當前位置:育文網>教學文檔>說課稿> 高中數學說課稿

高中數學說課稿

時間:2022-02-17 12:46:25 說課稿 我要投稿

有關高中數學說課稿集合10篇

  作為一名老師,時常需要編寫說課稿,認真擬定說課稿,我們應該怎么寫說課稿呢?以下是小編收集整理的高中數學說課稿10篇,希望能夠幫助到大家。

有關高中數學說課稿集合10篇

高中數學說課稿 篇1

  尊敬的各位評委、各位老師大家好!我說課的題目是《函數的單調性》,我將從四個方面來闡述我對這節(jié)課的設計.

  一、教材分析

  1、 教材的地位和作用

  (1)本節(jié)課主要對函數單調性的學習;

 。2)它是在學習函數概念的基礎上進行學習的,同時又為基本初等函數的學習奠定了基礎,所以他在教材中起著承前啟后的重要作用;(可以看看這一課題的前后章節(jié)來寫)

 。3)它是歷年高考的熱點、難點問題

  (根據具體的課題改變就行了,如果不是熱點難點問題就刪掉)

  2、 教材重、難點

  重點:函數單調性的定義

  難點:函數單調性的證明

  重難點突破:在學生已有知識的基礎上,通過認真觀察思考,并通過小組合作探究的辦法來實現重難點突破。(這個必須要有)

  二、教學目標

  知識目標:(1)函數單調性的定義

  (2)函數單調性的證明

  能力目標:培養(yǎng)學生全面分析、抽象和概括的能力,以及了解由簡單到復雜,由特殊到一般的化歸思想

  情感目標:培養(yǎng)學生勇于探索的精神和善于合作的意識

 。ㄟ@樣的教學目標設計更注重教學過程和情感體驗,立足教學目標多元化)

  三、教法學法分析

  1、教法分析

  “教必有法而教無定法”,只有方法得當才會有效。新課程標準之處教師是教學的組織者、引導者、合作者,在教學過程要充分調動學生的積極性、主動性。本著這一原則,在教學過程中我主要采用以下教學方法:開放式探究法、啟發(fā)式引導法、小組合作討論法、反饋式評價法

  2、學法分析

  “授人以魚,不如授人以漁”,最有價值的知識是關于方法的只是。學生作為教學活動的主題,在學習過程中的參與狀態(tài)和參與度是影響教學效果最重要的因素。在學法選擇上,我主要采用:自主探究法、觀察發(fā)現法、合作交流法、歸納總結法。

 。ㄇ叭糠钟脮r控制在三分鐘以內,可適當刪減)

  四、教學過程

  1、以舊引新,導入新知

  通過課前小研究讓學生自行繪制出一次函數f(x)=x和二次函數f(x)=x^2的圖像,并觀察函數圖象的特點,總結歸納。通過課上小組討論歸納,引導學生發(fā)現,教師總結:一次函數f(x)=x的圖像在定義域是直線上升的,而二次函數f(x)=x^2的圖像是一個曲線,在(-∞,0)上是下降的,而在(0,+∞)上是上升的。(適當添加手勢,這樣看起來更自然)

  2、創(chuàng)設問題,探索新知

  緊接著提出問題,你能用二次函數f(x)=x^2表達式來描述函數在(-∞,0)的圖像?教師總結,并板書,揭示函數單調性的`定義,并注意強調可以利用作差法來判斷這個函數的單調性。

  讓學生模仿剛才的表述法來描述二次函數f(x)=x^2在(0,+∞)的圖像,并找個別同學起來作答,規(guī)范學生的數學用語。

  讓學生自主學習函數單調區(qū)間的定義,為接下來例題學習打好基礎。

  3、 例題講解,學以致用

  例1主要是對函數單調區(qū)間的鞏固運用,通過觀察函數定義在(—5,5)的圖像來找出函數的單調區(qū)間。這一例題主要以學生個別回答為主,學生回答之后通過互評來糾正答案,檢查學生對函數單調區(qū)間的掌握。強調單調區(qū)間一般寫成半開半閉的形式

  例題講解之后可讓學生自行完成課后練習4,以學生集體回答的方式檢驗學生的學習效果。

  例2是將函數單調性運用到其他領域,通過函數單調性來證明物理學的波意爾定理。這是歷年高考的熱點跟難點問題,這一例題要采用教師板演的方式,來對例題進行證明,以規(guī)范總結證明步驟。一設二差三化簡四比較,注意要把f(x1)-f(x2)化簡成和差積商的形式,再比較與0的大小。

  學生在熟悉證明步驟之后,做課后練習3,并以小組為單位找部分同學上臺板演,其他同學在下面自行完成,并通過自評、互評檢查證明步驟。

  4、歸納小結

  本節(jié)課我們主要學習了函數單調性的定義及證明過程,并在教學過程中注重培養(yǎng)學生勇于探索的精神和善于合作的意識。

  5、作業(yè)布置

  為了讓學生學習不同的數學,我將采用分層布置作業(yè)的方式:一組 習題1.3A組1、2、3 ,二組 習題1.3A組2、3、B組1、2

  6、板書設計

  我力求簡潔明了地概括本節(jié)課的學習要點,讓學生一目了然。

 。ㄟ@部分最重要用時六到七分鐘,其中定義講解跟例題講解一定要說明學生的活動)

  五、教學評價

  本節(jié)課是在學生已有知識的基礎上學習的,在教學過程中通過自主探究、合作交流,充分調動學生的積極性跟主動性,及時吸收反饋信息,并通過學生的自評、互評,讓內部動機和外界刺激協(xié)調作用,促進其數學素養(yǎng)不斷提高。

高中數學說課稿 篇2

  各位老師:

  大家好!

  我叫***,來自**。我說課的題目是《古典概型》,內容選自于高中教材新課程人教A版必修3第三章第二節(jié),課時安排為兩個課時,本節(jié)課內容為第一課時。下面我將從教材分析、教學目標分析、教法與學法分析、教學過程分析四大方面來闡述我對這節(jié)課的分析和設計:

  一、教材分析

  1.教材所處的地位和作用

  古典概型是一種特殊的數學模型,也是一種最基本的概率模型,在概率論中占有相當重要的地位。它承接著前面學過的隨機事件的概率及其性質,又是以后學習條件概率的基礎,起到承前啟后的作用。

  2.教學的重點和難點

  重點:理解古典概型及其概率計算公式。

  難點:古典概型的判斷及把一些實際問題轉化成古典概型。

  二、教學目標分析

  1.知識與技能目標

 。1)通過試驗理解基本事件的概念和特點

 。2)在數學建模的過程中,抽離出古典概型的兩個基本特征,推導出古典概型下的概率的計算公式。

  2、過程與方法:

  經歷公式的推導過程,體驗由特殊到一般的數學思想方法。

  3、情感態(tài)度與價值觀:

 。1)用具有現實意義的實例,激發(fā)學生的學習興趣,培養(yǎng)學生勇于探索,善于發(fā)現的創(chuàng)新思想。

 。2)讓學生掌握"理論來源于實踐,并把理論應用于實踐"的辨證思想。

  三、教法與學法分析

  1、教法分析:根據本節(jié)課的特點,采用引導發(fā)現和歸納概括相結合的教學方法,通過提出問題、思考問題、解決問題等教學過程,觀察對比、概括歸納古典概型的概念及其概率公式,再通過具體問題的提出和解決,來激發(fā)學生的學習興趣,調動學生的主體能動性,讓每一個學生充分地參與到學習活動中來。

  2、學法分析:學生在教師創(chuàng)設的問題情景中,通過觀察、類比、思考、探究、概括、歸納和動手嘗試相結合,體現了學生的主體地位,培養(yǎng)了學生由具體到抽象,由特殊到一般的數學思維能力,形成了實事求是的科學態(tài)度。

 、鍎(chuàng)設情景、引入新課

  在課前,教師布置任務,以小組為單位,完成下面兩個模擬試驗:

  試驗一:拋擲一枚質地均勻的硬幣,分別記錄"正面朝上"和"反面朝上"的次數,要求每個數學小組至少完成20次(最好是整十數),最后由代表匯總;

  試驗二:拋擲一枚質地均勻的骰子,分別記錄"1點"、"2點"、"3點"、"4點"、"5點"和"6點"的次數,要求每個數學小組至少完成60次(最好是整十數),最后由代表匯總。

  在課上,學生展示模擬試驗的操作方法和試驗結果,并與同學交流活動感受,教師最后匯總方法、結果和感受,并提出兩個問題。

  1.用模擬試驗的方法來求某一隨機事件的概率好不好?為什么?

  不好,要求出某一隨機事件的概率,需要進行大量的試驗,并且求出來的結果是頻率,而不是概率。

  2.根據以前的學習,上述兩個模擬試驗的每個結果之間都有什么特點?]

  「設計意圖」通過課前的模擬實驗,讓學生感受與他人合作的重要性,培養(yǎng)學生運用數學語言的能力。隨著新問題的提出,激發(fā)了學生的求知欲望,通過觀察對比,培養(yǎng)了學生發(fā)現問題的能力。

 、嫠伎冀涣、形成概念

  學生觀察對比得出兩個模擬試驗的相同點和不同點,教師給出基本事件的概念,并對相關特點加以說明,加深對新概念的理解。

  [基本事件有如下的兩個特點:

 。1)任何兩個基本事件是互斥的;

 。2)任何事件(除不可能事件)都可以表示成基本事件的和.]

  「設計意圖」讓學生從問題的相同點和不同點中找出研究對象的對立統(tǒng)一面,這能培養(yǎng)學生分析問題的能力,同時也教會學生運用對立統(tǒng)一的辯證唯物主義觀點來分析問題的一種方法。教師的注解可以使學生更好的把握問題的關鍵。

  例1從字母a、b、c、d中任意取出兩個不同字母的試驗中,有哪些基本事件?

  先讓學生嘗試著列出所有的基本事件,教師再講解用樹狀圖列舉問題的優(yōu)點。

  「設計意圖」將數形結合和分類討論的思想滲透到具體問題中來。由于沒有學習排列組合,因此用列舉法列舉基本事件的個數,不僅能讓學生直觀的感受到對象的總數,而且還能使學生在列舉的時候作到不重不漏。解決了求古典概型中基本事件總數這一難點

  觀察對比,發(fā)現兩個模擬試驗和例1的.共同特點:

  讓學生先觀察對比,找出兩個模擬試驗和例1的共同特點,再概括總結得到的結論,教師最后補充說明。

  [經概括總結后得到:

 。1)試驗中所有可能出現的基本事件只有有限個;(有限性)

 。2)每個基本事件出現的可能性相等。(等可能性)

  我們將具有這兩個特點的概率模型稱為古典概率概型,簡稱古典概型。

  「設計意圖」培養(yǎng)運用從具體到抽象、從特殊到一般的辯證唯物主義觀點分析問題的能力,充分體現了數學的化歸思想。啟發(fā)誘導的同時,訓練了學生觀察和概括歸納的能力。通過列出相同和不同點,能讓學生很好的理解古典概型。

 、缬^察分析、推導方程

  問題思考:在古典概型下,基本事件出現的概率是多少?隨機事件出現的概率如何計算?

  教師提出問題,引導學生類比分析兩個模擬試驗和例1的概率,先通過用概率加法公式求出隨機事件的概率,再對比概率結果,發(fā)現其中的聯(lián)系,最后概括總結得出古典概型計算任何事件的概率計算公式:

  「設計意圖」鼓勵學生運用觀察類比和從具體到抽象、從特殊到一般的辯證唯物主義方法來分析問題,同時讓學生感受數學化歸思想的優(yōu)越性和這一做法的合理性,突出了古典概型的概率計算公式這一重點。

  提問:

 。1)在例1的實驗中,出現字母"d"的概率是多少?

 。2)在使用古典概型的概率公式時,應該注意什么?

  「設計意圖」教師提問,學生回答,深化對古典概型的概率計算公式的理解,也抓住了解決古典概型的概率計算的關鍵。

 、枥}分析、推廣應用

  例2單選題是標準化考試中常用的題型,一般是從A,B,c,D四個選項中選擇一個正確答案。如果考生掌握了考差的內容,他可以選擇唯一正確的答案。假設考生不會做,他隨機的選擇一個答案,問他答對的概率是多少?

  學生先思考再回答,教師對學生沒有注意到的關鍵點加以說明。

  「設計意圖」讓學生明確決概率的計算問題的關鍵是:先要判斷該概率模型是不是古典概型,再要找出隨機事件A包含的基本事件的個數和試驗中基本事件的總數。鞏固學生對已學知識的掌握。

  例3同時擲兩個骰子,計算:

  (1)一共有多少種不同的結果?

 。2)其中向上的點數之和是5的結果有多少種?

 。3)向上的點數之和是5的概率是多少?

  先給出問題,再讓學生完成,然后引導學生分析問題,發(fā)現解答中存在的問題。引導學生用列表來列舉試驗中的基本事件的總數。

  「設計意圖」利用列表數形結合和分類討論,既能形象直觀地列出基本事件的總數,又能做到列舉的不重不漏。深化鞏固對古典概型及其概率計算公式的理解。培養(yǎng)學生運用數形結合的思想,提高發(fā)現問題、分析問題、解決問題的能力,增強學生數學思維情趣,形成學習數學知識的積極態(tài)度。

 、樘骄克枷、鞏固深化

  問題思考:為什么要把兩個骰子標上記號?如果不標記號會出現什么情況?你能解釋其中的原因嗎?

  要求學生觀察對比兩種結果,找出問題產生的原因。

  「設計意圖」通過觀察對比,發(fā)現兩種結果不同的根本原因是--研究的問題是否滿足古典概型,從而再次突出了古典概型這一教學重點,體現了學生的主體地位,逐漸養(yǎng)成自主探究能力。

 、昕偨Y概括、加深理解

  1.基本事件的特點

  2.古典概型的特點

  3.古典概型的概率計算公式

  學生小結歸納,不足的地方老師補充說明。

  「設計意圖」使學生對本節(jié)課的知識有一個系統(tǒng)全面的認識,并把學過的相關知識有機地串聯(lián)起來,便于記憶和應用,也進一步升華了這節(jié)課所要表達的本質思想,讓學生的認知更上一層。

  ㈦布置作業(yè)

  課本練習1、2、3

  「設計意圖」進一步讓學生掌握古典概型及其概率公式,并能夠學以致用,加深對本節(jié)課的理解。

高中數學說課稿 篇3

  一、教材分析

  1、教學內容

  本節(jié)課內容教材共分兩課時進行,這是第一課時,該課時主要學習函數的單調性的的概念,依據函數圖象判斷函數的單調性和應用定義證明函數的單調性。

  2、教材的地位和作用

  函數單調性是高中數學中相當重要的一個基礎知識點,是研究和討論初等函數有關性質的基礎。掌握本節(jié)內容不僅為今后的函數學習打下理論基礎,還有利于培養(yǎng)學生的抽象思維能力,及分析問題和解決問題的能力。

  3、教材的重點﹑難點﹑關鍵

  教學重點:函數單調性的概念和判斷某些函數單調性的方法。明確單調性是一個局部概念。

  教學難點:領會函數單調性的實質與應用,明確單調性是一個局部的概念。

  教學關鍵:從學生的學習心理和認知結構出發(fā),講清楚概念的形成過程、

  4、學情分析

  高一學生正處于以感性思維為主的年齡階段,而且思維逐步地從感性思維過渡到理性思維,并由此向邏輯思維發(fā)展,但學生思維不成熟、不嚴密、意志力薄弱,故而整個教學環(huán)節(jié)總是創(chuàng)設恰當的問題情境,引導學生積極思考,培養(yǎng)他們的邏輯思維能力。從學生的認知結構來看,他們只能根據函數的圖象觀察出“隨著自變量的增大函數值增大”等變化趨勢,所以在教學中要充分利用好函數圖象的直觀性,發(fā)揮好多媒體教學的優(yōu)勢;由于學生在概念的掌握上缺少系統(tǒng)性、嚴謹性,在教學中注意加強。

  二、目標分析

 。ㄒ唬┲R目標:

  1、知識目標:理解函數單調性的概念,掌握判斷一些簡單函數的單調性的方法;了解函數單調區(qū)間的概念,并能根據函數圖象說出函數的單調區(qū)間。

  2、能力目標:通過證明函數的單調性的學習,使學生體驗和理解從特殊到一般的數學歸納推理思維方式,培養(yǎng)學生的觀察能力,分析歸納能力,領會數學的歸納轉化的思想方法,增加學生的知識聯(lián)系,增強學生對知識的主動構建的能力。

  3、情感目標:讓學生積極參與觀察、分析、探索等課堂教學的雙邊活動,在掌握知識的過程中體會成功的喜悅,以此激發(fā)求知欲望。領會用運動變化的觀點去觀察分析事物的`方法。通過滲透數形結合的數學思想,對學生進行辨證唯物主義的思想教育。

 。ǘ┻^程與方法

  培養(yǎng)學生嚴密的邏輯思維能力以及用運動變化、數形結合、分類討論的方法去分析和處理問題,以提高學生的思維品質,通過函數的單調性的學習,掌握自變量和因變量的關系。通過多媒體手段激發(fā)學生學習興趣,培養(yǎng)學生發(fā)現問題、分析問題和解題的邏輯推理能力。

  三、教法與學法

  1、教學方法

  在教學中,要注重展開探索過程,充分利用好函數圖象的直觀性、發(fā)揮多媒體教學的優(yōu)勢。本節(jié)課采用問答式教學法、探究式教學法進行教學,教師在課堂中只起著主導作用,讓學生在教師的提問中自覺的發(fā)現新知,探究新知,并且加入激勵性的語言以提高學生的積極性,提高學生參與知識形成的全過程。

  2、學習方法

  自我探索、自我思考總結、歸納,自我感悟,合作交流,成為本節(jié)課學生學習的主要方式。

  四、過程分析

  本節(jié)課的教學過程包括:問題情景,函數單調性的定義引入,增函數、減函數的定義,例題分析與鞏固練習,回顧總結和課外作業(yè)六個板塊。這里分別就其過程和設計意圖作一一分析。

 。ㄒ唬﹩栴}情景:

  為了激發(fā)學生的學習興趣,本節(jié)課借助多媒體設計了多個生活背景問題,并就圖表和圖象所提供的信息,提出一系列問題和學生交流,激發(fā)學生的學習興趣和求知欲望,為學習函數的單調性做好鋪墊。(祥見課件)

  新課程理念認為:情境應貫穿課堂教學的始終。本節(jié)課所創(chuàng)設的生活情境,讓學生親近數學,感受到數學就在他們的周圍,強化學生的感性認識,從而達到學生對數學的理解。讓學生在課堂的一開始就感受到數學就在我們身邊,讓學生學會用數學的眼光去關注生活。

  (二)函數單調性的定義引入

  1、幾何畫板動畫演示,請學生認真觀察,并回答問題:通過學生已學過的函數y=2x+4,,的圖象的動態(tài)形式形象出x、y間的變化關系,使學生對函數單調性有感性認識。,進行比較,分析其變化趨勢。并探討、回答以下問題:

  問題1、觀察下列函數圖象,從左向右看圖象的變化趨勢?

  問題2:你能明確說出“圖象呈上升趨勢”的意思嗎?

  通過學生的交流、探討、總結,得到單調性的“通俗定義”:

  從在某一區(qū)間內當x的值增大時,函數值y也增大,到圖象在該區(qū)間內呈上升趨勢再到如何用x與f(x)來描述上升的圖象?

  通過問題逐步向抽象的定義靠攏,將圖形語言轉化為數學符號語言。幾何畫板的靈活使用,數形有機結合,引導學生從圖形語言到數學符號語言的翻譯變得輕松。

  設計意圖:

 、偻ㄟ^學生熟悉的知識引入新課題,有利于激發(fā)學生的學習興趣和學習熱情,同時也可以培養(yǎng)學生觀察、猜想、歸納的思維能力和創(chuàng)新意識,增強學生自主學習、獨立思考,由學會向會學的轉化,形成良好的思維品質。

 、谕ㄟ^學生已學過的一次y=2x+4,,的圖象的動態(tài)形式形象地反映出x、y間的變化關系,使學生對函數單調性有感性認識。

 、蹚膶W生的原有認知結構入手,探討單調性的概念,符合“最近發(fā)展區(qū)的理論”要求。

 、軓膱D形、直觀認識入手,研究單調性的概念,其本身就是研究、學習數學的一種方法,符合新課程的理念。

 。ㄈ┰龊瘮、減函數的定義

  在前面的基礎上,讓學生討論歸納:如何使用數學語言來準確描述函數的單調性?在學生回答的基礎上,給出增函數的概念,同時要求學生討論概念中的關鍵詞和注意點。

  定義中的“當x1x2時,都有f(x1)

  注意:

 。1)函數的單調性也叫函數的增減性;

 。2)注意區(qū)間上所取兩點x1,x2的任意性;

 。3)函數的單調性是對某個區(qū)間而言的,它是一個局部概念。

  讓學生自已嘗試寫出減函數概念,由兩名學生板演。提出單調區(qū)間的概念。

  設計意圖:通過給出函數單調性的嚴格定義,目的是為了讓學生更準確地把握概念,理解函數的單調性其實也叫做函數的增減性,它是對某個區(qū)間而言的,它是一個局部概念,同時明確判定函數在某個區(qū)間上的單調性的一般步驟。這樣處

  理,同時也是讓學生感悟、體驗學習數學感念的方法,提高其個性品質。

 。ㄋ模├}分析

  在理解概念的基礎上,讓學生總結判別函數單調性的方法:圖象法和定義法。

  2、例2、證明函數在區(qū)間(—∞,+∞)上是減函數。

  在本題的解決過程中,要求學生對照定義進行分析,明確本題要解決什么?定義要求是什么?怎樣去思考?通過自己的解決,總結證明單調性問題的一般方法。

  變式一:函數f(x)=—3x+b在R上是減函數嗎?為什么?

  變式二:函數f(x)=kx+b(k<0)在R上是減函數嗎?你能用幾種方法來判斷。

  變式三:函數f(x)=kx+b(k<0)在R上是減函數嗎?你能用幾種方法來判斷。

  錯誤:實質上并沒有證明,而是使用了所要證明的結論

  例題設計意圖:在理解概念的基礎上,讓學生總結判別函數單調性的方法:圖象法和定義法。例1是教材中例題,它的解決強化學生應用數形結合的思想方法解題的意識,進一步加深對概念的理解,同時也是依托具體問題,對單調區(qū)間這一概念的再認識;要了解函數在某一區(qū)間上是否具有單調性,從圖上進行觀察是一種常用而又粗略的方法。嚴格地說,它需要根據單調函數的定義進行證明。例2是教材練習題改編,通過師生共同總結,得出使用定義證明的一般步驟:任取—作差(變形)—定號—下結論,通過例2的解決是學生初步掌握運用概念進行簡單論證的基本方法,強化證題的規(guī)范性訓練,從而提高學生的推理論證能力。例3是教材例2抽象出的數學問題。目的是進一步強化解題的規(guī)范性,提高邏輯推理能力,同時讓學生學會一些常見的變形方法。

 。ㄎ澹╈柟膛c探究

  1、教材p36練習2,3

  2、探究:二次函數的單調性有什么規(guī)律?

 。◣缀萎嫲逖菔,學生探究)本問題作為機動題。時間不允許時,就為課后思考題。

  設計意圖:通過觀察圖象,對函數是否具有某種性質作出一種猜想,然后通過推理的辦法,證明這種猜想的正確性,是發(fā)現和解決問題的一種常用數學方法。

  通過課堂練習加深學生對概念的理解,進一步熟悉證明或判斷函數單調性的方法和步驟,達到鞏固,消化新知的目的。同時強化解題步驟,形成并提高解題能力。對練習的思考,讓學生學會反思、學會總結。

  (六)回顧總結

  通過師生互動,回顧本節(jié)課的概念、方法。本節(jié)課我們學習了函數單調性的知識,同學們要切記:單調性是對某個區(qū)間而言的,同時在理解定義的基礎上,要掌握證明函數單調性的方法步驟,正確進行判斷和證明。

  設計意圖:通過小結突出本節(jié)課的重點,并讓學生對所學知識的結構有一個清晰的認識,學會一些解決問題的思想與方法,體會數學的和諧美。

 。ㄆ撸┱n外作業(yè)

  1、教材p43習題1。3A組1(單調區(qū)間),2(證明單調性);

  2、判斷并證明函數在上的單調性。

  3、數學日記:談談你本節(jié)課中的收獲或者困惑,整理你認為本節(jié)課中的最重要的知識和方法。

  設計意圖:通過作業(yè)1、2進一步鞏固本節(jié)課所學的增、減函數的概念,強化基本技能訓練和解題規(guī)范化的訓練,并且以此作為學生對本結內容各項目標落實的評價。新課標要求:不同的學生學習不同的數學,在數學上獲得不同的發(fā)展。作業(yè)3這種新型的作業(yè)形式是其很好的體現。

 。ㄆ撸┌鍟O計(見ppt)

  五、評價分析

  有效的概念教學是建立在學生已有知識結構基礎上,,因此在教學設計過程中注意了:

  第一、教要按照學的法子來教;

  第二、在學生已有知識結構和新概念間尋找“最近發(fā)展區(qū)”;

  第三、強化了重探究、重交流、重過程的課改理念。讓學生經歷“創(chuàng)設情境——探究概念——注重反思——拓展應用——歸納總結”的活動過程,體驗了參與數學知識的發(fā)生、發(fā)展過程,培養(yǎng)“用數學”的意識和能力,成為積極主動的建構者。

  本節(jié)課圍繞教學重點,針對教學目標,以多媒體技術為依托,展現知識的發(fā)生和形成過程,使學生始終處于問題探索研究狀態(tài)之中,激情引趣,并注重數學科學研究方法的學習,是順應新課改要求的,是研究性教學的一次有益嘗試。

高中數學說課稿 篇4

  一、教材分析

  1、教材所處的地位和作用

  奇偶性是人教A版第一章集合與函數概念的第3節(jié)函數的基本性質的第2小節(jié)。

  奇偶性是函數的一條重要性質,教材從學生熟悉的 及入手,從特殊到一般,從具體到抽象,注重信息技術的應用,比較系統(tǒng)地介紹了函數的奇偶性。從知識結構看,它既是函數概念的拓展和深化,又是后續(xù)研究指數函數、對數函數、冪函數、三角函數的基礎。因此,本節(jié)課起著承上啟下的重要作用。

  2、學情分析

  從學生的認知基礎看,學生在初中已經學習了軸對稱圖形和中心對稱圖形,并且有了一定數量的簡單函數的儲備。同時,剛剛學習了函數單調性,已經積累了研究函數的基本方法與初步經驗。

  從學生的思維發(fā)展看,高一學生思維能力正在由形象經驗型向抽象理論型轉變,能夠用假設、推理來思考和解決問題、

  3、教學目標

  基于以上對教材和學生的分析,以及新課標理念,我設計了這樣的教學目標:

  【知識與技能】

  1、能判斷一些簡單函數的奇偶性。

  2、能運用函數奇偶性的代數特征和幾何意義解決一些簡單的問題。

  【過程與方法】

  經歷奇偶性概念的形成過程,提高觀察抽象能力以及從特殊到一般的歸納概括能力。

  【情感、態(tài)度與價值觀】

  通過自主探索,體會數形結合的思想,感受數學的對稱美。

  從課堂反應看,基本上達到了預期效果。

  4、教學重點和難點

  重點:函數奇偶性的概念和幾何意義。

  幾年的教學實踐證明,雖然函數奇偶性這一節(jié)知識點并不是很難理解,但知識點掌握不全面的學生容易出現下面的錯誤。他們往往流于表面形式,只根據奇偶性的定義檢驗成立即可,而忽視了考慮函數定義域的問題。因此,在介紹奇、偶函數的定義時,一定要揭示定義的隱含條件,從正反兩方面講清定義的內涵和外延。因此,我把函數的奇偶性概念設計為本節(jié)課的重點。在這個問題上我除了注意概念的講解,還特意安排了一道例題,來加強本節(jié)課重點問題的講解。

  難點:奇偶性概念的數學化提煉過程。

  由于,學生看待問題還是靜止的、片面的,抽象概括能力比較薄弱,這對建構奇偶性的概念造成了一定的困難。因此我把奇偶性概念的數學化提煉過程設計為本節(jié)課的難點。

  二、教法與學法分析

  1、教法

  根據本節(jié)教材內容和編排特點,為了更有效地突出重點,突破難點,按照學生的認知規(guī)律,遵循教師為主導,學生為主體,訓練為主線的指導思想,采用以引導發(fā)現法為主,直觀演示法、類比法為輔。教學中,精心設計一個又一個帶有啟發(fā)性和思考性的問題,創(chuàng)設問題情景,誘導學生思考,使學生始終處于主動探索問題的積極狀態(tài),從而培養(yǎng)思維能力。從課堂反應看,基本上達到了預期效果。

  2、學法

  讓學生在觀察一歸納一檢驗一應用的學習過程中,自主參與知識的發(fā)生、發(fā)展、形成的過程,從而使學生掌握知識。

  三、教學過程

  具體的教學過程是師生互動交流的過程,共分六個環(huán)節(jié):設疑導入、觀圖激趣;指導觀察、形成概念;學生探索、領會定義;知識應用,鞏固提高;總結反饋;分層作業(yè),學以致用。下面我對這六個環(huán)節(jié)進行說明。

  (一)設疑導入、觀圖激趣

  由于本節(jié)內容相對獨立,專題性較強,所以我采用了開門見山導入方式,直接點明要學的內容,使學生的思維迅速定向,達到開始就明確目標突出重點的效果。

  用多媒體展示一組圖片,使學生感受到生活中的對稱美。再讓學生觀察幾個特殊函數圖象。通過讓學生觀察圖片導入新課,既激發(fā)了學生濃厚的學習興趣,又為學習新知識作好鋪墊。

 。ǘ┲笇в^察、形成概念

  在這一環(huán)節(jié)中共設計了2個探究活動。

  探究1 、2 數學中對稱的形式也很多,這節(jié)課我們就以函數和=︱x︱以及和為例展開探究。這個探究主要是通過學生的'自主探究來實現的,由于有圖片的鋪墊,絕大多數學生很快就說出函數圖象關于Y軸(原點)對稱。接著學生填表,從數值角度研究圖象的這種特征,體現在自變量與函數值之間有何規(guī)律? 引導學生先把它們具體化,再用數學符號表示。借助課件演示(令 比較 得出等式 , 再令 ,得到 ) 讓學生發(fā)現兩個函數的對稱性反應到函數值上具有的特性, ()然后通過解析式給出嚴格證明,進一步說明這個特性對定義域內任意一個 都成立。 最后給出偶函數(奇函數)定義(板書)。

  在這個過程中,學生把對圖形規(guī)律的感性認識,轉化成數量的規(guī)律性,從而上升到了理性認識,切實經歷了一次從特殊歸納出一般的過程體驗。

  (三) 學生探索、領會定義

  探究3 下列函數圖象具有奇偶性嗎?

  設計意圖:深化對奇偶性概念的理解。強調:函數具有奇偶性的前提條件是--定義域關于原點對稱。(突破了本節(jié)課的難點)

  (四)知識應用,鞏固提高

  在這一環(huán)節(jié)我設計了4道題

  例1判斷下列函數的奇偶性

  選例1的第(1)及(3)小題板書來示范解題步驟,其他小題讓學生在下面完成。

  例1設計意圖是歸納出判斷奇偶性的步驟:

  (1) 先求定義域,看是否關于原點對稱;

  (2) 再判斷f(-x)=-f(x) 還是 f(-x)=f(x)。

  例2 判斷下列函數的奇偶性:

  例3 判斷下列函數的奇偶性:

  例2、3設計意圖是探究一個函數奇偶性的可能情況有幾種類型?

  例4(1)判斷函數的奇偶性。

 。2)如圖給出函數圖象的一部分,你能根據函數的奇偶性畫出它在y軸左邊的圖象嗎?

  例4設計意圖加強函數奇偶性的幾何意義的應用。

  在這個過程中,我重點關注了學生的推理過程的表述。通過這些問題的解決,學生對函數的奇偶性認識、理解和應用都能提升很大一個高度,達到當堂消化吸收的效果。

  (五)總結反饋

  在以上課堂實錄中充分展示了教法、學法中的互動模式,問題貫穿于探究過程的始終,切實體現了啟發(fā)式、問題式教學法的特色。

  在本節(jié)課的最后對知識點進行了簡單回顧,并引導學生總結出本節(jié)課應積累的解題經驗。知識在于積累,而學習數學更在于知識的應用經驗的積累。所以提高知識的應用能力、增強錯誤的預見能力是提高數學綜合能力的很重要的策略。

 。┓謱幼鳂I(yè),學以致用

  必做題:課本第36頁練習第1-2題。

  選做題:課本第39頁習題1、3A組第6題。

  思考題:課本第39頁習題1、3B組第3題。

  設計意圖:面向全體學生,注重個人差異,加強作業(yè)的針對性,對學生進行分層作業(yè),既使學生掌握基礎知識,又使學有余力的學生有所提高,進一步達到不同的人在數學上得到不同的發(fā)展。

高中數學說課稿 篇5

尊敬的各位專家、評委:

  上午好!

  今天我說課的課題是人教A版必修1第二章第二節(jié)《對數函數》。

  我嘗試利用新課標的理念來指導教學,對于本節(jié)課,我將以“教什么,怎么教,為什么這樣教”為思路,從教材分析、目標分析、教法學法分析、教學過程分析和評價分析五個方面來談談我對教材的理解和教學的設計,敬請各位專家、評委批評指正。

  一、教材分析

  地位和作用

  本章學習是在學生完成函數的第一階段學習(初中)的基礎上,進行第二階段的函數學習。而對數函數作為這一階段的重要的基本初等函數之一,它是在學生已經學習了指數函數及對數的內容,這為過渡到本節(jié)的學習起著鋪墊作用。“對數函數”這節(jié)教材,是在沒有學習反函數的基礎上研究的指數函數和對數函數的自變量和因變量之間的關系。同時對數函數作為常用數學模型在解決社會生活中的實例有著廣泛的應用,本節(jié)課的學習為學生進一步學習,參加生產和實際生活提供必要的基礎知識。

  二、目標分析

  (一)、教學目標

  根據《對數函數》在教材內容中的地位與作用,結合學情分析,本節(jié)課教學應實現如下的教學目標:

  1、知識與技能

  (1)、進一步體會函數是描述變量之間的依賴關系的重要數學模型;

  (2)、理解對數函數的概念、掌握對數函數的圖像和性質;

 。3)、由實際問題出發(fā),培養(yǎng)學生探索知識和抽象概括知識等方面的能力。

  2、過程與方法

  引導學生觀察,探尋變量和變量的對應關系,通過歸納、抽象、概括,自主建構對數函數的概念;體驗結合舊知識探索新知識,研究新問題的快樂。

  3、情感態(tài)度與價值觀

  通過對對數函數函數圖像和性質的探究過程,培養(yǎng)學生發(fā)現問題,探索問題,不斷超越的創(chuàng)新品質。在民主、和諧的教學氣氛中,促進師生的情感交流。

 。ǘ┙虒W重點、難點及關鍵

  1、重點:對數函數的概念、圖像和性質;在教學中只有突出這個重點,才能使教材脈絡分明,才能有利于學生聯(lián)系舊知識,學習新知識。

  2、 難點:底數a對對數函數的圖像和性質的影響。

  [關鍵]對數函數與指數函數的類比教學。

  由指數函數的圖像過渡到對數函數的圖像,通過類比分析達到深刻地了解對數函數的圖像及其性質是掌握重點和突破難點的關鍵,在教學中一定要使學生的思考緊緊圍繞圖像,數形結合,加強直觀教學,使學生能形成以圖像為根本,以性質為主體的知識網絡,同時在立體的講解中,重視加強題組的設計和變形,使教學真正體現出由淺入深,由易到難,由具體到抽象的特點,從而突破重點、突破難點。

  三、教法、學法分析

 。ㄒ唬、教法

  教學過程是教師和學生共同參與的'過程,啟發(fā)學生自主性學習,充分調動學生的積極性、主動性;有效地滲透數學思想方法,提高學生素質。根據這樣的原則和所要完成的教學目標,并為激發(fā)學生的學習興趣,我采用如下的教學方法:

  1、啟發(fā)引導學生思考、分析、實驗、探索、歸納;

  2、采用“從特殊到一般”、“從具體到抽象”的方法;

  3、體現“對比聯(lián)系”、“數形結合”及“分類討論”的思想方法;

  4、投影儀演示法。

  在整個過程中,應以學生看,學生想,學生議,學生練為主體,教師在學生仔細觀察、類比、想象的基礎上通過問題串的形式加以引導點撥,與指數函數性質對照,歸納,整理,只有這樣,才能喚起學生對原有知識的回憶,自覺地找到新舊知識的聯(lián)系,使新學知識更牢固,理解更深刻。

 。ǘW法

  教給學生方法比教給學生知識更重要,本節(jié)課注重調動學生積極思考、主動探索,盡可能地增加學生參與教學活動的時間和空間,我進行了以下學法指導:

  1、對照比較學習法:學習對數函數,處處與指數函數相對照;

  2、探究式學習法:學生通過分析、探索,得出對數函數的定義;

  3、自主性學習法:通過實驗畫出函數圖像、觀察圖像自得其性質;

  4、反饋練習法:檢驗知識的應用情況,找出未掌握的內容及其差距。

  四、教學過程分析

  (一)、教學過程設計

  1、創(chuàng)設情境,提出問題。

  在某細胞分裂過程中,細胞個數y是分裂次數x的函數y=2x,因此,知道x的值(輸入值是分裂次數)就能求出y的值(輸出值為細胞的個數),這樣就建立了一個細胞個數和分裂次數x之間的函數關系式。

  問題一:這是一個怎樣的函數模型類型呢?

  設計意圖

  復習指數函數

  問題二:現在我們來研究相反的問題,如果知道了細胞的個數y,如何求分裂的次數x呢?這將會是我們研究的哪類問題?

  設計意圖

  為了引出對數函數

  問題三:在關系式x=log2y每輸入一個細胞的個數y的值,是否一定都能得到唯一一個分裂次數x的值呢?

  設計意圖

 。1)、為了讓學生更好地理解函數;

 。2)、為了讓學生更好地理解對數函數的概念。

  2、引導探究,建構概念。

 。1)、對數函數的概念:

  同樣,在前面提到的發(fā)射性物質,經過的時間x年與物質剩余量y的關系式為y=0.84x,我們也可以把它改成對數式x=log0.84y,其中x年夜可以看作物質剩余量y的函數,可見這樣的問題在現實生活中還是不少的。

  設計意圖

  前面的問題情景的底數為2,而這個問題情景的底數是0.84,我認為這個情景并不是多余的,其實它暗示了對數函數的底數與指數函數的底數一樣有兩類。

  但是在習慣上,我們用x表示自變量,用y表示函數值。

  問題一:你能把以上兩個函數表示出來嗎?

  問題二:你能得到此類函數的一般式嗎?

  設計意圖

  體現出了由特殊到一般的數學思想

  問題三:在y=logax中,a有什么限制條件嗎?請結合指數式給以解釋。

  問題四:你能根據指數函數的定義給出對數函數的定義嗎?

  問題五:x=logay與y=ax中的x,y的相同之處是什么?不同之處是什么?

  設計意圖

  前四個問題是為了引導出對數函數的概念,然而,光有前四個問題還是不夠的,學生最容易忽略或最不容易理解的是函數的定義域,所以設計這個問題是為了讓學生更好地理解對數函數的定義域。

  (2)、對數函數的圖像與性質

  問題:有了研究指數函數的經歷,你覺得下面該學習什么內容了?

  設計意圖

  提示學生進行類比學習

  合作探究1:借助計算器在同一直角坐標系中畫出下列兩組函數的圖像,并觀察各族函數圖像,探求他們之間的關系。

  y=2x;y=log2x y=( )x,y=log x

  合作探究2:當a>0,a≠ 1,函數y=ax與y=logax圖像之間有什么關系?

  設計意圖

  在這兒體現“從特殊到一般”、“從具體到抽象”的方法。

  合作探究3:分析你所畫的兩組函數的圖像,對照指數函數的性質,總結歸納對數函數的性質。

  設計意圖

  學生討論并交流各自的而發(fā)現成果,教師結合學生的交流,適時歸納總結,并板書對數函數的性質)。問題1:對數函數y=logax( a>0,a≠1,)是否具有奇偶性,為什么?

  問題2:對數函數y=logax( a>0,a≠1,),當a>1時,x取何值,y>0,x取何值,y<0,當0

  問題3:對數式logab的值的符號與a,b的取值之間有何關系?

  知識拓展:函數y=ax稱為y=logax的反函數,反之,也成立,一般地,如果函數y=f(x)存在反函數,那么它的反函數記作y=f-1(x)。

  3、自我嘗試,初步應用。

  例1:求下列函數的定義域

  y=log0.2(4-x)(該題主要考查對函數y=logax的定義域(0,+∞)這一限制條件,根據函數的解析式求得不等式,解對應的不等式。)

  例2:利用對數函數的性質,比較下列各組數中兩個數的大。

  (1)、㏒2 3.4,log2 3.8;

  (2)、log0.5 1.8,log0.5 2.1;

  (3)、log7 5,log6 7

 。ㄔ谶@兒要求學生通過回顧指數函數的有關性質比較大小的步驟和方法,完成完成前兩題,最后一題可以通過教師的適當點撥完成解答,最后進行歸納總結比較數的大小常用的方法)

  合作探究4:已知logm 4

  設計意圖

  該題不僅運用了對數函數的圖像和性質,還培養(yǎng)了學生數形結合、分類討論等數學思想。

  4、當堂訓練,鞏固深化。

  通過學生的主體性參與,使學生深刻體會到本節(jié)課的主要內容和思想方法,從而實現對知識的再次深化。

  采用課后習題1,2,3.

  5、小結歸納,回顧反思。

  小結歸納不僅是對知識的簡單回顧,還要發(fā)揮學生的主體地位,從知識、方法、經驗等方面進行總結。

 。1)、小結:

  ①對數函數的概念

  ②對數函數的圖像和性質

 、劾脤岛瘮档男再|比較大小的一般方法和步驟,

 。2)、反思

  我設計了三個問題

  ①、通過本節(jié)課的學習,你學到了哪些知識?

 、、通過本節(jié)課的學習,你最大的體驗是什么?

 、、通過本節(jié)課的學習,你掌握了哪些技能?

 。ǘ、作業(yè)設計

  作業(yè)分為必做題和選做題,必做題是對本節(jié)課學生知識水平的反饋,選做題是對本節(jié)課內容的延伸與連貫,強調學以致用。通過作業(yè)設置,使不同層次的學生都可以獲得成功的喜悅,看到自己的潛能,從而激發(fā)學生飽滿的學習興趣,促進學生的自主發(fā)展、合作探究的學習氛圍的形成。

  我設計了以下作業(yè):

  必做題:課后習題A 1,2,3;

  選做題:課后習題B 1,2,3;

  (三)、板書設計

  板書要基本體現課堂的內容和方法,體現課堂進程,能簡明扼要反映知識結構及其相互關系:能指導教師的教學進程、引導學生探索知識;通過使用幻燈片輔助板書,節(jié)省課堂時間,使課堂進程更加連貫。

  五、評價分析

  學生學習的結果評價固然重要,但是更重要的是學生學習的過程評價。我采用了及時點評、延時點評與學生互評相結合,全面考查學生在知識、思想、能力等方面的發(fā)展情況,在質疑探究的過程中,評價學生是否有積極的情感態(tài)度和頑強的理性精神,在概念反思過程中評價學生的歸納猜想能力是否得到發(fā)展,通過鞏固練習考查學生對本節(jié)是否有一個完整的集訓,并進行及時的調整和補充。

  以上就是我對本節(jié)課的理解和設計,敬請各位專家、評委批評指正。

  謝謝!

高中數學說課稿 篇6

  一、教材地位與作用

  本節(jié)知識是必修五第一章《解三角形》的第一節(jié)內容,與初中學習的三角形的邊和角的基本關系有密切的聯(lián)系與判定三角形的全等也有密切聯(lián)系,在日常生活和工業(yè)生產中也時常有解三角形的問題,而且解三角形和三角函數聯(lián)系在高考當中也時常考一些解答題。因此,正弦定理的知識非常重要。

  二、學情分析

  作為高一學生,同學們已經掌握了基本的三角函數,特別是在一些特殊三角形中,而學生們在解決任意三角形的邊與角問題,就比較困難。

  教學重點:正弦定理的內容,正弦定理的證明及基本應用。

  教學難點:正弦定理的探索及證明,已知兩邊和其中一邊的對角解三角形時判斷解的個數。

  根據我的教學內容與學情分析以及教學重難點,我制定了如下幾點教學目標

  教學目標分析:

  知識目標:理解并掌握正弦定理的證明,運用正弦定理解三角形。

  能力目標:探索正弦定理的證明過程,用歸納法得出結論。

  情感目標:通過推導得出正弦定理,讓學生感受數學公式的整潔對稱美和數學的實際應用價值。

  三、教法學法分析

  教法:采用探究式課堂教學模式,在教師的啟發(fā)引導下,以學生獨立自主和合作交流為前提,以“正弦定理的發(fā)現”為基本探究內容,以生活實際為參照對象,讓學生的思維由問題開始,到猜想的得出,猜想的探究,定理的推導,并逐步得到深化。

  學法:指導學生掌握“觀察——猜想——證明——應用”這一思維方法,采取個人、小組、集體等多種解難釋疑的嘗試活動,將自己所學知識應用于對任意三角形性質的探究。讓學生在問題情景中學習,觀察,類比,思考,探究,動手嘗試相結合,增強學生由特殊到一般的數學思維能力,鍥而不舍的求學精神。

  四、教學過程

  (一)創(chuàng)設情境,布疑激趣

  “興趣是最好的老師”,如果一節(jié)課有個好的開頭,那就意味著成功了一半,本節(jié)課由一個實際問題引入,“工人師傅的.一個三角形的模型壞了,只剩下如右圖所示的部分,∠A=47°,∠B=53°,AB長為1m,想修好這個零件,但他不知道AC和BC的長度是多少好去截料,你能幫師傅這個忙嗎?”激發(fā)學生幫助別人的熱情和學習的興趣,從而進入今天的學習課題。

  (二)探尋特例,提出猜想

  1.激發(fā)學生思維,從自身熟悉的特例(直角三角形)入手進行研究,發(fā)現正弦定理。

  2.那結論對任意三角形都適用嗎?指導學生分小組用刻度尺、量角器、計算器等工具對一般三角形進行驗證。

  3.讓學生總結實驗結果,得出猜想:

  在三角形中,角與所對的邊滿足關系

  這為下一步證明樹立信心,不斷的使學生對結論的認識從感性逐步上升到理性。

  (三)邏輯推理,證明猜想

  1.強調將猜想轉化為定理,需要嚴格的理論證明。

  2.鼓勵學生通過作高轉化為熟悉的直角三角形進行證明。

  3.提示學生思考哪些知識能把長度和三角函數聯(lián)系起來,繼而思考向量分析層面,用數量積作為工具證明定理,體現了數形結合的數學思想。

  4.思考是否還有其他的方法來證明正弦定理,布置課后練習,提示,做三角形的外接圓構造直角三角形,或用坐標法來證明。

  (四)歸納總結,簡單應用

  1.讓學生用文字敘述正弦定理,引導學生發(fā)現定理具有對稱和諧美,提升對數學美的享受。

  2.正弦定理的內容,討論可以解決哪幾類有關三角形的問題。

  3.運用正弦定理求解本節(jié)課引入的三角形零件邊長的問題。自己參與實際問題的解決,能激發(fā)學生知識后用于實際的價值觀。

  (五)講解例題,鞏固定理

  1.例1:在△ABC中,已知A=32°,B=81.8°,a=42.9cm.解三角形。

  例1簡單,結果為唯一解,如果已知三角形兩角兩角所夾的邊,以及已知兩角和其中一角的對邊,都可利用正弦定理來解三角形。

  2.例2:在△ABC中,已知a=20cm,b=28cm,A=40°,解三角形。

  例2較難,使學生明確,利用正弦定理求角有兩種可能。要求學生熟悉掌握已知兩邊和其中一邊的對角時解三角形的各種情形。完了把時間交給學生。

  (六)課堂練習,提高鞏固

  1.在△ABC中,已知下列條件,解三角形。

  (1)A=45°,C=30°,c=10cm(2)A=60°,B=45°,c=20cm

  2.在△ABC中,已知下列條件,解三角形。

  (1)a=20cm,b=11cm,B=30°(2)c=54cm,b=39cm,C=115°

  學生板演,老師巡視,及時發(fā)現問題,并解答。

  (七)小結反思,提高認識

  通過以上的研究過程,同學們主要學到了那些知識和方法?你對此有何體會?

  1.用向量證明了正弦定

  理,體現了數形結合的數學思想。

  2.它表述了三角形的邊與對角的正弦值的關系。

  3.定理證明分別從直角、銳角、鈍角出發(fā),運用分類討論的思想。

  (從實際問題出發(fā),通過猜想、實驗、歸納等思維方法,最后得到了推導出正弦定理。我們研究問題的突出特點是從特殊到一般,我們不僅收獲著結論,而且整個探索過程我們也掌握了研究問題的一般方法。在強調研究性學習方法,注重學生的主體地位,調動學生積極性,使數學教學成為數學活動的教學。)

  (八)任務后延,自主探究

  如果已知一個三角形的兩邊及其夾角,要求第三邊,怎么辦?發(fā)現正弦定理不適用了,那么自然過渡到下一節(jié)內容,余弦定理。布置作業(yè),預習下一節(jié)內容。

高中數學說課稿 篇7

  尊敬的各位專家、評委:

  下午好!

  我的抽簽序號是____,今天我說課的課題是《_______》第__課時。 我嘗試利用新課標的理念來指導教學,對于本節(jié)課,我將以“教什么,怎么教,為什么這樣教”為思路,從教材分析、目標分析、教法學法分析、教學過程分析和評價分析五個方面來談談我對教材的理解和教學的設計,敬請各位專家、評委批評指正。

  一、教材分析

  (一)地位與作用

  數列是高中數學重要內容之一,它不僅有著廣泛的實際應用,而且起著承前啟后的作用。一方面數列作為一種特殊的函數與函數思想密不可分;另一方面學習數列也為進一步學習數列的極限等內容做好準備。而等差數列是在學生學習了數列的有關概念和給出數列的兩種方法——通項公式和遞推公式的基礎上,對數列的知識進一步深入和拓廣。同時等差數列也為今后學習等比數列提供了學習對比的依據。

 。ǘ⿲W情分析

  (1)學生已熟練掌握_________________。

 。2)學生的知識經驗較為豐富,具備了教強的抽象思維能力和演繹推理能力。

 。3)學生思維活潑,積極性高,已初步形成對數學問題的合作探究能力。

  (4) 學生層次參次不齊,個體差異比較明顯。

  二、目標分析

  新課標指出“三維目標”是一個密切聯(lián)系的有機整體,應該以獲得知識與技能的過程,同時成為學會學習和正確價值觀。這要求我們在教學中以知識技能的培養(yǎng)為主線,透情感態(tài)度與價值觀,并把這兩者充分體現在教學過程中,新課標指出教學的主體是學生,因此目標的制定和設計必須從學生的角度出發(fā),根據____在教材內容中的地位與作用,結合學情分析,本節(jié)課教學應實現如下教學目標:

  (一)教學目標

 。1)知識與技能

  使學生理解函數單調性的概念,初步掌握判別函數單調性的方法;。

 。2)過程與方法

  引導學生通過觀察、歸納、抽象、概括,自主建構單調增函數、單調減函數等概念;能運用函數單調性概念解決簡單的問題;使學生領會數形結合的數學思想方法,培養(yǎng)學生發(fā)現問題、分析問題、解決問題的能力。

 。3)情感態(tài)度與價值觀

  在函數單調性的學習過程中,使學生體驗數學的科學價值和應用價值,培養(yǎng)學生善于觀察、勇于探索的良好習慣和嚴謹的科學態(tài)度。

 。ǘ┲攸c難點

  本節(jié)課的教學重點是________________________,教學難點是_____________________。

  三、教法、學法分析

  (一)教法

  基于本節(jié)課的內容特點和高二學生的年齡特征,按照臨沂市高中數學“三五四”課堂教學策略,采用探究――體驗教學法為主來完成教學,為了實現本節(jié)課的教學目標,在教法上我采取了:

  1、通過學生熟悉的實際生活問題引入課題,為概念學習創(chuàng)設情境,拉近數學與現實的距離,激發(fā)學生求知欲,調動學生主體參與的積極性.

  2、在形成概念的過程中,緊扣概念中的關鍵語句,通過學生的主體參與,正確地形成概念.

  3、在鼓勵學生主體參與的同時,不可忽視教師的.主導作用,要教會學生清晰的思維、嚴謹的推理,并順利地完成書面表達.

 。ǘ⿲W法

  在學法上我重視了:

  1、讓學生利用圖形直觀啟迪思維,并通過正、反例的構造,來完成從感性認識到理性思維的質的飛躍。

  2、讓學生從問題中質疑、嘗試、歸納、總結、運用,培養(yǎng)學生發(fā)現問題、研究問題和分析解決問題的能力。

  四、教學過程分析

 。ㄒ唬┙虒W過程設計

  教學是一個教師的“導”,學生的“學”以及教學過程中的“悟”構成的和諧整體。教師的“導”也就是教師啟發(fā)、誘導、激勵、評價等為學生的學習搭建支架,把學習的任務轉移給學生,學生就是接受任務,探究問題、完成任務。如果在教學過程中把“教與學”完美的結合也就是以“問題”為核心,通過對知識的發(fā)生、發(fā)展和運用過程的演繹、解釋和探究來組織和推動教學。

 。1)創(chuàng)設情境,提出問題。

  新課標指出:“應該讓學生在具體生動的情境中學習數學”。在本節(jié)課的教學中,從我們熟悉的生活情境中提出問題,問題的設計改變了傳統(tǒng)目的明確的設計方式,給學生最大的思考空間,充分體現學生主體地位。

  (2)引導探究,建構概念。

  數學概念的形成來自解決實際問題和數學自身發(fā)展的需要.但概念的高度抽象,造成了難懂、難教和難學,這就需要讓學生置身于符合自身實際的學習活動中去,從自己的經驗和已有的知識基礎出發(fā),經歷“數學化”、“再創(chuàng)造”的活動過程.

 。3)自我嘗試,初步應用。

  有效的數學學習過程,不能單純的模仿與記憶,數學思想的領悟和學習過程更是如此。讓學生在解題過程中親身經歷和實踐體驗,師生互動學習,生生合作交流,共同探究.

  (4)當堂訓練,鞏固深化。

  通過學生的主體參與,使學生深切體會到本節(jié)課的主要內容和思想方法,從而實現對知識識的再次深化。

 。5)小結歸納,回顧反思。

  小結歸納不僅是對知識的簡單回顧,還要發(fā)揮學生的主體地位,從知識、方法、經驗等方面進行總結。我設計了三個問題:(1)通過本節(jié)課的學習,你學到了哪些知識?(2)通過本節(jié)課的學習,你最大的體驗是什么?(3)通過本節(jié)課的學習,你掌握了哪些技能?

 。ǘ┳鳂I(yè)設計

  作業(yè)分為必做題和選做題,必做題對本節(jié)課學生知識水平的反饋,選做題是對本

  節(jié)課內容的延伸與,注重知識的延伸與連貫,強調學以致用。通過作業(yè)設置,使不同層次的學生都可以獲得成功的喜悅,看到自己的潛能,從而激發(fā)學生飽滿的學習興趣,促進學生自主發(fā)展、合作探究的學習氛圍的形成.

  我設計了以下作業(yè):

 。1)必做題

  (2)選做題

 。ㄈ┌鍟O計

  板書要基本體現整堂課的內容與方法,體現課堂進程,能簡明扼要反映知識結構及其相互聯(lián)系;能指導教師的教學進程、引導學生探索知識;通過使用幻燈片輔助板書,節(jié)省課堂時間,使課堂進程更加連貫。

  五、評價分析

  學生學習的結果評價當然重要,但是更重要的是學生學習的過程評價。我采用及時點評、延時點評與學生互評相結合,全面考查學生在知識、思想、能力等方面的發(fā)展情況,在質疑探究的過程中,評價學生是否有積極的情感態(tài)度和頑強的理性精神,在概念反思過程中評價學生的歸納猜想能力是否得到發(fā)展,通過鞏固練習考查學生對____是否有一個完整的集訓,并進行及時的調整和補充。 以上就是我對本節(jié)課的理解和設計,敬請各位專家、評委批評指正。 謝謝!

高中數學說課稿 篇8

  一、教材分析:

  《向量的加法》是《必修》4第二章第二單元中“平面向量的線性運算”的第一節(jié)課。本節(jié)內容有向量加法的平行四邊形法則、三角形法則及應用,向量加法的運算律及應用,大約需要1課時。向量的加法是向量的線性運算中最基本的一種運算,向量的加法及其幾何意義為后繼學習向量的減法運算及其幾何意義、向量的數乘運算及其幾何意義奠定了基礎;其中三角形法則適用于求任意多個向量的和,在空間向量與立體幾何中有很普遍的應用。所以本課在“平面向量”及“空間向量”中有很重要的地位。

  二、學情分析:

  學生在上節(jié)課中學習了向量的定義及表示,相等向量,平行向量等概念,知道向量可以自由移動,這是學習本節(jié)內容的基礎。學生對數的運算了如指掌,并且在物理中學過力的合成、位移的合成等矢量的加法,所以向量的加法可通過類比數的加法、以所學的物理模型為背景引入,這樣做有利于學生更好地理解向量加法的意義,準確把握兩個加法法則的特點。

  三、教學目的:

  1、通過對向量加法的探究,使學生掌握向量加法的概念,結合物理學實際理解向量加法的意義。能正確領會向量加法的平行四邊形法則和三角形法則的幾何意義,并能運用法則作出兩個已知向量的和向量。

  2、在應用活動中,理解向量加法滿足交換律和結合律以及表述兩個運算律的幾何意義。掌握有特殊位置關系的兩個向量之和,比如共線向量,共起點向量、共終點向量等。

  3、通過本節(jié)的學習,培養(yǎng)學生類比、遷移、分類、歸納等數學方面的能力。

  四、教學重、難點

  重點:向量的加法法則。探究向量的加法法則并正確應用是本課的重點。兩個加法法則各有特點,聯(lián)系緊密,你中有我,我中有你,實質相同,但是三角形法則適用范圍更加廣泛,且簡便易行,所以是詳講內容,平行四邊形法則在本課中所占份量略少于三角形法則。

  難點:對三角形法則的理解;方向相反的兩個向量的加法。主要是讓學生認識到三角形法則的實質是:將已知向量首尾相接,而不是表示向量的有向線段之間必須構成三角形。

  五、教學方法

  本節(jié)采用以下教學方法:1、類比:由數的加法運算類比向量的加法運算。2、探究:由力的合成引入平行四邊形法則,在法則的運用中觀察圖形得出三角形法則,探求共線向量的加法,發(fā)現三角形法則適用于任意向量相加;通過圖形,觀察得出向量加法滿足交換律、結合律等,這些都體現探究式教學法的運用。3、講解與練習:對兩個法則特點的分析,例題都采取了引導與講解的方法,學生課堂完成教材中的練習。4、多媒體技術的運用,能直觀地表現向量的平移,相等向量的意義,更能說清兩個法則的幾何意義及運算律。

  六、數學思想的體現:

  1、分類的思想:總的來說本課中向量的加法分為不共線向量及共線向量兩種形式,共線向量又分為方向相同與方向相反兩種情形,然后專門對零向量與任意向量相加作了規(guī)定,這樣對任意向量的加法都做了討論,線索清楚。

  2、類比思想:使之與數的加法進行類比,使學生對向量的加法不致于太陌生,既有似曾相識的感覺,又能從對比中看出兩者的不同,效果較好。

  3、歸納思想:主要體現在以下三個環(huán)節(jié)①學完平行四邊形法則和三角形法則后,歸納總結,對不共線向量相加,兩個法則都可以選用。②由共線向量的加法總結出三角形法則適用于任意兩個向量的相加,而三角形法則僅適用于不共線向量相加。③對向量加法的結合律和探討中,又使學生發(fā)現了三角形法則還適用于任意多個向量的加法。歸納思想在這三個環(huán)節(jié)中的運用,使得學生對兩個加法法則,尤其是三角形法則的理解,步步深入。

  七、教學過程:

  1、回顧舊知:本節(jié)要進行向量的平移,且對向量加法分共線與不共線兩種情況,所以要復習向量、相等向量、共線向量等概念,這些都是新課學習中必要的知識鋪墊。

  2、引入新課:

  (1)平行四邊形法則的引入。

  學生在物理學中雖然接觸過位移的合成,但是并沒有形成三角形法則的概念;而對平行四邊形法則學生已學過,很熟悉。所以我決定由力的合成引入向量加法的平行四邊形法則。平行四邊形法則的特點是起點相同,但是物理中力的合成是在有相同的作用點的條件下合成的,引入到數學中向量加法的平行四邊形法則,所給出的圖形也是現成的平行四邊形,而學生剛學完相等向量,對相等向量的概念還沒有深刻的認識,易產生誤解:表示兩個已知向量的`有向線段的起點必須在一起才能用平行四邊形法則,不在一起不能用。這時要通過講解例1,使學生認識到可以通過平移向量,使表示兩個向量的有向線段有共同的起點。這一點對理解及運用法則求兩向量的和很重要。

  設計意圖:本著從學生最熟悉、離學生最近的知識經驗為接入點,用學生熟知的方法來解決新的問題——向量的加法,這樣新中有舊,學生容易接受,也使學科間的滲透發(fā)揮了作用,加深了學生對向量加法的平行四邊形法則的“起點相同”這一特點的認識,例1的講解使學生認識到當表示向量的有向線段的起點不在一起時,須把起點移到一起,至此才能使學生完成對平行四邊形法則理解真正到位。

  (2)三角形法則的引入。三角形法則沒有按照教材中利用位移的合成引入,而是從前面所講的平行四邊形法則的圖形中直接引入(如圖)。

  所以這種把兩個向量相加的方法稱為三角形法則。接下來用幻燈片完整展示三角形法則,同時法則的作法敘述、作圖過程對學生也起到了示例的作用。于是前面的例1還可以利用三角形法則來做。

  這時,總結出兩個不共線向量求和時,平行四邊形法則與三角形法則都可以用。

  設計意圖:由平行四邊形法則的圖形引入三角形法則,可以很清楚地使學生從向何意義上認識到兩個法則之間的密切聯(lián)系,理解它們的實質,而且銜接自然,能夠使學生對比地得出兩個法則的特點與實質,并對兩個法則的特點有較深刻的印象。

  (3)共線向量的加法

  方向相同的兩個向量相加,對學生來說較易完成,“將它們接在一起,取它們的方向及長度之和,作為和向量的方向與長度!币龑W生分析作法,結果發(fā)現還是運用了三角形法則:首尾相接,方向由第一個向量的起點指向第二個向量的終點。

  方向相反的兩個向量相加,對學生來說是個難點,首先從作圖上不知道怎樣做。但是學生學過有理數加法中的異號兩數相加:“異號兩數相加,用較大

  的絕對值減去較小的絕對值,符號取絕對值較大的數的符號!鳖惐犬愄杻蓴迪嗉,他們會用較長的模減去較短的模,方向取模較長的向量的方向。具體做法由老師引導學生嘗試運用三角形法則去做,發(fā)現結論正確。

  反思過程,學生自然會想到方向相同的兩個向量相加,類似于同號兩數相加。這說明兩個共線向量相加依然可用三角形法則 通過以上幾個環(huán)節(jié)的討論,可以作個簡單的小結:兩個不共線向量相加,可采用平行四邊形法則或三角形法則,而兩個共線向量相加在本課所學方法中只能用三角形法則,說明三角形法則適用于任意兩個向量相加。

  設計意圖:通過對共線向量加法的探討,拓寬了學生對三角形法則的認識,使得不同位置的向量相加都有了依據,并且采用類比的方法,使學生對共線向量的加法,尤其是方向相反的兩個向量的加法更易于理解,可以化解難點。

  (4)向量加法的運算律

 、俳粨Q律:交換律是利用平行四邊形法則的圖形,又結合三角

  形法則得出,理解起來沒什么困難,再一次強化了學生對兩個法則特點及實質的認識。

  ②結合律:結合律是通過三個向量首尾相接,先加前兩個再與第三個向量相加,和先加后兩個向量再與第一個向量相加所得結果相同。

  接下來是對應的兩個練習,運用交換律與結合律計算向量的和。

  設計意圖:運算律的引入給加法運算帶來方便,從后面的練習中學生能夠體會到這點。由結合律還使學生發(fā)現,多個向量相加,同樣可以運用三角形法則:將所加向量首尾相接,和向量的方向是由第一個向量的起點指向最后一個向量的終點。這樣使學生明白,三角形法則適用于任意多個向量相加。

  3、小結

  先由學生小結,檢查學生對本課重要知識的認識,也給學生一個概括本節(jié)知識的機會,然后用課件展示小結內容,使學生印象更深。

 。1)平行四邊形法則:起點相同,適用于不共線向量的求和。

  (2)三角形法則首尾相接,適用于任意多個向量的求和。

 。3)運算律

高中數學說課稿 篇9

  本節(jié)課講述的是人教版高一數學(上)3.2等差數列(第一課時)的內容。

  一、教材分析

  1、教材的地位和作用:

  數列是高中數學重要內容之一,它不僅有著廣泛的實際應用,而且起著承前啟后的作用。一方面,數列作為一種特殊的函數與函數思想密不可分;另一方面,學習數列也為進一步學習數列的極限等內容做好準備。而等差數列是在學生學習了數列的有關概念和給出數列的兩種方法——通項公式和遞推公式的基礎上,對數列的知識進一步深入和拓廣。同時等差數列也為今后學習等比數列提供了學習對比的依據。

  2、教學目標

  根據教學大綱的要求和學生的實際水平,確定了本次課的教學目標

  a在知識上:理解并掌握等差數列的概念;了解等差數列的通項公式的推導過程及思想;初步引入“數學建!钡乃枷敕椒ú⒛苓\用。

  b在能力上:培養(yǎng)學生觀察、分析、歸納、推理的能力;在領會函數與數列關系的前提下,把研究函數的方法遷移來研究數列,培養(yǎng)學生的知識、方法遷移能力;通過階梯性練習,提高學生分析問題和解決問題的能力。

  c在情感上:通過對等差數列的研究,培養(yǎng)學生主動探索、勇于發(fā)現的求知精神;養(yǎng)成細心觀察、認真分析、善于總結的良好思維習慣。

  3、教學重點和難點

  根據教學大綱的要求我確定本節(jié)課的教學重點為:

 、俚炔顢盗械母拍睢

 、诘炔顢盗械耐椆降耐茖н^程及應用。

  由于學生第一次接觸不完全歸納法,對此并不熟悉因此用不完全歸納法推導等差數列的同項公式是這節(jié)課的一個難點。同時,學生對“數學建模”的思想方法較為陌生,因此用數學思想解決實際問題是本節(jié)課的另一個難點。

  二、學情教法分析:

  對于三中的高一學生,知識經驗已較為豐富,他們的智力發(fā)展已到了形式運演階段,具備了教強的抽象思維能力和演繹推理能力,所以我在授課時注重引導、啟發(fā)、研究和探討以符合

  這類學生的心理發(fā)展特點,從而促進思維能力的進一步發(fā)展。

  針對高中生這一思維特點和心理特征,本節(jié)課我采用啟發(fā)式、討論式以及講練結合的教學方法,通過問題激發(fā)學生求知欲,使學生主動參與數學實踐活動,以獨立思考和相互交流的形式,在教師的指導下發(fā)現、分析和解決問題。

  三、學法指導:

  在引導分析時,留出學生的思考空間,讓學生去聯(lián)想、探索,同時鼓勵學生大膽質疑,圍繞中心各抒己見,把思路方法和需要解決的問題弄清。

  四、教學程序

  本節(jié)課的教學過程由(一)復習引入(二)新課探究(三)應用舉例(四)反饋練習(五)歸納小結(六)布置作業(yè),六個教學環(huán)節(jié)構成。

  (一)復習引入:

  1.從函數觀點看,數列可看作是定義域為__________對應的一列函數值,從而數列的通項公式也就是相應函數的______。(N﹡;解析式)

  通過練習1復習上節(jié)內容,為本節(jié)課用函數思想研究數列問題作準備。

  2.小明目前會100個單詞,他她打算從今天起不再背單詞了,結果不知不覺地每天忘掉2個單詞,那么在今后的五天內他的單詞量逐日依次遞減為:100,98,96,94,92 ①

  3. 小芳只會5個單詞,他決定從今天起每天背記10個單詞,那么在今后的五天內他的單詞量逐日依次遞增為5,10,15,20,25 ②

  通過練習2和3引出兩個具體的等差數列,初步認識等差數列的特征,為后面的概念學習建立基礎,為學習新知識創(chuàng)設問題情境,激發(fā)學生的求知欲。由學生觀察兩個數列特點,引出等差數列的概念,對問題的總結又培養(yǎng)學生由具體到抽象、由特殊到一般的認知能力。

  (二) 新課探究

  1、由引入自然的給出等差數列的概念:

  如果一個數列,從第二項開始它的每一項與前一項之差都等于同一常數,這個數列就叫等差數列,

  這個常數叫做等差數列的公差,通常用字母d來表示。強調:

 、 “從第二項起”滿足條件;

 、诠頳一定是由后項減前項所得;

 、勖恳豁椗c它的前一項的差必須是同一個常數(強調“同一個常數” );

  在理解概念的基礎上,由學生將等差數列的文字語言轉化為數學語言,歸納出數學表達式:

  an+1-an=d (n≥1)同時為了配合概念的理解,我找了5組數列,由學生判斷是否為等差數列,是等差數列的找出公差。

  1. 9 ,8,7,6,5,4,??;√ d=-1

  2. 0.70,0.71,0.72,0.73,0.74??;√ d=0.01

  3. 0,0,0,0,0,0,??.; √ d=0

  4. 1,2,3,2,3,4,??;×

  5. 1,0,1,0,1,??×

  其中第一個數列公差<0,>0,第三個數列公差=0

  由此強調:公差可以是正數、負數,也可以是0

  2、第二個重點部分為等差數列的通項公式

  在歸納等差數列通項公式中,我采用討論式的教學方法。給出等差數列的.首項,公差d,由學生研究分組討論a4的通項公式。通過總結a4的通項公式由學生猜想a40的通項公式,進而歸納an的通項公式。整個過程由學生完成,通過互相討論的方式既培養(yǎng)了學生的協(xié)作意識又化解了教學難點。

  若一等差數列{an }的首項是a1,公差是d,則據其定義可得:

  a2 - a1 =d 即: a2 =a1 +d

  a3 – a2 =d 即: a3 =a2 +d = a1 +2d

  a4 – a3 =d 即: a4 =a3 +d = a1 +3d

  ??

  猜想: a40 = a1 +39d,進而歸納出等差數列的通項公式:

  an=a1+(n-1)d

  此時指出:這種求通項公式的辦法叫不完全歸納法,這種導出公式的方法不夠嚴密,為了培養(yǎng)學生嚴謹的學習態(tài)度,在這里向學生介紹另外一種求數列通項公式的辦法------迭加法:

  a2 – a1 =d

  a3 – a2 =d

  a4 – a3 =d

  ??

  an – an-1=d

  將這(n-1)個等式左右兩邊分別相加,就可以得到 an– a1= (n-1) d即 an= a1+(n-1) d

  (1)

  當n=1時,(1)也成立,

  所以對一切n∈N﹡,上面的公式都成立

  因此它就是等差數列{an}的通項公式。

  在迭加法的證明過程中,我采用啟發(fā)式教學方法。

  利用等差數列概念啟發(fā)學生寫出n-1個等式。

  對照已歸納出的通項公式啟發(fā)學生想出將n-1個等式相加。證出通項公式。

  在這里通過該知識點引入迭加法這一數學思想,逐步達到“注重方法,凸現思想” 的教學要求

  接著舉例說明:若一個等差數列{an}的首項是1,公差是2,得出這個數列的通項公式是:an=1+(n-1)×2 ,

  即an=2n-1 以此來鞏固等差數列通項公式運用

  同時要求畫出該數列圖象,由此說明等差數列是關于正整數n一次函數,其圖像是均勻排開的無窮多個孤立點。用函數的思想來研究數列,使數列的性質顯現得更加清楚。

 。ㄈ⿷门e例

  這一環(huán)節(jié)是使學生通過例題和練習,增強對通項公式含義的理解以及對通項公式的運用,提高解決實際問題的能力。通過例1和例2向學生表明:要用運動變化的觀點看等差數列通項公式中的a1、d、n、an這4個量之間的關系。當其中的部分量已知時,可根據該公式求出另

  一部分量。

  例1 (1)求等差數列8,5,2,?的第20項;第30項;第40項

  (2)-401是不是等差數列-5,-9,-13,?的項?如果是,是第幾項?

  在第一問中我添加了計算第30項和第40項以加強鞏固等差數列通項公式;第二問實際上是求正整數解的問題,而關鍵是求出數列的通項公式an.

  例2 在等差數列{an}中,已知a5=10,a12 =31,求首項a1與公差d。

  在前面例1的基礎上將例2當作練習作為對通項公式的鞏固

  例3 是一個實際建模問題

  建造房屋時要設計樓梯,已知某大樓第2層的樓底離地面的高度為3米,第三層離地面5.8米,若樓梯設計為等高的16級臺階,問每級臺階高為多少米?

  這道題我采用啟發(fā)式和討論式相結合的教學方法。啟發(fā)學生注意每級臺階“等高”使學生想到每級臺階離地面的高度構成等差數列,引導學生將該實際問題轉化為數學模型------等差數列:(學生討論分析,分別演板,教師評析問題。問題可能出現在:項數學生認為是16項,應明確a1為第2層的樓底離地面的高度,a2表示第一級臺階離地面的高度而第16級臺階離地面高度為a17,可用課件展示實際樓梯圖以化解難點)。

  設置此題的目的:1.加強同學們對應用題的綜合分析能力,2.通過數學實際問題引出等差數列問題,激發(fā)了學生的興趣;3.再者通過數學實例展示了“從實際問題出發(fā)經抽象概括建立數學模型,最后還原說明實際問題的“數學建!钡臄祵W思想方法

  (四)反饋練習

  1、小節(jié)后的練習中的第1題和第2題(要求學生在規(guī)定時間內完成)。目的:使學生熟悉通項公式,對學生進行基本技能訓練。

  2、書上例3)梯子的最高一級寬33cm,最低一級寬110cm,中間還有10級,各級的寬度成等差數列。計算中間各級的寬度。

  目的:對學生加強建模思想訓練。

  3、若數例{an} 是等差數列,若 bn = k an ,(k為常數)試證明:數列{bn}是等差數列

  此題是對學生進行數列問題提高訓練,學習如何用定義證明數列問題同時強化了等差數列的概念。

 。ㄎ澹w納小結(由學生總結這節(jié)課的收獲)

  1.等差數列的概念及數學表達式.

  強調關鍵字:從第二項開始它的每一項與前一項之差都等于同一常數

  2.等差數列的通項公式 an= a1+(n-1) d會知三求一

  3.用“數學建模”思想方法解決實際問題

  (六)布置作業(yè)

  必做題:課本P114 習題3.2第2,6 題

  選做題:已知等差數列{an}的首項a1=-24,從第10項開始為正數,求公差d的取值范圍。

 。康模和ㄟ^分層作業(yè),提高同學們的求知欲和滿足不同層次的學生需求)

  五、板書設計

  在板書中突出本節(jié)重點,將強調的地方如定義中,“從第二項起”及“同一常數”等幾個字用紅色粉筆標注,同時給學生留有作題的地方,整個板書充分體現了精講多練的教學方法。

高中數學說課稿 篇10

  一、教材分析

  1、教材內容

  本節(jié)課是蘇教版第二章《函數概念和基本初等函數Ⅰ》2.1.3函數簡單性質的第一課時,該課時主要學習增函數、減函數的定義,以及應用定義解決一些簡單問題.

  2、教材所處地位、作用

  函數的性質是研究函數的基石,函數的單調性是首先研究的一個性質.通過對本節(jié)課的學習,讓學生領會函數單調性的概念、掌握證明函數單調性的步驟,并能運用單調性知識解決一些簡單的實際問題.通過上述活動,加深對函數本質的認識.函數的單調性既是學生學過的函數概念的延續(xù)和拓展,又是后續(xù)研究指數函數、對數函數、三角函數的單調性的基礎.此外在比較數的.大小、函數的定性分析以及相關的數學綜合問題中也有廣泛的應用,它是整個高中數學中起著承上啟下作用的核心知識之一.從方法論的角度分析,本節(jié)教學過程中還滲透了探索發(fā)現、數形結合、歸納轉化等數學思想方法.

  3、教學目標

 。1)知識與技能:使學生理解函數單調性的概念,掌握判別函數單調性

  的方法;

  (2)過程與方法:從實際生活問題出發(fā),引導學生自主探索函數單調性的概念,應用圖象和單調性的定義解決函數單調性問題,讓學生領會數形結合的數學思想方法,培養(yǎng)學生發(fā)現問題、分析問題、解決問題的能力.

 。3)情感態(tài)度價值觀:讓學生體驗數學的科學功能、符號功能和工具功能,培養(yǎng)學生直覺觀察、探索發(fā)現、科學論證的良好的數學思維品質.

  4、重點與難點

  教學重點(1)函數單調性的概念;

 。2)運用函數單調性的定義判斷一些函數的單調性.

  教學難點(1)函數單調性的知識形成;

 。2)利用函數圖象、單調性的定義判斷和證明函數的單調性.

  二、教法分析與學法指導

  本節(jié)課是一節(jié)較為抽象的數學概念課,因此,教法上要注意:

  1、通過學生熟悉的實際生活問題引入課題,為概念學習創(chuàng)設情境,拉近數學與現實的距離,激發(fā)了學生求知欲,調動了學生主體參與的積極性.

  2、在運用定義解題的過程中,緊扣定義中的關鍵語句,通過學生的主體參與,逐個完成對各個難點的突破,以獲得各類問題的解決.

  3、在鼓勵學生主體參與的同時,不可忽視教師的主導作用.具體體現在設問、講評和規(guī)范書寫等方面,要教會學生清晰的思維、嚴謹的推理,并成功地完成書面表達.

  4、采用投影儀、多媒體等現代教學手段,增大教學容量和直觀性.

  在學法上:

  1、讓學生從問題中質疑、嘗試、歸納、總結、運用,培養(yǎng)學生發(fā)現問題、研究問題和解決問題的能力.

  2、讓學生利用圖形直觀啟迪思維,并通過正、反例的構造,來完成從感性認識到理性思維的一個飛躍.