因數(shù)和倍數(shù)的教案
作為一名教學工作者,總歸要編寫教案,教案是保證教學取得成功、提高教學質量的基本條件。教案應該怎么寫呢?下面是小編為大家整理的因數(shù)和倍數(shù)的教案,希望能夠幫助到大家。
因數(shù)和倍數(shù)的教案1
劉浩中心小學許夏敏
教學目標:1進一步加深學生對方程意義的理解,鞏固用等式的性質解簡易方程的方法,理解簡單實際問題中數(shù)量關系,并能根據(jù)等量關系解決實際問題。
2進一步理解公倍數(shù)和公因數(shù),最小公倍數(shù)和最大公因數(shù)的意義,掌握求最大公因數(shù)和最小公倍數(shù)的方法。
3通過小組合作交流,培養(yǎng)學生的數(shù)學交流能力和合作能力。
教學重點:理解方程的意義,鞏固解方程的方法,進一步掌握求最小公倍數(shù)和最大公因數(shù)的方法。
教學難點:理解實際問題中的數(shù)量關系,根據(jù)數(shù)量關系列方程解答。
教學實施:一、疏通概念
1、同學們,本學期的內容已經全部學完了。從今天開始,我們要對所有的知識進行與復習。首先讓我們一起走進“數(shù)的世界”,在十個單元中哪些是與數(shù)打交道呢?根據(jù)學生回答板書方程
公倍數(shù)與公因數(shù)
認識分數(shù)
分數(shù)的基本性質
分數(shù)的加減法
2、揭題
今天這節(jié)課我們先來復習方程,公倍數(shù)與公因數(shù)(出示課題)
3、討論與思考:本學期學習了方程的哪些知識?
什么是公倍數(shù)與公因數(shù)?
怎樣求兩個數(shù)的最小公倍數(shù)和最大公因數(shù)?
二、專項練習
1、方程的復習
、排c練習第1題,在方程下面打√,集體匯報時說出為什么不是方程?
等式
方程
X+2.5<828-12=165a分別叫什么?你覺得方程與等式有什么關系?你能用一副圖來表示嗎?
、婆c復習第2題
提問:根據(jù)什么來解方程?指名4人板演,校對時說說是怎么想的?
出示練一練,找出括號中方程的解
、3x=1.5(x=0.5x=2)
②x-210=30(x=240x=180)
、踴÷5=120(x=24x=600)
、橇蟹匠探鉀Q實際問題
?米11.7平方米?米
2.7米
6.9米3.9米
學生獨立完成,集體訂正時說說根據(jù)什么數(shù)量關系式列方程的?
教師,用方程計算可以使很多問題變的簡單,容易解決。
、扰c復習第4題學生讀題后獨立用方程解決。
2、公倍數(shù)和公因數(shù)的復習
對公倍數(shù)和公因數(shù)你有那些了解?怎樣求兩個數(shù)的最小公倍數(shù)和最大公因數(shù)呢?
出示練習①寫出每組數(shù)的最小公倍數(shù)
6和94和82和3
、趯懗雒拷M數(shù)的.最大公因數(shù)
18和2415和602和3
請做得快的同學介紹經驗
三、全課
今天我們復習了什么,你有哪些收獲?
四、課堂作業(yè)
與復習第3題、第5題、第6題。
教學反思
這是一堂復習課,主要復習方程、公倍數(shù)和公因數(shù)兩個單元的內容。由于課堂時間有限,因此對知識的回顧與還不是很系統(tǒng)。特別是對潛能生而言,教師的提問不能及時溝起他們對知識概念的回憶,因此跟基礎較好的同學相比就形成了鮮明的落差。
在列方程解決實際問題時,正確掌握題中的數(shù)量關系是關鍵,也是學生理解中的難點。大部分學生在列方程時,因為沒能找出題中的數(shù)量關系而把方程列錯,或者方程列到了,卻不能把方程抽象成數(shù)量關系式。諸如這些現(xiàn)象,主要是學生的抽象能力還不夠完善,分析問題的能力還不夠仔細,深入,有待進一步的發(fā)展。
在公倍數(shù)和公因數(shù)一單元中,問題不大,主要是求兩個數(shù)的最小公倍數(shù)和最大公因數(shù)。對較大的兩個數(shù),如求100以內兩個數(shù)的最小公倍數(shù)和最大公因數(shù),出錯率較大。因此課后還應多補充一些相應的練習。
因數(shù)和倍數(shù)的教案2
教學目標:
1、通過操作活動得出相應的乘除法算式,幫助學生理解倍數(shù)和因數(shù)的意義;探索求個數(shù)的倍數(shù)和因數(shù)的方法,發(fā)現(xiàn)一個數(shù)倍數(shù)和因數(shù)的某些特征。
2、在探索一個數(shù)的倍數(shù)和因數(shù)的過程中培養(yǎng)學生觀察、分析、概括能力,培養(yǎng)有序思考能力。
3、通過倍數(shù)和因數(shù)之間的互相依存關系使學生感受數(shù)學知識的內在聯(lián)系,體會到數(shù)學內容的奇妙、有趣。
教學重點:理解倍數(shù)和因數(shù)的意義。
教學難點:探索求一個數(shù)的倍數(shù)和因數(shù)的方法。
教學準備:每桌準各12個一樣大小的正方形,每人準備一張自己學號的卡片。
設計理念:通過竟猜、操作、比一比誰寫得多,找朋友等形式多樣的活動激發(fā)學生持續(xù)的學習興趣;學生通過獨立思考、合作文流進行自主探索;教師引導學生掌握數(shù)學思考的方法。
教學過程:
一、智力競猜 引入新課
1、讓學生進行智力競猜春暖花香的季節(jié),公園里許多人在劃船,一條船上有兩個父親兩個兒子,但總共只有3個人,這是怎么回事呢?(部分學生能猜出三個人分別是孫子、爸爸、和爺爺)
2、孫子、爸爸、爺爺?shù)拿址謩e是韓韓,韓有才、韓廣發(fā)。請學生以韓有才為中心介紹下三個人的關系。學生可能會說出韓有才.是爸爸,韓有才是兒子的語句,這時引導學生說出誰是誰的爸爸誰是準的兒子。
3、上述父子關系是一種互相依存的關系,在表述時一定要完整。并向學生說明自然數(shù)中某兩個數(shù)之間也有這種類似的依存關系倍數(shù)和因數(shù)。
設計說明:智力競猜走學生喜歡的形式,因為每個學生都有爭強好勝之心,競猜有兩個作用,一是激發(fā)學生的學習興趣,二是以此引出相互依存的關系,為理解倍數(shù)和因數(shù)的相互依存關系作鋪墊。
二、操作發(fā)現(xiàn) 理解概念
1、師:智慧從手指問流出,通過操作我們能發(fā)現(xiàn)許多的知識。請同桌同學拿出課前準備的12個同樣大小的正方形,試一試能擺出幾個不同的長方形,并思考一下其中蘊涵著哪些不同的乘除法算式。
2、請學生匯報不同的擺法,以及相應的乘除法算式。(乘法算式和除法算式分開寫)再向學生說明:如果一個圖形經過旋轉后和另一個圖形一樣,我們就認為這兩個圖形是一樣的,讓學生特重復的圖形和算式去掉。(板書三十乘法算式,和幾十相應的除法算式)
設計說明;讓學生寫出蘊涵的乘除法算式符合學生的知識基礎,學生有的可能用乘法表示,也有的可能用除法表示;讓學生將旋轉后相同的去掉,這是一次簡化,很多學生并不知道,需要指導,這樣可以使學生認識到事物的本質。
3、讓學生一起看乘法算式43=12,向學生指出:12是4的倍數(shù),12也是3的倍數(shù),4是12的因數(shù),3也是12的因數(shù)。
4、先請一個學生站起來說一說.然后同桌的同學再互相說一說。
5、讓學生仿照說出62=12和121=12中哪個數(shù)是哪個數(shù)的倍數(shù),哪個數(shù)是哪個數(shù)的因數(shù)。
6、學生相互出一道乘法算式,并說一說誰是誰的倍數(shù),誰是誰的因數(shù)。學生可能會出現(xiàn)0( )=0的情況,借此向學生說明我們研究因敷和倍數(shù)一般指不是0的自然數(shù)。
設計說明:倍數(shù)和因數(shù)是全新的概念,需要教師的傳授、講解,需要學生的適當記憶重復、仿照。當然,要使學生真正理解還必須舉一反三,通過互相舉例可以逐步完善學生對倍數(shù)和因數(shù)的認識,同時使學生明確倍數(shù)和因數(shù)的研究范圍。
7、以43=12與123=4為例,向學生說明后面的除法算式是由前面的乘法算式得到的,根據(jù)這個除法算式可以說誰是誰的倍數(shù),誰是誰的因數(shù),說好后再讓學生試一試其他幾個除法算式中的關系。
8、練習:根據(jù)下面的算式,說說哪個數(shù)是哪個數(shù)的因數(shù),哪個數(shù)是哪個數(shù)的倍數(shù)
54=20 357=5 3+4=7
(1)學生回答后引發(fā)學生思考:能不能說20是倍數(shù),4是因數(shù)。使學生進一步理解倍數(shù)是兩個數(shù)之間的一種相互依存的關系,必須說哪個是哪個的倍數(shù),因數(shù)也同樣如此。
(2)通過3+4=7使學生進一步理解倍數(shù)和因數(shù)都是建立在乘法或除法的基礎之上的。
設計說明:乘法和除法是一種互逆的關系,在學習中應該溝通它們之間的聯(lián)系;通過三道練習可以鞏固剛剛獲得的對倍數(shù)和因數(shù)的認識,將融會貫通落到實處。
三、探索方法 發(fā)現(xiàn)特征
1、找一個數(shù)的因數(shù)。
(1)聯(lián)系板書的乘除法算式觀察思考12的`因數(shù)有哪些,井想辦法找出15的所有因數(shù)。
(2)學生獨立思考,明白根據(jù)一個乘法(除法)算式可以找出15的兩個因數(shù),在學生充分交流的基礎上引導學生有條理的一對一對說出15的因數(shù)。
(3)用一對一對的方法找出36的所有因數(shù)。可能有的學生根據(jù)乘法算式找的,也有的學生是根據(jù)除法算式找的,都應該給予肯定。
(4)引導學生觀察12、15、36的因數(shù),說一說有什么發(fā)現(xiàn)。一個數(shù)的因數(shù)個數(shù)是有限的,其中最小的因數(shù)都是1,最大的都是它本身。
設計說明:先安排學生找一個數(shù)的因數(shù)可以使學生利用操作得到的算式進行,觀察,這樣比較自然,而且為于找一個數(shù)的因數(shù)指明了方向。學生交流時突出了方法的多樣性,既可以根據(jù)乘法算式想,也可以根據(jù)除法算式想,交流后引導學生一對一對的找是必要的,它可以培養(yǎng)學生的有序思考。最后引導學生觀察。使學生自主發(fā)現(xiàn)、歸納出一個數(shù)的因數(shù)的某些特征。
2、找一個數(shù)的倍數(shù)。
(1)讓學生找3的倍數(shù),比一比誰找得多。
(2)學生匯報后,引導學生有序思考,并得出3的倍數(shù)可以用3乘連續(xù)的自然數(shù)1、2、3,3的倍數(shù)的個數(shù)是無限的,所以寫3的倍數(shù)時要借助省略號表示結果。
(3)找出2的倍數(shù)和5的倍數(shù),并引導學生觀察3、2、5的倍數(shù)情況,說一說有什么發(fā)現(xiàn)。一個數(shù)的倍數(shù)個數(shù)是無限的,其中最小的倍數(shù)是它本身,沒有最大的倍數(shù)。
設計說明:讓學生比一比誰找的倍數(shù)多,可以使學生產生認知沖突,認識到一個數(shù)的倍數(shù)個數(shù)是無限的,在學生匯報后同樣需要引導學生的有序思考,需要引導學生自主發(fā)現(xiàn)、歸納一個數(shù)倍數(shù)的特征。
四、鞏固練習
師;剛才同學們認識了倍數(shù)和因數(shù),并且探索了求一個數(shù)因數(shù)和倍數(shù)的方法,想不想檢查一下自己掌握得如何?
1、想想做做的第l題。學生表述后強調哪個是哪個的倍數(shù)(或因數(shù))。
2、想想做做的第2題。學生填好后引導學生說一說:表中的應付元數(shù)其實都是什么?表格中為什么用省略號?
3、想想做做的第3題。學生填好后引導學生說一說:表格中所有數(shù)都是什么?這個表格中為什么沒有省略號?
4、游戲找朋友。讓學生拿出各自的學號卡片,找出自己學號數(shù)的所有因數(shù),使學生發(fā)現(xiàn)每個學號數(shù)的因數(shù)都在全班的學號數(shù)以內;再讓學生找一找自己學號數(shù)的倍數(shù),井說一說能不能在全班學號數(shù)內部找到一個,還有其他的嗎?
設計說明:第l題是基礎練習.可以鞏固對倍數(shù)和因數(shù)的認識,2、3兩題聯(lián)系實際,使學生感悟到其中蘊藏著求一個數(shù)倍數(shù)和因數(shù)的方法,以及倍數(shù)和因數(shù)的某些特征。第4題通過游戲活動進一步激發(fā)學生持續(xù)的學習熱情,而且可以綜合應用求倍數(shù)和因數(shù)的方法,再次認識到倍數(shù)和因數(shù)的某些特征。
五、自我梳理 探索延伸
1、通過這節(jié)課的學習你有什么收獲?向你的同伴介紹一下。
2、生活中許多現(xiàn)象與我們學習的倍數(shù)和因數(shù)的知識有關,課后同學們可以利用今天所學的知識探索一下1小時等于60分的好處。通過探索使學生明白由于60的因數(shù)是兩位數(shù)中最多的,可以方便計算。
設計說明:向同伴介紹自己的收獲可以將課堂中學到的知識進行自我梳理,同時通過探索1小時等于60分的好處,可以鞏固倍數(shù)和因數(shù)的相關知識,溝通知識間的聯(lián)系,拓展學生的知識面,使學生認識到數(shù)學知識的應用價值。
因數(shù)和倍數(shù)的教案3
描述目標:
1、知識目標:①結合整數(shù)乘、除法運算初步認識因數(shù)和倍數(shù)的含義;②探索求一個數(shù)的因數(shù)和倍數(shù)的方法;③通過列舉法,發(fā)現(xiàn)并概括出一個數(shù)的因數(shù)和一個數(shù)的倍數(shù)的特點;④能找出一個數(shù)的因數(shù)、一個數(shù)的倍數(shù)。
2、能力目標:使同學在認識因數(shù)和倍數(shù)以和探索一個數(shù)的因數(shù)或倍數(shù)的過程中,進一步體會數(shù)學知識之間的內在聯(lián)系,提高數(shù)學考慮的水平。
3、情感目標:培養(yǎng)同學觀察、分析、籠統(tǒng)概括能力,體會教學內容的有趣,發(fā)生對數(shù)學的好奇心。
教學重點:結合整數(shù)乘、除法運算體會和理解因數(shù)和倍數(shù)的含義,探索求一個數(shù)的因數(shù)數(shù)或倍數(shù)的方法。
教學難點:引導同學探索并理解因數(shù)數(shù)和倍數(shù)之間的相互依存的關系。
教學過程;
一、導入。
1.同桌用12塊完全一樣的小正方形拼成一個長方形,有幾種拼法?要求:能想象的就想象,不能想象的才借助小正方形擺一擺。
2.同學動手操作,并與同桌交流擺法。
3.請用乘法算式表達你的擺法。
二、理解新知。
1.理解因數(shù)和倍數(shù)。
。1)觀察3×4=12
今天我們研究的內容就在這里。咱們就以第一道乘法算式為例,3×4=12,數(shù)學上3是12的因數(shù),那4(也是12的因數(shù),)倒過來12是3的倍數(shù),12(也是4的倍數(shù))。同學們很有遷移的能力,這就是我們今天所要研究的因數(shù)和倍數(shù)。
師板書:因數(shù)和倍數(shù)
(2)用因數(shù)和倍數(shù)說一說算式l×12=12,2×6=12中三個數(shù)的關系。
。3) 提問:在4+3=7中我們能說7是4和3的倍數(shù),4和3都是7的因數(shù)嗎?(同學討論)
【設計意圖:通過講解、設疑、討論等形式讓同學從其內涵上加深對因數(shù)和倍數(shù)的理解,明確因數(shù)和倍數(shù)是相互依存的概念,不能獨立存在!
(4)歸納:
、僖驍(shù)和倍數(shù)都是表示兩個數(shù)之間的關系,不能單獨說那個數(shù)是因數(shù),那個數(shù)是倍數(shù)。
、谥挥幸粋自然數(shù)是兩個自然數(shù)的乘積時候才干談上它們之間具有因數(shù)和倍數(shù)的關系。
、垩芯恳驍(shù)和倍數(shù)時,所指的數(shù)是整數(shù)(一般不包括O)。
。5) 討論:板書:24÷4=6
提問:能說4、6是24的因數(shù),24是4、6的倍數(shù)嗎?
同學各說自身的理由,討論后統(tǒng)一。
提示:4×6=24(教師板書),這樣你看出來了嗎?
(6)練習:①21×3=63, 是 的因數(shù), 是 的倍數(shù);6是18的 ,是3的 。
、谙扰袛嘞旅娴乃闶街械臄(shù)有因數(shù)倍數(shù)的關系。假如有因數(shù)和倍數(shù)關系,請說一說誰是誰的因數(shù),誰是誰的倍數(shù)。7+5=12 7×5=35 20-13=7 8÷4=2
【設計意圖:提高對因數(shù)和倍數(shù)的意義的認識。】
2.求一個數(shù)的因數(shù)。
(1)出示2,5,12,15,36。從這些數(shù)中找一找誰是誰的因數(shù)。
請同學們找出36的所有因數(shù)。
出示要求:
、倏瑟毩⑼瓿桑部赏篮献。
②可借助剛才找出12的.所有因數(shù)的方法。
③寫出36的所有因數(shù)。
④想一想,怎樣找才干保證既不重復,又不遺漏。
。2)比較喜歡哪一種答案?為什么?
用什么方法找既不重復又不遺漏。(按順序一對一對找,一直找到兩個因數(shù)相差很小或相等為止)
。3)練習:①對口令游戲。②16的因數(shù)有哪些? 11的因數(shù)有哪些?
。4)發(fā)現(xiàn)因數(shù)特點:36、16、11的因數(shù)你有什么發(fā)現(xiàn)嗎?
師:雖然個數(shù)不相等,但它們的個數(shù)都是有限的。
小結:一個數(shù)的最小因數(shù)是1,最大的因數(shù)是它自身。一個數(shù)的因數(shù)個數(shù)是有限的。(同學總結不出此點不要急于點撥)
。5)練習:說特點猜數(shù)。
3.求一個數(shù)的倍數(shù)。
(1)3的倍數(shù)有:——,怎樣有序地找,有多少個?
。2)練一練:6的倍數(shù)有;5的倍數(shù)有。
(3)發(fā)現(xiàn)倍數(shù)特點:找得對嗎?我們一起來說一說。下面請大家仔細觀察,你發(fā)現(xiàn)一個數(shù)的倍數(shù)有什么特點?可以前后四人小組討論討論。(導:發(fā)現(xiàn)最小的特征后問:那么7最小的倍數(shù)是幾?10呢?)一個數(shù)的倍數(shù)還有怎樣的特點?這些數(shù)的倍數(shù)你寫得完嗎?也就是說明一個數(shù)的倍數(shù)的個數(shù)是無限的。那么也沒有最大的倍數(shù)。剛才大家發(fā)現(xiàn)了——,簡單地說就是——
小結:一個數(shù)的最小倍數(shù)是自身,沒有最大的倍數(shù),一個數(shù)的倍數(shù)的個數(shù)是無限的。(和一個數(shù)的因數(shù)特點進行對比)
【設計意圖:這個環(huán)節(jié)的教學主要把小組討論和自主探索結合起來,讓同學在討論中體會過程、總結方法、提升水平,發(fā)現(xiàn)有關倍數(shù)的一些規(guī)律。】
。4)練習:判斷題
四、拓展應用。
1.選用4,6,8,24,1,5中的一些數(shù)字,用今天學習的知識說一句話。
2.舉座位號起立游戲。
(1)5的倍數(shù)。(2)48的因數(shù)。(3)既是9的倍數(shù),又是36的因數(shù)。
(4)怎樣說一句話讓還坐著的同學全部起立。
五、黃金二分鐘。
達標檢測:
1、理解因數(shù)和倍數(shù):練習:①21×3=63, 是 的因數(shù), 是 的倍數(shù);6是18的 ,是3的 。
、谙扰袛嘞旅娴乃闶街械臄(shù)有因數(shù)倍數(shù)的關系。假如有因數(shù)和倍數(shù)關系,請說一說誰是誰的因數(shù),誰是誰的倍數(shù)。7+5=12 7×5=35 20-13=7 8÷4=2
【設計意圖:提高對因數(shù)和倍數(shù)的意義的認識,達成知識目標中的第①個目標】
【評價規(guī)范:同學能正確理解和掌握因數(shù)和倍數(shù)的意義,尤其能通過算式找出一個數(shù)的因數(shù)和倍數(shù)】
2、會找一個數(shù)的因數(shù):①對口令游戲。②16的因數(shù)有哪些? 11的因數(shù)有哪些?③說特點猜數(shù)。
【設計意圖:通過對口令提升同學找因數(shù)的方法的方法訓練,達成知識目標中的第②③個目標】
【評價規(guī)范:同學能用正確的方法,快速、正確的找出一個數(shù)的所有因數(shù)】
3、會找一個數(shù)的倍數(shù):我會辯。【設計意圖:達成知識目標中的第④個目標】
【評價規(guī)范:同學能用正確的方法,快速、正確的找出一個數(shù)的倍數(shù)】
因數(shù)和倍數(shù)的教案4
課前思考:
1.概念揭示變邏輯演繹為活動建構。因數(shù)和倍數(shù),傳統(tǒng)教材是按數(shù)學知識的邏輯系統(tǒng)(除法整除約數(shù)和倍數(shù))來安排的,這種概念的揭示,從抽象到抽象,沒有學生親身經歷的過程,也無須學生借助原有經驗的自主建構,學生獲得的概念是刻板、冰冷的。如果能借助學生的操作和想象活動,喚起學生的因倍意識,自主建構起因數(shù)和倍數(shù)的意義,那么學生獲得的概念必然是生動的、有意義的。
2.解決問題變關注結果為對話生成。要找出一個數(shù)的幾個因數(shù)并不難,難就難在找出這個數(shù)的所有因數(shù)。這里有一個方法問題。是把方法簡單地告訴學生,迫切地尋求結果,還是給學生充分的探究時間,讓他們通過獨立思考、交流討論,從而發(fā)現(xiàn)問題、解決問題呢?很多成功的教學表明,在教學中為學生營造出一個對話場,在生生、師生多角度、多層面的對話中,能讓師生彼此分享經驗、溝通思考,生成新的看法。
3.教學宗旨變關注知識為啟迪智慧。知識關乎事物,智慧關乎人生;知識是理念的外化,智慧是人生的反觀。從知識課堂走向智慧課堂,為學生的智慧成長而教,應成為我們數(shù)學教學的傾心追求。怎樣通過對因數(shù)和倍數(shù)內涵的深度挖掘,在教給學生數(shù)學知識的同時,更教會他們數(shù)學思考的方法,讓他們在數(shù)學課堂上釋放潛能,開啟心智?這是我設計因數(shù)和倍數(shù)這堂課的宗旨所在。
教學目標:
1.通過活動建構,使學生領會因數(shù)和倍數(shù)的意義;通過獨立思考、交流談論,初步掌握求一個數(shù)所有因數(shù)的方法。
2.在解決問題的過程中,培養(yǎng)學生思維的有序性、條理性,增強學生的探究意識和求索精神。
3.通過教學,讓學生從中感受到數(shù)學思考的魅力,體驗到數(shù)學學習的樂趣。教學準備:
練習紙、學號卡等。
教學重、難點:
掌握求一個數(shù)的所有因數(shù)的方法,學會有序地進行思考。
教學流程:
一、意義建構
1.用12個同樣的小正方形擺一個長方形,可以怎樣擺?能不能舉一道簡單的乘法算式,把你心目中的擺法表示出來?(請一位學生回答)
2.猜猜他可能是怎樣擺的?
(根據(jù)學生回答依次出現(xiàn)相應的兩種擺法,隨后隱去第二種)
3.還可以怎樣擺?同樣用一道乘法算式表示出來。
。ㄔ僬堃晃粚W生回答)
4.他又可能是怎樣擺的?
(根據(jù)學生回答屏幕顯示另外兩種擺法,隨后隱去第二種)
5.還可以怎樣擺?
(請學生回答)
6.能想象出他的擺法嗎?
(根據(jù)學生回答屏幕顯示最后兩種擺法,隨后隱去第二種)
此時屏幕上出現(xiàn)三種擺法。在三種擺法右側分別出現(xiàn)三道乘法算式。
7.通過剛才的學習,我們發(fā)現(xiàn),用12個同樣的小正方形,可以擺出三種不同的長方形,由此我們還得出三道不一樣的乘法算式。以43=12為例,43=12,從數(shù)學的角度看,我們可以說4是12的因數(shù),3也是她的因數(shù)。反過來,我們還可以說,12是4的倍數(shù),12也是3的倍數(shù)。這就是我們今天要研究的因數(shù)和倍數(shù)。
(板書課題:因數(shù)和倍數(shù))
8.結合另外兩道乘法算式,你能分別說一說誰是誰的因數(shù),誰是誰的倍數(shù)嗎?
(請同座兩個學生相互說一說)
9.為了研究的方便,在研究因數(shù)和倍數(shù)時,我們所說的數(shù)專指不是零的自然數(shù)。
[設計理念:因數(shù)與倍數(shù)這節(jié)內容,傳統(tǒng)教材是按數(shù)學知識的邏輯系統(tǒng)安排的,在除法和整除的基礎上,由整除直接演繹推理出來的。這種概念的揭示從抽象到抽象,沒有學生經歷的過程,學生獲得的概念是刻板的、冰冷的。而本環(huán)節(jié)設計旨在讓學生借助表象進行操作和想像活動,自主體驗數(shù)與形的結合以及其中的因倍關系,進而生成因數(shù)和倍數(shù)的意義。這種意義的建構是基于學生原有經驗之上的,是學生自主操作、積極思考的結果。]
二、方法滲透
1.根據(jù)44=16、40016=25這兩個算式,你能分別說一說誰是誰的因數(shù),誰是誰的倍數(shù)嗎?
(指名回答)
2.當兩個因數(shù)相同時,通常只需要說出或寫出一個,這是數(shù)學上的規(guī)定。我們能不能說16是因數(shù),或者說16是倍數(shù)?
(組織學生討論)
3.因數(shù)和倍數(shù)它們是一種相互依存的關系。
(板書:相互依存)
4.下面我們一塊來找一找100的因數(shù)有哪些?同學們可以同座兩人合作,也可以獨立思考。
(教師巡視。并選擇一份作業(yè),用實物投影展示出來)
5.對照你們自己找出的100的所有因數(shù),你想對這位同學說些什么?
(根據(jù)學生回答,教師相機進行引導、評價)
6.對于剛才幾位同學的回答,你們還有沒有什么需要補充的或提問的?
7.比較這幾種方法,你發(fā)現(xiàn)了什么?
8.回顧剛才的過程,你覺得要找出一個數(shù)的所有因數(shù),有什么訣竅?
(通過對話、討論,讓學生體會思考的合理性、有序性)
9.當然,如果要找出一個很大數(shù)目的所有因數(shù),用這種方法可能會比較麻煩,我們將在今后的學習中進一步來研究。
[設計理念:如何找出100的所有因數(shù),教學中,教師沒有急切地認定結果,也沒有簡單地把方法告訴學生,而是先讓學生或同座兩人合作,或獨立思考。通過多角度、多層面的交流與對話,師生之間彼此分享經驗、溝通思考。在解決問題的過程中,學生的思維能力得到了提高,情感、態(tài)度、價值觀得到了升華。]
三、鞏固深化
(課件顯示:下面哪些數(shù)一定是□□的因數(shù)。
1、2、3、4、5、6、7、8、9、10)
1.方框后面藏著個兩位數(shù),看誰能很快說出下面10個數(shù)中,哪些是它的.因數(shù)?
(單擊一下,出示21)
2.接著出示□4,哪些是它的因數(shù)呢?說說你的想法?
3.要使這個數(shù)一定有因數(shù)2,那么個位上還可以是哪些數(shù)字?
4.出示□0。你知道除了1和2外,還有哪些數(shù)也是它的因數(shù)?
5.最后出示□□。這一次,十位和個位上的數(shù)字都看不清了,你還能找到答案嗎?
[設計理念:設計這一組變式練習,一方面使學生進一步掌握找一個數(shù)的因數(shù)的方法,另一方面又巧妙滲透了能被2整除的數(shù)的特征,體現(xiàn)了數(shù)學學習的綜合性、連貫性。]
四、360度的優(yōu)點
1.我們已經知道了一直角等于90度,一圓周角等于360度?墒悄銈冎绬?從前,法國人曾將一直角定為100度,這樣一圓周角就是400度。但是后來卻沒有能行得通。這是什么道理呢?一圓周角等于360度又有什么優(yōu)點呢?
2.我們先來找一找360和400的因數(shù)各有多少個?
(分別出示360和400的所有因數(shù)。)
3.原來其中一個重要的原因,就是360的因數(shù)比400的因數(shù)多,多9個。一圓周角定為360度,當我們需要計算一圓周角的幾分之一時,可以在23種情況下得到整度數(shù)。
課件顯示:
2等分:360/2=180;3等分:360/3=120;
4等分:360/4=90;5等分:360/5=72;
90等分:360/90=4;120等分:360/120=3;
180等分:360/180=2;360等分:360/360=1)
而如果把一圓周角定為400度,那么只有在14種等分情況下才能得到整度數(shù)。相比之下,當然360度要方便多了。
[設計理念:為什么法國人將一圓周角定分400度沒能行得通?一圓周角定為360度有什么優(yōu)點?學生通過猜想、比較,了解到這些竟然與因數(shù)的多少有關,從中學生真切地感受到數(shù)學的有趣、神奇。數(shù)學在學生心目中不再是陌生、晦澀的,而是生動有趣的,她就在你我的身邊。]
五、游戲中的發(fā)現(xiàn)
1.請學生拿出學號卡,在紙上寫下你的學號數(shù)的所有因數(shù)。
2.在這些數(shù)中,因數(shù)的個數(shù)最少的是幾?(對1)雖然1是因數(shù)個數(shù)最少的一個數(shù),但它卻又是最受歡迎的一個數(shù),你們知道為什么嗎?
3.除了1以外,你覺得還有哪些數(shù)比較特別的?
(找2或5號同學。)
4.你這個數(shù)特別在哪兒?像這樣的數(shù)還有哪些?請把學號卡舉起來。
(課件顯示:只有兩個因數(shù)的有:2、3、5、7、11)
5.除了這些數(shù)外,其余的數(shù)各有多少個因數(shù)?(對4)你有?(對6)你呢?
6.這些數(shù),它們的因數(shù)個數(shù)多少不一,各不相同。同學們猜一猜在它們中間因數(shù)個數(shù)最多的是那一個?你覺得?理由是?你有什么辦法可以把這個數(shù)盡快地找出來?
7.如果讓同學們將這51個數(shù)按照它們因數(shù)個數(shù)的不同,來分一分類,你們準備怎樣分?其實不光這51個數(shù),把所有的自然數(shù)按照因數(shù)個數(shù)的不同來分類,都可以分成這樣的三類。
8.今天這節(jié)課我們就上到這兒,關于因數(shù)和倍數(shù),還有許多的知識等著我們去學習,去研究,去探索
9.組織學生分批退場。
(1)請學號數(shù)不少于三個因數(shù)的同學先退場;
(2)請學號數(shù)只有兩個因數(shù)的同學退場;
(3)請學號數(shù)只有一個因數(shù)的同學跟我一起離場。
[設計理念:通過尋找自己學號數(shù)的所有因數(shù),既使學生進一步熟悉找一個數(shù)的因數(shù)的方法,又讓學生感知到自然數(shù)的因數(shù)個數(shù)各有不同,為后面學習質數(shù)與合數(shù)埋下伏筆;組織學生分批退場,既檢驗了學生學習的效果,又營造了一種輕松、愉悅的氣氛。正所謂課已畢,趣猶在。]
因數(shù)和倍數(shù)的教案5
設計說明
1.動手操作,激發(fā)學生的學習興趣。
由于數(shù)學知識比較抽象,學生不易理解,缺乏興趣,而興趣是學生獲取知識,提高學習質量的動力。對于小學生來說,動手操作是激發(fā)學生興趣切實可行的好方法,新課伊始,利用數(shù)字卡片組除法算式引入,不僅可以激發(fā)學生的學習興趣,同時還能使學生初步感知算式中各數(shù)的關系是相互的,為學生探究新知奠定基礎。
2.合作學習,培養(yǎng)合作意識,形成自學能力。
數(shù)學教學要緊密聯(lián)系學生的生活,創(chuàng)設有助于學生自主學習、合作交流的情境。教學中結合除法算式設計小組同學自學倍數(shù)與因數(shù)的概念的活動,并通過知識的遷移,要求學生利用18的乘法算式說說誰是18的因數(shù)。這樣學生在閱讀、質疑、交流中,逐步形成自學能力,體驗自主學習的快樂。
課前準備
教師準備PPT課件
學生準備數(shù)字卡片
教學過程
⊙活動導入
1.用下面的數(shù)字卡片組除法算式。(生認真觀察并列出算式)
2.導入:可別小看這些除法算式,今天我們要研究的因數(shù)和倍數(shù)就在這里。
設計意圖:通過組除法算式,為學生自主建構概念提供準備,同時溝通與新知識的聯(lián)系。把學生引入新內容的情境,并讓學生明確本節(jié)課的學習目標。
⊙自學因數(shù)和倍數(shù)的概念
1.學生獨立把上面的算式分類,并閱讀教材5頁的內容,自學因數(shù)和倍數(shù)的概念。
2.通過討論明確:
(1)為了方便,在研究因數(shù)和倍數(shù)的時候,我們所說的數(shù)指的是自然數(shù)(一般不包括0)。
(2)在這節(jié)課我們所說的因數(shù)不是以前乘法算式中的'因數(shù),二者不能混淆。
3.匯報:
(1)看黑板上的算式,說說誰是誰的因數(shù),誰是誰的倍數(shù)。
(2)出示算式c÷a=b,(a,b,c都是不為0的自然數(shù))讓學生說說在這個算式中誰是誰的因數(shù),誰是誰的倍數(shù)。
4.強調:因數(shù)和倍數(shù)是相互依存的。闡述因數(shù)和倍數(shù)時,一定要說清楚誰是誰的因數(shù),誰是誰的倍數(shù)。
⊙探究找一個數(shù)的因數(shù)和倍數(shù)的方法
一、探究找一個數(shù)的因數(shù)的方法。
1.出示教材6頁例2:18的因數(shù)有哪幾個?
(1)提問:怎樣去找18的因數(shù)呢?(同桌互相討論,然后匯報)
(2)匯報:第一種方法,列出積是18的乘法算式,得到18的因數(shù)有1,2,3,6,9,18;第二種方法,列出被除數(shù)是18的除法算式,得到18的因數(shù)有1,2,3,6,9,18。
(3)討論:無論是乘法算式還是除法算式,在思考時都要注意什么?(要從最小的數(shù)找起,都是非0的自然數(shù))
(4)書寫:在書寫一個數(shù)的因數(shù)時要注意什么?(要注意一頭一尾地成對寫因數(shù),這樣做不容易漏寫)
(5)介紹集合圖:18的因數(shù)也可以像這樣表示,如圖:18的因數(shù)
我們稱它為集合圖,這就是用集合圖表示因數(shù)的方法。
2.練習。
教材7頁2題(1)。
因數(shù)和倍數(shù)的教案6
教學內容:
義務教育課程標準小學數(shù)學五年級下冊第二章《因數(shù)和倍數(shù)》第1節(jié)例1(教材第13頁)及練習二的第2題,第四題的前部分。
教材分析:
本節(jié)教學是在學生學習掌握了因數(shù)和倍數(shù)兩個概念的基礎上,在教師的引導下,讓學生運用乘法算式及除法中的整除自主嘗試、探究“求一個數(shù)的因數(shù)”的方法。同時,通過多種形式的訓練,使學生能熟練找全一個數(shù)的因數(shù)。另外,通過引導學生用集合的形式表示一個數(shù)的因數(shù),一方面給學生滲透集合思想,更重要的是為后面教學求兩個數(shù)的公因數(shù)做準備。
教學目標:
1、應用嘗試教學法鼓勵學生自主嘗試探究求一個數(shù)的因數(shù)的方法及規(guī)律特點,并能熟練找全一個數(shù)的因數(shù);
2、逐步培養(yǎng)學生從個別到全體、從具體到一般的抽象歸納的思想方法。
教學重點:
探究求一個數(shù)的因數(shù)的方法及規(guī)律特點。
教學難點:
用求一個數(shù)的因數(shù)的方法熟練找全一個數(shù)的因數(shù)。
教具準備:
投影儀、小黑板、卡片
教學課時:一課時
教學設想:
運用嘗試教學法,從學生已有的知識經驗出發(fā),通過教師引導、學生自學例1,自主嘗試、探究求一個數(shù)的因數(shù)的方法方法,并能運用所獲得的方法、經驗找全一個數(shù)的'因數(shù)。
教學過程:
一、復習舊知
師:同學們,前面學習了因數(shù)和倍數(shù)的概念,老師很想考考你們學得怎么樣,可以嗎?
生:(預設)可以!
師:出示小黑板。
1、利用因數(shù)和倍數(shù)的相互依存關系說一說下面各組數(shù)的相互關系。
21和7 2×7=14 30÷6=5
2、判斷。
(1)12是倍數(shù),2是因數(shù)。 ( )
(2)1是14的因數(shù),14是1的倍數(shù)。 ( )
(3)因為6×0.5=3,所以,6和0.5是3的因數(shù),3是6和0.5的倍數(shù)。( )
教師根據(jù)學生完成練習的情況對學生進行恰當?shù)谋頁P激勵,同時進入新課教學:……
二、新課教學
過程一:嘗試訓練。
(一)出示問題
師:同學們,老師有一個新問題,想請大家?guī)椭鉀Q,行嗎?
生:行!(預設)
嘗試題:14的因數(shù)有哪幾個?
(二)學生解決問題,教師巡視并根據(jù)實際適時輔導學困生。
(三)信息反饋。
板書:
1×14
14 2×7
14÷2
14的因數(shù)有:1,2,7,14
過程二:自學課本(P13例1)。
(一)學生自學例1。
教師提出自學要求(投影):
1、18有哪些因數(shù)?
2、文中的小朋友是怎樣找出18的因數(shù)的?他們找完了嗎?如果沒有,請幫助他們完成。
3、你還有別的找法嗎?請試一試,并用自己喜歡的方式寫出18所有的因數(shù)。
(二)信息反饋
1、反饋自學要求情況;
板書:
1×18
18 2×9
3×6
18的因數(shù)有1,2,3,6,9,18。
還可以這樣表示: 18的因數(shù)
2、知識對比,探索發(fā)現(xiàn)規(guī)律。
(1)師:同學們,根據(jù)求14和18的因數(shù)時獲得的體驗,再思考下面問題:
投影出示問題:
思考一:你用什么方法找出?
(2)學生思考,教師適時引導。
(3)同桌交流思考結果。
(4)師生互動?偨Y方法、點出課題。
求一個數(shù)的因數(shù)的方法:用乘法計算或除法計算(整除)
過程三:嘗試練習
(一)用小黑板出示練習題
1、找出30的因數(shù)有哪些?36的因數(shù)有哪些?
2、結合14、18、30、36的因數(shù)個數(shù),請你談談一個數(shù)的因數(shù)有什么特點?〖提示:一個數(shù)的最小因數(shù)是( ),的因數(shù)是( )。〗
(二)信息反饋:師生互動總結特點。
板書:
一個數(shù)的因數(shù)的個數(shù)是有限的。它的最小因數(shù)是1,的因數(shù)是它本身。
三、課堂作業(yè)
練習二第2題和第4題前半部分。
四、課堂延伸
猜一猜:(卡片)只有一個因數(shù)的數(shù)是誰?
五、課堂小結
師:今天你學會了求一個數(shù)的因數(shù)的方法嗎?你知道一個數(shù)的因數(shù)特點嗎?
生:……
板書設計:
求一個數(shù)的因數(shù)的方法
1×14
14 2×7 方法:用乘法計算或除法計算(整除)
14÷2
14的因數(shù)有:1,2,7,14
1×18
18 2×9
3×6
18的因數(shù)有:1,2,3,6,9,18 特點:一個數(shù)的因數(shù)的個數(shù)是有限的。
還可以表示為:
它的最小因數(shù)是1,的因數(shù)是它本身。
因數(shù)和倍數(shù)的教案7
一、教學內容
教材第30~51頁的“例1~例12”以及練習五~七。
二、教材分析
本單元主要教學因數(shù)和倍數(shù),以及公因數(shù)和公倍數(shù)等內容。本單元內容大體分三段安排:第一段,認識因數(shù)和倍數(shù),學習在1~100的自然數(shù)中有序地找出10以內某個數(shù)的所有倍數(shù),以及100以內某個數(shù)的所有因數(shù);探索2、5、和3的倍數(shù)的特征,學習判斷一個數(shù)是不是2、5或3的倍數(shù),同時認識奇數(shù)和偶數(shù)。第二段,認識質數(shù)、合數(shù)和質因數(shù),學習把一個合數(shù)分解質因數(shù)。第三段,認識公因數(shù)和最大公因數(shù),探索求兩個數(shù)的最大公因數(shù)的方法;認識公倍數(shù)和最小公倍數(shù),探索求兩個數(shù)的最小公倍數(shù)的方法。最后,安排了全單元內容的整理與練習。
三、學情分析
本單元內容是在學生已經認識了億以內的數(shù),以及學習了整數(shù)四則運算的基礎上進行教學的。學習本單元內容,又為后續(xù)學習分數(shù)的基本性質、約分和通分,以及分數(shù)四則運算打下基礎。
四、教學目標
1.使學生經歷探索非0自然數(shù)的有關特征的.活動,知道因數(shù)和倍數(shù)的含義;能找出100以內某個自然數(shù)的所有因數(shù),能在1~100的自然數(shù)中找出10以內某個數(shù)的所有倍數(shù);知道2、5和3的倍數(shù)的特征,能判斷一個數(shù)是不是2、5或3的倍數(shù);了解奇數(shù)和偶數(shù)、質數(shù)和合數(shù)的含義,會分解質因數(shù)。
2.使學生通過具體的操作和交流活動,認識公因數(shù)與最大公因數(shù)、公倍數(shù)與最小公倍數(shù);會求100以內兩個數(shù)的最大公因數(shù)和10以內兩個數(shù)的最小公倍數(shù)。
3.使學生在探索和發(fā)現(xiàn)數(shù)學知識的過程中,積累數(shù)學活動的經驗,培養(yǎng)觀察、比較、分析和歸納的能力,感受一些簡單的數(shù)學思想,進一步發(fā)展數(shù)感。
4.使學生在參與學習活動的過程中,培養(yǎng)主動與他人合作交流的意識,體驗數(shù)學學習活動的樂趣,增強對數(shù)學學習的自信心。
五、教學重、難點
教學重點:掌握倍數(shù)和倍數(shù)、質數(shù)和合數(shù)、最大公因數(shù)和最小公倍數(shù)等概念的聯(lián)系和區(qū)別,掌握求兩個數(shù)最大公因數(shù)和最小公倍數(shù)的基本方法。
教學難點:根據(jù)數(shù)的特點合理靈活地確定兩個數(shù)的最大公因數(shù)和最小公倍數(shù),以及根據(jù)對最大公因數(shù)和最小公倍數(shù)的理解正確解答相關的實際問題。
六、課時安排
因數(shù)和倍數(shù)…………………………………………1課時
2和5的倍數(shù)的特征………………………………1課時
3的倍數(shù)的特征……………………………………1課時
因數(shù)和倍數(shù)練習……………………………………1課時
質數(shù)和和合數(shù)………………………………………1課時
分解質因數(shù)…………………………………………1課時
公因數(shù)和最大公因數(shù)………………………………2課時
公倍數(shù)和最小公倍數(shù)………………………………2課時
因數(shù)與倍數(shù)整理與練習……………………………2課時
和與積的奇偶性……………………………………1課時
因數(shù)和倍數(shù)的教案8
一、教學目標:
1.理解因數(shù)和倍數(shù)的意義以及兩者之間相互依存的關系,掌握找一個數(shù)的因數(shù)和倍數(shù)的方法。
2.在探究的過程中體會數(shù)學知識之間的內在聯(lián)系,在解決問題的過程中培養(yǎng)學生思維的有序性和條理性。
3.培養(yǎng)學生的探索意識以及熱愛數(shù)學學習的情感。
二、教學重、難點:
1.理解因數(shù)和倍數(shù)的意義以及兩者之間相互依存的關系
2.掌握找一個數(shù)的因數(shù)和倍數(shù)的方法
三、準備教學:
教學課件
四、教學過程:
(一)創(chuàng)設情境,引入新課
人與人之間存在著許多種關系,你們和爸爸(媽媽)的關系是?
。ǜ缸、母子、母女關系)我和你們的關系是?(師生關系)
在數(shù)學中,數(shù)與數(shù)之間也存在著多種關系,這節(jié)課,我們一起研究兩數(shù)之間的因數(shù)與倍數(shù)關系。
。ǘ┨骄啃轮-理解因數(shù)和倍數(shù)的意義
教學例1:
1.觀察算式的特點,進行分類。
。1)仔細觀察算式的特點,你能把這些算式分類嗎?
。2)交流學生的分類情況。(預設:學生會根據(jù)算式的計算結果分成兩類)
第一類是被除數(shù)、除數(shù)、商都是整數(shù);第二類是被除數(shù)、除數(shù)都是整數(shù),而商不是整數(shù)。
2.明確因數(shù)和倍數(shù)的意義。
。1)同學們,在整數(shù)除法中,如果商是整數(shù)而沒有余數(shù),我們就說被除數(shù)是除數(shù)的倍數(shù),除數(shù)是被除數(shù)的`因數(shù)。例如,12÷2=6,我們就說12是2的倍數(shù),2是12的因數(shù)。12÷6=2,我們就說12是6的倍數(shù),6是12的因數(shù)。
。2)在第一類算式中找一個算式,說一說,誰是誰的因數(shù)?誰是誰的倍數(shù)?
。3)強調一點:為了方便,在研究倍數(shù)與因數(shù)的時候,我們所說的數(shù)指的是自然數(shù)(一般不包括0)。
3.理解因數(shù)和倍數(shù)的依存關系。
。1)獨立完成教材第5頁“做一做”。
。2)我們能不能說“4是因數(shù)”“24是倍數(shù)”呢?表述時應該注意什么?
4.理解一個數(shù)的“因數(shù)”和乘法算式中的“因數(shù)”的區(qū)別以及一個數(shù)的“倍數(shù)”與“倍”的區(qū)別。
。1)今天學的一個數(shù)的“因數(shù)”與以前乘法算式中的“因數(shù)”有什么區(qū)別呢?
課件出示:
乘法算式中的“因數(shù)”是相對于“積”而言的,可以是整數(shù),也可以是小數(shù)、分數(shù);而一個數(shù)的“因數(shù)”是相對于“倍數(shù)”而言的,它只能是整數(shù)。
。2)今天學的“倍數(shù)”與以前的“倍”又有什么不同呢?
“倍數(shù)”是相對于“因數(shù)”而言的,只適用于整數(shù);而“倍”適用于小數(shù)、分數(shù)、整數(shù)。
(3)交流匯報。
。ㄈ┨骄啃轮-找一個數(shù)的因數(shù)
教學例2:
1.探究找18的因數(shù)的方法。
。1)18的因數(shù)有哪些?你是怎么找的?
。2)交流方法。
預設:方法一:根據(jù)因數(shù)和倍數(shù)的意義,通過除法算式找18的因數(shù)。
因為18÷1=18,所以1和18是18的因數(shù)。
因為18÷2=9,所以2和9是18的因數(shù)。
因為18÷3=6,所以3和6是18的因數(shù)。
方法二:根據(jù)尋找哪兩個整數(shù)相乘的積是18,尋找18的因數(shù)。
因為1×18=18,所以1和18是18的因數(shù)。
因為2×9=18,所以2和9是18的因數(shù)。
因為3×6=18,所以3和6是18的因數(shù)。
2.明確18的因數(shù)的表示方法。
。1)我們怎樣來表示18的因數(shù)有哪些呢?怎樣表示簡潔明了?
(2)交流方法。
預設:列舉法,18的因數(shù)有:1,2,3,6,9,18。
集合圖的方法(如下圖所示)。
3.練習找一個數(shù)的因數(shù)。
(1)你能找出30的因數(shù)有哪些嗎?36的因數(shù)呢?
。2)怎樣找才能不遺漏、不重復地找出一個數(shù)的所有因數(shù)?
。ㄋ模┨骄啃轮-找一個數(shù)的倍數(shù)
教學例3:
1.探究找2的倍數(shù)的方法。
。1)2的倍數(shù)有哪些?你是怎么找的?
(2)想方法:利用乘法算式找2的倍數(shù)。
因為2×1=2,所以2是2的倍數(shù)。
因為2×2=4,所以4是2的倍數(shù)。
因為2×3=6,所以6是2的倍數(shù)。……
。3)2的倍數(shù)能寫完嗎?你能繼續(xù)找嗎?寫不完怎么辦?
。4)根據(jù)前面的經驗,試著表示出2的倍數(shù)有哪些?(預設:列舉法、集合圖的方法)
2.練習找一個數(shù)的倍數(shù)。
你能找出3的倍數(shù)有哪些嗎?5的倍數(shù)呢?
。ㄎ澹┪业陌l(fā)現(xiàn)-因數(shù)與倍數(shù)的特征
舉例子,找規(guī)律,勾畫知識點,讀一讀。
預設:一個數(shù)的因數(shù)的個數(shù)是有限的,最小的因數(shù)是1,最大的因數(shù)是它本身;一個數(shù)的倍數(shù)的個數(shù)是無限的,沒有最大的倍數(shù),最小的倍數(shù)是它本身。1是所有非零自然數(shù)的因數(shù)。
。┲腔蹣穲@
1.在練習本上完成下列填空題。(獨立完成后,師訂正答案)
一個數(shù)的最大因數(shù)是17,這個數(shù)是( ),它的最小的因數(shù)是( )。
一個數(shù)的最小倍數(shù)是17,這個數(shù)是( ),它( )最大的倍數(shù),17的倍數(shù)的個數(shù)是( ).
一個數(shù)既是12的因數(shù),又是12的倍數(shù),這個數(shù)是()。
2.在練習本上完成下列判斷題。(獨立完成后,師訂正答案)
。1)在算式6×4=24中,6是因數(shù),24是倍數(shù)。()
。2)15的倍數(shù)一定大于15。()
。3)1是除0以外所有自然數(shù)的因數(shù)。()
(4)40以內6的倍數(shù)有12、18、24、30、36這5個。()
(5)34的最小倍數(shù)是34;34的最小因數(shù)是17。()
(6)1.2是3的倍數(shù)。()
。ㄆ撸┤n總結,交流收獲
這節(jié)課我們學了哪些知識?你有什么收獲?
(八)布置作業(yè)
完成課時練第3、4頁,提交家校本。
因數(shù)和倍數(shù)的教案9
課前準備
教師準備 多媒體課件
學生準備 100以內的數(shù)表
教學過程
⊙談話引入,揭示目標
師:上節(jié)課我們把數(shù)進行了分類整理,這節(jié)課我們就一起來復習因數(shù)和倍數(shù)的相關知識。
⊙回顧與整理
1.回顧舊知,構建知識網絡。
(1)回顧:因數(shù)和倍數(shù)這部分知識有哪些概念?
(因數(shù)、倍數(shù)、質數(shù)、合數(shù)、奇數(shù)、偶數(shù)等)
(2)討論:各概念之間的關系是怎樣的?
(組內交流)
(3)梳理:小組合作,用自己喜歡的方法進行知識梳理。
(4)匯報:各自的知識梳理方法。
(課件展示學生的梳理方法,肯定其優(yōu)點后,引導其完善樹狀知識網絡圖)
2.復習、理解相關概念。
(1)因數(shù)和倍數(shù)。
①在數(shù)學上,關于“因數(shù)”和“倍數(shù)”是怎么定義的?
[整數(shù)A除以整數(shù)B(B≠0),除得的商是整數(shù)且沒有余數(shù),我們就說整數(shù)A能被整數(shù)B整除,或者說整數(shù)B能整除整數(shù)A。
如果整數(shù)A能被整數(shù)B(B≠0)整除,整數(shù)A就叫作整數(shù)B的倍數(shù),整數(shù)B就叫作整數(shù)A的因數(shù)。倍數(shù)和因數(shù)是相互依存的。
如45能被9整除,所以45是9的倍數(shù),9是45的因數(shù)]
師:為了方便,在研究因數(shù)和倍數(shù)時,所說的數(shù)指的是非零整數(shù)。
、谂e例說明因數(shù)和倍數(shù)各有什么特征。
預設
生1:一個數(shù)的因數(shù)的個數(shù)是有限的,其中最小的是1,最大的是它本身。如20的'因數(shù)有1,2,4,5,10,20。共6個。
生2:一個數(shù)的倍數(shù)的個數(shù)是無限的,其中最小的是它本身,沒有最大的倍數(shù)。如4的倍數(shù)有4,8,12,…
生3:一個數(shù)最大的因數(shù)等于它最小的倍數(shù)。
……
(2)質數(shù)與合數(shù)。
根據(jù)一個數(shù)所含因數(shù)的個數(shù)的不同,還可以得到質數(shù)與合數(shù)的概念。
、偈裁词琴|數(shù)?最小的質數(shù)是什么?
[一個數(shù),如果只有1和它本身兩個因數(shù),這樣的數(shù)叫作質數(shù)(或素數(shù)),最小的質數(shù)是2]
、谑裁词呛蠑(shù)?最小的合數(shù)是什么?
(一個數(shù),如果除了1和它本身還有別的因數(shù),這樣的數(shù)叫作合數(shù),最小的合數(shù)是4)
(3)公因數(shù)和公倍數(shù)。
、偈裁唇泄驍(shù)?什么叫最大公因數(shù)?
(幾個數(shù)公有的因數(shù),叫作這幾個數(shù)的公因數(shù)。其中最大的一個叫作這幾個數(shù)的最大公因數(shù))
、谑裁唇泄稊(shù)?什么叫最小公倍數(shù)?請舉例說明。
預設
生:幾個數(shù)公有的倍數(shù),叫作這幾個數(shù)的公倍數(shù),其中最小的一個,叫作這幾個數(shù)的最小公倍數(shù)。如2的倍數(shù)有2,4,6,8,10,12,14,16,18,…3的倍數(shù)有3,6,9,12,15,18,…其中6,12,18,…是2和3的公倍數(shù),6是它們的最小公倍數(shù)。
因數(shù)和倍數(shù)的教案10
教材分析:
以乘、除法知識拓展方式,引入對“因數(shù)與倍數(shù)”知識的學習。有利于溝通新舊知識之間的聯(lián)系,分散難點,便于學生理解和掌握知識。
教學目標:
、僭诰唧w的情境中,借助乘法算式認識因數(shù)和倍數(shù)。
、谡莆涨笠粋數(shù)的因數(shù)和倍數(shù)的方法,知道一個數(shù)的因數(shù)及倍數(shù)的特點。
重點難點突破:
為了突出重點、突破難點,特設計以下三個環(huán)節(jié)進行教學:
、 以學生的貼畫為素材,通過不同的貼法引出不同的.乘法算式,以乘法算式引出因數(shù)
和倍數(shù)的意義。
、谝龑W生自主找一個數(shù)的因數(shù),以此加深對因數(shù)的理解。
、垡龑W生自主找一個數(shù)的倍數(shù),以此加深對倍數(shù)的理解。
組內教師討論要點:
①找一個數(shù)的因數(shù)時,一定要放手,且給學生足夠的時間讓他們去同位之間、小組內交流,如何能快速且沒有遺漏的找全。
②及時的練習鞏固也是很有必要的,在多個練習的基礎之上讓學生發(fā)現(xiàn)一個數(shù)因數(shù)的特點。
、壅乙粋數(shù)的因數(shù)也反映出學生的口算水平的高低。
、苷乙粋數(shù)的倍數(shù)時,以找2、3、5的倍數(shù)為主,讓學生發(fā)現(xiàn)一個數(shù)倍數(shù)的特征。
因數(shù)和倍數(shù)的教案11
教學目標:
1.結合整數(shù)乘、除法運算初步認識倍數(shù)和因數(shù)的含義;
2.自主探索求一個數(shù)的倍數(shù)或因數(shù)的方法;
3.在認識倍數(shù)和因數(shù)以及探索一個數(shù)的倍數(shù)或因數(shù)的過程中,感知因數(shù)和倍數(shù)的依存關系,進一步體會數(shù)學知識之間的內在聯(lián)系。
教學重點:
理解因數(shù)和倍數(shù)的含義。
教學難點:
自主探索并初步總結找一個數(shù)的倍數(shù)和因數(shù)的方法。
教學過程:
一、課前談話:(略)
二、新課引入:
1.師:同學們的桌上都放著12個同樣大的正方形,請你每次用這12個正方形拼成一個長方形,注意你不同的擺法?(每排擺幾個?擺了幾排?)看誰的方法多?速度快?會用算式表示你的擺法嗎?
學生交流幾種不同的擺法。隨著學生交流屏幕上一一演示。2.進行交流:
如:每排擺了幾個,擺了幾排?你會用算式表示嗎?
師:12個同樣大小的正方形能擺3種不同的的長方形,可以用乘法算式或除法算式來表示,千萬別小看這些算式,今天我們研究的內容就在這里。我們以第一道乘法算式為例。(屏幕出示)
43=12,
師:在這個算式中,你認為4、3、12有什么關系呢?
我們一起來讀一讀:
因為:43=12,
所以:12是4的倍數(shù),12也是3的倍數(shù),
4是12的因數(shù),3也是12的因數(shù),
讀讀看,能讀懂嗎?
繼續(xù)出示:因為:62=12 ,所以
因為:121=12 ,所以
誰也來出個乘法算式說一說。(略)
三、探索研究:
1.師:我們剛才初步認識了因數(shù)和倍數(shù),下面要進一步來研究因數(shù)和倍數(shù)。(出示課題:因數(shù) 倍數(shù))
屏幕顯示:試一試:你能從中選兩個數(shù),說一說誰是誰的因數(shù)? 誰是誰的倍數(shù)?
4、5、18、20、36
師:老師在聽的時候發(fā)現(xiàn)4、18都是36的因數(shù),你也發(fā)現(xiàn)了嗎?
師:4、18、都是36的因數(shù)。
師:36的因數(shù)只有這2個嗎?
師:看來要找出36的一個因數(shù)并不難,難就難在你能不能把36的所有因數(shù)全部找出來(既不重復又不遺漏)?請你選擇你喜歡的方式,可以同桌合作,也可以獨立完成,找出36的所有因數(shù)。如果能把怎么找到的方法寫在紙上更好。
學生填寫時師巡視搜集作業(yè)。
2.交流作業(yè)。(略)
板書:36的因數(shù):1、2、3、4、6、9、12、18、36。
師:通過剛才的交流,找一個數(shù)的因數(shù)有辦法了嗎?有沒有方法不重復也不遺漏?試一個。
15的因數(shù)有 再試一個:
16的因數(shù)有
觀察36、15、16的所有因數(shù),你有什么發(fā)現(xiàn)嗎?
邊交流邊板書:
個數(shù) 最小 最大
因數(shù) 1 它本身
倍數(shù)
3.師:找一個數(shù)的因數(shù)掌握的不錯,會找一個數(shù)的倍數(shù)嗎?
3的倍數(shù):(找不完怎么辦?) 有小巧門嗎? (略)
板書:3的倍數(shù):3、6、9、12、15
找出7的倍數(shù):7、14、21、28、35
交流方法。在找一個數(shù)倍數(shù)時發(fā)現(xiàn):板書:
個數(shù) 最小 最大
因數(shù) 有限的 1 它本身
倍數(shù) 無限的 它本身 (沒有的)
30以內5的倍數(shù):(注意反饋)5、10、15、20、25、30
4.判斷:(下面的說法是不是正確?)
、 12是4的倍數(shù),12也是6的倍數(shù)。
、 8是16的'因數(shù),8又是4的倍數(shù)。
、 1沒有因數(shù)。
、 5是倍數(shù)。
小結:倍數(shù)或因數(shù)都是指兩個數(shù)之間的關系,不能單獨說
我們在研究倍數(shù)和因數(shù)時,所說的數(shù)一般指不是0的自然數(shù)。
板書完整: 不是0的自然數(shù)
四、實踐應用
師:因數(shù)和倍數(shù)的知識在實際生活中有很多運用。
1.春游。
乘坐小艇每人應付4元,你能把下表填寫完整嗎?
24個同學表演團體操,把隊伍的排列情況填寫完整。2.做操。
表中的排數(shù)和每排人數(shù)與24都有怎樣的關系?反饋:表中的應付元數(shù)都有什么共同特點?(都是4的倍數(shù))
排數(shù)是24的因數(shù)。每排的人數(shù)呢?(也都是24的因數(shù)。為什么?)
3.存錢。
有一位青年志愿者要省下30元生活費,買學習用品送給生活困難的同學。他每天存出一樣的錢數(shù),請問有幾種存法?
(30的因數(shù):1、2、3、5、6、10、15、30)
師:看來因數(shù)倍數(shù)大量存在于我們的生活中。
五、課堂小結。
剛才我們一起研究、認識了倍數(shù)和因數(shù),你學得怎樣?
因數(shù)和倍數(shù)的教案12
教學目標:
1、理解質數(shù)和合數(shù)的概念,并能判斷一個數(shù)是質數(shù)還是合數(shù),會把自然數(shù)按約數(shù)的個數(shù)進行分類。2、培養(yǎng)同學自主探索、獨立考慮、合作交流的能力。
3、培養(yǎng)同學敢于探索科學之謎的精神,充沛展示數(shù)學自身的魅力。
教學重點:
1、理解掌握質數(shù)、合數(shù)的概念。
2、初步學會準確判斷一個數(shù)是質數(shù)還是合數(shù)。
教學難點:區(qū)分奇數(shù)、質數(shù)、偶數(shù)、合數(shù)。
教學過程:
一、探究發(fā)現(xiàn),總結概念:
1、師:(出示三個同樣的小正方形)每個正方形的邊長為1,用這樣的三個正方形拼成一個長方形,你能拼出幾個不同的長方形?
同學獨立考慮,然后全班交流。
2、師:這樣的四個小正方形能拼出幾個不同的'長方形?
同學各自獨立考慮,想像后舉手回答。
3、師:同學們再想一下,假如有12個這樣的小正方形,你能拼出幾個不同的長方形?
師:我看到許多同學不用畫就已經知道了。(指名說一說)
4、師:同學們,假如給出的正方形的個數(shù)越多,那拼出的不同的長方形的個數(shù)——,你覺得會怎么樣?
同學幾乎是異口同聲地說:會越多。
師:確定嗎?(引導同學展開討論。)
5、師:同學們,用小正方形拼長方形,有時只能拼出一種,有時拼出的長方形不止一種。你覺得當小正方形的個數(shù)是什么數(shù)的時候,只能拼一種? 什么情況下拼得的長方形不止一種?并舉例說明。
先讓同學小組討論,然后全班交流,師根據(jù)同學的回答板書。
師:同學們,像上面這些數(shù)(板書的3、13、7、5、11等數(shù)),在數(shù)學上我們把它們叫做質數(shù),下面的這些數(shù)(4、6、8、9、10、12、14、15等數(shù))我們把它們叫做合數(shù)。那究竟什么樣的數(shù)叫質數(shù),什么樣的數(shù)叫合數(shù)呢?
同學獨立考慮后,在小組內進行交流,然后再全班交流。
引導同學總結質數(shù)和合數(shù)的概念,結合同學回答,教師板書:(略)
6、讓同學舉例說說哪些數(shù)是質數(shù),哪些數(shù)是合數(shù),并說出理由。
7、師:那你們認為“1”是什么數(shù)?
讓同學獨立考慮,后展開討論。
二、動手操作,制質數(shù)表。
1、師出示:73。讓同學考慮著它是不是質數(shù)。
師:要想馬上知道73是什么數(shù)還真不容易。假如有質數(shù)表可查就方便了。(同學們都說“是呀”。)
師:這表從哪來呢?
(教師出示百以內數(shù)表)這上面是1到100這100個數(shù),它不是質數(shù)表,你們能不能想方法找出100以內的質數(shù),制成質數(shù)表?誰來說說自身的想法?(讓同學充沛發(fā)表自身的想法。)
2、讓同學動手制作質數(shù)表。
3、集體交流方法。
三、練習鞏固:
完成練習四第1、2題。
四、課題小結:
這節(jié)課你在激烈的討論中有什么收獲?
因數(shù)和倍數(shù)的教案13
教學內容:
7--16頁的學習內容
教學目標
1.進一步學習求一個數(shù)的所有因數(shù)和倍數(shù);掌握一般方法,學會用常見的幾種形式表達。
2.經過多次的求解經歷過程,在事實面前讓學生進一步明確因數(shù)是可數(shù)的,自然得出因數(shù)的個數(shù)是有限的,其中最大的因數(shù)自己;而倍數(shù)是無法寫完全,也就是說倍數(shù)的個數(shù)是無限的,其中最小的倍數(shù)也是自己。
教學重點:
掌握求一個數(shù)的因數(shù)和倍數(shù)的常用方法及常用的`幾種書寫表達形式
教學難點:
完整地求出一個數(shù)的因數(shù)和倍數(shù)
教學準備:
實物投影
教學活動
。ㄒ )基礎訓練
【口答】
根據(jù)下面算式,說說哪個數(shù)是哪個數(shù)的倍數(shù),哪個數(shù)是哪個數(shù)的因數(shù)?
4×9=36 25×40=100032×7=224
【解答題】
18的因數(shù)有哪些?10是哪些數(shù)的倍數(shù)?
。ǘ 新知學習
【典型例題】
1.教學:
(1)你還能找出18的因數(shù)碼?并說出你的找法(要板書)。
(2)小比賽。看誰既快又能完整地把30和36所有因數(shù)找出來(基礎練習)?
。3)分享冠軍經驗(介紹方法)。
(4)咱們再來一次尋找32和48的所有因數(shù)的比賽(基礎練習)?
。5)請你試著把18所有找出的因數(shù)表述出來。(如果學生能用常見的兩種表達最好;如果不能需要教師的引導)
第一種習慣書面表達形式。18的因數(shù)有(有可能是亂的):
第二種集合圖的書面表達形式。 18的因數(shù)
。6)通過眼看,自我感覺調整這些因數(shù)最好按序排列
第一種習慣書面表達形式。18的因數(shù)有(按大小順序):
第二種集合圖的書面表達形式。 18的因數(shù)
。7)做基礎練習第2題
【小結】1.尋找的方法
2.能否找全?
2.教學
。1)讓學生自己嘗試找
。2)有沒有發(fā)什么問題?如何解決?
(3)如何表達?
(4)找出3和5的倍數(shù)
【小結】1.尋找的方法
2.能否找全?
(三) 鞏固練習(10題)
【基礎練習】
1.用盡快的速度找出30、36、32和48的所有因數(shù)?
2.填空。30的因數(shù)有: 36的因數(shù)有:
32的因數(shù)有 48的因數(shù)有
3. 5的倍數(shù)有: 3的倍數(shù)
【提高練習】
1.分別寫出17的因數(shù)和倍數(shù),再寫出28
2.找因數(shù)和倍數(shù)相同嗎?
【拓展練習】數(shù)學小知識:了解完全數(shù)。
。ㄎ澹┙虒W效果評價(小測題2—3題)
課后反思:
有的學生認為某個數(shù)的最小倍數(shù)是0倍,因此最小倍數(shù)是0。要向學生強調,小學階段學倍數(shù)不涉及到0,因此,某個數(shù)的最小倍數(shù)應該是它的1倍。
因數(shù)和倍數(shù)的教案14
教學內容
教材第6頁例3及練習二第3~8題及思考題。
教學目標
1.通過學習,使學生能自主探究,找出求一個數(shù)的倍數(shù)的方法。
2.結合具體情境,使學生進一步認識自然數(shù)之間存在因數(shù)和倍數(shù)的關系,掌握求一個數(shù)的因數(shù)和倍數(shù)的方法。
3.初步學會從數(shù)學的角度提出問題、理解問題,并能用所學知識解決問題。在解決問題的過程中,培養(yǎng)學生概括、分析和比較的能力,使學生體會數(shù)學知識的內在聯(lián)系。
教學重難點
重點:掌握求一個數(shù)的倍數(shù)的方法。
難點:理解因數(shù)和倍數(shù)兩者之間的關系。
教學過程
一、 復習導入
10,28,42的因數(shù)有哪些?你是用什么方法找出這些數(shù)的因數(shù)個數(shù)的?一個數(shù)的因數(shù)中,最大的是幾?最小的是幾?
二、新課講授
1.探索找倍數(shù)的方法。(教學例3)
出示例3:2的倍數(shù)有哪些?
師:你會找2的倍數(shù)嗎?給你們1分鐘的時間,看誰寫得又對、又快、又多!準備好了嗎?開始!
師:時間到,你寫了多少個2的倍數(shù)?生1:15個。生2:24個。
師:大家都是用的什么方法呢?
生1:我是用乘法口訣,一二得二,二二得四……這樣寫下去的。
生2:我也是用乘法,用2去乘1、乘2……
師:哪些同學也是用乘法做的?
師:你們都是用2去乘一個數(shù),所得的積就是2的倍數(shù)。還有不同的方法嗎?www.xkb1.com
生3:我用的是除法,用2÷2=1,4÷2=2 ,6÷2=3,……依次除下去。
師:很好!如果給你更長的時間,你能把2的倍數(shù)全部寫出來嗎?(不能)
師:為什么?(因為2的倍數(shù)有無數(shù)個)
師:怎么辦?(用省略號)
師:通過交流,你有什么發(fā)現(xiàn)?
引導學生初步體會2的倍數(shù)的個數(shù)是無限的。
追問:你能用集合圖表示2的倍數(shù)嗎?
學生填完后,教師組織學生進行核對。
(4)即時練習。讓學生找出3的倍數(shù)和5的倍數(shù),并組織交流。學生舉例時可能會產生錯誤,教師要引導學生根據(jù)錯例進行適時剖析。
4.反思提煉。師:從前面找因數(shù)和倍數(shù)的過程中,你有什么發(fā)現(xiàn)?
先讓學生在小組內交流,再組織全班集體交流,通過全班交流,引導學生認識以下三點:
(1)一個數(shù)的最小因數(shù)是1,最大因數(shù)是它本身。
(2)一個數(shù)的最小倍數(shù)是它本身,沒有最大倍數(shù)。
(3)一個數(shù)的因數(shù)的個數(shù)是有限的,一個數(shù)的倍數(shù)的個數(shù)是無限的。
三、課堂作業(yè)
1.指導學生完成教材第7~8頁練習二第3~8題及思考題。
學生獨立完成全部練習后教師組織學生進行集體訂正。
集體訂正時,教師著重引導學生認識以下幾點:
(1)第4題“15的因數(shù)有哪些?”和“15是哪些數(shù)的`倍數(shù)”答案是一樣的。
(2)第5題中的第(2)小題是錯的,因為一個數(shù)的倍數(shù)的個數(shù)是無限的,第(4)小題也是錯的,因為在研究因數(shù)和倍數(shù)時,我們所說的數(shù)指的是自然數(shù),不含小數(shù)。
(3)思考題:兩數(shù)如果都是7(或9)倍數(shù),它們的和也一定是7(或9)的倍數(shù),即如果兩數(shù)都是n的倍數(shù),它的和也是n的倍數(shù)。
2.利用求倍數(shù)的方法解決生活中的實際問題
出示:媽媽買來幾個西瓜,2個2個地數(shù),正好數(shù)完,5個5個地數(shù),也正好數(shù)完。這些西瓜最少有多少個?
理解題意,分析解答。
教師提示“2個2個地數(shù),正好數(shù)完,說明西瓜的個數(shù)是2的倍數(shù),5個5個地數(shù),也正好數(shù)完,說明西瓜的個數(shù)是5的倍數(shù),所以西瓜的個數(shù)同時是2和5的倍數(shù)。
交流匯報:2的倍數(shù)有2,4,6,8,10,12,14,16,18,20,…
5的倍數(shù)有5,10,15,20,25,30,…
2和5共同的倍數(shù)有10,20,…所以2和5共同的倍數(shù)最小的是10。
答:這些西瓜最少有10個。
四、課堂小結
1.師:通過本節(jié)課的學習,你有什么收獲?(學生交流)
2.讓學生自學“你知道嗎?”
板書設計
因數(shù)和倍數(shù)
2×1=2 2÷2=1
2×2=4 4÷2=2
2×3=6 6÷2=3
2×4=8 8÷2=4
2的倍數(shù)有2,4,6,……
一個數(shù)的因數(shù)的個數(shù)是有限的,一個數(shù)的倍數(shù)的個數(shù)是無限的。
因數(shù)和倍數(shù)的教案15
教學內容:
蘇教版義務教育教科書《數(shù)學》五年級下冊第30~32頁例1、例2和試一試、例3和試一試練一練,第35頁練習五第1~4題。
教學目標:
1.使學生認識倍數(shù)和因數(shù),能判斷兩個自然數(shù)間的因數(shù)和倍數(shù)關系;學會找一個數(shù)的因數(shù)和倍數(shù)的方法,能按順序找出100以內自然數(shù)的所有因數(shù),10以內自然數(shù)的所有倍數(shù);了解一個數(shù)的因數(shù)、倍數(shù)的特點。
2.使學生經歷探索求一個數(shù)的因數(shù)或倍數(shù)的方法、一個數(shù)的因數(shù)和倍數(shù)特點的過程,體會數(shù)學知識、方法的內在聯(lián)系,能有條理地展開思考,培養(yǎng)觀察、比較,以及分析、推理和抽象、概括等思維能力,發(fā)展數(shù)感。
3.使學生主動參與操作、思考、探索等活動,獲得解決問題的成功感受,樹立學好數(shù)學的信心,養(yǎng)成樂于思考、勇于探究等良好品質。
教學重點:
認識因數(shù)和倍數(shù)。
教學難點:
求一個數(shù)的因數(shù)、倍數(shù)的方法。
教學準備:
小黑板、準備12個同樣大的`正方形學具。
教學過程:
一、操作引入,認識意義
1.操作交流。
引導:你能用12個小正方形拼成一個長方形嗎?請同桌兩人合作拼一拼,看看每排擺幾個,擺了幾排,想想有幾種拼法,用算式把你的拼法表示出來。 學生操作,用算式表示,教師巡視。
交流:你有哪些拼法?請你說一說,并交流你表示的算式。
結合學生交流,呈現(xiàn)不同拼法,分別板書出積是12的三道乘法算式(包括可以板書除法算式)。
2.認識意義。
。1)說明:我們先看43=12。根據(jù)43-12,我們就可以說:4和3都是12的因數(shù);反過來,12是4的倍數(shù),也是3的倍數(shù)。
。2)啟發(fā):現(xiàn)在讓你看另外兩個算式,你能說一說哪個是哪個的因數(shù),哪個是哪個的倍數(shù)嗎?同桌互相說說看。
(3) 小結:從上面可以看出,在整數(shù)乘法算式里,兩個乘數(shù)都是積的因數(shù),積是兩個乘數(shù)的倍數(shù)。它們之間的關系是相互依存的。這就是我們今天學習的新內容:因數(shù)和倍數(shù)。(板書課題)在研究因數(shù)和倍數(shù)時,所說的數(shù)一般指不是O的自然數(shù)。
【因數(shù)和倍數(shù)的教案】相關文章:
《倍數(shù)和因數(shù)》教案03-18
因數(shù)和倍數(shù)的教案08-07
《倍數(shù)和因數(shù)》教案07-08
因數(shù)和倍數(shù)教案模板09-02
公倍數(shù)和公因數(shù)教案12-19
公倍數(shù)和公因數(shù)教案07-18
因數(shù)和倍數(shù)教學反思02-07