- 因式分解教案 推薦度:
- 數(shù)學(xué)因式分解教案 推薦度:
- 相關(guān)推薦
因式分解教案范文匯編6篇
作為一名老師,就不得不需要編寫教案,教案是教學(xué)活動(dòng)的總的組織綱領(lǐng)和行動(dòng)方案。教案應(yīng)該怎么寫才好呢?以下是小編幫大家整理的因式分解教案6篇,僅供參考,希望能夠幫助到大家。
因式分解教案 篇1
教學(xué)目標(biāo)
1.知識(shí)與技能
了解因式分解的意義,以及它與整式乘法的關(guān)系.
2.過(guò)程與方法
經(jīng)歷從分解因數(shù)到分解因式的類比過(guò)程,掌握因式分解的概念,感受因式分解在解決問(wèn)題中的作用.
3.情感、態(tài)度與價(jià)值觀
在探索因式分解的方法的活動(dòng)中,培養(yǎng)學(xué)生有條理的思考、表達(dá)與交流的能力,培養(yǎng)積極的進(jìn)取意識(shí),體會(huì)數(shù)學(xué)知識(shí)的內(nèi)在含義與價(jià)值.
重、難點(diǎn)與關(guān)鍵
1.重點(diǎn):了解因式分解的意義,感受其作用.
2.難點(diǎn):整式乘法與因式分解之間的關(guān)系.
3.關(guān)鍵:通過(guò)分解因數(shù)引入到分解因式,并進(jìn)行類比,加深理解.
教學(xué)方法
采用“激趣導(dǎo)學(xué)”的教學(xué)方法.
教學(xué)過(guò)程
一、創(chuàng)設(shè)情境,激趣導(dǎo)入
【問(wèn)題牽引】
請(qǐng)同學(xué)們探究下面的2個(gè)問(wèn)題:
問(wèn)題1:720能被哪些數(shù)整除?談?wù)勀愕南敕ǎ?/p>
問(wèn)題2:當(dāng)a=102,b=98時(shí),求a2-b2的值.
二、豐富聯(lián)想,展示思維
探索:你會(huì)做下面的填空嗎?
1.ma+mb+mc=( )( );
2.x2-4=( )( );
3.x2-2xy+y2=( )2.
【師生共識(shí)】把一個(gè)多項(xiàng)式化成幾個(gè)整式的積的形式,叫做把這個(gè)多項(xiàng)式因式分解,也叫做分解因式.
三、小組活動(dòng),共同探究
【問(wèn)題牽引】
(1)下列各式從左到右的變形是否為因式分解:
、伲▁+1)(x-1)=x2-1;
、赼2-1+b2=(a+1)(a-1)+b2;
、7x-7=7(x-1).
。2)在下列括號(hào)里,填上適當(dāng)?shù)捻?xiàng),使等式成立.
、9x2(______)+y2=(3x+y)(_______);
、趚2-4xy+(_______)=(x-_______)2.
四、隨堂練習(xí),鞏固深化
課本練習(xí).
【探研時(shí)空】計(jì)算:993-99能被100整除嗎?
五、課堂總結(jié),發(fā)展?jié)撃?/strong>
由學(xué)生自己進(jìn)行小結(jié),教師提出如下綱目:
1.什么叫因式分解?
2.因式分解與整式運(yùn)算有何區(qū)別?
六、布置作業(yè),專題突破
選用補(bǔ)充作業(yè).
板書(shū)設(shè)計(jì)
15.4.1 因式分解
1、因式分解 例:
練習(xí):
15.4.2 提公因式法
教學(xué)目標(biāo)
1.知識(shí)與技能
能確定多項(xiàng)式各項(xiàng)的公因式,會(huì)用提公因式法把多項(xiàng)式分解因式.
2.過(guò)程與方法
使學(xué)生經(jīng)歷探索多項(xiàng)式各項(xiàng)公因式的過(guò)程,依據(jù)數(shù)學(xué)化歸思想方法進(jìn)行因式分解.
3.情感、態(tài)度與價(jià)值觀
培養(yǎng)學(xué)生分析、類比以及化歸的思想,增進(jìn)學(xué)生的合作交流意識(shí),主動(dòng)積極地積累確定公因式的初步經(jīng)驗(yàn),體會(huì)其應(yīng)用價(jià)值.
重、難點(diǎn)與關(guān)鍵
1.重點(diǎn):掌握用提公因式法把多項(xiàng)式分解因式.
2.難點(diǎn):正確地確定多項(xiàng)式的最大公因式.
3.關(guān)鍵:提公因式法關(guān)鍵是如何找公因式.方法是:一看系數(shù)、二看字母.公因式的系數(shù)取各項(xiàng)系數(shù)的最大公約數(shù);字母取各項(xiàng)相同的字母,并且各字母的指數(shù)取最低次冪.
教學(xué)方法
采用“啟發(fā)式”教學(xué)方法.
教學(xué)過(guò)程
一、回顧交流,導(dǎo)入新知
【復(fù)習(xí)交流】
下列從左到右的變形是否是因式分解,為什么?
。1)2x2+4=2(x2+2); (2)2t2-3t+1= (2t3-3t2+t);
。3)x2+4xy-y2=x(x+4y)-y2; (4)m(x+y)=mx+my;
。5)x2-2xy+y2=(x-y)2.
問(wèn)題:
1.多項(xiàng)式mn+mb中各項(xiàng)含有相同因式嗎?
2.多項(xiàng)式4x2-x和xy2-yz-y呢?
請(qǐng)將上述多項(xiàng)式分別寫成兩個(gè)因式的乘積的形式,并說(shuō)明理由.
【教師歸納】我們把多項(xiàng)式中各項(xiàng)都有的公共的因式叫做這個(gè)多項(xiàng)式的公因式,如在mn+mb中的公因式式是m,在4x2-x中的公因式是x,在xy2-yz-y中的公因式是y.
概念:如果一個(gè)多項(xiàng)式的各項(xiàng)含有公因式,那么就可以把這個(gè)公因式提出來(lái),從而將多項(xiàng)式化成兩個(gè)因式乘積形式,這種分解因式的方法叫做提公因式法.
二、小組合作,探究方法
【教師提問(wèn)】 多項(xiàng)式4x2-8x6,16a3b2-4a3b2-8ab4各項(xiàng)的公因式是什么?
【師生共識(shí)】提公因式的方法是先確定各項(xiàng)的公因式再將多項(xiàng)式除以這個(gè)公因式得到另一個(gè)因式,找公因式一看系數(shù)、二看字母,公因式的系數(shù)取各項(xiàng)系數(shù)的最大公約數(shù);字母取各項(xiàng)相同的字母,并且各字母的指數(shù)取最低次冪.
三、范例學(xué)習(xí),應(yīng)用所學(xué)
【例1】把-4x2yz-12xy2z+4xyz分解因式.
解:-4x2yz-12xy2z+4xyz
=-(4x2yz+12xy2z-4xyz)
=-4xyz(x+3y-1)
【例2】分解因式,3a2(x-y)3-4b2(y-x)2
【思路點(diǎn)撥】觀察所給多項(xiàng)式可以找出公因式(y-x)2或(x-y)2,于是有兩種變形,(x-y)3=-(y-x)3和(x-y)2=(y-x)2,從而得到下面兩種分解方法.
解法1:3a2(x-y)3-4b2(y-x)2
=-3a2(y-x)3-4b2(y-x)2
=-[(y-x)23a2(y-x)+4b2(y-x)2]
=-(y-x)2 [3a2(y-x)+4b2]
=-(y-x)2(3a2y-3a2x+4b2)
解法2:3a2(x-y)3-4b2(y-x)2
=(x-y)23a2(x-y)-4b2(x-y)2
=(x-y)2 [3a2(x-y)-4b2]
=(x-y)2(3a2x-3a2y-4b2)
【例3】用簡(jiǎn)便的方法計(jì)算:0.84×12+12×0.6-0.44×12.
【教師活動(dòng)】引導(dǎo)學(xué)生觀察并分析怎樣計(jì)算更為簡(jiǎn)便.
解:0.84×12+12×0.6-0.44×12
=12×(0.84+0.6-0.44)
=12×1=12.
【教師活動(dòng)】在學(xué)生完全例3之后,指出例3是因式分解在計(jì)算中的應(yīng)用,提出比較例1,例2,例3的公因式有什么不同?
四、隨堂練習(xí),鞏固深化
課本P167練習(xí)第1、2、3題.
【探研時(shí)空】
利用提公因式法計(jì)算:
0.582×8.69+1.236×8.69+2.478×8.69+5.704×8.69
五、課堂總結(jié),發(fā)展?jié)撃?/strong>
1.利用提公因式法因式分解,關(guān)鍵是找準(zhǔn)最大公因式.在找最大公因式時(shí)應(yīng)注意:(1)系數(shù)要找最大公約數(shù);(2)字母要找各項(xiàng)都有的;(3)指數(shù)要找最低次冪.
2.因式分解應(yīng)注意分解徹底,也就是說(shuō),分解到不能再分解為止.
六、布置作業(yè),專題突破
課本P170習(xí)題15.4第1、4(1)、6題.
板書(shū)設(shè)計(jì)
15.4.2 提公因式法
1、提公因式法 例:
練習(xí):
15.4.3 公式法(一)
教學(xué)目標(biāo)
1.知識(shí)與技能
會(huì)應(yīng)用平方差公式進(jìn)行因式分解,發(fā)展學(xué)生推理能力.
2.過(guò)程與方法
經(jīng)歷探索利用平方差公式進(jìn)行因式分解的過(guò)程,發(fā)展學(xué)生的逆向思維,感受數(shù)學(xué)知識(shí)的完整性.
3.情感、態(tài)度與價(jià)值觀
培養(yǎng)學(xué)生良好的互動(dòng)交流的習(xí)慣,體會(huì)數(shù)學(xué)在實(shí)際問(wèn)題中的應(yīng)用價(jià)值.
重、難點(diǎn)與關(guān)鍵
1.重點(diǎn):利用平方差公式分解因式.
2.難點(diǎn):領(lǐng)會(huì)因式分解的解題步驟和分解因式的徹底性.
3.關(guān)鍵:應(yīng)用逆向思維的方向,演繹出平方差公式,對(duì)公式的應(yīng)用首先要注意其特征,其次要做好式的變形,把問(wèn)題轉(zhuǎn)化成能夠應(yīng)用公式的方面上來(lái).
教學(xué)方法
采用“問(wèn)題解決”的教學(xué)方法,讓學(xué)生在問(wèn)題的牽引下,推進(jìn)自己的思維.
教學(xué)過(guò)程
一、觀察探討,體驗(yàn)新知
【問(wèn)題牽引】
請(qǐng)同學(xué)們計(jì)算下列各式.
。1)(a+5)(a-5); (2)(4m+3n)(4m-3n).
【學(xué)生活動(dòng)】動(dòng)筆計(jì)算出上面的兩道題,并踴躍上臺(tái)板演.
(1)(a+5)(a-5)=a2-52=a2-25;
。2)(4m+3n)(4m-3n)=(4m)2-(3n)2=16m2-9n2.
【教師活動(dòng)】引導(dǎo)學(xué)生完成下面的兩道題目,并運(yùn)用數(shù)學(xué)“互逆”的思想,尋找因式分解的規(guī)律.
1.分解因式:a2-25; 2.分解因式16m2-9n.
【學(xué)生活動(dòng)】從逆向思維入手,很快得到下面答案:
。1)a2-25=a2-52=(a+5)(a-5).
(2)16m2-9n2=(4m)2-(3n)2=(4m+3n)(4m-3n).
【教師活動(dòng)】引導(dǎo)學(xué)生完成a2-b2=(a+b)(a-b)的.同時(shí),導(dǎo)出課題:用平方差公式因式分解.
平方差公式:a2-b2=(a+b)(a-b).
評(píng)析:平方差公式中的字母a、b,教學(xué)中還要強(qiáng)調(diào)一下,可以表示數(shù)、含字母的代數(shù)式(單項(xiàng)式、多項(xiàng)式).
二、范例學(xué)習(xí),應(yīng)用所學(xué)
【例1】把下列各式分解因式:(投影顯示或板書(shū))
。1)x2-9y2; (2)16x4-y4;
(3)12a2x2-27b2y2; (4)(x+2y)2-(x-3y)2;
(5)m2(16x-y)+n2(y-16x).
【思路點(diǎn)撥】在觀察中發(fā)現(xiàn)1~5題均滿足平方差公式的特征,可以使用平方差公式因式分解.
【教師活動(dòng)】啟發(fā)學(xué)生從平方差公式的角度進(jìn)行因式分解,請(qǐng)5位學(xué)生上講臺(tái)板演.
【學(xué)生活動(dòng)】分四人小組,合作探究.
解:(1)x2-9y2=(x+3y)(x-3y);
(2)16x4-y4=(4x2+y2)(4x2-y2)=(4x2+y2)(2x+y)(2x-y);
(3)12a2x2-27b2y2=3(4a2x2-9b2y2)=3(2ax+3by)(2ax-3by);
。4)(x+2y)2-(x-3y)2=[(x+2y)+(x-3y)][(x+2y)-(x-3y)] =5y(2x-y);
。5)m2(16x-y)+n2(y-16x)
=(16x-y)(m2-n2)=(16x-y)(m+n)(m-n).
三、隨堂練習(xí),鞏固深化
課本P168練習(xí)第1、2題.
【探研時(shí)空】
1.求證:當(dāng)n是正整數(shù)時(shí),n3-n的值一定是6的倍數(shù).
2.試證兩個(gè)連續(xù)偶數(shù)的平方差能被一個(gè)奇數(shù)整除.連續(xù)偶數(shù)的平方差能被一個(gè)奇數(shù)整除.
四、課堂總結(jié),發(fā)展?jié)撃?/strong>
運(yùn)用平方差公式因式分解,首先應(yīng)注意每個(gè)公式的特征.分析多項(xiàng)式的次數(shù)和項(xiàng)數(shù),然后再確定公式.如果多項(xiàng)式是二項(xiàng)式,通?紤]應(yīng)用平方差公式;如果多項(xiàng)式中有公因式可提,應(yīng)先提取公因式,而且還要“提”得徹底,最后應(yīng)注意兩點(diǎn):一是每個(gè)因式要化簡(jiǎn),二是分解因式時(shí),每個(gè)因式都要分解徹底.
五、布置作業(yè),專題突破
課本P171習(xí)題15.4第2、4(2)、11題.
板書(shū)設(shè)計(jì)
15.4.3 公式法(一)
1、平方差公式: 例:
a2-b2=(a+b)(a-b) 練習(xí):
15.4.3 公式法(二)
教學(xué)目標(biāo)
1.知識(shí)與技能
領(lǐng)會(huì)運(yùn)用完全平方公式進(jìn)行因式分解的方法,發(fā)展推理能力.
2.過(guò)程與方法
經(jīng)歷探索利用完全平方公式進(jìn)行因式分解的過(guò)程,感受逆向思維的意義,掌握因式分解的基本步驟.
3.情感、態(tài)度與價(jià)值觀
培養(yǎng)良好的推理能力,體會(huì)“化歸”與“換元”的思想方法,形成靈活的應(yīng)用能力.
重、難點(diǎn)與關(guān)鍵
1.重點(diǎn):理解完全平方公式因式分解,并學(xué)會(huì)應(yīng)用.
2.難點(diǎn):靈活地應(yīng)用公式法進(jìn)行因式分解.
3.關(guān)鍵:應(yīng)用“化歸”、“換元”的思想方法,把問(wèn)題進(jìn)行形式上的轉(zhuǎn)化,達(dá)到能應(yīng)用公式法分解因式的目的.
教學(xué)方法
采用“自主探究”教學(xué)方法,在教師適當(dāng)指導(dǎo)下完成本節(jié)課內(nèi)容.
教學(xué)過(guò)程
一、回顧交流,導(dǎo)入新知
【問(wèn)題牽引】
1.分解因式:
(1)-9x2+4y2; (2)(x+3y)2-(x-3y)2;
(3) x2-0.01y2.
因式分解教案 篇2
教學(xué)目標(biāo):
1、進(jìn)一步鞏固因式分解的概念;
2、鞏固因式分解常用的三種方法
3、選擇恰當(dāng)?shù)姆椒ㄟM(jìn)行因式分解4、應(yīng)用因式分解來(lái)解決一些實(shí)際問(wèn)題
5、體驗(yàn)應(yīng)用知識(shí)解決問(wèn)題的樂(lè)趣
教學(xué)重點(diǎn):靈活運(yùn)用因式分解解決問(wèn)題
教學(xué)難點(diǎn):靈活運(yùn)用恰當(dāng)?shù)囊蚴椒纸獾姆椒,拓展練?xí)2、3
教學(xué)過(guò)程:
一、創(chuàng)設(shè)情景:若a=101,b=99,求a2—b2的值
利用因式分解往往能將一些復(fù)雜的運(yùn)算簡(jiǎn)單化,那么我們先來(lái)回顧一下什么是因式分解和怎樣來(lái)因式分解。
二、知識(shí)回顧
1、因式分解定義:把一個(gè)多項(xiàng)式化成幾個(gè)整式積的形式,這種變形叫做把這個(gè)多項(xiàng)式分解因式。
判斷下列各式哪些是因式分解?(讓學(xué)生先思考,教師提問(wèn)講解,讓學(xué)生明確因式分解的概念以及與乘法的關(guān)系)
。1)、x2—4y2=(x+2y)(x—2y)因式分解(2)。2x(x—3y)=2x2—6xy整式乘法
。3)、(5a—1)2=25a2—10a+1整式乘法(4)。x2+4x+4=(x+2)2因式分解
。5)、(a—3)(a+3)=a2—9整式乘法(6)。m2—4=(m+4)(m—4)因式分解
。7)、2πR+2πr=2π(R+r)因式分解
2、規(guī)律總結(jié)(教師講解):分解因式與整式乘法是互逆過(guò)程。
分解因式要注意以下幾點(diǎn):
(1)。分解的對(duì)象必須是多項(xiàng)式。
。2)。分解的結(jié)果一定是幾個(gè)整式的乘積的形式。
。3)。要分解到不能分解為止。
3、因式分解的方法
提取公因式法:—6x2+6xy+3x=—3x(2x—2y—1)公因式的概念;公因式的求法
公式法:平方差公式:a2—b2=(a+b)(a—b)完全平方公式:a2+2ab+b2=(a+b)2
4、強(qiáng)化訓(xùn)練
教學(xué)引入
師:教材在《四邊形》這一章《引言》里有這樣一句話:把一個(gè)長(zhǎng)方形折疊就可以得到一個(gè)正方形,F(xiàn)在請(qǐng)同學(xué)們拿出一個(gè)長(zhǎng)方形紙條,按動(dòng)畫所示進(jìn)行折疊處理。
動(dòng)畫演示:
場(chǎng)景一:正方形折疊演示
師:這就是我們得到的正方形。下面請(qǐng)同學(xué)們拿出三角板(刻度尺)和圓規(guī),我們來(lái)研究正方形的幾何性質(zhì)—邊、角以及對(duì)角線之間的關(guān)系。請(qǐng)大家測(cè)量各邊的長(zhǎng)度、各角的大小、對(duì)角線的長(zhǎng)度以及對(duì)角線交點(diǎn)到各頂點(diǎn)的長(zhǎng)度。
[學(xué)生活動(dòng):各自測(cè)量。]
鼓勵(lì)學(xué)生將測(cè)量結(jié)果與鄰近同學(xué)進(jìn)行比較,找出共同點(diǎn)。
講授新課
找一兩個(gè)學(xué)生表述其結(jié)論,表述是要注意糾正其語(yǔ)言的.規(guī)范性。
動(dòng)畫演示:
場(chǎng)景二:正方形的性質(zhì)
師:這些性質(zhì)里那些是矩形的性質(zhì)?
[學(xué)生活動(dòng):尋找矩形性質(zhì)。]
動(dòng)畫演示:
場(chǎng)景三:矩形的性質(zhì)
師:同樣在這些性質(zhì)里尋找屬于菱形的性質(zhì)。
[學(xué)生活動(dòng);尋找菱形性質(zhì)。]
動(dòng)畫演示:
場(chǎng)景四:菱形的性質(zhì)
師:這說(shuō)明正方形具有矩形和菱形的全部性質(zhì)。
及時(shí)提出問(wèn)題,引導(dǎo)學(xué)生進(jìn)行思考。
師:根據(jù)這些性質(zhì),我們能不能給正方形下一個(gè)定義?怎么樣給正方形下一個(gè)準(zhǔn)確的定義?
[學(xué)生活動(dòng):積極思考,有同學(xué)做躍躍欲試狀。]
師:請(qǐng)同學(xué)們回想矩形與菱形的定義,可以根據(jù)矩形與菱形的定義類似的給出正方形的定義。
學(xué)生應(yīng)能夠向出十種左右的定義方式,其余作相應(yīng)鼓勵(lì),把以下三種板書(shū):
“有一組鄰邊相等的矩形叫做正方形!
“有一個(gè)角是直角的菱形叫做正方形。”
“有一個(gè)角是直角且有一組鄰邊相等的平行四邊形叫做正方形!
[學(xué)生活動(dòng):討論這三個(gè)定義正確不正確?三個(gè)定義之間有什么共同和不同的地方?這出教材中采用的是第三種定義方式。]
師:根據(jù)定義,我們把平行四邊形、矩形、菱形和正方形它們之間的關(guān)系梳理一下。
試一試把下列各式因式分解:
。1)。1—x2=(1+x)(1—x)(2)。4a2+4a+1=(2a+1)2
。3)。4x2—8x=4x(x—2)(4)。2x2y—6xy2=2xy(x—3y)
三、例題講解
例1、分解因式
。1)—x3y3+x2y+xy(2)6(x—2)+2x(2—x)
。3)(4)y2+y+
例2、分解因式
1、a3—ab2=2、(a—b)(x—y)—(b—a)(x+y)=3、(a+b)2+2(a+b)—15=
4、—1—2a—a2=5、x2—6x+9—y26、x2—4y2+x+2y=
例3、分解因式
1、72—2(13x—7)22、8a2b2—2a4b—8b3
四、知識(shí)應(yīng)用
1、(4x2—9y2)÷(2x+3y)2、(a2b—ab2)÷(b—a)
3、解方程:(1)x2=5x(2)(x—2)2=(2x+1)2
4、。若x=—3,求20x2—60x的值。5、1993—199能被200整除嗎?還能被哪些整數(shù)整除?
五、拓展應(yīng)用
1。計(jì)算:7652×17—2352×17解:7652×17—2352×17=17(7652—2352)=17(765+235)(765—235)
2、20042+20xx被20xx整除嗎?
3、若n是整數(shù),證明(2n+1)2—(2n—1)2是8的倍數(shù)。
五、課堂小結(jié)
今天你對(duì)因式分解又有哪些新的認(rèn)識(shí)?
因式分解教案 篇3
教學(xué)目標(biāo):
1.知識(shí)與技能:掌握運(yùn)用提公因式法、公式法分解因式,培養(yǎng)學(xué)生應(yīng)用因式分解解決問(wèn)題的能力.
2.過(guò)程與方法:經(jīng)歷探索因式分解方法的過(guò)程,培養(yǎng)學(xué)生研討問(wèn)題的方法,通過(guò)猜測(cè)、推理、驗(yàn)證、歸納等步驟,得出因式分解的方法.
3.情感態(tài)度與價(jià)值觀:通過(guò)因式分解的學(xué)習(xí),使學(xué)生體會(huì)數(shù)學(xué)美,體會(huì)成功的自信和團(tuán)結(jié)合作精神,并體會(huì)整體數(shù)學(xué)思想和轉(zhuǎn)化的數(shù)學(xué)思想.
教學(xué)重、難點(diǎn):用提公因式法和公式法分解因式.
教具準(zhǔn)備:多媒體課件(小黑板)
教學(xué)方法:活動(dòng)探究法
教學(xué)過(guò)程:
引入:在整式的變形中,有時(shí)需要將一個(gè)多項(xiàng)式寫成幾個(gè)整式的乘積的形式,這種變形就是因式分解.什么叫因式分解?
知識(shí)詳解
知識(shí)點(diǎn)1 因式分解的定義
把一個(gè)多項(xiàng)式化成幾個(gè)整式的積的形式,這種變形叫做把這個(gè)多項(xiàng)式因式分解,也叫做把這個(gè)多項(xiàng)式分解因式.
【說(shuō)明】 (1)因式分解與整式乘法是相反方向的變形.
例如:
(2)因式分解是恒等變形,因此可以用整式乘法來(lái)檢驗(yàn).
怎樣把一個(gè)多項(xiàng)式分解因式?
知識(shí)點(diǎn)2 提公因式法
多項(xiàng)式ma+mb+mc中的各項(xiàng)都有一個(gè)公共的因式m,我們把因式m叫做這個(gè)多項(xiàng)式的公因式.ma+mb+mc=m(a+b+c)就是把ma+mb+mc分解成兩個(gè)因式乘積的形式,其中一個(gè)因式是各項(xiàng)的公因式m,另一個(gè)因式(a+b+c)是ma+mb+mc除以m所得的商,像這種分解因式的方法叫做提公因式法.例如:x2-x=x(x-1),8a2b-4ab+2a=2a(4ab-2b+1).
探究交流
下列變形是否是因式分解?為什么?
(1)3x2y-xy+y=y(3x2-x); (2)x2-2x+3=(x-1)2+2;
(3)x2y2+2xy-1=(xy+1)(xy-1); (4)xn(x2-x+1)=xn+2-xn+1+xn.
典例剖析 師生互動(dòng)
例1 用提公因式法將下列各式因式分解.
(1) -x3z+x4y; (2) 3x(a-b)+2y(b-a);
分析:(1)題直接提取公因式分解即可,(2)題首先要適當(dāng)?shù)淖冃? 再把b-a化成-(a-b),然后再提取公因式.
小結(jié) 運(yùn)用提公因式法分解因式時(shí),要注意下列問(wèn)題:
(1)因式分解的結(jié)果每個(gè)括號(hào)內(nèi)如有同類項(xiàng)要合并,而且每個(gè)括號(hào)內(nèi)不能再分解.
(2)如果出現(xiàn)像(2)小題需統(tǒng)一時(shí),首先統(tǒng)一,盡可能使統(tǒng)一的個(gè)數(shù)少。這時(shí)注意到(a-b)n=(b-a)n(n為偶數(shù)).
(3)因式分解最后如果有同底數(shù)冪,要寫成冪的`形式.
學(xué)生做一做 把下列各式分解因式.
(1) (2a+b)(2a-3b)+(2a+5b)(2a+b) ;(2) 4p(1-q)3+2(q-1)2
知識(shí)點(diǎn)3 公式法
(1)平方差公式:a2-b2=(a+b)(a-b).即兩個(gè)數(shù)的平方差,等于這兩個(gè)數(shù)的和與這個(gè)數(shù)的差的積.例如:4x2-9=(2x)2-32=(2x+3)(2x-3).
(2)完全平方公式:a2±2ab+b2=(a±b)2.其中,a2±2ab+b2叫做完全平方式.即兩個(gè)數(shù)的平方和加上(或減去)這兩個(gè)數(shù)的積的2倍,等于這兩個(gè)數(shù)的和(或差)的平方.例如:4x2-12xy+9y2=(2x)2-2·2x·3y+(3y)2=(2x-3y)2.
探究交流
下列變形是否正確?為什么?
(1)x2-3y2=(x+3y)(x-3y);(2)4x2-6xy+9y2=(2x-3y)2;(3)x2-2x-1=(x-1)2.
例2 把下列各式分解因式.
(1) (a+b)2-4a2;(2)1-10x+25x2;(3)(m+n)2-6(m+n)+9.
分析:本題旨在考查用完全平方公式分解因式.
學(xué)生做一做 把下列各式分解因式.
(1)(x2+4)2-2(x2+4)+1; (2)(x+y)2-4(x+y-1).
綜合運(yùn)用
例3 分解因式.
(1)x3-2x2+x; (2) x2(x-y)+y2(y-x);
分析:本題旨在考查綜合運(yùn)用提公因式法和公式法分解因式.
小結(jié) 解因式分解題時(shí),首先考慮是否有公因式,如果有,先提公因式;如果沒(méi)有公因式是兩項(xiàng),則考慮能否用平方差公式分解因式. 是三項(xiàng)式考慮用完全平方式,最后,直到每一個(gè)因式都不能再分解為止.
探索與創(chuàng)新題
例4 若9x2+kxy+36y2是完全平方式,則k= .
分析:完全平方式是形如:a2±2ab+b2即兩數(shù)的平方和與這兩個(gè)數(shù)乘積的2倍的和(或差).
學(xué)生做一做 若x2+(k+3)x+9是完全平方式,則k= .
課堂小結(jié)
用提公因式法和公式法分解因式,會(huì)運(yùn)用因式分解解決計(jì)算問(wèn)題.
各項(xiàng)有"公"先提"公",首項(xiàng)有負(fù)常提負(fù),某項(xiàng)提出莫漏"1",括號(hào)里面分到"底"。
自我評(píng)價(jià) 知識(shí)鞏固
1.若x2+2(m-3)x+16是完全平方式,則m的值等于( )
A.3 B.-5 C.7. D.7或-1
2.若(2x)n-81=(4x2+9)(2x+3)(2x-3),則n的值是( )
A.2 B.4 C.6 D.8
3.分解因式:4x2-9y2= .
4.已知x-y=1,xy=2,求x3y-2x2y2+xy3的值.
5.把多項(xiàng)式1-x2+2xy-y2分解因式
思考題 分解因式(x4+x2-4)(x4+x2+3)+10.
因式分解教案 篇4
。ㄒ唬學(xué)習(xí)目標(biāo)
1、會(huì)用因式分解進(jìn)行簡(jiǎn)單的多項(xiàng)式除法
2、會(huì)用因式分解解簡(jiǎn)單的方程
(二)學(xué)習(xí)重難點(diǎn)重點(diǎn):因式分解在多項(xiàng)式除法和解方程中兩方面的應(yīng)用。
難點(diǎn):應(yīng)用因式分解解方程涉及到的較多的推理過(guò)程是本節(jié)課的難點(diǎn)。
(三)教學(xué)過(guò)程設(shè)計(jì)
看一看
1.應(yīng)用因式分解進(jìn)行多項(xiàng)式除法.多項(xiàng)式除以多項(xiàng)式的'一般步驟:
、賍_______________②__________
2.應(yīng)用因式分解解簡(jiǎn)單的一元二次方程.
依據(jù)__________,一般步驟:__________
做一做
1.計(jì)算:
(1)(-a2b2+16)÷(4-ab);
(2)(18x2-12xy+2y2)÷(3x-y).
2.解下列方程:
(1)3x2+5x=0;
(2)9x2=(x-2)2;
(3)x2-x+=0.
3.完成課后練習(xí)題
想一想
你還有哪些地方不是很懂?請(qǐng)寫出來(lái)。
____________________________________
(四)預(yù)習(xí)檢測(cè)
1.計(jì)算:
2.先請(qǐng)同學(xué)們思考、討論以下問(wèn)題:
(1)如果A×5=0,那么A的值
(2)如果A×0=0,那么A的值
(3)如果AB=0,下列結(jié)論中哪個(gè)正確( )
、貯、B同時(shí)都為零,即A=0,
且B=0;
、贏、B中至少有一個(gè)為零,即A=0,或B=0;
(五)應(yīng)用探究
1.解下列方程
2.化簡(jiǎn)求值:已知x-y=-3,-x+3y=2,求代數(shù)式x2-4xy+3y2的值
(六)拓展提高:
解方程:
1、(x2+4)2-16x2=0
2、已知a、b、c為三角形的三邊,試判斷a2-2ab+b2-c2大于零?小于零?等于零?
(七)堂堂清練習(xí)
1.計(jì)算
2.解下列方程
、7x2+2x=0
②x2+2x+1=0
、踴2=(2x-5)2
④x2+3x=4x
因式分解教案 篇5
15.1.1 整式
教學(xué)目標(biāo)
1.單項(xiàng)式、單項(xiàng)式的定義.
2.多項(xiàng)式、多項(xiàng)式的次數(shù).
3、理解整式概念.
教學(xué)重點(diǎn)
單項(xiàng)式及多項(xiàng)式的有關(guān)概念.
教學(xué)難點(diǎn)
單項(xiàng)式及多項(xiàng)式的有關(guān)概念.
教學(xué)過(guò)程
、瘢岢鰡(wèn)題,創(chuàng)設(shè)情境
在七年級(jí),我們已經(jīng)學(xué)習(xí)了用字母可以表示數(shù),思考下列問(wèn)題
1.要表示△ABC的周長(zhǎng)需要什么條件?要表示它的面積呢?
2.小王用七小時(shí)行駛了Skm的路程,請(qǐng)問(wèn)他的平均速度是多少?
結(jié)論:
1、要表示△ABC的周長(zhǎng),需要知道它的各邊邊長(zhǎng).要表示△ABC的面積需要知道一條邊長(zhǎng)和這條邊上的高.如果設(shè)BC=a,AC=b,AB=c.AB邊上的高為h,那么△ABC的周長(zhǎng)可以表示為a+b+c;△ABC的面積可以表示為 ?c?h.
2.小王的平均速度是 .
問(wèn)題:這些式子有什么特征呢?
。1)有數(shù)字、有表示數(shù)字的字母.
(2)數(shù)字與字母、字母與字母之間還有運(yùn)算符號(hào)連接.
歸納:用基本的運(yùn)算符號(hào)(運(yùn)算包括加、減、乘、除、乘方與開(kāi)方)把數(shù)和表示數(shù)的字母連接起來(lái)的式子叫做代數(shù)式.
判斷上面得到的三個(gè)式子:a+b+c、 ch、 是不是代數(shù)式?(是)
代數(shù)式可以簡(jiǎn)明地表示數(shù)量和數(shù)量的關(guān)系.今天我們就來(lái)學(xué)習(xí)和代數(shù)式有關(guān)的整式.
、颍鞔_和鞏固整式有關(guān)概念
。ǔ鍪就队埃
結(jié)論:(1)正方形的周長(zhǎng):4x.
(2)汽車走過(guò)的路程:vt.
。3)正方體有六個(gè)面,每個(gè)面都是正方形,這六個(gè)正方形全等,所以它的表面積為6a2;正方體的體積為長(zhǎng)×寬×高,即a3.
。4)n的相反數(shù)是-n.
分析這四個(gè)數(shù)的特征.
它們符合代數(shù)式的定義.這五個(gè)式子都是數(shù)與字母或字母與字母的積,而a+b+c、 ch、 中還有和與商的運(yùn)算符號(hào).還可以發(fā)現(xiàn)這五個(gè)代數(shù)式中字母指數(shù)各不相同,字母的個(gè)數(shù)也不盡相同.
請(qǐng)同學(xué)們閱讀課本P160~P161單項(xiàng)式有關(guān)概念.
根據(jù)這些定義判斷4x、vt、6a2、a3、-n、a+b+c、 ch、 這些代數(shù)式中,哪些是單項(xiàng)式?是單項(xiàng)式的,寫出它的系數(shù)和次數(shù).
結(jié)論:4x、vt、6a2、a3、-n、 ch是單項(xiàng)式.它們的系數(shù)分別是4、1、6、1、-1、 .它們的次數(shù)分別是1、2、2、3、1、2.所以4x、-n都是一次單項(xiàng)式;vt、6a2、 ch都是二次單項(xiàng)式;a3是三次單項(xiàng)式.
問(wèn)題:vt中v和t的指數(shù)都是1,它不是一次單項(xiàng)式嗎?
結(jié)論:不是.根據(jù)定義,單項(xiàng)式vt中含有兩個(gè)字母,所以它的次數(shù)應(yīng)該是這兩個(gè)字母的指數(shù)的和,而不是單個(gè)字母的指數(shù),所以vt是二次單項(xiàng)式而不是一次單項(xiàng)式.
生活中不僅僅有單項(xiàng)式,像a+b+c,它不是單項(xiàng)式,和單項(xiàng)式有什么聯(lián)系呢?
寫出下列式子(出示投影)
結(jié)論:(1)t-5.(2)3x+5y+2z.
(3)三角尺的面積應(yīng)是直角三角形的面積減去圓的面積,即 ab-3.12r2.
(4)建筑面積等于四個(gè)矩形的面積之和.而右邊兩個(gè)已知矩形面積分別為3×2、4×3,所以它們的面積和是18.于是得這所住宅的建筑面積是x2+2x+18.
我們可以觀察下列代數(shù)式:
a+b+c、t-5、3x+5y+2z、 ab-3.12r2、x2+2x+18.發(fā)現(xiàn)它們都是由單項(xiàng)式的和組成的式子.是多個(gè)單項(xiàng)式的和,能不能叫多項(xiàng)式?
這樣推理合情合理.請(qǐng)看投影,熟悉下列概念.
根據(jù)定義,我們不難得出a+b+c、t-5、3x+5y+2z、 ab-3.12r2、x2+2x+18都是多項(xiàng)式.請(qǐng)分別指出它們的項(xiàng)和次數(shù).
a+b+c的項(xiàng)分別是a、b、c.
t-5的項(xiàng)分別是t、-5,其中-5是常數(shù)項(xiàng).
3x+5y+2z的項(xiàng)分別是3x、5y、2z.
ab-3.12r2的項(xiàng)分別是 ab、-3.12r2.
x2+2x+18的項(xiàng)分別是x2、2x、18. 找多項(xiàng)式的次數(shù)應(yīng)抓住兩條,一是找準(zhǔn)每個(gè)項(xiàng)的次數(shù),二是取每個(gè)項(xiàng)次數(shù)的最大值.根據(jù)這兩條很容易得到這五個(gè)多項(xiàng)式中前三個(gè)是一次多項(xiàng)式,后兩個(gè)是二次多項(xiàng)式.
這節(jié)課,通過(guò)探究我們得到單項(xiàng)式和多項(xiàng)式的有關(guān)概念,它們可以反映變化的世界.同時(shí),我們也到符號(hào)的魅力所在.我們把單項(xiàng)式與多項(xiàng)式統(tǒng)稱為整式.
、螅S堂練習(xí)
1.課本P162練習(xí)
、簦n時(shí)小結(jié)
通過(guò)探究,我們了解了整式的概念.理解并掌握單項(xiàng)式、多項(xiàng)式的有關(guān)概念是本節(jié)的重點(diǎn),特別是它們的次數(shù).在現(xiàn)實(shí)情景中進(jìn)一步理解了用字母表示數(shù)的意義,發(fā)展符號(hào)感.
、酰n后作業(yè)
1.課本P165~P166習(xí)題15.1─1、5、8、9題.
2.預(yù)習(xí)“整式的加減”.
課后作業(yè):《課堂感悟與探究》
15.1.2 整式的加減(1)
教學(xué)目的:
1、解字母表示數(shù)量關(guān)系的過(guò)程,發(fā)展符號(hào)感。
2、會(huì)進(jìn)行整式加減的運(yùn)算,并能說(shuō)明其中的算理,發(fā)展有條理的思考及語(yǔ)言表達(dá)能力。
教學(xué)重點(diǎn):
會(huì)進(jìn)行整式加減的運(yùn)算,并能說(shuō)明其中的算理。
教學(xué)難點(diǎn):
正確地去括號(hào)、合并同類項(xiàng),及符號(hào)的正確處理。
教學(xué)過(guò)程:
一、課前練習(xí):
1、填空:整式包括 和
2、單項(xiàng)式 的系數(shù)是 、次數(shù)是
3、多項(xiàng)式 是 次 項(xiàng)式,其中二次項(xiàng)
系數(shù)是 一次項(xiàng)是 ,常數(shù)項(xiàng)是
4、下列各式,是同類項(xiàng)的一組是( )
。ˋ) 與 (B) 與 (C) 與
5、去括號(hào)后合并同類項(xiàng):
二、探索練習(xí):
1、如果用a 、b分別表示一個(gè)兩位數(shù)的十位數(shù)字和個(gè)位數(shù)字,那么這個(gè)兩位數(shù)可以表示為 交換這個(gè)兩位數(shù)的十位數(shù)字和個(gè)位數(shù)字后得到的兩位數(shù)為
這兩個(gè)兩位數(shù)的`和為
2、如果用a 、b、c分別表示一個(gè)三位數(shù)的百位數(shù)字、十位數(shù)字和個(gè)位數(shù)字,那么這個(gè)三位數(shù)可以表示為 交換這個(gè)三位數(shù)的百位數(shù)字和個(gè)位數(shù)字后得到的三位數(shù)為
這兩個(gè)三位數(shù)的差為
●議一議:在上面的兩個(gè)問(wèn)題中,分別涉及到了整式的什么運(yùn)算?
說(shuō)說(shuō)你是如何運(yùn)算的?
▲整式的加減運(yùn)算實(shí)質(zhì)就是
運(yùn)算的結(jié)果是一個(gè)多項(xiàng)式或單項(xiàng)式。
三、鞏固練習(xí):
1、填空:(1) 與 的差是
(2)、單項(xiàng)式 、 、 、 的和為
。3)如圖所示,下面為由棋子所組成的三角形,
一個(gè)三角形需六個(gè)棋子,三個(gè)三角形需
( )個(gè)棋子,n個(gè)三角形需 個(gè)棋子
2、計(jì)算:
。1)
。2)
(3)
3、(1)求 與 的和
(2)求 與 的差
4、先化簡(jiǎn),再求值: 其中
四、提高練習(xí):
1、若A是五次多項(xiàng)式,B是三次多項(xiàng)式,則A+B一定是
。ˋ)五次整式 (B)八次多項(xiàng)式
。–)三次多項(xiàng)式 (D)次數(shù)不能確定
2、足球比賽中,如果勝一場(chǎng)記3a分,平一場(chǎng)記a分,負(fù)一場(chǎng)
記0分,那么某隊(duì)在比賽勝5場(chǎng),平3場(chǎng),負(fù)2場(chǎng),共積多
少分?
3、一個(gè)兩位數(shù)與把它的數(shù)字對(duì)調(diào)所成的數(shù)的和,一定能被14
整除,請(qǐng)證明這個(gè)結(jié)論。
4、如果關(guān)于字母x的二次多項(xiàng)式 的值與x的取值無(wú)關(guān),
試求m、n的值。
五、小結(jié):整式的加減運(yùn)算實(shí)質(zhì)就是去括號(hào)和合并同類項(xiàng)。
六、作業(yè):第8頁(yè)習(xí)題1、2、3
15.1.2整式的加減(2)
教學(xué)目標(biāo):1.會(huì)進(jìn)行整式加減的運(yùn)算,并能說(shuō)明其中的算理,發(fā)展有條理的思考及其語(yǔ)言表達(dá)能力。
2.通過(guò)探索規(guī)律的問(wèn)題,進(jìn)一步符號(hào)表示的意義,發(fā)展符號(hào)感,發(fā)展推理能力。
教學(xué)重點(diǎn):整式加減的運(yùn)算。
教學(xué)難點(diǎn):探索規(guī)律的猜想。
教學(xué)方法:嘗試練習(xí)法,討論法,歸納法。
教學(xué)用具:投影儀
教學(xué)過(guò)程:
I探索練習(xí):
擺第1個(gè)“小屋子”需要5枚棋子,擺第2個(gè)需要 枚棋子,擺第3個(gè)需要 枚棋子。按照這樣的方式繼續(xù)擺下去。
。1)擺第10個(gè)這樣的“小屋子”需要 枚棋子
。2)擺第n個(gè)這樣的“小屋子”需要多少枚棋子?你是如何得到的?你能用不同的方法解決這個(gè)問(wèn)題嗎?小組討論。
二、例題講解:
三、鞏固練習(xí):
1、計(jì)算:
。1)(14x3-2x2)+2(x3-x2) (2)(3a2+2a-6)-3(a2-1)
。3)x-(1-2x+x2)+(-1-x2) (4)(8xy-3x2)-5xy-2(3xy-2x2)
2、已知:A=x3-x2-1,B=x2-2,計(jì)算:(1)B-A (2)A-3B
3、列方程解應(yīng)用題:三角形三個(gè)內(nèi)角的和等于180°,如果三角形中第一個(gè)角等于第二個(gè)角的3倍,而第三個(gè)角比第二個(gè)角大15°,那么
。1)第一個(gè)角是多少度?
。2)其他兩個(gè)角各是多少度?
四、提高練習(xí):
1、已知A=a2+b2-c2,B=-4a2+2b2+3c2,并且A+B+C=0,問(wèn)C是什么樣的多項(xiàng)式?
2、設(shè)A=2x2-3xy+y2-x+2y,B=4x2-6xy+2y2-3x-y,若│x-2a│+
。▂+3)2=0,且B-2A=a,求A的值。
3、已知有理數(shù)a、b、c在數(shù)軸上(0為數(shù)軸原點(diǎn))的對(duì)應(yīng)點(diǎn)如圖:
試化簡(jiǎn):│a│-│a+b│+│c-a│+│b+c│
小 結(jié):要善于在圖形變化中發(fā)現(xiàn)規(guī)律,能熟練的對(duì)整式加減進(jìn)行運(yùn)算。
作 業(yè):課本P14習(xí)題1.3:1(2)、(3)、(6),2。
因式分解教案 篇6
第1課時(shí)
1.使學(xué)生了解因式分解的意義,了解因式分解和整式乘法是整式的兩種相反方向的變形.
2.讓學(xué)生會(huì)確定多項(xiàng)式中各項(xiàng)的公因式,會(huì)用提公因式法進(jìn)行因式分解.
自主探索,合作交流.
1.通過(guò)與因數(shù)分解的類比,讓學(xué)生感悟數(shù)學(xué)中數(shù)與式的共同點(diǎn),體驗(yàn)數(shù)學(xué)的類比思想.
2.通過(guò)對(duì)因式分解的教學(xué),培養(yǎng)學(xué)生“換元”的意識(shí).
【重點(diǎn)】 因式分解的概念及提公因式法的應(yīng)用.
【難點(diǎn)】 正確找出多項(xiàng)式中各項(xiàng)的公因式.
【教師準(zhǔn)備】 多媒體.
【學(xué)生準(zhǔn)備】 復(fù)習(xí)有關(guān)乘法分配律的知識(shí).
導(dǎo)入一:
【問(wèn)題】 一塊場(chǎng)地由三個(gè)長(zhǎng)方形組成,這些長(zhǎng)方形的長(zhǎng)分別為,,,寬都是,求這塊場(chǎng)地的面積.
解法1:這塊場(chǎng)地的面積=×+×+×=++==2.
解法2:這塊場(chǎng)地的面積=×+×+×=×=×4=2.
從上面的解答過(guò)程看,解法1是按運(yùn)算順序:先算乘法,再算加減法進(jìn)行計(jì)算的,解法2是先逆用乘法分配律,再進(jìn)行計(jì)算的,由此可知解法2要簡(jiǎn)單一些.這個(gè)事實(shí)說(shuō)明,有時(shí)我們需要將多項(xiàng)式化為幾個(gè)整式的積的形式,而提公因式法就是將多項(xiàng)式化為幾個(gè)整式的積的形式的一種方法.
[設(shè)計(jì)意圖] 讓學(xué)生通過(guò)利用乘法分配律的逆運(yùn)算這一特殊算法,運(yùn)用類比思想自然地過(guò)渡到提公因式法的概念上,從而為提公因式法的掌握打下基礎(chǔ).
導(dǎo)入二:
【問(wèn)題】 計(jì)算×15-×9+×2采用什么方法?依據(jù)是什么?
解法1:原式=-+==5.
解法2:原式=×(15-9+2)=×8=5.
解法1是按運(yùn)算順序:先算乘法,再算加減法進(jìn)行計(jì)算的,解法2是先逆用乘法分配律,再進(jìn)行計(jì)算的,由此可知解法2要簡(jiǎn)單一些.這個(gè)事實(shí)說(shuō)明,有時(shí)我們需要將多項(xiàng)式化為幾個(gè)整式的積的形式,而提公因式法就是把多項(xiàng)式化為幾個(gè)整式的積的形式的一種方法.
[設(shè)計(jì)意圖] 讓學(xué)生通過(guò)利用乘法分配律的逆運(yùn)算這一特殊算法,運(yùn)用類比思想自然地過(guò)渡到提公因式法的概念上,從而為提公因式法的掌握打下基礎(chǔ).
一、提公因式法分解因式的概念
思路一
[過(guò)渡語(yǔ)] 上一節(jié)我們學(xué)習(xí)了什么是因式分解,那么怎樣進(jìn)行因式分解呢?我們來(lái)看下面的問(wèn)題.
如果一塊場(chǎng)地由三個(gè)長(zhǎng)方形組成,這三個(gè)長(zhǎng)方形的長(zhǎng)分別為a,b,c,寬都是,那么這塊場(chǎng)地的面積為a+b+c或(a+b+c),可以用等號(hào)來(lái)連接,即:a+b+c=(a+b+c).
大家注意觀察這個(gè)等式,等式左邊的每一項(xiàng)有什么特點(diǎn)?各項(xiàng)之間有什么聯(lián)系?等式右邊的項(xiàng)有什么特點(diǎn)?
分析:等式左邊的每一項(xiàng)都含有因式,等式右邊是與多項(xiàng)式a+b+c的乘積,從左邊到右邊的過(guò)程是因式分解.
由于是左邊多項(xiàng)式a+b+c中的各項(xiàng)a,b,c都含有的一個(gè)相同因式,因此叫做這個(gè)多項(xiàng)式各項(xiàng)的公因式.
由上式可知,把多項(xiàng)式a+b+c寫成與多項(xiàng)式a+b+c的乘積的形式,相當(dāng)于把公因式從各項(xiàng)中提出來(lái),作為多項(xiàng)式a+b+c的一個(gè)因式,把從多項(xiàng)式a+b+c的各項(xiàng)中提出后形成的多項(xiàng)式a+b+c,作為多項(xiàng)式a+b+c的另一個(gè)因式.
總結(jié):如果一個(gè)多項(xiàng)式的各項(xiàng)含有公因式,那么就可以把這個(gè)公因式提出來(lái),從而將多項(xiàng)式化成兩個(gè)因式乘積的形式,這種因式分解的方法叫做提公因式法.
[設(shè)計(jì)意圖] 通過(guò)實(shí)例的教學(xué),使學(xué)生明白什么是公因式和用提公因式法分解因式.
思路二
[過(guò)渡語(yǔ)] 同學(xué)們,我們來(lái)看下面的問(wèn)題,看看同學(xué)們誰(shuí)先做出來(lái).
多項(xiàng)式 ab+ac中,各項(xiàng)都含有相同的因式嗎?多項(xiàng)式 3x2+x呢?多項(xiàng)式b2+nb-b呢?
結(jié)論:多項(xiàng)式中各項(xiàng)都含有的相同因式,叫做這個(gè)多項(xiàng)式各項(xiàng)的公因式.
多項(xiàng)式2x2+6x3中各項(xiàng)的公因式是什么?你能嘗試將多項(xiàng)式2x2+6x3因式分解嗎?
結(jié)論:如果一個(gè)多項(xiàng)式的各項(xiàng)含有公因式,那么就可以把這個(gè)公因式提出來(lái),從而將多項(xiàng)式化成兩個(gè)因式乘積的形式,這種因式分解的方法叫做提公因式法.
[設(shè)計(jì)意圖] 從讓學(xué)生找出幾個(gè)簡(jiǎn)單多項(xiàng)式的公因式,再到讓學(xué)生嘗試將多項(xiàng)式分解因式,使學(xué)生理解公因式以及提公因式法分解因式的概念.
二、例題講解
[過(guò)渡語(yǔ)] 剛剛我們學(xué)習(xí)了因式分解的一種方法,現(xiàn)在我們嘗試下利用這種方法進(jìn)行因式分解吧.
(教材例1)把下列各式因式分解:
(1)3x+x3;
(2)7x3-21x2;
(3)8a3b2-12ab3c+ab;
(4)-24x3+12x2-28x.
〔解析〕 首先要找出各項(xiàng)的公因式,然后再提取出來(lái).要避免提取公因式后,各項(xiàng)中還有公因式,即“沒(méi)提徹底”的現(xiàn)象.
解:(1)3x+x3=x3+xx2=x(3+x2).
(2)7x3-21x2=7x2x-7x23=7x2(x-3).
(3)8a3b2-12ab3c+ab
=ab8a2b-ab12b2c+ab1
=ab(8a2b-12b2c+1).
(4)-24x3+12x2-28x
=-(24x3-12x2+28x)
=-(4x6x2-4x3x+4x7)
=-4x(6x2-3x+7).
【學(xué)生活動(dòng)】 通過(guò)剛才的練習(xí),大家互相交流,總結(jié)出提取公因式的一般步驟和容易出現(xiàn)的問(wèn)題.
總結(jié):提取公因式的`步驟:(1)找公因式;(2)提公因式.
容易出現(xiàn)的問(wèn)題(以本題為例):(1)第(2)題中只提出7x作為公因式;(2)第(3)題中最后一項(xiàng)提出ab后,漏掉了“+1”;(3)第(4)題提出“-”號(hào)時(shí),沒(méi)有把后面的因式中的每一項(xiàng)都變號(hào).
教師提醒:
(1)各項(xiàng)都含有的字母的最低次冪的積是公因式的字母部分;
(2)因式分解后括號(hào)內(nèi)的多項(xiàng)式的項(xiàng)數(shù)與原多項(xiàng)式的項(xiàng)數(shù)相同;
(3)若多項(xiàng)式的首項(xiàng)為“-”,則先提取“-”號(hào),然后再提取其他公因式;
(4)將分解因式后的式子再進(jìn)行整式的乘法運(yùn)算,其積應(yīng)與原式相等.
[設(shè)計(jì)意圖] 經(jīng)歷用提公因式法進(jìn)行因式分解的過(guò)程,在教師的啟發(fā)與指導(dǎo)下,學(xué)生自己歸納出提公因式的步驟及提取公因式時(shí)容易出現(xiàn)的類似問(wèn)題,為提取公因式積累經(jīng)驗(yàn).
1.提公因式法分解因式的一般形式,如:
a+b+c=(a+b+c).
這里的字母a,b,c,可以是一個(gè)系數(shù)不為1的、多字母的、冪指數(shù)大于1的單項(xiàng)式.
2.提公因式法分解因式的關(guān)鍵在于發(fā)現(xiàn)多項(xiàng)式的公因式.
3.找公因式的一般步驟:
(1)若各項(xiàng)系數(shù)是整系數(shù),則取系數(shù)的最大公約數(shù);
(2)取各項(xiàng)中相同的字母,字母的指數(shù)取最低的;
(3)所有這些因式的乘積即為公因式.
1.多項(xiàng)式-6ab2+18a2b2-12a3b2c的公因式是( )
A.-6ab2cB.-ab2
C.-6ab2D.-6a3b2c
解析:根據(jù)確定多項(xiàng)式各項(xiàng)的公因式的方法,可知公因式為-6ab2.故選C.
2.下列用提公因式法分解因式正確的是( )
A.12abc-9a2b2=3abc(4-3ab)
B.3x2-3x+6=3(x2-x+2)
C.-a2+ab-ac=-a(a-b+c)
D.x2+5x-=(x2+5x)
解析:A.12abc-9a2b2=3ab(4c-3ab),錯(cuò)誤;B.3x2-3x+6=3(x2-x+2),錯(cuò)誤;D.x2+5x-=(x2+5x-1),錯(cuò)誤.故選C.
3.下列多項(xiàng)式中應(yīng)提取的公因式為5a2b的是( )
A.15a2b-20a2b2
B.30a2b3-15ab4-10a3b2
C.10a2b-20a2b3+50a4b
D.5a2b4-10a3b3+15a4b2
解析:B.應(yīng)提取公因式5ab2,錯(cuò)誤;C.應(yīng)提取公因式10a2b,錯(cuò)誤;D.應(yīng)提取公因式5a2b2,錯(cuò)誤.故選A.
4.填空.
(1)5a3+4a2b-12abc=a( );
(2)多項(xiàng)式32p2q3-8pq4的公因式是 ;
(3)3a2-6ab+a= (3a-6b+1);
(4)因式分解:+n= ;
(5)-15a2+5a= (3a-1);
(6)計(jì)算:21×3.14-31×3.14= .
答案:(1)5a2+4ab-12bc (2)8pq3 (3)a (4)(+n) (5)-5a (6)-31.4
5.用提公因式法分解因式.
(1)8ab2-16a3b3;
(2)-15x-5x2;
(3)a3b3+a2b2-ab;
(4)-3a3-6a2+12a.
解:(1)8ab2(1-2a2b).
(2)-5x(3+x).
(3)ab(a2b2+ab-1).
(4)-3a(a2+2a-4).
第1課時(shí)
一、教材作業(yè)
【必做題】
教材第96頁(yè)隨堂練習(xí).
【選做題】
教材第96頁(yè)習(xí)題4.2.
二、課后作業(yè)
【基礎(chǔ)鞏固】
1.把多項(xiàng)式4a2b+10ab2分解因式時(shí),應(yīng)提取的公因式是 .
2.(20xx淮安中考)因式分解:x2-3x= .
3.分解因式:12x3-18x22+24x3=6x .
【能力提升】
4.把下列各式因式分解.
(1)3x2-6x;
(2)5x23-25x32;
(3)-43+162-26;
(4)15x32+5x2-20x23.
【拓展探究】
5.分解因式:an+an+2+a2n.
6.觀察下列各式:12+1=1×2;22+2=2×3;32+3=3×4;….這列式子有什么規(guī)律?請(qǐng)你將猜想到的規(guī)律用含有字母n(n為自然數(shù))的式子表示出來(lái).
【答案與解析】
1.2ab
2.x(x-3)
3.(2x2-3x+42)
4.解:(1)3x(x-2). (2)5x22(-5x). (3)-2(22-8+13). (4)5x2(3x+1-42).
5.解:原式=an1+ana2+anan=an(1+a2+an).
6.解:由題中給出的幾個(gè)式子可得出規(guī)律:n2+n=n(n+1).
本節(jié)運(yùn)用類比的思想方法,在新概念的提出、新知識(shí)點(diǎn)的講授過(guò)程中,使學(xué)生易于理解和掌握.如學(xué)生在接受提公因式法時(shí),由提公因數(shù)到提公因式,由整式乘法的逆運(yùn)算到提公因式法的概念,都是利用了類比的數(shù)學(xué)思想,從而使得學(xué)生接受新的概念時(shí)顯得輕松自然,容易理解.
在小組討論之前,應(yīng)該留給學(xué)生充分的獨(dú)立思考的時(shí)間,不要讓一些思維活躍的學(xué)生的回答代替了其他學(xué)生的思考,掩蓋了其他學(xué)生的疑問(wèn).
由于因式分解的主要目的是對(duì)多項(xiàng)式進(jìn)行恒等變形,它的作用更多的是應(yīng)用于多項(xiàng)式的計(jì)算和化簡(jiǎn),比如在以后將要學(xué)習(xí)的分式運(yùn)算、解分式方程等中都要用到因式分解的知識(shí),因此應(yīng)該注重因式分解的概念和方法的教學(xué).
隨堂練習(xí)(教材第96頁(yè))
解:(1)(a+b). (2)52(+4). (3)3x(2-3). (4)ab(a-5). (5)22(2-3). (6)b(a2-5a+9). (7)-a(a-b+c). (8)-2x(x2-2x+3).
習(xí)題4.2(教材第96頁(yè))
1.解:(1)2x2-4x=2x(x-2). (2)82n+2n=2n4+2n1=2n(4+1). (3)a2x2-ax2=axax-ax=ax(ax-). (4)3x3-3x2+9x=3x(x2-x+3). (5)-24x2-12x2-283=-(24x2+12x2+283)=-4(6x2+3x+72). (6)-4a3b3+6a2b-2ab=-(4a3b3-6a2b+2ab)=-2ab(2a2b2-3a+1). (7)-2x2-12x2+8x3=-(2x2+12x2-8x3)=-2x(x+62-43). (8)-3a3+6a2-12a=-(3a3-6a2+12a)=-3a(a2-2a+4).
2.解:(1)++=(++)=3.14×(202+162+122)=2512. (2)∵xz-z=z(x-),∴原式=×(17.8-28.8)=×(-11)=-7. (3)∵ab=7,a+b=6,∴a2b+ab2=ab(a+b)=7×6=42.
3.解:(1)不正確,因?yàn)樘崛〉墓蚴讲粚?duì),應(yīng)為n(2n--1). (2)不正確,因?yàn)樘崛」蚴?b后,第三項(xiàng)沒(méi)有變號(hào),應(yīng)為-b(ab-2a+3). (3)正確. (4)不正確,因?yàn)樽詈蟮慕Y(jié)果不是乘積的形式,應(yīng)為(a-2)(a+1).
提公因式法是本章的第2小節(jié),占兩個(gè)課時(shí),這是第一課時(shí),它主要讓學(xué)生經(jīng)歷從乘法分配律的逆運(yùn)算到提公因式的過(guò)程,讓學(xué)生體會(huì)數(shù)學(xué)中的一種主要思想——類比思想.運(yùn)用類比的思想方法,在新概念的提出、新知識(shí)點(diǎn)的講授過(guò)程中,可以使學(xué)生易于理解和掌握.如學(xué)生在接受提公因式法時(shí),由整式乘法的逆運(yùn)算到提公因式法的概念,就利用了類比的數(shù)學(xué)思想,從而使得學(xué)生接受新的概念時(shí)顯得輕松自然,容易理解,進(jìn)而使學(xué)生進(jìn)一步理解因式分解與整式乘法運(yùn)算之間的互逆關(guān)系.
已知方程組求7(x-3)2-2(3-x)3的值.
〔解析〕 將代數(shù)式分解因式,產(chǎn)生x-3與2x+兩個(gè)因式,再根據(jù)方程組整體代入,使計(jì)算簡(jiǎn)便.
解:7(x-3)2-2(3-x)3
=(x-3)2[7+2(x-3)]
=(x-3)2(7+2x-6)
=(x-3)2(2x+).
由方程組可得原式=12×6=6.
【因式分解教案】相關(guān)文章:
因式分解教案04-02
因式分解教案07-23
初中數(shù)學(xué)因式分解教案03-01
因式分解教案(15篇)04-02
關(guān)于因式分解教案合集10篇04-08
因式分解教案錦集7篇04-07
關(guān)于因式分解教案匯編八篇04-04
因式分解教案模板匯編8篇04-07
因式分解教案模板集合5篇04-08
因式分解教案匯編十篇04-08