關于勾股定理說課稿錦集七篇
作為一位杰出的老師,很有必要精心設計一份說課稿,借助說課稿可以更好地組織教學活動。怎樣寫說課稿才更能起到其作用呢?下面是小編收集整理的勾股定理說課稿7篇,供大家參考借鑒,希望可以幫助到有需要的朋友。
勾股定理說課稿 篇1
一、 教材分析
(一)教材地位
這節(jié)課是九年制義務教育初級中學教材北師大版八年級第一章第一節(jié)《探索勾股定理》第一課時,勾股定理是幾何中幾個重要定理之一,它揭示的是直角三角形中三邊的數量關系。它在數學的發(fā)展中起過重要的作用,在現時世界中也有著廣泛的作用。學生通過對勾股定理的學習,可以在原有的基礎上對直角三角形有進一步的認識和理解。
(二)教學目標
知識與能力:掌握勾股定理,并能運用勾股定理解決一些簡單實際問題。
過程與方法:經歷探索及驗證勾股定理的過程,了解利用拼圖驗證勾股定理的方法,發(fā)展學生的合情推理意識、主動探究的習慣,感受數形結合和從特殊到一般的思想。
情感態(tài)度與價值觀:激發(fā)學生愛國熱情,讓學生體驗自己努力得到結論的成就感,體驗數學充滿探索和創(chuàng)造,體驗數學的美感,從而了解數學,喜歡數學。
(三)教學重點:
經歷探索及驗證勾股定理的過程,并能用它來解決一些簡單的實際問題。
教學難點:用面積法(拼圖法)發(fā)現勾股定理。
突出重點、突破難點的辦法:發(fā)揮學生的主體作用,通過學生動手實驗,讓學生在實驗中探索、在探索中領悟、在領悟中理解。
二、教法與學法分析:
學情分析:八年級學生已經具備一定的觀察、歸納、猜想和推理的能力.他們在小學已學習了一些幾何圖形的面積計算方法(包括割補、拼接),但運用面積法和割補思想來解決問題的意識和能力還不夠。另外,學生普遍學習積極性較高,課堂活動參與較主動,但合作交流的能力還有待加強.
教法分析:結合八年級學生和本節(jié)教材的特點,在教學中采用“問題情境————建立模型————解釋應用———拓展鞏固”的模式, 選擇引導探索法。把教學過程轉化為學生親身觀察,大膽猜想,自主探究,合作交流,歸納總結的過程。
學法分析:在教師的組織引導下,學生采用自主探究合作交流的研討式學習方式,使學生真正成為學習的主人。
三、 教學過程設計
1、創(chuàng)設情境,提出問題
2、實驗操作,模型構建
3、回歸生活,應用新知
4、知識拓展,鞏固深化5。感悟收獲,布置作業(yè)
(一)創(chuàng)設情境提出問題
樓房三樓失火,消防隊員趕來救火,了解到每層樓高3米,消防隊員取來6。5米長的云梯,如果梯子的底部離墻基的距離是2。5米,請問消防隊員能否進入三樓滅火?
設計意圖:以實際問題為切入點引入新課,反映了數學來源于實際生活,產生于人的需要,也體現了知識的發(fā)生過程,解決問題的過程也是一個“數學化”的過程,從而引出下面的環(huán)節(jié)。
實驗操作模型構建
1、等腰直角三角形(數格子)
2、一般直角三角形(割補)
問題一:對于等腰直角三角形,正方形Ⅰ、Ⅱ、Ⅲ的面積有何關系?
設計意圖:這樣做利于學生參與探索,利于培養(yǎng)學生的語言表達能力,體會數形結合的思想。
問題二:對于一般的直角三角形,正方形Ⅰ、Ⅱ、Ⅲ的面積也有這個關系嗎?(割補法是本節(jié)的難點,組織學生合作交流)
設計意圖:不僅有利于突破難點,而且為歸納結論打下基礎,讓學生的分析問題解決問題的能力在無形中得到提高。
通過以上實驗歸納總結勾股定理。
設計意圖:學生通過合作交流,歸納出勾股定理的雛形,培養(yǎng)學生抽象、概括的能力,同時發(fā)揮了學生的主體作用,體驗了從特殊—— 一般的`認知規(guī)律。
回歸生活應用新知
讓學生解決開頭情景中的問題,前呼后應,增強學生學數學、用數學的意識,增加學以致用的樂趣和信心。
四、知識拓展鞏固深化
基礎題,情境題,探索題。
設計意圖:給出一組題目,分三個梯度,由淺入深層層練習,照顧學生的個體差異,關注學生的個性發(fā)展。知識的運用得到升華。
基礎題: 直角三角形的一直角邊長為3,斜邊為5,另一直角邊長為X,你可以根據條件提出多少個數學問題?你能解決所提出的問題嗎?
設計意圖:這道題立足于雙基.通過學生自己創(chuàng)設情境,鍛煉了發(fā)散思維.
情境題:小明媽媽買了一部29英寸(74厘米)的電視機。小明量了電視機的屏幕后,發(fā)現屏幕只有58厘米長和46厘米寬,他覺得一定是售貨員搞錯了。你同意他的想法嗎?
設計意圖:增加學生的生活常識,也體現了數學源于生活,并用于生活。
探索題: 做一個長,寬,高分別為50厘米,40厘米,30厘米的木箱,一根長為70厘米的木棒能否放入,為什么?試用今天學過的知識說明。
設計意圖:探索題的難度相對大了些,但教師利用教學模型和學生合作交流的方式,拓展學生的思維、發(fā)展空間想象能力。
五、感悟收獲布置作業(yè):
這節(jié)課你的收獲是什么?
1、課本習題2。1
2、搜集有關勾股定理證明的資料。
板書設計 探索勾股定理
如果直角三角形兩直角邊分別為a,b,斜邊為c,那么
李景萍《探索勾股定理》第一課時說課稿
設計說明:
1、探索定理采用面積法,為學生創(chuàng)設一個和諧、寬松的情境,讓學生體會數形結合及從特殊到一般的思想方法.
2、讓學生人人參與,注重對學生活動的評價,一是學生在活動中的投入程度;二是學生在活動中表現出來的思維水平、表達水平。
勾股定理說課稿 篇2
一、說教材
勾股定理是學生在已經掌握了直角三角形的有關性質的基礎上進行學習的,它是直角三角形的一條非常重要的性質,是幾何中最重要的定理之一,它揭示了一個三角形三條邊之間的數量關系,它可以解決直角三角形中的計算問題,是解直角三角形的主要根據之一,在實際生活中用途很大。教材在編寫時注意培養(yǎng)學生的動手操作能力和分析問題的能力,通過實際分析、拼圖等活動,使學生獲得較為直觀的印象;通過聯系和比較,理解勾股定理,以利于正確的進行運用。
據此,制定教學目標如下:
1、理解并掌握勾股定理及其證明。
2、能夠靈活地運用勾股定理及其計算。
3、培養(yǎng)學生觀察、比較、分析、推理的能力。
4、通過介紹中國古代勾股方面的成就,激發(fā)學生熱愛祖國與熱愛祖國悠久文化的思想感情,培養(yǎng)他們的民族自豪感和鉆研精神。
教學重點:勾股定理的證明和應用。
教學難點:勾股定理的證明。
二、說教法和學法
教法和學法是體現在整個教學過程中的,本課的教法和學法體現如下特點:
1、以自學輔導為主,充分發(fā)揮教師的主導作用,運用各種手段激發(fā)學生學習欲望和興趣,組織學生活動,讓同學們主動參與學習全過程。
2、切實體現學生的主體地位,讓學生通過觀察、分析、討論、操作、歸納,理解定理,提高學生動手操作能力,以及分析問題和解決問題的能力。
3、通過演示實物,引導學生觀察、操作、分析、證明,使學生得到獲得新知的成功感受,從而激發(fā)學生鉆研新知的欲望。
三、教學程序
本節(jié)內容的教學主要體現在學生動手、動腦方面,根據學生的認知規(guī)律和學習心理,教學程序設計如下:
(一)創(chuàng)設情境 以古引新
1、由故事引入,3000多年前有個叫商高的人對周公說,把一根直尺折成直角,兩端連接得到一個直角三角形,如果勾是3,股是4,那么弦等于5。這樣引起學生學習興趣,激發(fā)學生求知欲。
2、是不是所有的直角三角形都有這個性質呢?教師要善于激疑,使學生進入樂學狀態(tài)。
3、板書課題,出示學習目標。
。ǘ┏醪礁兄 理解教材
教師指導學生自學教材,通過自學感悟理解新知,體現了學生的自主學習意識,鍛煉學生主動探究知識,養(yǎng)成良好的自學習慣。
(三)質疑解難 討論歸納
1、教師設疑或學生提疑。如:如何證明勾股定理?學生通過自學,中等以上的學生基本掌握,這時能激發(fā)同學們的表現欲。
2、教師引導學生按照要求進行拼圖,觀察并分析;
。1)這兩個圖形有什么特點?
(2)你能寫出這兩個圖形的面積嗎?
。3)如何運用勾股定理?是否還有其他形式?
這時教師組織學生分組討論,調動全體學生的積極性,達到人人參與的'效果,接著全班交流。先有某一組代表發(fā)言,說明本組對問題的理解程度,其他各組作評價和補充。教師及時進行富有啟發(fā)性的點撥,最后,師生共同歸納,形成一致意見,最終解決疑難。
。ㄋ模╈柟叹毩 強化提高
1、出示練習,學生分組解答,并由學生總結解題規(guī)律。課堂教學中動靜結合,以免引起學生的疲勞。
2、出示例1學生試解,師生共同評價,以加深對例題的理解與運用。針對例題再次出現鞏固練習,進一步提高學生運用知識的能力,對練習中出現的情況可采取互評、互議的形式,在互評互議中出現的具有代表性的問題,教師可以采取全班討論的形式予以解決,以此突出教學重點。
。ㄎ澹w納總結 練習反饋
引導同學們對知識要點進行總結,梳理學習思路。分發(fā)自我反饋練習,同學們獨立完成。
本課意在創(chuàng)設愉悅和諧的樂學氣氛,優(yōu)化教學手段,借助電教手段提高課堂教學效率,建立平等、民主、和諧的師生關系。加強師生間的合作,營造一種學生敢想、感說、感問的課堂氣氛,讓全體學生都能生動活潑、積極主動地教學活動,在學習中創(chuàng)新精神和實踐能力得到培養(yǎng)。
勾股定理說課稿 篇3
課題:“勾股定理”第一課時
內容:教材分析、教學過程設計、設計說明
一、教材分析
。ㄒ唬┙滩乃幍牡匚
這節(jié)課是九年制義務教育課程標準實驗教科書八年級第一章第一節(jié)探索勾股定理第一課時,勾股定理是幾何中幾個重要定理之一,它揭示的是直角三角形中三邊的數量關系。它在數學的發(fā)展中起過重要的作用,在現時世界中也有著廣泛的作用。學生通過對勾股定理的學習,可以在原有的基礎上對直角三角形有進一步的認識和理解。
。ǘ└鶕n程標準,本課的教學目標是:
1、能說出勾股定理的內容。
2、會初步運用勾股定理進行簡單的計算和實際運用。
3、在探索勾股定理的過程中,讓學生經歷“觀察—猜想—歸納—驗證”的數學思想,并體會數形結合和特殊到一般的思想方法。
4、通過介紹勾股定理在中國古代的研究,激發(fā)學生熱愛祖國,熱愛祖國悠久文化的思想,激勵學生發(fā)奮學習。
。ㄈ┍菊n的教學重點:探索勾股定理
本課的教學難點:以直角三角形為邊的正方形面積的計算。
二、教法與學法分析:
教法分析:針對初二年級學生的知識結構和心理特征,本節(jié)課可選擇引導探索法,由淺入深,由特殊到一般地提出問題。引導學生自主探索,合作交流,這種教學理念反映了時代精神,有利于提高學生的思維能力,能有效地激發(fā)學生的思維積極性,基本教學流程是:提出問題—實驗操作—歸納驗證—問題解決—課堂小結—布置作業(yè)六部分。
學法分析:在教師的組織引導下,采用自主探索、合作交流的研討式學習方式,讓學生思考問題,獲取知識,掌握方法,借此培養(yǎng)學生動手、動腦、動口的能力,使學生真正成為學習的主體。
三、教學過程設計
。ㄒ唬┨岢鰡栴}:
首先創(chuàng)設這樣一個問題情境:某樓房三樓失火,消防隊員趕來救火,了解到每層樓高3米,消防隊員取來6.5米長的云梯,如果梯子的底部離墻基的距離是2.5米,請問消防隊員能否進入三樓滅火?問題設計具有一定的挑戰(zhàn)性,目的是激發(fā)學生的探究欲望,教師引導學生將實際問題轉化成數學問題,也就是“已知一直角三角形的兩邊,如何求第三邊?”的問題。學生會感到困難,從而教師指出學習了今天這一課后就有辦法解決了。這種以實際問題為切入點引入新課,不僅自然,而且反映了數學來源于實際生活,數學是從人的需要中產生這一認識的基本觀點,同時也體現了知識的發(fā)生過程,而且解決問題的過程也是一個“數學化”的過程。
(二)實驗操作:
1、投影課本圖1—1,圖1—2的有關直角三角形問題,讓學生計算正方形A,B,C的面積,學生可能有不同的方法,不管是通過直接數小方格的個數,還是將C劃分為4個全等的'等腰直角三角形來求等等,各種方法都應予于肯定,并鼓勵學生用語言進行表達,引導學生發(fā)現正方形A,B,C的面積之間的數量關系,從而學生通過正方形面積之間的關系容易發(fā)現對于等腰直角三角形而言滿足兩直角邊的平方和等于斜邊的平方。這樣做有利于學生參與探索,感受數學學習的過程,也有利于培養(yǎng)學生的語言表達能力,體會數形結合的思想。
2、接著讓學生思考:如果是其它一般的直角三角形,是否也具備這一結論呢?于是投影圖1—3,圖1—4,同樣讓學生計算正方形的面積,但正方形C的面積不易求出,可讓學生在預先準備的方格紙上畫出圖形,在剪一剪,拼一拼后學生也不難發(fā)現對于一般的以整數為邊長的直角三角形也有兩直角邊的平方和等于斜邊的平方。這樣設計不僅有利于突破難點,而且為歸納結論打下了基礎,讓學生體會到觀察、猜想、歸納的思想,也讓學生的分析問題和解決問題的能力在無形中得到了提高,這對后面的學習及有幫助。
3、給出一個邊長為0.5,1.2,1.3,這種含小數的直角三角形,讓學生計算是否也滿足這個結論,設計的目的是讓學生體會到結論更具有一般性。
。ㄈw納驗證:
1、歸納通過對邊長為整數的等腰直角三角形到一般直角三角形再到邊長含小數的直角三角形三邊關系的研究,讓學生用數學語言概括出一般的結論,盡管學生可能講的不完全正確,但對于培養(yǎng)學生運用數學語言進行抽象、概括的能力是有益的,同時發(fā)揮了學生的主體作用,也便于記憶和理解,這比教師直接教給學生一個結論要好的多。
2、驗證為了讓學生確信結論的正確性,引導學生在紙上任意作一個直角三角形,通過測量、計算來驗證結論的正確性。這一過程有利于培養(yǎng)學生嚴謹、科學的學習態(tài)度。然后引導學生用符號語言表示,因為將文字語言轉化為數學語言是學習數學學習的一項基本能力。接著教師向學生介紹“勾,股,弦”的含義、勾股定理,進行點題,并指出勾股定理只適用于直角三角形。最后向學生介紹古今中外對勾股定理的研究,對學生進行愛國主義教育。
。ㄋ模﹩栴}解決:
讓學生解決開頭的實際問題,前后呼應,學生從中能體會到成功的喜悅。完成課本“想一想”進一步體會勾股定理在實際生活中的應用,數學是與實際生活緊密相連的。
(五)課堂小結:
主要通過學生回憶本節(jié)課所學內容,從內容、應用、數學思想方法、獲取新知的途徑方面先進行小結,后由教師總結。
。┎贾米鳂I(yè):
課本P6習題1.11,2,3,4一方面鞏固勾股定理,另一方面進一步體會定理與實際生活的聯系。另外,補充一道開放題。
四、設計說明
1、本節(jié)課是公式課,根據學生的知識結構,我采用的教學流程是:提出問題—實驗操作—歸納驗證—問題解決—課堂小結—布置作業(yè)六部分,這一流程體現了知識發(fā)生、形成和發(fā)展的過程,讓學生體會到觀察、猜想、歸納、驗證的思想和數形結合的思想。
2、探索定理采用了面積法,引導學生利用實驗由特殊到一般再到更一般的對直角三角形三邊關系的研究,得出結論。這種方法是認識事物規(guī)律的重要方法之一,通過教學讓學生初步掌握這種方法,對于學生良好思維品質的形成有重要作用,對學生的終身發(fā)展也有一定的作用。
3、關于練習的設計,除兩個實際問題和課本習題以外,我準備設計一道開放題,大致思路是在已畫出斜邊上的高的直角三角形中讓學生盡量地找出線段之間的關系。
4、本課小結從內容,應用,數學思想方法,獲取知識的途徑等幾個方面展開,既有知識的總結,又有方法的提煉,這樣對于學生學知識,用知識的意識是有很大的促進的。
勾股定理說課稿 篇4
一、說教材分析
本節(jié)研究的是勾股定理的探索及其應用。它從邊的角度進一步對直角三角形的特征進行了刻畫。 它的主要內容是探索勾股定理,驗證勾股定理的正確性,在此基礎上,讓學生利用勾股定理來解決一些實際問題。本節(jié)課是在學生認識直角三角形的基礎上,在了解正方形和等腰直角三角形以后進行學習的,它是前面所學知識的延伸和拓展,又是后面學習勾股定理逆定理的基礎,具有承上啟下的作用。
二、說教學目標
教學目標的確定:教學目標是一堂課的中心任務,它只有在豐富多彩的數學活動中才能充分實現。一堂課的教學目標應全面、適度、明確、具體,便于檢測。因此根據學生已有的認知基礎和新課程標準,我確定了本節(jié)課教學目標為:
1、知識技能:
。1)了解勾股定理的文化背景,體驗勾股定理的探索和驗證過程。
。2)運用勾股定理進行簡單的計算和解釋生活中的`實際問題。
。3)運用勾股定理會在數軸上畫出表示無理數的點。
2、數學思考:
在勾股定理的探索、從實際問題抽象出直角三角形和在數軸上畫出表示無理數的點的過程中,發(fā)展合情推理能力,初步體會、掌握轉化和數形結合的思想方法。
3、解決問題:
通過拼圖、探究活動,體驗數學思維的嚴謹性,發(fā)展形象思維。學會與人合作并能與他人交流思維的過程和探究的結果。能夠運用勾股定理解決直角三角形,在數軸上畫出表示無理數的點等有關實際問題。
4、情感態(tài)度:
。ǎ保┩ㄟ^對勾股定理歷史的了解和實例應用,體會勾股定理的文化價值,感受數學文化,激發(fā)學習熱情。
。ǎ玻┩ㄟ^獲得成功的經驗和克服困難的經歷,增進數學學習的信心。
。3)通過研究一系列富有探究性的問題,培養(yǎng)學生與他人交流、合作的意識和品質。
三、說教學重、難點
教學重、難點的確定:關注學生是否能與同伴進行有效的合作交流;關注學生是否積極的進行思考;關注學生能否探索出解決問題的方法。
重點:通過探索、拼圖驗證勾股定理及勾股定理的應用過程,使學生獲得一些研究問題與合作交流的方法經驗。
難點:利用數形結合的方法探索發(fā)現、驗證勾股定理及其在實際生活中的應用。
四、知識反映出來的技能、能力、方法、德育等因素
本節(jié)知識通過 “ 探索發(fā)現---拼圖實踐—探索驗證—分析結果—運用定理 ” 等活動過程,使學生進一步理解勾股定理,并從中學會思考,學會探索,學會運用,學會交流,體會知識反映出來的豐富的文化內涵,指導學生認識現實世界中蘊涵著的數學信息。
五、教學方法
數學知識、數學思想和方法必須由學生在現實的數學活動實踐中理解和發(fā)展;教學中,以學生為本位,充分挖掘教材的空間,為學生搭建動手實踐、自主探索、合作交流的平臺;
注重讓學生經歷數學知識的形成過程,充分調動學生的學習積極性,并通過這個過程,使學生體驗學習成功的樂趣,在積極的思維中獲取知識,發(fā)展能力。
六、教學程序設計:
為充分發(fā)揮學生的主體性和教師的主導輔助作用,設計了以下幾個環(huán)節(jié):
(1)創(chuàng)設情境,引入新課
問題
某樓房三樓失火,消防隊員趕來救火,了解到每層樓高3米,消防隊員取來6.5米長的云梯,如果梯子的底部離墻基的距離是2.5米,請問消防隊能否進入三樓滅火?
師生行為:教師出示照片及圖片,并提出問題,學生觀察圖片發(fā)表見解。
設計意圖:從現實生活中提出勾股定理,為學生能夠積極主動的投入到探索活動創(chuàng)設情景,激發(fā)學生學習熱情。同時為探索勾股定理提供背景材料。達到引入新課的目的。
。1)獨立探究,合作交流。
講述數學家畢達哥拉斯的故事
問題
A、B、C的面積有什么關系?
SA+SB=SC
直角三角形三邊有什么關系?
兩直邊的平方和等于斜邊的平方
設計意圖:問題是思維的起點,通過激發(fā)學生好奇、探究和主動學習的欲望。利用面積相等法,讓學生發(fā)現以直角三角形兩直角邊為邊長的正方形的面積,以斜邊為邊長的正方形的面積之間的關系。降低學生學習難度,從(3)自主實踐,探索驗證
《課程標準》指出:“數學教學是數學活動的教學!币髮W生分學習小組,動手實踐,積極思考,獲得技能與解決問題的方法。關注學生動手實踐,關注學生主動探索與合作,關注學生積極思考,給學生思維表達的時間、空間,讓學生經歷探索知識的過程,并在這個過程中得到發(fā)展.。
兩種拼圖方案
1、2、
師生行為:教師演示動畫和圖片,同時提出問題,學生在獨立思考的基礎上以小組為單位,動手拼接,教師深入小組活動傾聽學生的交流,幫助、指導學生完成拼圖活動。學生展示分割、拼接的過程。
設計意圖:通過觀察、拼圖、探究活動,給學生充分的時間與空間討論、交流,鼓勵學生敢于發(fā)表自己的見解,感受合作的重要性,充分調動學生思維的積極性,發(fā)展形象思維,使學生對定理更加深刻,通過這一教學過程來達到突破難點的目的。
。4)應用定理,解決問題
數學源于實踐,運用于實踐;開放性處理教材,鼓勵學生充分地發(fā)表意見,表現自我,讓學生在教師營造的“創(chuàng)新土壤”中成為主人;給學生思維以廣闊的空間,培養(yǎng)學生從多角度運用所學知識尋求解決問題的能力.
勾股定理說課稿 篇5
一、 教材分析
。ㄒ唬┙滩牡匚
這節(jié)課是九年制義務教育初級中學教材北師大版七年級第二章第一節(jié)《探索勾股定理》第一課時,勾股定理是幾何中幾個重要定理之一,它揭示的是直角三角形中三邊的數量關系。它在數學的發(fā)展中起過重要的作用,在現時世界中也有著廣泛的作用。學生通過對勾股定理的學習,可以在原有的基礎上對直角三角形有進一步的認識和理解。
。ǘ┙虒W目標
知識與能力:掌握勾股定理,并能運用勾股定理解決一些簡單實際問題。
過程與方法:經歷探索及驗證勾股定理的過程,了解利用拼圖驗證勾股定理的方法,發(fā)展學生的合情推理意識、主動探究的習慣,感受數形結合和從特殊到一般的思想。
情感態(tài)度與價值觀: 激發(fā)學生愛國熱情,讓學生體驗自己努力得到結論的成就感,體驗數學充滿探索和創(chuàng)造,體驗數學的美感,從而了解數學,喜歡數學。
。ㄈ┙虒W重點:經歷探索及驗證勾股定理的過程,并能用它來解決一些簡單的實際問題。
教學難點:用面積法(拼圖法)發(fā)現勾股定理。
突出重點、突破難點的辦法:發(fā)揮學生的主體作用,通過學生動手實驗,讓學生在實驗中探索、在探索中領悟、在領悟中理解。
二、教法與學法分析:
學情分析:七年級學生已經具備一定的`觀察、歸納、猜想和推理的能力.他們在小學已學習了一些幾何圖形的面積計算方法(包括割補、拼接),但運用面積法和割補思想來解決問題的意識和能力還不夠。另外,學生普遍學習積極性較高,課堂活動參與較主動,但合作交流的能力還有待加強.
教法分析:結合七年級學生和本節(jié)教材的特點,在教學中采用“問題情境————建立模型————解釋應用———拓展鞏固”的模式, 選擇引導探索法。把教學過程轉化為學生親身觀察,大膽猜想,自主探究,合作交流,歸納總結的過程。
學法分析:在教師的組織引導下,學生采用自主探究合作交流的研討式學習方式,使學生真正成為學習的主人。
三、 教學過程設計
略
勾股定理說課稿 篇6
課題:勾股定理
內容:教材分析、教法學法分析、教學過程設計、設計說明
一、 教材分析
。ㄒ唬┙滩乃幍牡匚
這節(jié)課是華師大九年制義務教育課程標準實驗教科書八年級總第19章第2節(jié)探索勾股定理,勾股定理是幾何中幾個重要定理之一,它揭示的是直角三角形中三邊的數量關系。它在數學的發(fā)展中起過重要的作用,在現時世界中也有著廣泛的作用。學生通過對勾股定理的學習,可以在原有的基礎上對直角三角形有進一步的認識和理解。
。ǘ└鶕n程標準,本課的教學目標是:
1、能說出勾股定理的內容。
2、會初步運用勾股定理進行簡單的計算和實際運用。
3、在探索勾股定理的過程中,讓學生經歷“觀察—猜想—歸納—驗證”的數學思想,并體會數形結合和特殊到一般的思想方法。
4、通過介紹勾股定理在中國古代的研究,激發(fā)學生熱愛祖國,熱愛祖國悠久文化的思想,激勵學生發(fā)奮學習。
(三)本課的教學重點:探索勾股定理
本課的教學難點:以直角三角形為邊的正方形面積的計算。
二、教法與學法分析
教法分析:針對初二年級學生的知識結構和心理特征,本節(jié)課可選擇引導探索法,由淺入深,由特殊到一般地提出問題。引導學生自主探索,合作交流,這種教學理念反映了時代精神,有利于提高學生的思維能力,能有效地激發(fā)學生的思維積極性,基本教學流程是:提出問題—實驗操作—歸納驗證—問題解決—課堂小結—布置作業(yè)六部分。
學法分析:在教師的組織引導下,采用自主探索、合作交流的研討式學習方式,讓學生思考問題,獲取知識,掌握方法,借此培養(yǎng)學生動手、動腦、動口的能力,使學生真正成為學習的主體。
三、 教學過程設計
(一)數學史導入
以畢達哥拉斯發(fā)現勾股定理引入新課,不僅自然,而且反映了數學來源于實際生活,數學是從人的需要中產生這一認識的基本觀點,同時也體現了知識的發(fā)生過程,而且解決問題的過程也是一個“數學化”的過程。
(二)實驗操作
1、投影課本圖的有關直角三角形問題,讓學生計算正方形A,B,C的面積,學生可能有不同的方法,不管是通過直接數小方格的個數,還是將C劃分為4個全等的等腰直角三角形來求等等,各種方法都應予于肯定,并鼓勵學生用語言進行表達,引導學生發(fā)現正方形A,B,C的面積之間的數量關系,從而學生通過正方形面積之間的關系容易發(fā)現對于等腰直角三角形而言滿足兩直角邊的平方和等于斜邊的平方。這樣做有利于學生參與探索,感受數學學習的過程,也有利于培養(yǎng)學生的語言表達能力,體會數形結合的思想。
2、接著讓學生思考:如果是其它一般的直角三角形,是否也具備這一結論呢?于是投影圖1—3,圖1—4,同樣讓學生計算正方形的面積,但正方形C的面積不易求出,可讓學生在預先準備的方格紙上畫出圖形,在剪一剪,拼一拼后學生也不難發(fā)現對于一般的以整數為邊長的直角三角形也有兩直角邊的平方和等于斜邊的平方。這樣設計不僅有利于突破難點,而且為歸納結論打下了基礎,讓學生體會到觀察、猜想、歸納的思想,也讓學生的分析問題和解決問題的能力在無形中得到了提高,這對后面的學習及有幫助。
3、給出一個邊長單位為5,12,13,這種含小數的直角三角形,讓學生計算是否也滿足這個結論,設計的目的是讓學生體會到結論更具有一般性。
(三)歸納驗證
1、歸納通過對邊長為整數的等腰直角三角形到一般直角三角形再到邊長含小數的直角三角形三邊關系的研究,讓學生用數學語言概括出一般的'結論,盡管學生可能講的不完全正確,但對于培養(yǎng)學生運用數學語言進行抽象、概括的能力是有益的,同時發(fā)揮了學生的主體作用,也便于記憶和理解,這比教師直接教給學生一個結論要好的多。
2、驗證為了讓學生確信結論的正確性,引導學生在紙上任意作一個直角三角形,通過動手操作拼圖來驗證結論的正確性和廣泛性。這一過程有利于培養(yǎng)學生嚴謹、科學的學習態(tài)度。然后引導學生用符號語言表示,因為將文字語言轉化為數學語言是學習數學學習的一項基本能力。接著教師向學生介紹“勾,股,弦”的含義、勾股定理,進行點題,并指出勾股定理只適用于直角三角形。最后向學生介紹古今中外對勾股定理的研究,對學生進行愛國主義教育和數學文化熏陶。
(四)問題解決
讓學生解決生活中的實際問題,學生從中能體會到成功的喜悅。完成課本“想一想”進一步體會勾股定理在實際生活中的應用,數學是與實際生活緊密相連的。
(五)課堂小結
主要通過學生回憶本節(jié)課所學內容,從內容、應用、數學思想方法、獲取新知的途徑方面先進行小結,后由教師總結。
(六)布置作業(yè)
習題19.2(1-5)
有興趣的同學可以查找另外的證明方法,寫出1-2種出來
四、 設計說明
1、本節(jié)課是公式課,根據學生的知識結構,我采用的教學流程是:提出問題—實驗操作—歸納驗證—問題解決—課堂小結—布置作業(yè)六部分,這一流程體現了知識發(fā)生、形成和發(fā)展的過程,讓學生體會到觀察、猜想、歸納、驗證的思想和數形結合的思想。
2、探索定理采用了面積法,引導學生利用實驗由特殊到一般再到更一般的對直角三角形三邊關系的探索和研究,得出結論。這種一般化的思想方法是認識事物規(guī)律的重要方法之一,通過教學讓學生初步掌握這種方法,對于學生良好思維品質的形成有重要作用,對學生的終身發(fā)展也有一定的作用。
3、關于練習的設計,除兩個實際問題和課本習題以外,還讓有興趣的同學可以查找另外的證明方法,寫出1-2種出來
4、本課小結從內容,應用,數學思想方法,獲取知識的途徑等幾個方面展開,既有知識的總結,又有方法的提煉,這樣對于學生學數學、用數學的意識是有很大的裨益的。
勾股定理說課稿 篇7
一、教材分析:
。ㄒ唬┙滩牡牡匚慌c作用
從知識結構上看,勾股定理揭示了直角三角形三條邊之間的數量關系,為后續(xù)學習解直角三角形提供重要的理論依據,在現實生活中有著廣泛的應用。
從學生認知結構上看,它把形的特征轉化成數量關系,架起了幾何與代數之間的橋梁;
勾股定理又是對學生進行愛國主義教育的良好素材,因此具有相當重要的地位和作用。
根據數學新課程標準以及八年級學生的認知水平我確定如下學習目標:知識技能、數學思考、問題解決、情感態(tài)度。其中【情感態(tài)度】方面,以我國數學文化為主線,激發(fā)學生熱愛祖國悠久文化的情感。
(二)重點與難點
為變被動接受為主動探究,我確定本節(jié)課的重點為:勾股定理的探索過程。限于八年級學生的思維水平,我將面積法(拼圖法)發(fā)現勾股定理確定為本節(jié)課的難點,我將引導學生動手實驗突出重點,合作交流突破難點。
二、教學與學法分析
教學方法
葉圣陶說過"教師之為教,不在全盤授予,而在相機誘導。"因此教師利用幾何直觀提出問題,引導學生由淺入深的探索,設計實驗讓學生進行驗證,感悟其中所蘊涵的思想方法。
學法指導
為把學習的主動權還給學生,教師鼓勵學生采用動手實踐,自主探索、合作交流的學習方法,讓學生親自感知體驗知識的形成過程。
三、教學過程
我國數學文化源遠流長、博大精深,為了使學生感受其傳承的魅力,我將本節(jié)課設計為以下五個環(huán)節(jié)。
首先,情境導入,古韻今風
給出《七巧八分圖》中的一組圖片,讓學生利用兩組七巧板進行合作拼圖。讓學生觀察并思考三個正方形面積之間的關系?它們圍成了怎么樣三角形,反映在三邊上,又蘊含著怎么樣數學奧秘呢?寓教于樂,激發(fā)學生好奇、探究的欲望。
第二步,追溯歷史,解密真相
勾股定理的探索過程是本節(jié)課的重點,依照數學知識的循序漸進、螺旋上升的原則,我設計如下三個活動。
從上面低起點的問題入手,有利于學生參與探索。學生很容易發(fā)現,在等腰三角形中存在如下關系。巧妙的將面積之間的關系轉化為邊長之間的關系,體現了轉化的思想。觀察發(fā)現雖然直觀,但面積計算更具說服力。將圖形轉化為邊在格線上的圖形,以便于計算圖形面積,體現了數形結合的思想。學生會想到用"數格子"的方法,這種方法雖然簡單易行,但對于下一步探索一般直角三角形并不適用,具有局限性。因此教師應引導學生利用"割"和"補"的方法求正方形C的面積,為下一步探索復雜圖形的面積做鋪墊。
突破等腰直角三角形的束縛,探索在一般情況下的直角三角形是否也存在這一結論呢?體現了"從特殊到一般"的認知規(guī)律。教師給出邊長單位長度分別為3、4、5的直角三角形,避免了學生因作圖不準確而產生的錯誤,也為下面"勾三股四弦五"的提出埋下伏筆。有了上一環(huán)節(jié)的.鋪墊,有效地分散了難點。在求正方形C的面積時,學生將展示"割"的方法,"補"的方法,有的學生可能會發(fā)現平移的方法,旋轉的方法,對于這兩種新方法教師應給于表揚,肯定學生的研究成果,培養(yǎng)學生的類比、遷移以及探索問題的能力。
使用幾何畫板動態(tài)演示,使幾何與代數之間的關系可視化。當為直角三角形時,改變三邊長度三邊關系不變,當∠α為銳角或鈍角時,三邊關系就改變了,進而強調了命題成立的前提條件必須是直角三角形。加深學生對勾股定理理解的同時也拓展了學生的視野。
以上三個環(huán)節(jié)層層深入步步引導,學生歸納得到命題1,從而培養(yǎng)學生的合情推理能力以及語言表達能力。
感性認識未必是正確的,推理驗證證實我們的猜想。
第三步,推陳出新,借古鼎新
教材中直接給出"趙爽弦圖"的證法對學生的思維是一種禁錮,教師創(chuàng)新使用教材,利用拼圖活動解放學生的大腦,讓學生發(fā)揮自己的聰明才智證明勾股定理。這是教學的難點也是重點,教師應給學生充分的自主探索的時間與空間,讓學生的思維在相互討論中碰撞、在相互學習中完善。教師深入到學生中間,觀察學生探究方法接受學生的質疑,對于不同的拼圖方案給予肯定。從而體現出"學生是學習的主體,教師是組織者、引導者與合作者"這一教學理念。學生會發(fā)現兩種證明方案。
方案1為趙爽弦圖,學生講解論證過程,再現古代數學家的探索方法。方案2為學生自己探索的結果,論證之巧較方案1有異曲同工之妙。整個探索過程,讓學生經歷由表面到本質,由合情推理到演繹推理的發(fā)掘過程,體會數學的嚴謹性。對比"古"、"今"兩種證法,讓學生體會"吹盡黃沙始到金"的喜悅,感受到"青出于藍而勝于藍"的自豪感。板書勾股定理,進而給出字母表示,培養(yǎng)學生的符號意識。
教師對"勾、股、弦"的含義以及古今中外對勾股定理的研究做一個介紹,使學生感受數學文化,培養(yǎng)民族自豪感和愛國主義精神。利用勾股樹動態(tài)演示,讓學生欣賞數學的精巧、優(yōu)美。
第四步,取其精華,古為今用
我按照"理解—掌握—運用"的梯度設計了如下三組習題。
(1)對應難點,鞏固所學;(2)考查重點,深化新知;(3)解決問題,感受應用
第五步,溫故反思,任務后延
在課堂接近尾聲時,我鼓勵學生從"四基"的要求對本節(jié)課進行小結。進而總結出一個定理、二個方案、三種思想、四種經驗。
然后布置作業(yè),分層作業(yè)體現了教育面向全體學生的理念。
【勾股定理說課稿】相關文章:
勾股定理說課稿02-11
《勾股定理》說課稿12-16
《勾股定理》的說課稿06-08
勾股定理說課稿07-05
《勾股定理》優(yōu)秀說課稿01-21
探索勾股定理說課稿12-06
探索《勾股定理》說課稿01-04
探索勾股定理說課稿11-04
精選勾股定理說課稿四篇01-13
【精選】勾股定理說課稿四篇01-10