課時

  因數(shù)與倍數(shù)整理與練習……………………………2課時

  和與積的奇偶性……………………………………1課時

因數(shù)和倍數(shù)的教案8

  一、教學目標:

  1.理解因數(shù)和倍數(shù)的意義以及兩者之間相互依存的關系,掌握找一個數(shù)的因數(shù)和倍數(shù)的方法。

  2.在探究的過程中體會數(shù)學知識之間的內在聯(lián)系,在解決問題的過程中培養(yǎng)學生思維的有序性和條理性。

  3.培養(yǎng)學生的探索意識以及熱愛數(shù)學學習的情感。

  二、教學重、難點:

  1.理解因數(shù)和倍數(shù)的意義以及兩者之間相互依存的關系

  2.掌握找一個數(shù)的因數(shù)和倍數(shù)的方法

  三、準備教學:

  教學課件

  四、教學過程:

  (一)創(chuàng)設情境,引入新課

  人與人之間存在著許多種關系,你們和爸爸(媽媽)的關系是?

 。ǜ缸、母子、母女關系)我和你們的關系是?(師生關系)

  在數(shù)學中,數(shù)與數(shù)之間也存在著多種關系,這節(jié)課,我們一起研究兩數(shù)之間的因數(shù)與倍數(shù)關系。

 。ǘ┨骄啃轮-理解因數(shù)和倍數(shù)的意義

  教學例1:

  1.觀察算式的特點,進行分類。

 。1)仔細觀察算式的特點,你能把這些算式分類嗎?

 。2)交流學生的分類情況。(預設:學生會根據(jù)算式的計算結果分成兩類)

  第一類是被除數(shù)、除數(shù)、商都是整數(shù);第二類是被除數(shù)、除數(shù)都是整數(shù),而商不是整數(shù)。

  2.明確因數(shù)和倍數(shù)的意義。

 。1)同學們,在整數(shù)除法中,如果商是整數(shù)而沒有余數(shù),我們就說被除數(shù)是除數(shù)的倍數(shù),除數(shù)是被除數(shù)的`因數(shù)。例如,12÷2=6,我們就說12是2的倍數(shù),2是12的因數(shù)。12÷6=2,我們就說12是6的倍數(shù),6是12的因數(shù)。

 。2)在第一類算式中找一個算式,說一說,誰是誰的因數(shù)?誰是誰的倍數(shù)?

 。3)強調一點:為了方便,在研究倍數(shù)與因數(shù)的時候,我們所說的數(shù)指的是自然數(shù)(一般不包括0)。

  3.理解因數(shù)和倍數(shù)的依存關系。

 。1)獨立完成教材第5頁“做一做”。

 。2)我們能不能說“4是因數(shù)”“24是倍數(shù)”呢?表述時應該注意什么?

  4.理解一個數(shù)的“因數(shù)”和乘法算式中的“因數(shù)”的區(qū)別以及一個數(shù)的“倍數(shù)”與“倍”的區(qū)別。

 。1)今天學的一個數(shù)的“因數(shù)”與以前乘法算式中的“因數(shù)”有什么區(qū)別呢?

  課件出示:

  乘法算式中的“因數(shù)”是相對于“積”而言的,可以是整數(shù),也可以是小數(shù)、分數(shù);而一個數(shù)的“因數(shù)”是相對于“倍數(shù)”而言的,它只能是整數(shù)。

 。2)今天學的“倍數(shù)”與以前的“倍”又有什么不同呢?

  “倍數(shù)”是相對于“因數(shù)”而言的,只適用于整數(shù);而“倍”適用于小數(shù)、分數(shù)、整數(shù)。

  (3)交流匯報。

 。ㄈ┨骄啃轮-找一個數(shù)的因數(shù)

  教學例2:

  1.探究找18的因數(shù)的方法。

 。1)18的因數(shù)有哪些?你是怎么找的?

 。2)交流方法。

  預設:方法一:根據(jù)因數(shù)和倍數(shù)的意義,通過除法算式找18的因數(shù)。

  因為18÷1=18,所以1和18是18的因數(shù)。

  因為18÷2=9,所以2和9是18的因數(shù)。

  因為18÷3=6,所以3和6是18的因數(shù)。

  方法二:根據(jù)尋找哪兩個整數(shù)相乘的積是18,尋找18的因數(shù)。

  因為1×18=18,所以1和18是18的因數(shù)。

  因為2×9=18,所以2和9是18的因數(shù)。

  因為3×6=18,所以3和6是18的因數(shù)。

  2.明確18的因數(shù)的表示方法。

 。1)我們怎樣來表示18的因數(shù)有哪些呢?怎樣表示簡潔明了?

  (2)交流方法。

  預設:列舉法,18的因數(shù)有:1,2,3,6,9,18。

  集合圖的方法(如下圖所示)。

  3.練習找一個數(shù)的因數(shù)。

  (1)你能找出30的因數(shù)有哪些嗎?36的因數(shù)呢?

 。2)怎樣找才能不遺漏、不重復地找出一個數(shù)的所有因數(shù)?

 。ㄋ模┨骄啃轮-找一個數(shù)的倍數(shù)

  教學例3:

  1.探究找2的倍數(shù)的方法。

 。1)2的倍數(shù)有哪些?你是怎么找的?

  (2)想方法:利用乘法算式找2的倍數(shù)。

  因為2×1=2,所以2是2的倍數(shù)。

  因為2×2=4,所以4是2的倍數(shù)。

  因為2×3=6,所以6是2的倍數(shù)。……

 。3)2的倍數(shù)能寫完嗎?你能繼續(xù)找嗎?寫不完怎么辦?

 。4)根據(jù)前面的經驗,試著表示出2的倍數(shù)有哪些?(預設:列舉法、集合圖的方法)

  2.練習找一個數(shù)的倍數(shù)。

  你能找出3的倍數(shù)有哪些嗎?5的倍數(shù)呢?

 。ㄎ澹┪业陌l(fā)現(xiàn)-因數(shù)與倍數(shù)的特征

  舉例子,找規(guī)律,勾畫知識點,讀一讀。

  預設:一個數(shù)的因數(shù)的個數(shù)是有限的,最小的因數(shù)是1,最大的因數(shù)是它本身;一個數(shù)的倍數(shù)的個數(shù)是無限的,沒有最大的倍數(shù),最小的倍數(shù)是它本身。1是所有非零自然數(shù)的因數(shù)。

 。┲腔蹣穲@

  1.在練習本上完成下列填空題。(獨立完成后,師訂正答案)

  一個數(shù)的最大因數(shù)是17,這個數(shù)是( ),它的最小的因數(shù)是( )。

  一個數(shù)的最小倍數(shù)是17,這個數(shù)是( ),它( )最大的倍數(shù),17的倍數(shù)的個數(shù)是( ).

  一個數(shù)既是12的因數(shù),又是12的倍數(shù),這個數(shù)是()。

  2.在練習本上完成下列判斷題。(獨立完成后,師訂正答案)

 。1)在算式6×4=24中,6是因數(shù),24是倍數(shù)。()

 。2)15的倍數(shù)一定大于15。()

 。3)1是除0以外所有自然數(shù)的因數(shù)。()

  (4)40以內6的倍數(shù)有12、18、24、30、36這5個。()

  (5)34的最小倍數(shù)是34;34的最小因數(shù)是17。()

  (6)1.2是3的倍數(shù)。()

 。ㄆ撸┤n總結,交流收獲

  這節(jié)課我們學了哪些知識?你有什么收獲?

  (八)布置作業(yè)

  完成課時練第3、4頁,提交家校本。

因數(shù)和倍數(shù)的教案9

  課前準備

  教師準備 多媒體課件

  學生準備 100以內的數(shù)表

  教學過程

  ⊙談話引入,揭示目標

  師:上節(jié)課我們把數(shù)進行了分類整理,這節(jié)課我們就一起來復習因數(shù)和倍數(shù)的相關知識。

  ⊙回顧與整理

  1.回顧舊知,構建知識網絡。

  (1)回顧:因數(shù)和倍數(shù)這部分知識有哪些概念?

  (因數(shù)、倍數(shù)、質數(shù)、合數(shù)、奇數(shù)、偶數(shù)等)

  (2)討論:各概念之間的關系是怎樣的?

  (組內交流)

  (3)梳理:小組合作,用自己喜歡的方法進行知識梳理。

  (4)匯報:各自的知識梳理方法。

  (課件展示學生的梳理方法,肯定其優(yōu)點后,引導其完善樹狀知識網絡圖)

  2.復習、理解相關概念。

  (1)因數(shù)和倍數(shù)。

  ①在數(shù)學上,關于“因數(shù)”和“倍數(shù)”是怎么定義的?

  [整數(shù)A除以整數(shù)B(B≠0),除得的商是整數(shù)且沒有余數(shù),我們就說整數(shù)A能被整數(shù)B整除,或者說整數(shù)B能整除整數(shù)A。

  如果整數(shù)A能被整數(shù)B(B≠0)整除,整數(shù)A就叫作整數(shù)B的倍數(shù),整數(shù)B就叫作整數(shù)A的因數(shù)。倍數(shù)和因數(shù)是相互依存的。

  如45能被9整除,所以45是9的倍數(shù),9是45的因數(shù)]

  師:為了方便,在研究因數(shù)和倍數(shù)時,所說的數(shù)指的是非零整數(shù)。

 、谂e例說明因數(shù)和倍數(shù)各有什么特征。

  預設

  生1:一個數(shù)的因數(shù)的個數(shù)是有限的,其中最小的是1,最大的是它本身。如20的'因數(shù)有1,2,4,5,10,20。共6個。

  生2:一個數(shù)的倍數(shù)的個數(shù)是無限的,其中最小的是它本身,沒有最大的倍數(shù)。如4的倍數(shù)有4,8,12,…

  生3:一個數(shù)最大的因數(shù)等于它最小的倍數(shù)。

  ……

  (2)質數(shù)與合數(shù)。

  根據(jù)一個數(shù)所含因數(shù)的個數(shù)的不同,還可以得到質數(shù)與合數(shù)的概念。

 、偈裁词琴|數(shù)?最小的質數(shù)是什么?

  [一個數(shù),如果只有1和它本身兩個因數(shù),這樣的數(shù)叫作質數(shù)(或素數(shù)),最小的質數(shù)是2]

 、谑裁词呛蠑(shù)?最小的合數(shù)是什么?

  (一個數(shù),如果除了1和它本身還有別的因數(shù),這樣的數(shù)叫作合數(shù),最小的合數(shù)是4)

  (3)公因數(shù)和公倍數(shù)。

 、偈裁唇泄驍(shù)?什么叫最大公因數(shù)?

  (幾個數(shù)公有的因數(shù),叫作這幾個數(shù)的公因數(shù)。其中最大的一個叫作這幾個數(shù)的最大公因數(shù))

 、谑裁唇泄稊(shù)?什么叫最小公倍數(shù)?請舉例說明。

  預設

  生:幾個數(shù)公有的倍數(shù),叫作這幾個數(shù)的公倍數(shù),其中最小的一個,叫作這幾個數(shù)的最小公倍數(shù)。如2的倍數(shù)有2,4,6,8,10,12,14,16,18,…3的倍數(shù)有3,6,9,12,15,18,…其中6,12,18,…是2和3的公倍數(shù),6是它們的最小公倍數(shù)。

因數(shù)和倍數(shù)的教案10

  教材分析:

  以乘、除法知識拓展方式,引入對“因數(shù)與倍數(shù)”知識的學習。有利于溝通新舊知識之間的聯(lián)系,分散難點,便于學生理解和掌握知識。

  教學目標:

 、僭诰唧w的情境中,借助乘法算式認識因數(shù)和倍數(shù)。

 、谡莆涨笠粋數(shù)的因數(shù)和倍數(shù)的方法,知道一個數(shù)的因數(shù)及倍數(shù)的特點。

  重點難點突破:

  為了突出重點、突破難點,特設計以下三個環(huán)節(jié)進行教學:

 、 以學生的貼畫為素材,通過不同的貼法引出不同的.乘法算式,以乘法算式引出因數(shù)

  和倍數(shù)的意義。

 、谝龑W生自主找一個數(shù)的因數(shù),以此加深對因數(shù)的理解。

 、垡龑W生自主找一個數(shù)的倍數(shù),以此加深對倍數(shù)的理解。

  組內教師討論要點:

  ①找一個數(shù)的因數(shù)時,一定要放手,且給學生足夠的時間讓他們去同位之間、小組內交流,如何能快速且沒有遺漏的找全。

  ②及時的練習鞏固也是很有必要的,在多個練習的基礎之上讓學生發(fā)現(xiàn)一個數(shù)因數(shù)的特點。

 、壅乙粋數(shù)的因數(shù)也反映出學生的口算水平的高低。

 、苷乙粋數(shù)的倍數(shù)時,以找2、3、5的倍數(shù)為主,讓學生發(fā)現(xiàn)一個數(shù)倍數(shù)的特征。

因數(shù)和倍數(shù)的教案11

  教學目標:

  1.結合整數(shù)乘、除法運算初步認識倍數(shù)和因數(shù)的含義;

  2.自主探索求一個數(shù)的倍數(shù)或因數(shù)的方法;

  3.在認識倍數(shù)和因數(shù)以及探索一個數(shù)的倍數(shù)或因數(shù)的過程中,感知因數(shù)和倍數(shù)的依存關系,進一步體會數(shù)學知識之間的內在聯(lián)系。

  教學重點:

  理解因數(shù)和倍數(shù)的含義。

  教學難點:

  自主探索并初步總結找一個數(shù)的倍數(shù)和因數(shù)的方法。

  教學過程:

  一、課前談話:(略)

  二、新課引入:

  1.師:同學們的桌上都放著12個同樣大的正方形,請你每次用這12個正方形拼成一個長方形,注意你不同的擺法?(每排擺幾個?擺了幾排?)看誰的方法多?速度快?會用算式表示你的擺法嗎?

  學生交流幾種不同的擺法。隨著學生交流屏幕上一一演示。2.進行交流:

  如:每排擺了幾個,擺了幾排?你會用算式表示嗎?

  師:12個同樣大小的正方形能擺3種不同的的長方形,可以用乘法算式或除法算式來表示,千萬別小看這些算式,今天我們研究的內容就在這里。我們以第一道乘法算式為例。(屏幕出示)

  43=12,

  師:在這個算式中,你認為4、3、12有什么關系呢?

  我們一起來讀一讀:

  因為:43=12,

  所以:12是4的倍數(shù),12也是3的倍數(shù),

  4是12的因數(shù),3也是12的因數(shù),

  讀讀看,能讀懂嗎?

  繼續(xù)出示:因為:62=12 ,所以

  因為:121=12 ,所以

  誰也來出個乘法算式說一說。(略)

  三、探索研究:

  1.師:我們剛才初步認識了因數(shù)和倍數(shù),下面要進一步來研究因數(shù)和倍數(shù)。(出示課題:因數(shù) 倍數(shù))

  屏幕顯示:試一試:你能從中選兩個數(shù),說一說誰是誰的因數(shù)? 誰是誰的倍數(shù)?

  4、5、18、20、36

  師:老師在聽的時候發(fā)現(xiàn)4、18都是36的因數(shù),你也發(fā)現(xiàn)了嗎?

  師:4、18、都是36的因數(shù)。

  師:36的因數(shù)只有這2個嗎?

  師:看來要找出36的一個因數(shù)并不難,難就難在你能不能把36的所有因數(shù)全部找出來(既不重復又不遺漏)?請你選擇你喜歡的方式,可以同桌合作,也可以獨立完成,找出36的所有因數(shù)。如果能把怎么找到的方法寫在紙上更好。

  學生填寫時師巡視搜集作業(yè)。

  2.交流作業(yè)。(略)

  板書:36的因數(shù):1、2、3、4、6、9、12、18、36。

  師:通過剛才的交流,找一個數(shù)的因數(shù)有辦法了嗎?有沒有方法不重復也不遺漏?試一個。

  15的因數(shù)有 再試一個:

  16的因數(shù)有

  觀察36、15、16的所有因數(shù),你有什么發(fā)現(xiàn)嗎?

  邊交流邊板書:

  個數(shù) 最小 最大

  因數(shù) 1 它本身

  倍數(shù)

  3.師:找一個數(shù)的因數(shù)掌握的不錯,會找一個數(shù)的倍數(shù)嗎?

  3的倍數(shù):(找不完怎么辦?) 有小巧門嗎? (略)

  板書:3的倍數(shù):3、6、9、12、15

  找出7的倍數(shù):7、14、21、28、35

  交流方法。在找一個數(shù)倍數(shù)時發(fā)現(xiàn):板書:

  個數(shù) 最小 最大

  因數(shù) 有限的 1 它本身

  倍數(shù) 無限的 它本身 (沒有的)

  30以內5的倍數(shù):(注意反饋)5、10、15、20、25、30

  4.判斷:(下面的說法是不是正確?)

 、 12是4的倍數(shù),12也是6的倍數(shù)。

 、 8是16的'因數(shù),8又是4的倍數(shù)。

 、 1沒有因數(shù)。

 、 5是倍數(shù)。

  小結:倍數(shù)或因數(shù)都是指兩個數(shù)之間的關系,不能單獨說

  我們在研究倍數(shù)和因數(shù)時,所說的數(shù)一般指不是0的自然數(shù)。

  板書完整: 不是0的自然數(shù)

  四、實踐應用

  師:因數(shù)和倍數(shù)的知識在實際生活中有很多運用。

  1.春游。

  乘坐小艇每人應付4元,你能把下表填寫完整嗎?

  24個同學表演團體操,把隊伍的排列情況填寫完整。2.做操。

  表中的排數(shù)和每排人數(shù)與24都有怎樣的關系?反饋:表中的應付元數(shù)都有什么共同特點?(都是4的倍數(shù))

  排數(shù)是24的因數(shù)。每排的人數(shù)呢?(也都是24的因數(shù)。為什么?)

  3.存錢。

  有一位青年志愿者要省下30元生活費,買學習用品送給生活困難的同學。他每天存出一樣的錢數(shù),請問有幾種存法?

  (30的因數(shù):1、2、3、5、6、10、15、30)

  師:看來因數(shù)倍數(shù)大量存在于我們的生活中。

  五、課堂小結。

  剛才我們一起研究、認識了倍數(shù)和因數(shù),你學得怎樣?

因數(shù)和倍數(shù)的教案12

  教學目標:

  1、理解質數(shù)和合數(shù)的概念,并能判斷一個數(shù)是質數(shù)還是合數(shù),會把自然數(shù)按約數(shù)的個數(shù)進行分類。2、培養(yǎng)同學自主探索、獨立考慮、合作交流的能力。

  3、培養(yǎng)同學敢于探索科學之謎的精神,充沛展示數(shù)學自身的魅力。

  教學重點:

  1、理解掌握質數(shù)、合數(shù)的概念。

  2、初步學會準確判斷一個數(shù)是質數(shù)還是合數(shù)。

  教學難點:區(qū)分奇數(shù)、質數(shù)、偶數(shù)、合數(shù)。

  教學過程:

  一、探究發(fā)現(xiàn),總結概念:

  1、師:(出示三個同樣的小正方形)每個正方形的邊長為1,用這樣的三個正方形拼成一個長方形,你能拼出幾個不同的長方形?

  同學獨立考慮,然后全班交流。

  2、師:這樣的四個小正方形能拼出幾個不同的'長方形?

  同學各自獨立考慮,想像后舉手回答。

  3、師:同學們再想一下,假如有12個這樣的小正方形,你能拼出幾個不同的長方形?

  師:我看到許多同學不用畫就已經知道了。(指名說一說)

  4、師:同學們,假如給出的正方形的個數(shù)越多,那拼出的不同的長方形的個數(shù)——,你覺得會怎么樣?

  同學幾乎是異口同聲地說:會越多。

  師:確定嗎?(引導同學展開討論。)

  5、師:同學們,用小正方形拼長方形,有時只能拼出一種,有時拼出的長方形不止一種。你覺得當小正方形的個數(shù)是什么數(shù)的時候,只能拼一種? 什么情況下拼得的長方形不止一種?并舉例說明。

  先讓同學小組討論,然后全班交流,師根據(jù)同學的回答板書。

  師:同學們,像上面這些數(shù)(板書的3、13、7、5、11等數(shù)),在數(shù)學上我們把它們叫做質數(shù),下面的這些數(shù)(4、6、8、9、10、12、14、15等數(shù))我們把它們叫做合數(shù)。那究竟什么樣的數(shù)叫質數(shù),什么樣的數(shù)叫合數(shù)呢?

  同學獨立考慮后,在小組內進行交流,然后再全班交流。

  引導同學總結質數(shù)和合數(shù)的概念,結合同學回答,教師板書:(略)

  6、讓同學舉例說說哪些數(shù)是質數(shù),哪些數(shù)是合數(shù),并說出理由。

  7、師:那你們認為“1”是什么數(shù)?

  讓同學獨立考慮,后展開討論。

  二、動手操作,制質數(shù)表。

  1、師出示:73。讓同學考慮著它是不是質數(shù)。

  師:要想馬上知道73是什么數(shù)還真不容易。假如有質數(shù)表可查就方便了。(同學們都說“是呀”。)

  師:這表從哪來呢?

  (教師出示百以內數(shù)表)這上面是1到100這100個數(shù),它不是質數(shù)表,你們能不能想方法找出100以內的質數(shù),制成質數(shù)表?誰來說說自身的想法?(讓同學充沛發(fā)表自身的想法。)

  2、讓同學動手制作質數(shù)表。

  3、集體交流方法。

  三、練習鞏固:

  完成練習四第1、2題。

  四、課題小結:

  這節(jié)課你在激烈的討論中有什么收獲?

因數(shù)和倍數(shù)的教案13

  教學內容:

  7--16頁的學習內容

  教學目標

  1.進一步學習求一個數(shù)的所有因數(shù)和倍數(shù);掌握一般方法,學會用常見的幾種形式表達。

  2.經過多次的求解經歷過程,在事實面前讓學生進一步明確因數(shù)是可數(shù)的,自然得出因數(shù)的個數(shù)是有限的,其中最大的因數(shù)自己;而倍數(shù)是無法寫完全,也就是說倍數(shù)的個數(shù)是無限的,其中最小的倍數(shù)也是自己。

  教學重點:

  掌握求一個數(shù)的因數(shù)和倍數(shù)的常用方法及常用的`幾種書寫表達形式

  教學難點:

  完整地求出一個數(shù)的因數(shù)和倍數(shù)

  教學準備:

  實物投影

  教學活動

 。ㄒ )基礎訓練

  【口答】

  根據(jù)下面算式,說說哪個數(shù)是哪個數(shù)的倍數(shù),哪個數(shù)是哪個數(shù)的因數(shù)?

  4×9=36 25×40=100032×7=224

  【解答題】

  18的因數(shù)有哪些?10是哪些數(shù)的倍數(shù)?

 。ǘ 新知學習

  【典型例題】

  1.教學:

  (1)你還能找出18的因數(shù)碼?并說出你的找法(要板書)。

  (2)小比賽。看誰既快又能完整地把30和36所有因數(shù)找出來(基礎練習)?

 。3)分享冠軍經驗(介紹方法)。

  (4)咱們再來一次尋找32和48的所有因數(shù)的比賽(基礎練習)?

 。5)請你試著把18所有找出的因數(shù)表述出來。(如果學生能用常見的兩種表達最好;如果不能需要教師的引導)

  第一種習慣書面表達形式。18的因數(shù)有(有可能是亂的):

  第二種集合圖的書面表達形式。 18的因數(shù)

 。6)通過眼看,自我感覺調整這些因數(shù)最好按序排列

  第一種習慣書面表達形式。18的因數(shù)有(按大小順序):

  第二種集合圖的書面表達形式。 18的因數(shù)

 。7)做基礎練習第2題

  【小結】1.尋找的方法

  2.能否找全?

  2.教學

 。1)讓學生自己嘗試找

 。2)有沒有發(fā)什么問題?如何解決?

  (3)如何表達?

  (4)找出3和5的倍數(shù)

  【小結】1.尋找的方法

  2.能否找全?

  (三) 鞏固練習(10題)

  【基礎練習】

  1.用盡快的速度找出30、36、32和48的所有因數(shù)?

  2.填空。30的因數(shù)有: 36的因數(shù)有:

  32的因數(shù)有 48的因數(shù)有

  3. 5的倍數(shù)有: 3的倍數(shù)

  【提高練習】

  1.分別寫出17的因數(shù)和倍數(shù),再寫出28

  2.找因數(shù)和倍數(shù)相同嗎?

  【拓展練習】數(shù)學小知識:了解完全數(shù)。

 。ㄎ澹┙虒W效果評價(小測題2—3題)

  課后反思:

  有的學生認為某個數(shù)的最小倍數(shù)是0倍,因此最小倍數(shù)是0。要向學生強調,小學階段學倍數(shù)不涉及到0,因此,某個數(shù)的最小倍數(shù)應該是它的1倍。

因數(shù)和倍數(shù)的教案14

  教學內容

  教材第6頁例3及練習二第3~8題及思考題。

  教學目標

  1.通過學習,使學生能自主探究,找出求一個數(shù)的倍數(shù)的方法。

  2.結合具體情境,使學生進一步認識自然數(shù)之間存在因數(shù)和倍數(shù)的關系,掌握求一個數(shù)的因數(shù)和倍數(shù)的方法。

  3.初步學會從數(shù)學的角度提出問題、理解問題,并能用所學知識解決問題。在解決問題的過程中,培養(yǎng)學生概括、分析和比較的能力,使學生體會數(shù)學知識的內在聯(lián)系。

  教學重難點

  重點:掌握求一個數(shù)的倍數(shù)的方法。

  難點:理解因數(shù)和倍數(shù)兩者之間的關系。

  教學過程

  一、 復習導入

  10,28,42的因數(shù)有哪些?你是用什么方法找出這些數(shù)的因數(shù)個數(shù)的?一個數(shù)的因數(shù)中,最大的是幾?最小的是幾?

  二、新課講授

  1.探索找倍數(shù)的方法。(教學例3)

  出示例3:2的倍數(shù)有哪些?

  師:你會找2的倍數(shù)嗎?給你們1分鐘的時間,看誰寫得又對、又快、又多!準備好了嗎?開始!

  師:時間到,你寫了多少個2的倍數(shù)?生1:15個。生2:24個。

  師:大家都是用的什么方法呢?

  生1:我是用乘法口訣,一二得二,二二得四……這樣寫下去的。

  生2:我也是用乘法,用2去乘1、乘2……

  師:哪些同學也是用乘法做的?

  師:你們都是用2去乘一個數(shù),所得的積就是2的倍數(shù)。還有不同的方法嗎?www.xkb1.com

  生3:我用的是除法,用2÷2=1,4÷2=2 ,6÷2=3,……依次除下去。

  師:很好!如果給你更長的時間,你能把2的倍數(shù)全部寫出來嗎?(不能)

  師:為什么?(因為2的倍數(shù)有無數(shù)個)

  師:怎么辦?(用省略號)

  師:通過交流,你有什么發(fā)現(xiàn)?

  引導學生初步體會2的倍數(shù)的個數(shù)是無限的。

  追問:你能用集合圖表示2的倍數(shù)嗎?

  學生填完后,教師組織學生進行核對。

  (4)即時練習。讓學生找出3的倍數(shù)和5的倍數(shù),并組織交流。學生舉例時可能會產生錯誤,教師要引導學生根據(jù)錯例進行適時剖析。

  4.反思提煉。師:從前面找因數(shù)和倍數(shù)的過程中,你有什么發(fā)現(xiàn)?

  先讓學生在小組內交流,再組織全班集體交流,通過全班交流,引導學生認識以下三點:

  (1)一個數(shù)的最小因數(shù)是1,最大因數(shù)是它本身。

  (2)一個數(shù)的最小倍數(shù)是它本身,沒有最大倍數(shù)。

  (3)一個數(shù)的因數(shù)的個數(shù)是有限的,一個數(shù)的倍數(shù)的個數(shù)是無限的。

  三、課堂作業(yè)

  1.指導學生完成教材第7~8頁練習二第3~8題及思考題。

  學生獨立完成全部練習后教師組織學生進行集體訂正。

  集體訂正時,教師著重引導學生認識以下幾點:

  (1)第4題“15的因數(shù)有哪些?”和“15是哪些數(shù)的`倍數(shù)”答案是一樣的。

  (2)第5題中的第(2)小題是錯的,因為一個數(shù)的倍數(shù)的個數(shù)是無限的,第(4)小題也是錯的,因為在研究因數(shù)和倍數(shù)時,我們所說的數(shù)指的是自然數(shù),不含小數(shù)。

  (3)思考題:兩數(shù)如果都是7(或9)倍數(shù),它們的和也一定是7(或9)的倍數(shù),即如果兩數(shù)都是n的倍數(shù),它的和也是n的倍數(shù)。

  2.利用求倍數(shù)的方法解決生活中的實際問題

  出示:媽媽買來幾個西瓜,2個2個地數(shù),正好數(shù)完,5個5個地數(shù),也正好數(shù)完。這些西瓜最少有多少個?

  理解題意,分析解答。

  教師提示“2個2個地數(shù),正好數(shù)完,說明西瓜的個數(shù)是2的倍數(shù),5個5個地數(shù),也正好數(shù)完,說明西瓜的個數(shù)是5的倍數(shù),所以西瓜的個數(shù)同時是2和5的倍數(shù)。

  交流匯報:2的倍數(shù)有2,4,6,8,10,12,14,16,18,20,…

  5的倍數(shù)有5,10,15,20,25,30,…

  2和5共同的倍數(shù)有10,20,…所以2和5共同的倍數(shù)最小的是10。

  答:這些西瓜最少有10個。

  四、課堂小結

  1.師:通過本節(jié)課的學習,你有什么收獲?(學生交流)

  2.讓學生自學“你知道嗎?”

  板書設計

  因數(shù)和倍數(shù)

  2×1=2 2÷2=1

  2×2=4 4÷2=2

  2×3=6 6÷2=3

  2×4=8 8÷2=4

  2的倍數(shù)有2,4,6,……

  一個數(shù)的因數(shù)的個數(shù)是有限的,一個數(shù)的倍數(shù)的個數(shù)是無限的。

因數(shù)和倍數(shù)的教案15

  教學內容:

  蘇教版義務教育教科書《數(shù)學》五年級下冊第30~32頁例1、例2和試一試、例3和試一試練一練,第35頁練習五第1~4題。

  教學目標:

  1.使學生認識倍數(shù)和因數(shù),能判斷兩個自然數(shù)間的因數(shù)和倍數(shù)關系;學會找一個數(shù)的因數(shù)和倍數(shù)的方法,能按順序找出100以內自然數(shù)的所有因數(shù),10以內自然數(shù)的所有倍數(shù);了解一個數(shù)的因數(shù)、倍數(shù)的特點。

  2.使學生經歷探索求一個數(shù)的因數(shù)或倍數(shù)的方法、一個數(shù)的因數(shù)和倍數(shù)特點的過程,體會數(shù)學知識、方法的內在聯(lián)系,能有條理地展開思考,培養(yǎng)觀察、比較,以及分析、推理和抽象、概括等思維能力,發(fā)展數(shù)感。

  3.使學生主動參與操作、思考、探索等活動,獲得解決問題的成功感受,樹立學好數(shù)學的信心,養(yǎng)成樂于思考、勇于探究等良好品質。

  教學重點:

  認識因數(shù)和倍數(shù)。

  教學難點:

  求一個數(shù)的因數(shù)、倍數(shù)的方法。

  教學準備:

  小黑板、準備12個同樣大的`正方形學具。

  教學過程:

  一、操作引入,認識意義

  1.操作交流。

  引導:你能用12個小正方形拼成一個長方形嗎?請同桌兩人合作拼一拼,看看每排擺幾個,擺了幾排,想想有幾種拼法,用算式把你的拼法表示出來。 學生操作,用算式表示,教師巡視。

  交流:你有哪些拼法?請你說一說,并交流你表示的算式。

  結合學生交流,呈現(xiàn)不同拼法,分別板書出積是12的三道乘法算式(包括可以板書除法算式)。

  2.認識意義。

 。1)說明:我們先看43=12。根據(jù)43-12,我們就可以說:4和3都是12的因數(shù);反過來,12是4的倍數(shù),也是3的倍數(shù)。

 。2)啟發(fā):現(xiàn)在讓你看另外兩個算式,你能說一說哪個是哪個的因數(shù),哪個是哪個的倍數(shù)嗎?同桌互相說說看。

  (3) 小結:從上面可以看出,在整數(shù)乘法算式里,兩個乘數(shù)都是積的因數(shù),積是兩個乘數(shù)的倍數(shù)。它們之間的關系是相互依存的。這就是我們今天學習的新內容:因數(shù)和倍數(shù)。(板書課題)在研究因數(shù)和倍數(shù)時,所說的數(shù)一般指不是O的自然數(shù)。

【因數(shù)和倍數(shù)的教案】相關文章:

《倍數(shù)和因數(shù)》教案03-18

因數(shù)和倍數(shù)的教案08-07

《倍數(shù)和因數(shù)》教案07-08

因數(shù)和倍數(shù)教案模板09-02

公倍數(shù)和公因數(shù)教案12-19

《因數(shù)和倍數(shù)》的說課稿01-09

公倍數(shù)和公因數(shù)教案07-18

《因數(shù)和倍數(shù)》教學反思02-06

因數(shù)和倍數(shù)教學反思02-07