- 勾股定理的逆定理說課稿 推薦度:
- 勾股定理說課稿 推薦度:
- 《勾股定理》的說課稿 推薦度:
- 相關(guān)推薦
關(guān)于勾股定理說課稿5篇
作為一無名無私奉獻(xiàn)的教育工作者,常常要寫一份優(yōu)秀的說課稿,說課稿有助于教學(xué)取得成功、提高教學(xué)質(zhì)量。那么優(yōu)秀的說課稿是什么樣的呢?以下是小編幫大家整理的勾股定理說課稿5篇,歡迎閱讀,希望大家能夠喜歡。
勾股定理說課稿 篇1
一、教材分析
勾股定理是學(xué)生在已經(jīng)掌握了直角三角形的有關(guān)性質(zhì)的基礎(chǔ)上進(jìn)行學(xué)習(xí)的,它是直角三角形的一條非常重要的性質(zhì),是幾何中最重要的定理之一。它揭示了一個三角形三條邊之間的數(shù)量關(guān)系,它可以解決直角三角形中的計算問題,是解直角三角形的主要根據(jù)之一。在實際生活中用途很大,教材在編寫時注意培養(yǎng)學(xué)生的動手操作能力和分析問題的能力,通過實際分析、拼圖等活動,讓學(xué)生獲得較為直觀的印象;通過聯(lián)系和比較,理解勾股定理,以利于正確的進(jìn)行運用。
據(jù)此,制定教學(xué)目標(biāo)如下:
1、理解并掌握勾股定理及其證明。
2、能夠靈活地運用勾股定理及其計算。
3、培養(yǎng)學(xué)生觀察、比較、分析、推理的能力。
4、通過介紹中國古代勾股方面的成就,激發(fā)學(xué)生熱愛祖國與熱愛祖國悠久文化的思想感情,培養(yǎng)他們的民族自豪感和鉆研精神。
教學(xué)重點:勾股定理的證明和應(yīng)用。
教學(xué)難點:勾股定理的證明。
二、教法和學(xué)法
教法和學(xué)法是體現(xiàn)在整個教學(xué)過程中的,本課的教法和學(xué)法體現(xiàn)如下特點:
1、以自學(xué)輔導(dǎo)為主,充分發(fā)揮教師的主導(dǎo)作用;運用各種手段激發(fā)學(xué)生學(xué)習(xí)欲望和興趣,組織學(xué)生活動,讓學(xué)生主動參與學(xué)習(xí)全過程。
2、切實體現(xiàn)學(xué)生的主體地位,讓學(xué)生通過觀察、分析、討論、操作、歸納,理解定理。提高學(xué)生動手操作能力,以及分析問題和解決問題的能力。
3、通過演示實物,引導(dǎo)學(xué)生觀察、操作、分析、證明,使學(xué)生得到獲得新知的成功感受,從而激發(fā)學(xué)生鉆研新知的欲望。
三、教學(xué)程序
本節(jié)內(nèi)容的教學(xué)主要體現(xiàn)在學(xué)生動手、動腦方面,根據(jù)學(xué)生的認(rèn)知規(guī)律和學(xué)習(xí)心理,教學(xué)程序設(shè)計如下:
。ㄒ唬﹦(chuàng)設(shè)情境 以古引新
1、由故事引入,3000多年前有個叫商高的人對周公說,把一根直尺折成直角,兩端連接得到一個直角三角形,如果勾是3,股是4,那么弦等于5。這樣引起學(xué)生學(xué)習(xí)興趣,激發(fā)學(xué)生求知欲。
2、是不是所有的'直角三角形都有這個性質(zhì)呢?教師要善于激疑,使學(xué)生進(jìn)入樂學(xué)狀態(tài)。
3、板書課題,出示學(xué)習(xí)目標(biāo)。
。ǘ┏醪礁兄 理解教材
教師指導(dǎo)學(xué)生自學(xué)教材,通過自學(xué)感悟理解新知,體現(xiàn)了學(xué)生的自主學(xué)習(xí)意識,鍛煉學(xué)生主動探究知識,養(yǎng)成良好的自學(xué)習(xí)慣。
。ㄈ┵|(zhì)疑解難 討論歸納
1、教師設(shè)疑或?qū)W生提疑。如:怎樣證明勾股定理?學(xué)生通過自學(xué),中等以上的學(xué)生基本掌握,這時能激發(fā)學(xué)生的表現(xiàn)欲。
2、教師引導(dǎo)學(xué)生按照要求進(jìn)行拼圖,觀察并分析;
。1)這兩個圖形有什么特點?
。2)你能寫出這兩個圖形的面積嗎?
。3)如何運用勾股定理?是否還有其他形式?
這時教師組織學(xué)生分組討論,調(diào)動全體學(xué)生的積極性,達(dá)到人人參與的效果,接著全班交流。先有某一組代表發(fā)言,說明本組對問題的理解程度,其他各組作評價和補(bǔ)充。教師及時進(jìn)行富有啟發(fā)性的點撥,最后,師生共同歸納,形成一致意見,最終解決疑難。
。ㄋ模╈柟叹毩(xí) 強(qiáng)化提高
1、出示練習(xí),學(xué)生分組解答,并由學(xué)生總結(jié)解題規(guī)律。課堂教學(xué)中動靜結(jié)合,以免引起學(xué)生的疲勞。
2、出示例1學(xué)生試解,師生共同評價,以加深對例題的理解與運用。針對例題再次出現(xiàn)鞏固練習(xí),進(jìn)一步提高學(xué)生運用知識的能力,對練習(xí)中出現(xiàn)的情況可采取互評、互議的形式,在互評互議中出現(xiàn)的具有代表性的問題,教師可以采取全班討論的形式予以解決,以此突出教學(xué)重點。
(五)歸納總結(jié) 練習(xí)反饋
引導(dǎo)學(xué)生對知識要點進(jìn)行總結(jié),梳理學(xué)習(xí)思路。分發(fā)自我反饋練習(xí),學(xué)生獨立完成。
本課意在創(chuàng)設(shè)愉悅和諧的樂學(xué)氣氛,優(yōu)化教學(xué)手段,借助電教手段提高課堂教學(xué)效率,建立平等、民主、和諧的師生關(guān)系。加強(qiáng)師生間的合作,營造一種學(xué)生敢想、感說、感問的課堂氣氛,讓全體學(xué)生都能生動活潑、積極主動地教學(xué)活動,在學(xué)習(xí)中創(chuàng)新精神和實踐能力得到培養(yǎng)。
勾股定理說課稿 篇2
一、說教材分析:
(一)本節(jié)內(nèi)容在全書和章節(jié)的地位
這節(jié)課是九年制義務(wù)教育課程標(biāo)準(zhǔn)實驗教科書(華東版),八年級第十九章第二節(jié)“勾股定理”第一課時。勾股定理是學(xué)生在已經(jīng)掌握了直角三角形有關(guān)性質(zhì)的基礎(chǔ)上進(jìn)行學(xué)習(xí)的,它是直角三角形的一條非常重要的性質(zhì),是幾何中最重要的定理之一,它揭示了一個三角形三條邊之間的數(shù)量關(guān)系,它可以解決直角三角形的主要依據(jù)之一,在實際生活中用途很大。教材在編寫時注意培養(yǎng)學(xué)生的動手操作能力和觀察分析問題的能力;通過實際分析,拼圖等活動,使學(xué)生獲得較為直觀的印象;通過聯(lián)系比較,理解勾股定理,以便于正確的進(jìn)行運用。
(二)三維教學(xué)目標(biāo):
1.【知識與能力目標(biāo)】
、崩斫獠⒄莆展垂啥ɡ淼膬(nèi)容和證明,能靈活運用勾股定理及其計算;
、餐ㄟ^觀察分析,大膽猜想,并且探索勾股定理,培養(yǎng)學(xué)生動手操作、合作交流、邏輯推理的能力。
2.【過程與方法目標(biāo)】
在探索勾股定理的過程中,讓學(xué)生經(jīng)歷“觀察-猜想-歸納-驗證”的數(shù)學(xué)思想,并且體會數(shù)形結(jié)合和從特殊到一般的思想方法。
3.【情感態(tài)度與價值觀】通過介紹中國古代勾股方面的成就,激發(fā)學(xué)生熱愛祖國和熱愛祖國悠久文化的思想感情,培養(yǎng)學(xué)生的民族自豪感和鉆研精神。
(三)教學(xué)重點、難點:
【教學(xué)重點】勾股定理的證明與運用
【教學(xué)難點】用面積法等方法證明勾股定理
【難點成因】對于勾股定理的得出,首先需要學(xué)生通過動手操作,在觀察的基礎(chǔ)上,大膽猜想數(shù)學(xué)結(jié)論,而這需要學(xué)生具備一定的分析、歸納的思維方法和運用數(shù)學(xué)的思想意識,但學(xué)生在這一方面的可預(yù)見性和耐挫折能力并不是很成熟,從而形成困難。
【突破措施】:
、眲(chuàng)設(shè)情景,激發(fā)思維:創(chuàng)設(shè)生動、啟發(fā)性的問題情景,激發(fā)學(xué)生的問題沖突,讓學(xué)生在感到“有趣”、“有意思”的狀態(tài)下進(jìn)入學(xué)習(xí)過程;
、沧灾魈剿,敢于猜想:充分讓自己動手操作,大膽猜想數(shù)學(xué)問題的結(jié)論,老師是整個活動的組織者,更是一位參入者,學(xué)生之間相互交流、協(xié)作,從而形成生動的課堂環(huán)境;
、硰垞P(yáng)個性,展示風(fēng)采:實行“小組合作制”,各小組中自己推薦一人擔(dān)任“發(fā)言人”,一人擔(dān)任“書記員”,在討論結(jié)束后,由小組的“發(fā)言人”匯報本小組的討論結(jié)果,并可上臺利用“多媒體視頻展示臺”展示本組的優(yōu)秀作品,其他小組給予評價。這樣既保證討論的有效性,也調(diào)動了學(xué)生的學(xué)習(xí)積極性。
二、說教法與學(xué)法分析
【教法分析】數(shù)學(xué)是一門培養(yǎng)人的思維,發(fā)展人的思維的重要學(xué)科,因此在教學(xué)中,不僅要使學(xué)生“知其然”,而且還要使學(xué)生“知其所以然”。針對初二年級學(xué)生的認(rèn)知結(jié)構(gòu)和心理特征,本節(jié)課可選擇“引導(dǎo)探索法”,由淺到深,由特殊到一般的提出問題。引導(dǎo)學(xué)生自主探索,合作交流,這種教學(xué)理念緊隨新課改理念,也反映了時代精神;镜慕虒W(xué)程序是“創(chuàng)設(shè)情景-動手操作-歸納驗證-問題解決-課堂小結(jié)-布置作業(yè)”六個方面。
【學(xué)法分析】新課標(biāo)明確提出要培養(yǎng)“可持續(xù)發(fā)展的`學(xué)生”,因此教師要有組織、有目的、有針對性的引導(dǎo)學(xué)生并且參入到學(xué)習(xí)活動中,鼓勵學(xué)生采用自主探索,合作交流的研討式學(xué)習(xí)方式,培養(yǎng)學(xué)生“動手”、“動腦”、“動口”的習(xí)慣與能力,使得學(xué)生真正的成為學(xué)習(xí)的主人。
三、說教學(xué)過程設(shè)計
(一)創(chuàng)設(shè)情景
多媒體課件演示FLASH小動畫片:某樓房三樓失火,消防隊員趕來救火,了解到每層樓高3米,消防隊員取來6.5米長的云梯,如果梯子的底部離墻基的距離是2.5米,請問消防隊員能否進(jìn)入三樓滅火?
問題的設(shè)計有一定的挑戰(zhàn)性,目的是激發(fā)學(xué)生的探究欲望,老師要注意引導(dǎo)學(xué)生將實際問題轉(zhuǎn)化為數(shù)學(xué)問題,也就是“已知一直角三角形的兩邊,求第三邊?”的問題。學(xué)生會感到一些困難,從而老師指出學(xué)習(xí)了今天的這節(jié)課后,同學(xué)們就會有辦法解決了。這種以實際問題作為切入點導(dǎo)入新課,不僅自然,而且也反映了“數(shù)學(xué)來源于生活”,學(xué)習(xí)數(shù)學(xué)是為更好“服務(wù)于生活”。
(二)動手操作
、闭n件出示課本P99圖19.2.1:
觀察圖中用陰影畫出的三個正方形,你從中能得出什么結(jié)論?
學(xué)生可能會考慮到各種不同的思考方法,老師要給予肯定,并且要鼓勵學(xué)生用語言進(jìn)行描述,引導(dǎo)學(xué)生發(fā)現(xiàn)SP+SQ=SR(此時讓小組“發(fā)言人”發(fā)言),從而讓學(xué)生通過正方形的面積之間的關(guān)系發(fā)現(xiàn):對于等腰直角三角形,其兩直角邊的平方和等于斜邊的平方,即當(dāng)∠C=90°,AC=BC時,則 AC2+BC2=AB2。這樣做有利于學(xué)生參與探索,感受數(shù)學(xué)學(xué)習(xí)的過程,也有利于培養(yǎng)學(xué)生的語言表達(dá)能力,體會數(shù)形結(jié)合的思想。
、簿o接著讓學(xué)生思考:上述是在等腰直角三角形中的情況,那么在一般情況下的直角三角形中,是否也存在這一結(jié)論呢?于是再利用多媒體投影出P100圖 19.2.2(一般直角三角形)。學(xué)生可以同樣求出正方形P和Q的面積,只是求正方形R的面積有一些困難,這時可讓學(xué)生在預(yù)先準(zhǔn)備的方格紙上畫出圖形,再剪一剪、拼一拼,通過小組合作、交流后,學(xué)生就能發(fā)現(xiàn):對于一般的以整數(shù)為邊長的直角三角形也存在兩直角邊的平方和等于斜邊的平方。通過學(xué)生的動手操作、合作交流,來獲取知識,這樣設(shè)計有利于突破難點,也讓學(xué)生體會到觀察、猜想、歸納的數(shù)學(xué)思想及學(xué)習(xí)過程,提高學(xué)生的分析問題和解決問題的能力。
、吃賳枺寒(dāng)邊長不為整數(shù)的直角三角形是否也是存在這一結(jié)論呢?投影例題:一個邊長分別為1.5,3.6,3.9這種含有小數(shù)的直角三角形,讓學(xué)生計算。這樣設(shè)計的目的是讓學(xué)生體會到“從特殊到一般”的情形,這樣歸納的結(jié)論更具有一般性。
(三)歸納驗證
【歸納】通過動手操作、合作交流,探索邊長為整數(shù)的等腰直角三角形到一般的直角三角形,再到邊長為小數(shù)的直角三角形的兩直角邊與斜邊的關(guān)系,讓學(xué)生在整個學(xué)習(xí)過程中感受學(xué)數(shù)學(xué)的樂趣,,使學(xué)生學(xué)會“文字語言”與“數(shù)學(xué)語言”這兩種表達(dá)方式,各小組“發(fā)言人”的積極表現(xiàn),整一堂課充分發(fā)揮學(xué)生的主體作用,真正獲取知識,解決問題。
【驗證】先后的三次驗證“勾股定理”這一結(jié)論,期間學(xué)生動手進(jìn)行了畫圖、剪圖、拼圖,還有測量、計算等活動,使學(xué)生從中體會到數(shù)形結(jié)合和從特殊到一般的數(shù)學(xué)思想,而且這一過程也是有利于培養(yǎng)學(xué)生嚴(yán)謹(jǐn)、科學(xué)的學(xué)習(xí)態(tài)度。
(四)問題解決
、弊寣W(xué)生解決開始上課前所提出的問題,前后呼應(yīng),讓學(xué)生體會到成功的快樂。
、沧詫W(xué)課本P101例1,然后完成P102練習(xí)。
(五)課堂小結(jié)
1.小組成員從內(nèi)容、數(shù)學(xué)思想方法、獲取知識的途徑進(jìn)行小結(jié),后由“發(fā)言人”匯報,小組間要互相比一比,看看哪一個小組表現(xiàn)最佳。
2.教師用多媒體介紹“勾股定理史話”
、佟吨荀滤銖健罚何髦艿纳谈(公元一千多年前)發(fā)現(xiàn)了“勾三股四弦五”這一規(guī)律。
、诳滴鯏(shù)學(xué)專著《勾股圖解》有五種求解直角三角形的方法,積求勾股法是其獨創(chuàng)。
目的是對學(xué)生進(jìn)行愛國主義教育,激勵學(xué)生要奮發(fā)向上。
(六)布置作業(yè)
課本P104習(xí)題19.2中的第1.2.3題。目的一方面是鞏固“勾股定理”,另一方面是讓學(xué)生進(jìn)一步體會定理與實際生活的聯(lián)系。
勾股定理說課稿 篇3
課題:勾股定理
內(nèi)容:教材分析、教法學(xué)法分析、教學(xué)過程設(shè)計、設(shè)計說明
一、 教材分析
。ㄒ唬┙滩乃幍牡匚
這節(jié)課是華師大九年制義務(wù)教育課程標(biāo)準(zhǔn)實驗教科書八年級總第19章第2節(jié)探索勾股定理,勾股定理是幾何中幾個重要定理之一,它揭示的是直角三角形中三邊的數(shù)量關(guān)系。它在數(shù)學(xué)的發(fā)展中起過重要的作用,在現(xiàn)時世界中也有著廣泛的作用。學(xué)生通過對勾股定理的學(xué)習(xí),可以在原有的基礎(chǔ)上對直角三角形有進(jìn)一步的認(rèn)識和理解。
。ǘ└鶕(jù)課程標(biāo)準(zhǔn),本課的教學(xué)目標(biāo)是:
1、能說出勾股定理的內(nèi)容。
2、會初步運用勾股定理進(jìn)行簡單的計算和實際運用。
3、在探索勾股定理的過程中,讓學(xué)生經(jīng)歷“觀察—猜想—歸納—驗證”的數(shù)學(xué)思想,并體會數(shù)形結(jié)合和特殊到一般的思想方法。
4、通過介紹勾股定理在中國古代的研究,激發(fā)學(xué)生熱愛祖國,熱愛祖國悠久文化的思想,激勵學(xué)生發(fā)奮學(xué)習(xí)。
。ㄈ┍菊n的教學(xué)重點:探索勾股定理
本課的教學(xué)難點:以直角三角形為邊的正方形面積的計算。
二、教法與學(xué)法分析
教法分析:針對初二年級學(xué)生的知識結(jié)構(gòu)和心理特征,本節(jié)課可選擇引導(dǎo)探索法,由淺入深,由特殊到一般地提出問題。引導(dǎo)學(xué)生自主探索,合作交流,這種教學(xué)理念反映了時代精神,有利于提高學(xué)生的思維能力,能有效地激發(fā)學(xué)生的思維積極性,基本教學(xué)流程是:提出問題—實驗操作—歸納驗證—問題解決—課堂小結(jié)—布置作業(yè)六部分。
學(xué)法分析:在教師的組織引導(dǎo)下,采用自主探索、合作交流的研討式學(xué)習(xí)方式,讓學(xué)生思考問題,獲取知識,掌握方法,借此培養(yǎng)學(xué)生動手、動腦、動口的能力,使學(xué)生真正成為學(xué)習(xí)的主體。
三、 教學(xué)過程設(shè)計
(一)數(shù)學(xué)史導(dǎo)入
以畢達(dá)哥拉斯發(fā)現(xiàn)勾股定理引入新課,不僅自然,而且反映了數(shù)學(xué)來源于實際生活,數(shù)學(xué)是從人的需要中產(chǎn)生這一認(rèn)識的基本觀點,同時也體現(xiàn)了知識的發(fā)生過程,而且解決問題的過程也是一個“數(shù)學(xué)化”的過程。
(二)實驗操作
1、投影課本圖的有關(guān)直角三角形問題,讓學(xué)生計算正方形A,B,C的面積,學(xué)生可能有不同的方法,不管是通過直接數(shù)小方格的個數(shù),還是將C劃分為4個全等的等腰直角三角形來求等等,各種方法都應(yīng)予于肯定,并鼓勵學(xué)生用語言進(jìn)行表達(dá),引導(dǎo)學(xué)生發(fā)現(xiàn)正方形A,B,C的面積之間的數(shù)量關(guān)系,從而學(xué)生通過正方形面積之間的關(guān)系容易發(fā)現(xiàn)對于等腰直角三角形而言滿足兩直角邊的平方和等于斜邊的平方。這樣做有利于學(xué)生參與探索,感受數(shù)學(xué)學(xué)習(xí)的過程,也有利于培養(yǎng)學(xué)生的語言表達(dá)能力,體會數(shù)形結(jié)合的思想。
2、接著讓學(xué)生思考:如果是其它一般的直角三角形,是否也具備這一結(jié)論呢?于是投影圖1—3,圖1—4,同樣讓學(xué)生計算正方形的面積,但正方形C的面積不易求出,可讓學(xué)生在預(yù)先準(zhǔn)備的方格紙上畫出圖形,在剪一剪,拼一拼后學(xué)生也不難發(fā)現(xiàn)對于一般的以整數(shù)為邊長的直角三角形也有兩直角邊的平方和等于斜邊的平方。這樣設(shè)計不僅有利于突破難點,而且為歸納結(jié)論打下了基礎(chǔ),讓學(xué)生體會到觀察、猜想、歸納的思想,也讓學(xué)生的分析問題和解決問題的能力在無形中得到了提高,這對后面的學(xué)習(xí)及有幫助。
3、給出一個邊長單位為5,12,13,這種含小數(shù)的直角三角形,讓學(xué)生計算是否也滿足這個結(jié)論,設(shè)計的目的是讓學(xué)生體會到結(jié)論更具有一般性。
(三)歸納驗證
1、歸納通過對邊長為整數(shù)的等腰直角三角形到一般直角三角形再到邊長含小數(shù)的直角三角形三邊關(guān)系的'研究,讓學(xué)生用數(shù)學(xué)語言概括出一般的結(jié)論,盡管學(xué)生可能講的不完全正確,但對于培養(yǎng)學(xué)生運用數(shù)學(xué)語言進(jìn)行抽象、概括的能力是有益的,同時發(fā)揮了學(xué)生的主體作用,也便于記憶和理解,這比教師直接教給學(xué)生一個結(jié)論要好的多。
2、驗證為了讓學(xué)生確信結(jié)論的正確性,引導(dǎo)學(xué)生在紙上任意作一個直角三角形,通過動手操作拼圖來驗證結(jié)論的正確性和廣泛性。這一過程有利于培養(yǎng)學(xué)生嚴(yán)謹(jǐn)、科學(xué)的學(xué)習(xí)態(tài)度。然后引導(dǎo)學(xué)生用符號語言表示,因為將文字語言轉(zhuǎn)化為數(shù)學(xué)語言是學(xué)習(xí)數(shù)學(xué)學(xué)習(xí)的一項基本能力。接著教師向?qū)W生介紹“勾,股,弦”的含義、勾股定理,進(jìn)行點題,并指出勾股定理只適用于直角三角形。最后向?qū)W生介紹古今中外對勾股定理的研究,對學(xué)生進(jìn)行愛國主義教育和數(shù)學(xué)文化熏陶。
(四)問題解決
讓學(xué)生解決生活中的實際問題,學(xué)生從中能體會到成功的喜悅。完成課本“想一想”進(jìn)一步體會勾股定理在實際生活中的應(yīng)用,數(shù)學(xué)是與實際生活緊密相連的。
(五)課堂小結(jié)
主要通過學(xué)生回憶本節(jié)課所學(xué)內(nèi)容,從內(nèi)容、應(yīng)用、數(shù)學(xué)思想方法、獲取新知的途徑方面先進(jìn)行小結(jié),后由教師總結(jié)。
(六)布置作業(yè)
習(xí)題19.2(1-5)
有興趣的同學(xué)可以查找另外的證明方法,寫出1-2種出來
四、 設(shè)計說明
1、本節(jié)課是公式課,根據(jù)學(xué)生的知識結(jié)構(gòu),我采用的教學(xué)流程是:提出問題—實驗操作—歸納驗證—問題解決—課堂小結(jié)—布置作業(yè)六部分,這一流程體現(xiàn)了知識發(fā)生、形成和發(fā)展的過程,讓學(xué)生體會到觀察、猜想、歸納、驗證的思想和數(shù)形結(jié)合的思想。
2、探索定理采用了面積法,引導(dǎo)學(xué)生利用實驗由特殊到一般再到更一般的對直角三角形三邊關(guān)系的探索和研究,得出結(jié)論。這種一般化的思想方法是認(rèn)識事物規(guī)律的重要方法之一,通過教學(xué)讓學(xué)生初步掌握這種方法,對于學(xué)生良好思維品質(zhì)的形成有重要作用,對學(xué)生的終身發(fā)展也有一定的作用。
3、關(guān)于練習(xí)的設(shè)計,除兩個實際問題和課本習(xí)題以外,還讓有興趣的同學(xué)可以查找另外的證明方法,寫出1-2種出來
4、本課小結(jié)從內(nèi)容,應(yīng)用,數(shù)學(xué)思想方法,獲取知識的途徑等幾個方面展開,既有知識的總結(jié),又有方法的提煉,這樣對于學(xué)生學(xué)數(shù)學(xué)、用數(shù)學(xué)的意識是有很大的裨益的。
勾股定理說課稿 篇4
一、教材分析:
。ㄒ唬 教材的地位與作用
從知識結(jié)構(gòu)上看,勾股定理揭示了直角三角形三條邊之間的數(shù)量關(guān)系,為后續(xù)學(xué)習(xí)解直角三角形提供重要的理論依據(jù),在現(xiàn)實生活中有著廣泛的應(yīng)用。
從學(xué)生認(rèn)知結(jié)構(gòu)上看,它把形的特征轉(zhuǎn)化成數(shù)量關(guān)系,架起了幾何與代數(shù)之間的橋梁;
勾股定理這又是對學(xué)生進(jìn)行愛國主義教育的良好素材,因此具有相當(dāng)重要的地位和作用。
根據(jù)數(shù)學(xué)新課程標(biāo)準(zhǔn)以及八年級學(xué)生的認(rèn)知水平我確定如下學(xué)習(xí)目標(biāo):知識技能、數(shù)學(xué)思考、問題解決、情感態(tài)度。其中【情感態(tài)度】方面,以我國數(shù)學(xué)文化為主線,激發(fā)學(xué)生熱愛祖國悠久文化的情感。
。ǘ┲攸c與難點
為變被動接受為主動探究,我確定本節(jié)課的重點為:勾股定理的探索過程。限于八年級學(xué)生的思維水平,我將面積法(拼圖法)發(fā)現(xiàn)勾股定理確定為本節(jié)課的難點,我將引導(dǎo)學(xué)生動手實驗突出重點,合作交流突破難點。
二、教學(xué)與學(xué)法分析
教學(xué)方法 葉圣陶說過“教師之為教,不在全盤授予,而在相機(jī)誘導(dǎo)!币虼私處熇脦缀沃庇^提出問題,引導(dǎo)學(xué)生由淺入深的探索,設(shè)計實驗讓學(xué)生進(jìn)行驗證,感悟其中所蘊(yùn)涵的思想方法。
學(xué)法指導(dǎo) 為把學(xué)習(xí)的主動權(quán)還給學(xué)生,教師鼓勵學(xué)生采用動手實踐,自主探索、合作交流的學(xué)習(xí)方法,讓學(xué)生親自感知體驗知識的形成過程。
三、教學(xué)過程
我國數(shù)學(xué)文化源遠(yuǎn)流長、博大精深,為了使學(xué)生感受其傳承的魅力,我將本節(jié)課設(shè)計為以下五個環(huán)節(jié)。
首先,情境導(dǎo)入 古韻今風(fēng)
給出《七巧八分圖》中的一組圖片,讓學(xué)生利用兩組七巧板進(jìn)行合作拼圖。(請看視頻)讓學(xué)生觀察并思考三個正方形面積之間的關(guān)系?它們圍成了什么三角形?反映在三邊上,又蘊(yùn)含著什么數(shù)學(xué)奧秘呢?寓教于樂,激發(fā)學(xué)生好奇、探究的欲望。
第二步 追溯歷史 解密真相
勾股定理的探索過程就是本節(jié)課的重點,依照數(shù)學(xué)知識的循序漸進(jìn)、螺旋上升的原則,我設(shè)計如下三個活動。
從上面低起點的問題入手,有利于學(xué)生參與探索。學(xué)生很容易發(fā)現(xiàn),在等腰三角形中存在如下關(guān)系。巧妙的將面積之間的關(guān)系轉(zhuǎn)化為邊長之間的關(guān)系,體現(xiàn)了轉(zhuǎn)化的思想。觀察發(fā)現(xiàn)雖然直觀,但面積計算更具說服力。將圖形轉(zhuǎn)化為邊在格線上的圖形,以便于計算圖形面積,體現(xiàn)了數(shù)形結(jié)合的思想。學(xué)生會想到用“數(shù)格子”的方法,這種方法雖然簡單易行,但對于下一步探索一般直角三角形并不適用,具有局限性。因此教師應(yīng)引導(dǎo)學(xué)生利用“割”和“補(bǔ)”的方法求正方形C的面積,為下一步探索復(fù)雜圖形的面積做鋪墊。
突破等腰直角三角形的束縛,探索在一般情況下的直角三角形是否也存在這一結(jié)論呢?體現(xiàn)了“從特殊到一般”的認(rèn)知規(guī)律。教師給出邊長單位長度分別為3、4、5的直角三角形,避免了學(xué)生因作圖不準(zhǔn)確而產(chǎn)生的錯誤,也為下面 “勾三股四弦五”的提出埋下伏筆。有了上一環(huán)節(jié)的鋪墊,有效地分散了難點。在求正方形C的面積時,學(xué)生將展示“割”的方法, “補(bǔ)”的方法,有的學(xué)生可能會發(fā)現(xiàn)平移的方法,旋轉(zhuǎn)的方法,對于這兩種新方法教師應(yīng)給于表揚(yáng),肯定學(xué)生的研究成果,培養(yǎng)學(xué)生的類比、遷移以及探索問題的能力。
使用幾何畫板動態(tài)演示,使幾何與代數(shù)之間的關(guān)系可視化。當(dāng)為直角三角形時,改變?nèi)呴L度三邊關(guān)系不變,當(dāng)∠α為銳角或鈍角時,三邊關(guān)系就改變了,進(jìn)而強(qiáng)調(diào)了命題成立的前提條件必須就是直角三角形。加深學(xué)生對勾股定理理解的同時也拓展了學(xué)生的視野。
以上三個環(huán)節(jié)層層深入步步引導(dǎo),學(xué)生歸納得到命題1,從而培養(yǎng)學(xué)生的'合情推理能力以及語言表達(dá)能力。
感性認(rèn)識未必是正確的,推理驗證證實我們的猜想。
第三步 推陳出新 借古鼎新
教材中直接給出“趙爽弦圖”的證法對學(xué)生的思維就是一種禁錮,教師創(chuàng)新使用教材,利用拼圖活動解放學(xué)生的大腦,讓學(xué)生發(fā)揮自己的聰明才智證明勾股定理。這就是教學(xué)的難點也是重點,教師應(yīng)給學(xué)生充分的自主探索的時間與空間,讓學(xué)生的思維在相互討論中碰撞、在相互學(xué)習(xí)中完善。教師深入到學(xué)生中間,觀察學(xué)生探究方法接受學(xué)生的質(zhì)疑,對于不同的拼圖方案給予肯定。從而體現(xiàn)出“學(xué)生就是學(xué)習(xí)的主體,教師就是組織者、引導(dǎo)者與合作者”這一教學(xué)理念。學(xué)生會發(fā)現(xiàn)兩種證明方案。
方案1為趙爽弦圖,學(xué)生講解論證過程,再現(xiàn)古代數(shù)學(xué)家的探索方法。方案2為學(xué)生自己探索的結(jié)果,論證之巧較方案1有異曲同工之妙。整個探索過程,讓學(xué)生經(jīng)歷由表面到本質(zhì),由合情推理到演繹推理的發(fā)掘過程,體會數(shù)學(xué)的嚴(yán)謹(jǐn)性。比“古”、“今”兩種證法,讓學(xué)生體會“吹盡黃沙始到金”的喜悅,感受到“青出于藍(lán)而勝于藍(lán)”的自豪感。板書勾股定理,進(jìn)而給出字母表示,培養(yǎng)學(xué)生的符號意識。
教師對“勾、股、弦”的含義以及古今中外對勾股定理的研究做一個介紹,使學(xué)生感受數(shù)學(xué)文化,培養(yǎng)民族自豪感和愛國主義精神。利用勾股樹動態(tài)演示,讓學(xué)生欣賞數(shù)學(xué)的精巧、優(yōu)美。
第四步 取其精華 古為今用
我按照“理解—掌握—運用”的梯度設(shè)計了如下三組習(xí)題。
。1)對應(yīng)難點,鞏固所學(xué);(2)考查重點,深化新知;(3)解決問題,感受應(yīng)用
第五步 溫故反思 任務(wù)后延
在課堂接近尾聲時,我鼓勵學(xué)生從“四基”的要求對本節(jié)課進(jìn)行小結(jié)。進(jìn)而總結(jié)出一個定理、二個方案、三種思想、四種經(jīng)驗。
然后布置作業(yè),分層作業(yè)體現(xiàn)了教育面向全體學(xué)生的理念。
四、教學(xué)評價
在探究活動中,教師評價、學(xué)生自評與互評相結(jié)合,從而體現(xiàn)評價主體多元化和評價方式的多樣化。
五、設(shè)計說明
本節(jié)課探究體驗貫穿始終,展示交流貫穿始終,習(xí)慣養(yǎng)成貫穿始終,情感教育貫穿始終,文化育人貫穿始終。
采用 “七巧板”代替教材中“畢達(dá)哥拉斯地板磚”利用我國傳統(tǒng)文化引入課題,趙爽弦圖證明定理,符合本節(jié)課以我國數(shù)學(xué)文化為主線這一設(shè)計理念,展現(xiàn)了我國古代數(shù)學(xué)璀璨的歷史,激發(fā)學(xué)生再創(chuàng)數(shù)學(xué)輝煌的愿望。
以上就是我對《勾股定理》這一課的設(shè)計說明,有不足之處請評委老師們指正,謝謝大家。
勾股定理說課稿 篇5
一、 教材分析
。ㄒ唬┙滩牡匚
這節(jié)課是九年制義務(wù)教育初級中學(xué)教材北師大版七年級第二章第一節(jié)《探索勾股定理》第一課時,勾股定理是幾何中幾個重要定理之一,它揭示的是直角三角形中三邊的數(shù)量關(guān)系。它在數(shù)學(xué)的發(fā)展中起過重要的作用,在現(xiàn)時世界中也有著廣泛的作用。學(xué)生通過對勾股定理的學(xué)習(xí),可以在原有的基礎(chǔ)上對直角三角形有進(jìn)一步的認(rèn)識和理解。
。ǘ┙虒W(xué)目標(biāo) 知識與能力:掌握勾股定理,并能運用勾股定理解決一些簡單實際問題。 過程與方法:經(jīng)歷探索及驗證勾股定理的過程,了解利用拼圖驗證勾股定理的方法,發(fā)展學(xué)生的合情推理意識、主動探究的習(xí)慣,感受數(shù)形結(jié)合和從特殊到一般的思想。 情感態(tài)度與價值觀: 激發(fā)學(xué)生愛國熱情,讓學(xué)生體驗自己努力得到結(jié)論的成就感,體驗數(shù)學(xué)充滿探索和創(chuàng)造,體驗數(shù)學(xué)的美感,從而了解數(shù)學(xué),喜歡數(shù)學(xué)。
。ㄈ┙虒W(xué)重點:經(jīng)歷探索及驗證勾股定理的過程,并能用它來解決一些簡單的'實際問題。
教學(xué)難點:用面積法(拼圖法)發(fā)現(xiàn)勾股定理。
突出重點、突破難點的辦法:發(fā)揮學(xué)生的主體作用,通過學(xué)生動手實驗,讓學(xué)生在實驗中探索、在探索中領(lǐng)悟、在領(lǐng)悟中理解。
二、教法與學(xué)法分析:
學(xué)情分析:七年級學(xué)生已經(jīng)具備一定的觀察、歸納、猜想和推理的能力.他們在小學(xué)已學(xué)習(xí)了一些幾何圖形的面積計算方法(包括割補(bǔ)、拼接),但運用面積法和割補(bǔ)思想來解決問題的意識和能力還不夠。另外,學(xué)生普遍學(xué)習(xí)積極性較高,課堂活動參與較主動,但合作交流的能力還有待加強(qiáng).
教法分析:結(jié)合七年級學(xué)生和本節(jié)教材的特點,在教學(xué)中采用“問題情境————建立模型————解釋應(yīng)用———拓展鞏固”的模式, 選擇引導(dǎo)探索法。把教學(xué)過程轉(zhuǎn)化為學(xué)生親身觀察,大膽猜想,自主探究,合作交流,歸納總結(jié)的過程。
學(xué)法分析:在教師的組織引導(dǎo)下,學(xué)生采用自主探究合作交流的研討式學(xué)習(xí)方式,使學(xué)生真正成為學(xué)習(xí)的主人。
三、 教學(xué)過程設(shè)計
1、創(chuàng)設(shè)情境,提出問題
2、實驗操作,模型構(gòu)建
3、回歸生活,應(yīng)用新知
4、知識拓展,鞏固深化
5、感悟收獲,布置作業(yè)
。ㄒ唬﹦(chuàng)設(shè)情境提出問題
。1)圖片欣賞 勾股定理數(shù)形圖 1955年希臘發(fā)行 美麗的勾股樹20xx年國際數(shù)學(xué) 的一枚紀(jì)念郵票 大會會標(biāo) 設(shè)計意圖:通過圖形欣賞,感受數(shù)學(xué)美,感受勾股定理的文化價值。
。2) 某樓房三樓失火,消防隊員趕來救火,了解到每層樓高3米,消防隊員取來6。5米長的云梯,如果梯子的底部離墻基的距離是2。5米,請問消防隊員能否進(jìn)入三樓滅火
設(shè)計意圖:以實際問題為切入點引入新課,反映了數(shù)學(xué)來源于實際生活,產(chǎn)生于人的需要,也體現(xiàn)了知識的發(fā)生過程,解決問題的過程也是一個“數(shù)學(xué)化”的過程,從而引出下面的環(huán)節(jié)。
二、實驗操作模型構(gòu)建
1、等腰直角三角形(數(shù)格子)
2、一般直角三角形(割補(bǔ))
問題一:對于等腰直角三角形,正方形Ⅰ、Ⅱ、Ⅲ的面積有何關(guān)系
設(shè)計意圖:這樣做利于學(xué)生參與探索,利于培養(yǎng)學(xué)生的語言表達(dá)能力,體會數(shù)形結(jié)合的思想。
問題二:對于一般的直角三角形,正方形Ⅰ、Ⅱ、Ⅲ的面積也有這個關(guān)系嗎 (割補(bǔ)法是本節(jié)的難點,組織學(xué)生合作交流)
設(shè)計意圖:不僅有利于突破難點,而且為歸納結(jié)論打下基礎(chǔ),讓學(xué)生的分析問題解決問題的能力在無形中得到提高。
通過以上實驗歸納總結(jié)勾股定理。
設(shè)計意圖:學(xué)生通過合作交流,歸納出勾股定理的雛形,培養(yǎng)學(xué)生抽象、概括的能力,同時發(fā)揮了學(xué)生的主體作用,體驗了從特殊—— 一般的認(rèn)知規(guī)律。
三;貧w生活應(yīng)用新知
讓學(xué)生解決開頭情景中的問題,前呼后應(yīng),增強(qiáng)學(xué)生學(xué)數(shù)學(xué)、用數(shù)學(xué)的意識,增加學(xué)以致用的樂趣和信心。
四、知識拓展鞏固深化
基礎(chǔ)題,情境題,探索題。
設(shè)計意圖:給出一組題目,分三個梯度,由淺入深層層練習(xí),照顧學(xué)生的個體差異,關(guān)注學(xué)生的個性發(fā)展。知識的運用得到升華。
基礎(chǔ)題: 直角三角形的一直角邊長為3,斜邊為5,另一直角邊長為X,你可以根據(jù)條件提出多少個數(shù)學(xué)問題 你能解決所提出的問題嗎
設(shè)計意圖:這道題立足于雙基.通過學(xué)生自己創(chuàng)設(shè)情境 ,鍛煉了發(fā)散思維. 情境題:小明媽媽買了一部29英寸(74厘米)的電視機(jī)。小明量了電視機(jī)的屏幕后,發(fā)現(xiàn)屏幕只有58厘米長和46厘米寬,他覺得一定是售貨員搞錯了。你同意他的想法嗎
設(shè)計意圖:增加學(xué)生的生活常識,也體現(xiàn)了數(shù)學(xué)源于生活,并用于生活。 探索題: 做一個長,寬,高分別為50厘米,40厘米,30厘米的木箱,一根長為70厘米的木棒能否放入,為什么 試用今天學(xué)過的知識說明。
設(shè)計意圖:探索題的難度相對大了些,但教師利用教學(xué)模型和學(xué)生合作交流的方式,拓展學(xué)生的思維、發(fā)展空間想象能力。
五、感悟收獲布置作業(yè): 這節(jié)課你的收獲是什么
作業(yè):1、課本習(xí)題
2、1 2、搜集有關(guān)勾股定理證明的資料。
板書設(shè)計 探索勾股定理
如果直角三角形兩直角邊分別為a,b,斜邊為c,那么
a2 b2 c2
設(shè)計說明::1。探索定理采用面積法,為學(xué)生創(chuàng)設(shè)一個和諧、寬松的情境,讓學(xué)生體會數(shù)形結(jié)合及從特殊到一般的思想方法.
2、讓學(xué)生人人參與,注重對學(xué)生活動的評價,一是學(xué)生在活動中的投入程度;二是學(xué)生在活動中表現(xiàn)出來的思維水平、表達(dá)水平。
【勾股定理說課稿】相關(guān)文章:
《勾股定理》說課稿12-16
勾股定理說課稿07-05
《勾股定理》的說課稿06-08
勾股定理說課稿02-11
探索勾股定理說課稿05-21
探索《勾股定理》說課稿01-04
探索勾股定理說課稿12-06
《勾股定理》優(yōu)秀說課稿01-21
勾股定理說課稿15篇05-26