當(dāng)前位置:育文網(wǎng)>初中>初中數(shù)學(xué)> 初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)

初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)

時(shí)間:2024-05-24 10:03:21 初中數(shù)學(xué) 我要投稿

(優(yōu)秀)初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)15篇

  總結(jié)是對(duì)取得的成績(jī)、存在的問題及得到的經(jīng)驗(yàn)和教訓(xùn)等方面情況進(jìn)行評(píng)價(jià)與描述的一種書面材料,它可以促使我們思考,不妨坐下來好好寫寫總結(jié)吧。你想知道總結(jié)怎么寫嗎?下面是小編為大家整理的初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié),僅供參考,希望能夠幫助到大家。

(優(yōu)秀)初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)15篇

初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)1

  一、關(guān)于初高中數(shù)學(xué)成績(jī)分化原因的分析

  1、環(huán)境與心理的變化。

  對(duì)高一新生來講,環(huán)境可以說是全新的,新教材、新同學(xué)、新教師、新集體……學(xué)生有一個(gè)由陌生到熟悉的適應(yīng)過程。另外,經(jīng)過緊張的中考復(fù)習(xí),考取了自己理想的高中,必有些學(xué)生產(chǎn)生“松口氣”想法,入學(xué)后無緊迫感。也有些學(xué)生有畏懼心理,他們?cè)谌雽W(xué)前,就耳聞高中數(shù)學(xué)很難學(xué),高中數(shù)學(xué)課一開始也確是些難理解的抽象概念,如映射、集合、異面直線等,使他們從開始就處于怵頭無趣的被動(dòng)局面。以上這些因素都嚴(yán)重影響高一新生的學(xué)習(xí)質(zhì)量。

  2、教材的變化。

  首先,初中數(shù)學(xué)教材內(nèi)容通俗具體,多為常量,題型少而簡(jiǎn)單;而高中數(shù)學(xué)內(nèi)容抽象,多研究變量、字母,不僅注重計(jì)算,而且還注重理論分析,這與初中相比增加了難度。

  其次,由于近幾年教材內(nèi)容的調(diào)整,雖然初高中教材都降低了難度,但相比之下,初中降低的幅度大,而高中由于受高考的限制,教師都不敢降低難度,造成了高中數(shù)學(xué)實(shí)際難度沒有降低。因此,從一定意義上講,調(diào)整后的教材不僅沒有縮小初高中教材內(nèi)容的難度差距,反而加大了。

  3、課時(shí)的變化。

  在初中,由于內(nèi)容少,題型簡(jiǎn)單,課時(shí)較充足。因此,課容量小,進(jìn)度慢,對(duì)重難點(diǎn)內(nèi)容均有充足時(shí)間反復(fù)強(qiáng)調(diào),對(duì)各類習(xí)題的解法,教師有時(shí)間進(jìn)行舉例示范,學(xué)生也有足夠時(shí)間進(jìn)行鞏固。而到高中,由于知識(shí)點(diǎn)增多,靈活性加大和新工時(shí)制實(shí)行,使課時(shí)減少,課容量增大,進(jìn)度加快,對(duì)重難點(diǎn)內(nèi)容沒有更多的時(shí)間強(qiáng)調(diào),對(duì)各類型題也不可能講全講細(xì)和鞏固強(qiáng)化。這也使高一新生開始不適應(yīng)高中學(xué)習(xí)而影響成績(jī)的提高。

  4、學(xué)法的`變化。

  在初中,教師講得細(xì),類型歸納得全,練得熟,考試時(shí),學(xué)生只要記準(zhǔn)概念、公式及教師所講例題類型,一般均可對(duì)號(hào)入座取得好成績(jī)。因此,學(xué)生習(xí)慣于圍著教師轉(zhuǎn),不注重獨(dú)立思考和對(duì)規(guī)律的歸納總結(jié)。到高中,由于內(nèi)容多時(shí)間少,教師不可能把知識(shí)應(yīng)用形式和題型講全講細(xì),只能選講一些具有典型性的題目,以落實(shí)“三基”培養(yǎng)能力。因此,高中數(shù)學(xué)學(xué)習(xí)要求學(xué)生要勤于思考,善于歸納總結(jié)規(guī)律,掌握數(shù)學(xué)思想方法,做到舉一反三,觸類旁通。然而,剛?cè)雽W(xué)的高一新生,往往繼續(xù)沿用初中學(xué)法,致使學(xué)習(xí)困難較多,完成當(dāng)天作業(yè)都很困難,更沒有預(yù)習(xí)、復(fù)習(xí)及總結(jié)等自我消化自我調(diào)整的時(shí)間。這顯然不利于良好學(xué)法的形成和學(xué)習(xí)質(zhì)量的提高。

  二、搞好初高中銜接所采取的主要措施

  1、做好準(zhǔn)備工作,為搞好銜接打好基礎(chǔ)。

 、俑愫萌雽W(xué)教育。這是搞好銜接的基礎(chǔ)工作,也是首要工作。通過入學(xué)教育提高學(xué)生對(duì)初高中銜接重要性的認(rèn)識(shí),增強(qiáng)緊迫感,消除松懈情緒,初步了解高中數(shù)學(xué)學(xué)習(xí)的特點(diǎn),為其它措施的落實(shí)奠定基礎(chǔ)這里主要做好四項(xiàng)工作:一是給學(xué)生講清高一數(shù)學(xué)在整個(gè)中學(xué)數(shù)學(xué)中所占的位置和作用;二是結(jié)合實(shí)例,采取與初中對(duì)比的方法,給學(xué)生講清高中數(shù)學(xué)內(nèi)容體系特點(diǎn)和課堂教學(xué)特點(diǎn);三是結(jié)合實(shí)例給學(xué)生講明初高中數(shù)學(xué)在學(xué)法上存在的本質(zhì)區(qū)別,并向?qū)W生介紹一些優(yōu)秀學(xué)法,指出注意事項(xiàng);四是請(qǐng)高年級(jí)學(xué)生談體會(huì)講感受,引導(dǎo)學(xué)生少走彎路,盡快適應(yīng)高中學(xué)習(xí)。

  ②摸清底數(shù),規(guī)劃教學(xué)。

  為了搞好初高中銜接,教師首先要摸清學(xué)生的學(xué)習(xí)基礎(chǔ),然后以此來規(guī)劃自己的教學(xué)和落實(shí)教學(xué)要求,以提高教學(xué)的針對(duì)性。在教學(xué)實(shí)際中,我們一方面通過進(jìn)行摸底測(cè)試和對(duì)入學(xué)成績(jī)的分析,了解學(xué)生的基礎(chǔ);另一方面,認(rèn)真學(xué)習(xí)和比較初高中教學(xué)大綱和教材,以全面了解初高中數(shù)學(xué)知識(shí)體系,找出初高中知識(shí)的銜接點(diǎn)、區(qū)別點(diǎn)和需要鋪路搭橋的知識(shí)點(diǎn),以使備課和講課更符合學(xué)生實(shí)際,更具有針對(duì)性。

  2、優(yōu)化課堂教學(xué)環(huán)節(jié),搞好初高中銜接。

  ①立足于大綱和教材,尊重學(xué)生實(shí)際,實(shí)行層次教學(xué)。高一數(shù)學(xué)中有許多難理解和掌握的知識(shí)點(diǎn),如集合、映射等,對(duì)高一新生來講確實(shí)困難較大。因此,在教學(xué)中,應(yīng)從高一學(xué)生實(shí)際出發(fā),采勸低起點(diǎn)、小梯度、多訓(xùn)練、分層次”的方法,將教學(xué)目標(biāo)分解成若干遞進(jìn)層次逐層落實(shí)。在速度上,放慢起始進(jìn)度,逐步加快教學(xué)節(jié)奏。在知識(shí)導(dǎo)入上,多由實(shí)例和已知引入。在知識(shí)落實(shí)上,先落實(shí)“死”課本,后變通延伸用活課本。在難點(diǎn)知識(shí)講解上,從學(xué)生理解和掌握的實(shí)際出發(fā),對(duì)教材作必要層次處理和知識(shí)鋪墊,并對(duì)知識(shí)的理解要點(diǎn)和應(yīng)用注意點(diǎn)作必要總結(jié)及舉例說明。

 、谥匾曅屡f知識(shí)的聯(lián)系與區(qū)別,建立知識(shí)網(wǎng)絡(luò)。初高中數(shù)學(xué)有很多銜接知識(shí)點(diǎn),如函數(shù)概念、平面幾何與立體幾何相關(guān)知識(shí)等,到高中,它們有的加深了,有的研究范圍擴(kuò)大了,有些在初中成立的結(jié)論到高中可能不成立。因此,在講授新知識(shí)時(shí),我們有意引導(dǎo)學(xué)生聯(lián)系舊知識(shí),復(fù)習(xí)和區(qū)別舊知識(shí),特別注重對(duì)那些易錯(cuò)易混的知識(shí)加以分析、比較和區(qū)別。這樣可達(dá)到溫故知新、溫故而探新的效果。

 、壑匾曊故局R(shí)的形成過程和方法探索過程,培養(yǎng)學(xué)生創(chuàng)造能力。高中數(shù)學(xué)較初中抽象性強(qiáng),應(yīng)用靈活,這就要求學(xué)生對(duì)知識(shí)理解要透,應(yīng)用要活,不能只停留在對(duì)知識(shí)結(jié)論的死記硬套上,這就要求教師應(yīng)向?qū)W生展示新知識(shí)和新解法的產(chǎn)生背景、形成和探索過程,不僅使學(xué)生掌握知識(shí)和方法的本質(zhì),提高應(yīng)用的靈活性,而且還使學(xué)生學(xué)會(huì)如何質(zhì)疑和解疑的思想方法,促進(jìn)創(chuàng)造性思維能力的提高。

  ④重視培養(yǎng)學(xué)生自我反思自我總結(jié)的良好習(xí)慣,提高學(xué)習(xí)的自覺性。高中數(shù)學(xué)概括性強(qiáng),題目靈活多變,只靠課上聽懂是不夠的,需要課后進(jìn)行認(rèn)真消化,認(rèn)真總結(jié)歸納。這就要求學(xué)生應(yīng)具備善于自我反思和自我總結(jié)的能力。為此,我們?cè)诮虒W(xué)中,抓住時(shí)機(jī)積極培養(yǎng)。在單元結(jié)束時(shí),幫助學(xué)生進(jìn)行自我章節(jié)小結(jié),在解題后,積極引導(dǎo)學(xué)生反思:思解題思路和步驟,思一題多解和一題多變,思解題方法和解題規(guī)律的總結(jié)。由此培養(yǎng)學(xué)生善于進(jìn)行自我反思的習(xí)慣,擴(kuò)大知識(shí)和方法的應(yīng)用范圍,提高學(xué)習(xí)效率。

  ⑤重視專題教學(xué)。利用專題教學(xué),集中精力攻克難點(diǎn),強(qiáng)化重點(diǎn)和彌補(bǔ)弱點(diǎn),系統(tǒng)歸納總結(jié)某一類問題的前后知識(shí)、應(yīng)用形式、解決方法和解題規(guī)律。并借此機(jī)會(huì)對(duì)學(xué)生進(jìn)行學(xué)法的指點(diǎn),有意滲透數(shù)學(xué)思想方法。

  3、加強(qiáng)學(xué)法指導(dǎo)。

  高中數(shù)學(xué)教學(xué)要把對(duì)學(xué)生加強(qiáng)學(xué)法指導(dǎo)作為教學(xué)的重要任務(wù)之一。指導(dǎo)以培養(yǎng)學(xué)習(xí)能力為重點(diǎn),狠抓學(xué)習(xí)基本環(huán)節(jié),如“怎樣預(yù)習(xí)”、“怎樣聽課”等等。

  具體措施有三:一是寓學(xué)法指導(dǎo)于知識(shí)講解、作業(yè)講評(píng)、試卷分析等教學(xué)活動(dòng)之中,這種形式貼近學(xué)生學(xué)習(xí)實(shí)際,易被學(xué)生接受;二是舉辦系列講座,介紹學(xué)習(xí)方法;三是定期進(jìn)行學(xué)法交流,同學(xué)間互相取長(zhǎng)補(bǔ)短,共同提高。

  4、優(yōu)化教育管理環(huán)節(jié),促進(jìn)初高中良好銜接。

  ①重視運(yùn)用情感和成功原理,喚起學(xué)生學(xué)好數(shù)學(xué)的熱情。搞好初高中銜接,除了優(yōu)化教學(xué)環(huán)節(jié)外,還應(yīng)充分發(fā)揮情感和心理的積極作用。我們?cè)诟咭唤虒W(xué)中,注意運(yùn)用情感和成功原理,調(diào)動(dòng)學(xué)生學(xué)習(xí)熱情,培養(yǎng)學(xué)習(xí)數(shù)學(xué)興趣。學(xué)生學(xué)不好數(shù)學(xué),少責(zé)怪學(xué)生,要多找自己的原因。要深入學(xué)生當(dāng)中,從各方面了解關(guān)心他們,特別是差生,幫助他們解決思想、學(xué)習(xí)及生活上存在的問題。給他們多講數(shù)學(xué)在各行各業(yè)廣泛應(yīng)用,講祖國(guó)四化建設(shè)需要大批懂?dāng)?shù)學(xué)的專家學(xué)者;講愛因斯坦在初中一次數(shù)學(xué)竟沒有考及格,但他沒有氣餒,終于成了一名偉大科學(xué)家,華羅庚在學(xué)生時(shí)代奮發(fā)圖強(qiáng),終于在數(shù)學(xué)研究中做出了卓越貢獻(xiàn),等等。使學(xué)生提高認(rèn)識(shí),增強(qiáng)學(xué)好數(shù)學(xué)的信心。在提問和布置作業(yè)時(shí),從學(xué)生實(shí)際出發(fā),多給學(xué)生創(chuàng)設(shè)成功的機(jī)會(huì),以體會(huì)成功的喜悅,激發(fā)學(xué)習(xí)熱情。

 、谥匾暸囵B(yǎng)學(xué)生正確對(duì)待困難和挫折的良好心理素質(zhì)。由于高中數(shù)學(xué)的特點(diǎn),決定了高一學(xué)生在學(xué)習(xí)中的困難大挫折多。為此,我們?cè)诮虒W(xué)中注意培養(yǎng)學(xué)生正確對(duì)待困難和挫折的良好心理素質(zhì),使他們善于在失敗面前,能冷靜地總結(jié)教訓(xùn),振作精神,主動(dòng)調(diào)整自己的學(xué)習(xí),并努力爭(zhēng)取今后的勝利。平時(shí)多注意觀察學(xué)生情緒變化,開展心理咨詢,做好個(gè)別學(xué)生思想工作。

  ③電視知識(shí)的反饋和落實(shí)。通過建立多渠道的反饋途徑,及時(shí)收集學(xué)生對(duì)知識(shí)的掌握情況和對(duì)教學(xué)的意見,為及時(shí)矯上學(xué)生的錯(cuò)誤,調(diào)整教學(xué),提高教學(xué)針對(duì)性提供依據(jù)。知識(shí)落實(shí)的思路為:以落實(shí)“三基”為中心,實(shí)行分層落實(shí),做到提優(yōu)補(bǔ)差。主要措施是:平時(shí)練習(xí)層次化,單元結(jié)束考查制度化,做到章節(jié)會(huì),單元清。

初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)2

  銳角三角函數(shù)定義

  銳角角A的正弦(sin),余弦(cos)和正切(tan),余切(cot)以及正割(sec),余割(csc)都叫做角A的銳角三角函數(shù)。

  正弦(sin):對(duì)邊比斜邊,即sinA=a/c;

  余弦(cos):鄰邊比斜邊,即cosA=b/c;

  正切(tan):對(duì)邊比鄰邊,即tanA=a/b;

  余切(cot):鄰邊比對(duì)邊,即cotA=b/a;

  正割(sec):斜邊比鄰邊,即secA=c/b;

  余割(csc):斜邊比對(duì)邊,即cscA=c/a。

  三角函數(shù)關(guān)系

  1、互余角的關(guān)系

  sin(90°—α)=cosα,cos(90°—α)=sinα,tan(90°—α)=cotα,cot(90°—α)=tanα。

  2、平方關(guān)系

  sin^2(α)+cos^2(α)=1

  tan^2(α)+1=sec^2(α)

  cot^2(α)+1=csc^2(α)

  3、積的關(guān)系

  sinα=tanα·cosα

  cosα=cotα·sinα

  tanα=sinα·secα

  cotα=cosα·cscα

  secα=tanα·cscα

  cscα=secα·cotα

  4、倒數(shù)關(guān)系

  tanα·cotα=1

  sinα·cscα=1

  cosα·secα=1

  兩角和差公式

  sin(A+B)= sinAcosB+cosAsinB

  sin(A—B)= sinAcosB—cosAsinB

  cos(A+B)= cosAcosB—sinAsinB

  cos(A—B)= cosAcosB+sinAsinB

  tan(A+B)=(tanA+tanB)/(1—tanAtanB)

  tan(A—B)=(tanA—tanB)/(1+tanAtanB)

  cot(A+B)=(cotAcotB—1)/(cotB+cotA)

  cot(A—B)=(cotAcotB+1)/(cotB—cotA)

  1、不在同一直線上的三點(diǎn)確定一個(gè)圓。

  2、垂徑定理:垂直于弦的直徑平分這條弦并且平分弦所對(duì)的兩條弧。

  3、圓是以圓心為對(duì)稱中心的中心對(duì)稱圖形。

  4、圓是定點(diǎn)的距離等于定長(zhǎng)的點(diǎn)的集合

  5、圓的內(nèi)部可以看作是圓心的距離小于半徑的點(diǎn)的集合。

  6、圓的外部可以看作是圓心的距離大于半徑的點(diǎn)的集合。

  7、同圓或等圓的半徑相等。

  8、到定點(diǎn)的距離等于定長(zhǎng)的點(diǎn)的軌跡,是以定點(diǎn)為圓心,定長(zhǎng)為半徑的圓。

  9、定理在同圓或等圓中,相等的圓心角所對(duì)的弧相等,所對(duì)的弦相等,所對(duì)的`弦的弦心距相等。

  10、推論在同圓或等圓中,如果兩個(gè)圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相等那么它們所對(duì)應(yīng)的其余各組量都相等。

  11、定理圓的內(nèi)接四邊形的對(duì)角互補(bǔ),并且任何一個(gè)外角都等于它的內(nèi)對(duì)角。

  13、切線的判定定理經(jīng)過半徑的外端并且垂直于這條半徑的直線是圓的切線。

  14、切線的性質(zhì)定理圓的切線垂直于經(jīng)過切點(diǎn)的半徑。

  15、推論1經(jīng)過圓心且垂直于切線的直線必經(jīng)過切點(diǎn)。

初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)3

  一、在創(chuàng)新中培養(yǎng)學(xué)生的歸納意?R

  在初中數(shù)學(xué)教學(xué)中,重點(diǎn)是對(duì)學(xué)生的創(chuàng)新精神和實(shí)踐能力的培養(yǎng),體現(xiàn)出現(xiàn)代素質(zhì)教育。學(xué)生創(chuàng)新能力的培養(yǎng)在學(xué)習(xí)中占據(jù)非常重要的作用,在創(chuàng)新中學(xué)生可以鞏固自身所學(xué)的知識(shí),使數(shù)學(xué)知識(shí)在自己的頭腦中根深蒂固,各類知識(shí)點(diǎn)在學(xué)生的頭腦中形成清晰的框架,有助于學(xué)生歸納意識(shí)的培養(yǎng)。歸納意識(shí)的培養(yǎng),可以減輕學(xué)生的學(xué)習(xí)負(fù)擔(dān),提升學(xué)生對(duì)知識(shí)的'理解能力。

  初中生在學(xué)習(xí)數(shù)學(xué)的環(huán)節(jié)中,常常會(huì)接觸到大量的圖像,在數(shù)學(xué)學(xué)習(xí)中,老師應(yīng)該鼓勵(lì)學(xué)生大膽創(chuàng)新,在創(chuàng)新環(huán)節(jié)中完成對(duì)知識(shí)點(diǎn)的歸納。數(shù)學(xué)學(xué)習(xí)并不死板,不僅僅學(xué)習(xí)教科書上的知識(shí),還應(yīng)該學(xué)習(xí)書本以外的知識(shí),從而創(chuàng)新自己的思維。例如在進(jìn)行函數(shù)的學(xué)習(xí)中,老師可以讓學(xué)生繪制函數(shù)圖像,對(duì)函數(shù)進(jìn)行分類討論,從而掌握遞增函數(shù)和遞減函數(shù)的定義,在分類討論后,學(xué)生結(jié)合圖像進(jìn)行歸納。在數(shù)學(xué)教學(xué)中,老師不僅僅要重視書本上的邏輯內(nèi)容,而且在把握邏輯內(nèi)容的基礎(chǔ)上,將圖像和數(shù)學(xué)知識(shí)有機(jī)結(jié)合起來,使學(xué)生可以大膽創(chuàng)新。

  很多學(xué)生在數(shù)學(xué)學(xué)習(xí)中存在困難,認(rèn)為數(shù)學(xué)的學(xué)習(xí)就是解答大量的難題,他們?cè)诖罅康念}海戰(zhàn)術(shù)后不善于歸納,導(dǎo)致數(shù)學(xué)學(xué)習(xí)的效率不高。

  二、在交流中歸納知識(shí)點(diǎn)

  在數(shù)學(xué)學(xué)習(xí)中,如果學(xué)生只是自己探究,那么在學(xué)習(xí)中不會(huì)得到靈感。數(shù)學(xué)學(xué)習(xí)不僅僅要求學(xué)生具有認(rèn)真的鉆研態(tài)度,而且也需要老師幫助學(xué)生養(yǎng)成歸納的意識(shí)。溝通和交流不僅僅在語言的學(xué)習(xí)中發(fā)揮非常重要的作用,而且在數(shù)學(xué)學(xué)習(xí)中同樣非常重要。學(xué)生在解答數(shù)學(xué)問題中,常常會(huì)遇到一些問題,學(xué)生自己探究會(huì)陷入到死胡同中,需要老師和同學(xué)的幫助才能進(jìn)一步完成。

  為了切實(shí)在初中數(shù)學(xué)教學(xué)中培養(yǎng)學(xué)生的歸納意識(shí),老師可以將班級(jí)內(nèi)的學(xué)生分成幾個(gè)不同的小組,組內(nèi)的同學(xué)可以通過合作的方式,對(duì)知識(shí)點(diǎn)進(jìn)行歸納,在數(shù)學(xué)的學(xué)習(xí)中更加變通,將數(shù)學(xué)這門學(xué)科應(yīng)用到生活中。

  例如,在進(jìn)行二次函數(shù)的學(xué)習(xí)中,老師可以將學(xué)生分成不同的小組,留給學(xué)生充足的時(shí)間,讓他們互相幫助,在溝通中對(duì)知識(shí)點(diǎn)進(jìn)行歸納。學(xué)生很快就能得到結(jié)論,如果函數(shù)有兩個(gè)解,那么函數(shù)與數(shù)軸會(huì)有兩個(gè)交點(diǎn),如果方程只有一個(gè)解,那么函數(shù)與數(shù)軸只有一個(gè)交點(diǎn),如果方程沒有解,那么函數(shù)與數(shù)軸沒有交點(diǎn)。學(xué)生通過分組討論的方式得到結(jié)論,通過歸納,學(xué)生對(duì)二次函數(shù)知識(shí)點(diǎn)的印象非常深刻。

  三、學(xué)會(huì)正確歸納

  在數(shù)學(xué)學(xué)習(xí)中,歸納思想非常重要,數(shù)學(xué)這門學(xué)科的知識(shí)非常細(xì)碎,是一門系統(tǒng)性很強(qiáng)的學(xué)科。數(shù)學(xué)知識(shí)錯(cuò)綜復(fù)雜,很多學(xué)生在學(xué)習(xí)數(shù)學(xué)中力不從心,掌握合理的歸納方式,可以切實(shí)提升學(xué)生的數(shù)學(xué)成績(jī)。初中生的思維還不是特別完善,在進(jìn)行數(shù)學(xué)學(xué)習(xí)環(huán)節(jié)中,對(duì)知識(shí)點(diǎn)進(jìn)行合理的歸納,是每位老師應(yīng)該采取的方法。如果學(xué)生不懂得歸納,那么在數(shù)學(xué)考試中,學(xué)生會(huì)將知識(shí)點(diǎn)混淆。為了提升學(xué)生的歸納能力,老師在課堂上應(yīng)該將一些容易混淆和容易出現(xiàn)錯(cuò)誤的習(xí)題讓學(xué)生總結(jié)。

  例如,在學(xué)習(xí)圓和直線這部分內(nèi)容中,老師都會(huì)將重點(diǎn)內(nèi)容,圓和圓的位置關(guān)系,直線和圓的位置關(guān)系進(jìn)行重點(diǎn)分析。老師可以借助一些參考書目和資料,總結(jié)一些相似的題目,讓學(xué)生在課堂上解答這些題目,使學(xué)生對(duì)這部分知識(shí)點(diǎn)進(jìn)行總結(jié),從而加深對(duì)這部分知識(shí)的理解。歸納思想在數(shù)學(xué)學(xué)習(xí)中應(yīng)用非常多,在進(jìn)行初中數(shù)學(xué)教學(xué)環(huán)節(jié)中,學(xué)生應(yīng)該花更多的時(shí)間進(jìn)行歸納。

  在進(jìn)行初中數(shù)學(xué)的學(xué)習(xí)中,學(xué)生歸納意識(shí)的養(yǎng)成可以完善學(xué)生的數(shù)學(xué)思維,學(xué)生學(xué)會(huì)歸納,在學(xué)習(xí)中就會(huì)如魚得水,在考試中取得好成績(jī)。

  四、在反思中完成知識(shí)點(diǎn)的歸納

初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)4

  定義

  對(duì)應(yīng)角相等,對(duì)應(yīng)邊成比例的兩個(gè)三角形叫做相似三角形

  比值與比的概念

  比值是一個(gè)具體的數(shù)字如:AB/EF=2

  而比不是一個(gè)具體的數(shù)字如:AB/EF=2:1判定方法

  證兩個(gè)相似三角形應(yīng)該把表示對(duì)應(yīng)頂點(diǎn)的字母寫在對(duì)應(yīng)的位置上。如果是文字語言的“△ABC與△DEF相似”,那么就說明這兩個(gè)三角形的對(duì)應(yīng)頂點(diǎn)可能沒有寫在對(duì)應(yīng)的位置上,而如果是符號(hào)語言的“△ABC∽△DEF”,那么就說明這兩個(gè)三角形的對(duì)應(yīng)頂點(diǎn)寫在了對(duì)應(yīng)的位置上。

  方法一(預(yù)備定理)

  平行于三角形一邊的直線截其它兩邊所在的.直線,截得的三角形與原三角形相似。(這是相似三角形判定的定理,是以下判定方法證明的基礎(chǔ)。這個(gè)引理的證明方法需要平行線與線段成比例的證明)

  方法二

  如果一個(gè)三角形的兩個(gè)角與另一個(gè)三角形的兩個(gè)角對(duì)應(yīng)相等,那么這兩個(gè)三角形相似。

  方法三

  如果兩個(gè)三角形的兩組對(duì)應(yīng)邊成比例,并且相應(yīng)的夾角相等,

  那么這兩個(gè)三角形相似

  方法四

  如果兩個(gè)三角形的三組對(duì)應(yīng)邊成比例,那么這兩個(gè)三角形相似

  方法五(定義)

  對(duì)應(yīng)角相等,對(duì)應(yīng)邊成比例的兩個(gè)三角形叫做相似三角形

  三個(gè)基本型

  Z型A型反A型

  方法六

  兩個(gè)直角三角形中,斜邊與直角邊對(duì)應(yīng)成比例,那么兩三角形相似。一定相似的三角形

  1、兩個(gè)全等的三角形

  (全等三角形是特殊的相似三角形,相似比為1:1)

  2、兩個(gè)等腰三角形

  (兩個(gè)等腰三角形,如果其中的任意一個(gè)頂角或底角相等,那么這兩個(gè)等腰三角形相似。)

  3、兩個(gè)等邊三角形

  (兩個(gè)等邊三角形,三角都是60度,且邊邊相等,所以相似)

  4、直角三角形中由斜邊的高形成的三個(gè)三角形(母子三角形)

  圖形的學(xué)習(xí)需要大家對(duì)于知識(shí)的詳細(xì)了解和滲透,而不是一帶而過。

初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)5

  第一章:勾股定理

  1.如果直角三角形的兩條直角邊長(zhǎng)分別是a和b,斜邊長(zhǎng)為c,那么a的平方加上b的平方等于c的平方。

  2.如果直角三角形的兩條直角邊長(zhǎng)分別是a和b,斜邊長(zhǎng)為c,那么a的平方加上b的平方等于c的平方。

  3.如果直角三角形的兩條直角邊長(zhǎng)分別是a和b,斜邊長(zhǎng)為c,那么兩條直角邊長(zhǎng)的平方和等于斜邊長(zhǎng)的平方。

  4.如果直角三角形的兩條直角邊長(zhǎng)分別是a和b,斜邊長(zhǎng)為c,那么a、b、c三者之間的關(guān)系是a的平方加上b的平方等于c的平方。

  第二章:四邊形

  1.平行四邊形:兩組對(duì)邊分別平行的四邊形叫做平行四邊形。

  2.菱形:有一組鄰邊相等的平行四邊形叫做菱形。

  3.矩形:有一個(gè)角是直角的平行四邊形叫做矩形。

  4.正方形:有一組鄰邊相等的矩形叫做正方形。

  5.平行四邊形的性質(zhì):對(duì)邊平行且相等;對(duì)角相等,且互補(bǔ);對(duì)角線互相平分。

  6.菱形的性質(zhì):四邊相等;對(duì)角線互相垂直,且每一條對(duì)角線平分一組對(duì)角;菱形被兩條對(duì)角線分成四個(gè)全等的直角三角形;菱形的`面積等于兩條對(duì)角線長(zhǎng)的積的一半。

  7.矩形的性質(zhì):矩形的四個(gè)角都是直角;矩形的對(duì)角線相等。

  8.正方形的性質(zhì):四個(gè)角都是直角,四條邊都相等;對(duì)角線相等,且互相垂直平分,每條對(duì)角線平分一組對(duì)角;正方形被兩條對(duì)角線分成四個(gè)全等的直角三角形;正方形是特殊的長(zhǎng)方形,所以正方形具有矩形的一切性質(zhì)。

  第三章:一次函數(shù)

  1.一次函數(shù):如果所給函數(shù)表達(dá)式是正比例函數(shù),那么它經(jīng)過原點(diǎn)(0,0);如果所給函數(shù)表達(dá)式是一次函數(shù)(斜截式),那么它經(jīng)過原點(diǎn)(0,0)。

  2.正比例函數(shù):如果y=kx(k是常數(shù),且k≠0),那么y叫做x的正比例函數(shù)。

  3.一次函數(shù):如果正比例函數(shù)y=kx(k是常數(shù),且k≠0)的圖像經(jīng)過第一、二、三象限,那么一次函數(shù)y=kx+b(k,b是常數(shù),k≠0)的圖像也經(jīng)過第一、二、三象限。

  4.一次函數(shù):如果正比例函數(shù)y=kx(k是常數(shù),且k≠0)的圖像經(jīng)過第一、二、三象限,那么一次函數(shù)y=kx+b(k,b是常數(shù),k≠0)的圖像也經(jīng)過第一、二、三象限。

  5.正比例函數(shù):如果y=kx(k是常數(shù),且k≠0),那么y叫做x的正比例函數(shù)。

  6.一次函數(shù):如果正比例函數(shù)y=kx(k是常數(shù),且k≠0)的圖像經(jīng)過第一、二、三象限,那么一次函數(shù)y=kx+b(k,b是常數(shù),k≠0)的圖像也經(jīng)過第一、二、三象限。

  7.正比例函數(shù):如果y=kx(k是常數(shù),且k≠0),那么y叫做x的正比例函數(shù)。

  8.一次函數(shù):如果正比例函數(shù)y=kx(k是常數(shù),且k≠0)的圖像經(jīng)過第一、二、三象限,那么一次函數(shù)y=kx+b(k,b是常數(shù),k≠0)的圖像也經(jīng)過第一、二、三象限。

  9.正比例函數(shù):如果y=kx(k是常數(shù),且k≠0),那么y叫做x的正比例函數(shù)。

  10.一次函數(shù):如果正比例函數(shù)y=kx(k是常數(shù),且k≠0)的圖像經(jīng)過第一、二、三象限,那么一次函數(shù)y=kx+b(k,b是常數(shù),k≠0)的圖像也經(jīng)過第一、二、三象限。

初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)6

  1、相交線

  對(duì)頂角相等。

  過一點(diǎn)有且只有一條直線與已知直線垂直。

  連接直線外一點(diǎn)與直線上各點(diǎn)的所有線段中,垂線段最短(簡(jiǎn)單說成:垂線段最短)。

  2、平行線

  經(jīng)過直線外一點(diǎn),有且只有一條直線與這條直線平行。

  如果兩條直線都與第三條直線平行,那么這兩條直線也互相平行。

  直線平行的條件:

  兩條直線被第三條直線所截,如果同位角相等,那么兩直線平行。

  兩條直線被第三條直線所截,如果內(nèi)錯(cuò)角相等,那么兩直線平行。

  兩條直線被第三條直線所截,如果同旁內(nèi)角互補(bǔ),那么兩直線平行。

  3、平行線的性質(zhì)

  兩條平行線被第三條直線所截,同位角相等。

  兩條平行線被第三條直線所截,內(nèi)錯(cuò)角相等。

  兩條平行線被第三條直線所截,同旁內(nèi)角互補(bǔ)。

  判斷一件事情的'語句,叫做命題。

初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)7

  一.圓的定義

  1.平面上到定點(diǎn)的距離等于定長(zhǎng)的所有點(diǎn)組成的圖形叫做圓。

  2.平面上一條線段,繞它的一端旋轉(zhuǎn)360°,留下的軌跡叫圓。

  二.圓心

  1.定義1中的定點(diǎn)為圓心。

  2.定義2中繞的那一端的端點(diǎn)為圓心。

  3.圓任意兩條對(duì)稱軸的交點(diǎn)為圓心。

  4.垂直于圓內(nèi)任意一條弦且兩個(gè)端點(diǎn)在圓上的線段的二分點(diǎn)為圓心。

  注:圓心一般用字母O表示

  5.直徑:通過圓心,并且兩端都在圓上的線段叫做圓的直徑。直徑一般用字母d表示。

  6.半徑:連接圓心和圓上任意一點(diǎn)的線段,叫做圓的半徑。半徑一般用字母r表示。

  7.圓的直徑和半徑都有無數(shù)條。圓是軸對(duì)稱圖形,每條直徑所在的直線是圓的'對(duì)稱軸。在同圓或等圓中:直徑是半徑的2倍,半徑是直徑的二分之一.d=2r或r=二分之d。

  8.圓的半徑或直徑?jīng)Q定圓的大小,圓心決定圓的位置。

  三.圓的基本性質(zhì)

  1.圓的對(duì)稱性

  (1)圓是軸對(duì)稱圖形,它的對(duì)稱軸是直徑所在的直線。

  (2)圓是中心對(duì)稱圖形,它的對(duì)稱中心是圓心。

  (3)圓是旋轉(zhuǎn)對(duì)稱圖形。

  2.垂徑定理

  (1)垂直于弦的直徑平分這條弦,且平分這條弦所對(duì)的兩條弧。

  (2)推論:

  平分弦(非直徑)的直徑,垂直于弦且平分弦所對(duì)的兩條弧。

  平分弧的直徑,垂直平分弧所對(duì)的弦。

  3.圓心角的度數(shù)等于它所對(duì)弧的度數(shù)。圓周角的度數(shù)等于它所對(duì)弧度數(shù)的一半。

  (1)同弧所對(duì)的圓周角相等。

  (2)直徑所對(duì)的圓周角是直角;圓周角為直角,它所對(duì)的弦是直徑。

  4.在同圓或等圓中,兩條弦、兩條弧、兩個(gè)圓周角、兩個(gè)圓心角、兩條弦心距五對(duì)量中只要有一對(duì)量相等,其余四對(duì)量也分別相等。

  5.夾在平行線間的兩條弧相等。

  (1)過兩點(diǎn)的圓的圓心一定在兩點(diǎn)間連線段的中垂線上。

  (2)不在同一直線上的三點(diǎn)確定一個(gè)圓,圓心是三邊中垂線的交點(diǎn),它到三個(gè)點(diǎn)的距離相等。

  (直角三角形的外心就是斜邊的中點(diǎn)。)

  6.直線與圓的位置關(guān)系。d表示圓心到直線的距離,r表示圓的半徑。

  直線與圓有兩個(gè)交點(diǎn),直線與圓相交;直線與圓只有一個(gè)交點(diǎn),直線與圓相切;直線與圓沒有交點(diǎn),直線與圓相離。

  四.圓和圓

  1.兩個(gè)圓沒有公共點(diǎn)且每個(gè)圓的點(diǎn)都在另一個(gè)圓的外部時(shí),叫做這兩個(gè)圓的外離。

  2.兩個(gè)圓有唯一的公共點(diǎn)且除了這個(gè)公共點(diǎn)外,每個(gè)圓上的點(diǎn)都在另一個(gè)圓的外部,叫做兩個(gè)圓的外切。

  3.兩個(gè)圓有兩個(gè)交點(diǎn),叫做兩個(gè)圓的相交。

  4.兩個(gè)圓有唯一的公共點(diǎn)且除了這個(gè)公共點(diǎn)外,每個(gè)圓上的點(diǎn)都在另一個(gè)圓的內(nèi)部,叫做兩個(gè)圓的內(nèi)切。

  5.兩個(gè)圓沒有公共點(diǎn)且每個(gè)圓的點(diǎn)都在另一個(gè)圓的內(nèi)部時(shí),叫做這兩個(gè)圓的內(nèi)含。

  五.正多邊形和圓

  1.正多邊形的概念:各邊相等,各角也相等的多邊形叫做正多邊形。

  2.正多邊形與圓的關(guān)系:

  (1)將一個(gè)圓n(n≥3)等分(可以借助量角器),依次連結(jié)各等分點(diǎn)所得的多邊形是這個(gè)圓的內(nèi)接正多邊形。

  (2)這個(gè)圓是這個(gè)正多邊形的外接圓。

初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)8

  初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié):中位線

  知識(shí)要點(diǎn):梯形的中位線平行于兩底,并且等于兩底和的一半。

  1.中位線概念

  (1)三角形中位線定義:連接三角形兩邊中點(diǎn)的線段叫做三角形的中位線。

  (2)梯形中位線定義:連結(jié)梯形兩腰中點(diǎn)的線段叫做梯形的中位線。

  注意:

  (1)要把三角形的中位線與三角形的中線區(qū)分開。三角形中線是連結(jié)一頂點(diǎn)和它對(duì)邊的中點(diǎn),而三角形中位線是連結(jié)三角形兩邊中點(diǎn)的線段。

  (2)梯形的中位線是連結(jié)兩腰中點(diǎn)的線段而不是連結(jié)兩底中點(diǎn)的線段。

  (3)兩個(gè)中位線定義間的聯(lián)系:可以把三角形看成是上底為零時(shí)的梯形,這時(shí)梯形的中位線就變成三角形的中位線。

  2.中位線定理

  (1)三角形中位線定理:三角形的中位線平行于第三邊并且等于它的一半.

  三角形兩邊中點(diǎn)的連線(中位線)平行于第BC邊,且等于第三邊的一半。

  知識(shí)要領(lǐng)總結(jié):三角形的中位線所構(gòu)成的小三角形(中點(diǎn)三角形)面積是原三角形面積的四分之一。

  初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié):平面直角坐標(biāo)系

  下面是對(duì)平面直角坐標(biāo)系的內(nèi)容學(xué)習(xí),希望同學(xué)們很好的掌握下面的內(nèi)容。

  平面直角坐標(biāo)系

  平面直角坐標(biāo)系:在平面內(nèi)畫兩條互相垂直、原點(diǎn)重合的數(shù)軸,組成平面直角坐標(biāo)系。

  水平的數(shù)軸稱為x軸或橫軸,豎直的數(shù)軸稱為y軸或縱軸,兩坐標(biāo)軸的交點(diǎn)為平面直角坐標(biāo)系的.原點(diǎn)。

  平面直角坐標(biāo)系的要素:①在同一平面②兩條數(shù)軸③互相垂直④原點(diǎn)重合

  三個(gè)規(guī)定:

 、僬较虻囊(guī)定橫軸取向右為正方向,縱軸取向上為正方向

 、趩挝婚L(zhǎng)度的規(guī)定;一般情況,橫軸、縱軸單位長(zhǎng)度相同;實(shí)際有時(shí)也可不同,但同一數(shù)軸上必須相同。

 、巯笙薜囊(guī)定:右上為第一象限、左上為第二象限、左下為第三象限、右下為第四象限。

  相信上面對(duì)平面直角坐標(biāo)系知識(shí)的講解學(xué)習(xí),同學(xué)們已經(jīng)能很好的掌握了吧,希望同學(xué)們都能考試成功。

  初中數(shù)學(xué)知識(shí)點(diǎn):平面直角坐標(biāo)系的構(gòu)成

  對(duì)于平面直角坐標(biāo)系的構(gòu)成內(nèi)容,下面我們一起來學(xué)習(xí)哦。

  平面直角坐標(biāo)系的構(gòu)成

  在同一個(gè)平面上互相垂直且有公共原點(diǎn)的兩條數(shù)軸構(gòu)成平面直角坐標(biāo)系,簡(jiǎn)稱為直角坐標(biāo)系。通常,兩條數(shù)軸分別置于水平位置與鉛直位置,取向右與向上的方向分別為兩條數(shù)軸的正方向。水平的數(shù)軸叫做X軸或橫軸,鉛直的數(shù)軸叫做Y軸或縱軸,X軸或Y軸統(tǒng)稱為坐標(biāo)軸,它們的公共原點(diǎn)O稱為直角坐標(biāo)系的原點(diǎn)。

  通過上面對(duì)平面直角坐標(biāo)系的構(gòu)成知識(shí)的講解學(xué)習(xí),希望同學(xué)們對(duì)上面的內(nèi)容都能很好的掌握,同學(xué)們認(rèn)真學(xué)習(xí)吧。

  初中數(shù)學(xué)知識(shí)點(diǎn):點(diǎn)的坐標(biāo)的性質(zhì)

  下面是對(duì)數(shù)學(xué)中點(diǎn)的坐標(biāo)的性質(zhì)知識(shí)學(xué)習(xí),同學(xué)們認(rèn)真看看哦。

  點(diǎn)的坐標(biāo)的性質(zhì)

  建立了平面直角坐標(biāo)系后,對(duì)于坐標(biāo)系平面內(nèi)的任何一點(diǎn),我們可以確定它的坐標(biāo)。反過來,對(duì)于任何一個(gè)坐標(biāo),我們可以在坐標(biāo)平面內(nèi)確定它所表示的一個(gè)點(diǎn)。

  對(duì)于平面內(nèi)任意一點(diǎn)C,過點(diǎn)C分別向X軸、Y軸作垂線,垂足在X軸、Y軸上的對(duì)應(yīng)點(diǎn)a,b分別叫做點(diǎn)C的橫坐標(biāo)、縱坐標(biāo),有序?qū)崝?shù)對(duì)(a,b)叫做點(diǎn)C的坐標(biāo)。

  一個(gè)點(diǎn)在不同的象限或坐標(biāo)軸上,點(diǎn)的坐標(biāo)不一樣。

  希望上面對(duì)點(diǎn)的坐標(biāo)的性質(zhì)知識(shí)講解學(xué)習(xí),同學(xué)們都能很好的掌握,相信同學(xué)們會(huì)在考試中取得優(yōu)異成績(jī)的。

  初中數(shù)學(xué)知識(shí)點(diǎn):因式分解的一般步驟

  關(guān)于數(shù)學(xué)中因式分解的一般步驟內(nèi)容學(xué)習(xí),我們做下面的知識(shí)講解。

  因式分解的一般步驟

  如果多項(xiàng)式有公因式就先提公因式,沒有公因式的多項(xiàng)式就考慮運(yùn)用公式法;若是四項(xiàng)或四項(xiàng)以上的多項(xiàng)式,

  通常采用分組分解法,最后運(yùn)用十字相乘法分解因式。因此,可以概括為:“一提”、“二套”、“三分組”、“四十字”。

  注意:因式分解一定要分解到每一個(gè)因式都不能再分解為止,否則就是不完全的因式分解,若題目沒有明確指出在哪個(gè)范圍內(nèi)因式分解,應(yīng)該是指在有理數(shù)范圍內(nèi)因式分解,因此分解因式的結(jié)果,必須是幾個(gè)整式的積的形式。

  相信上面對(duì)因式分解的一般步驟知識(shí)的內(nèi)容講解學(xué)習(xí),同學(xué)們已經(jīng)能很好的掌握了吧,希望同學(xué)們會(huì)考出好成績(jī)。

  初中數(shù)學(xué)知識(shí)點(diǎn):因式分解

  下面是對(duì)數(shù)學(xué)中因式分解內(nèi)容的知識(shí)講解,希望同學(xué)們認(rèn)真學(xué)習(xí)。

  因式分解

  因式分解定義:把一個(gè)多項(xiàng)式化成幾個(gè)整式的積的形式的變形叫把這個(gè)多項(xiàng)式因式分解。

  因式分解要素:①結(jié)果必須是整式②結(jié)果必須是積的形式③結(jié)果是等式④

  因式分解與整式乘法的關(guān)系:m(a+b+c)

  公因式:一個(gè)多項(xiàng)式每項(xiàng)都含有的公共的因式,叫做這個(gè)多項(xiàng)式各項(xiàng)的公因式。

  公因式確定方法:①系數(shù)是整數(shù)時(shí)取各項(xiàng)最大公約數(shù)。②相同字母取最低次冪③系數(shù)最大公約數(shù)與相同字母取最低次冪的積就是這個(gè)多項(xiàng)式各項(xiàng)的公因式。

  提取公因式步驟:

 、俅_定公因式。②確定商式③公因式與商式寫成積的形式。

  分解因式注意;

 、俨粶(zhǔn)丟字母

  ②不準(zhǔn)丟常數(shù)項(xiàng)注意查項(xiàng)數(shù)

 、垭p重括號(hào)化成單括號(hào)

  ④結(jié)果按數(shù)單字母單項(xiàng)式多項(xiàng)式順序排列

 、菹嗤蚴綄懗蓛绲男问

 、奘醉(xiàng)負(fù)號(hào)放括號(hào)外

  ⑦括號(hào)內(nèi)同類項(xiàng)合并。

  通過上面對(duì)因式分解內(nèi)容知識(shí)的講解學(xué)習(xí),相信同學(xué)們已經(jīng)能很好的掌握了吧,希望上面的內(nèi)容給同學(xué)們的學(xué)習(xí)很好的幫助。

初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)9

  ∴當(dāng)x1時(shí)函數(shù)取得最大值,且ymax(1)2(1)13例4、已知函數(shù)f(x)x22(a1)x2

  4],求實(shí)數(shù)a的取值(1)若函數(shù)f(x)的遞減區(qū)間是(,4]上是減函數(shù),求實(shí)數(shù)a的取值范圍(2)若函數(shù)f(x)在區(qū)間(,分析:二次函數(shù)的單調(diào)區(qū)間是由其開口方向及對(duì)稱軸決定的,要分清函數(shù)在區(qū)間A上是單調(diào)函數(shù)及單調(diào)區(qū)間是A的區(qū)別與聯(lián)系

  解:(1)f(x)的對(duì)稱軸是x可得函數(shù)圖像開口向上

  2(a1)21a,且二次項(xiàng)系數(shù)為1>0

  1a]∴f(x)的.單調(diào)減區(qū)間為(,∴依題設(shè)條件可得1a4,解得a3

  4]上是減函數(shù)(2)∵f(x)在區(qū)間(,4]是遞減區(qū)間(,1a]的子區(qū)間∴(,∴1a4,解得a3

  例5、函數(shù)f(x)x2bx2,滿足:f(3x)f(3x)

 。1)求方程f(x)0的兩根x1,x2的和(2)比較f(1)、f(1)、f(4)的大小解:由f(3x)f(3x)知函數(shù)圖像的對(duì)稱軸為x(3x)(3x)23

  b3可得b62f(x)x26x2(x3)211

  而f(x)的圖像與x軸交點(diǎn)(x1,0)、(x2,0)關(guān)于對(duì)稱軸x3對(duì)稱

  x1x223,可得x1x26

  第三章第32頁由二次項(xiàng)系數(shù)為1>0,可知拋物線開口向上又134,132,431

  ∴依二次函數(shù)的對(duì)稱性及單調(diào)性可f(4)f(1)f(1)(III)課后作業(yè)練習(xí)六

 。á簦┙虒W(xué)后記:

  第三章第33頁

  擴(kuò)展閱讀:初中數(shù)學(xué)函數(shù)知識(shí)點(diǎn)歸納

  學(xué)大教育

  初中數(shù)學(xué)函數(shù)板塊的知識(shí)點(diǎn)總結(jié)與歸類學(xué)習(xí)方法

  初中數(shù)學(xué)知識(shí)大綱中,函數(shù)知識(shí)占了很大的知識(shí)體系比例,學(xué)好了函數(shù),掌握了函數(shù)的基本性質(zhì)及其應(yīng)用,真正精通了函數(shù)的每一個(gè)模塊知識(shí),會(huì)做每一類函數(shù)題型,就讀于中考中數(shù)學(xué)成功了一大半,數(shù)學(xué)成績(jī)自然上高峰,同時(shí),函數(shù)的思想是學(xué)好其他理科類學(xué)科的基礎(chǔ)。初中數(shù)學(xué)從性質(zhì)上分,可以分為:一次函數(shù)、反比例函數(shù)、二次函數(shù)和銳角三角函數(shù),下面介紹各類函數(shù)的定義、基本性質(zhì)、函數(shù)圖象及函數(shù)應(yīng)用思維方式方法。

  一、一次函數(shù)

  1.定義:在定義中應(yīng)注意的問題y=kx+b中,k、b為常數(shù),且k≠0,x的指數(shù)一定為1。2.圖象及其性質(zhì)(1)形狀、直線

初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)10

  關(guān)鍵詞:數(shù)學(xué);總復(fù)習(xí);初中;方法

  中圖分類號(hào):G633。6文獻(xiàn)標(biāo)識(shí)碼:B文章編號(hào):1672—1578(20xx)12—0217—01

  初中數(shù)學(xué)是義務(wù)教育階段一門主要課程,它是進(jìn)一步學(xué)習(xí)工作的基礎(chǔ)。因此,進(jìn)行初三數(shù)學(xué)總復(fù)習(xí),使學(xué)生具有一定的數(shù)學(xué)素質(zhì),合格畢業(yè),對(duì)于提高全民族素質(zhì),為培養(yǎng)改革人才奠定基礎(chǔ)是十分必要的。本文將要探討的就是搞好初三數(shù)學(xué)總復(fù)習(xí)的一些體會(huì)。

  1、明確總復(fù)習(xí)的目的

  中考是總結(jié)性的檢驗(yàn),考試成績(jī)也必然會(huì)促使我們認(rèn)真地總結(jié)檢查自己的教學(xué)工作,改進(jìn)教學(xué)方法,提高教學(xué)質(zhì)量。因此,中考的需要是初三總復(fù)習(xí)的重要目的,但不是唯一的目的。在復(fù)習(xí)方面要從單純面向升學(xué)的需要,轉(zhuǎn)變?yōu)槊嫦驅(qū)W生終身學(xué)習(xí)的需要。通過初三數(shù)學(xué)總復(fù)習(xí),要使學(xué)生全面而系統(tǒng)地掌握初中數(shù)學(xué)的基礎(chǔ)知識(shí)加深理解這些知識(shí),進(jìn)一步提高運(yùn)用這些動(dòng)知識(shí)的分析和解決問題的能力,從而大面積地扎扎實(shí)實(shí)的提高教學(xué)質(zhì)量,為學(xué)生升入高一級(jí)學(xué)校打下必要的基礎(chǔ)。

  2、在《課標(biāo)》和《考試說明》的指導(dǎo)下開展復(fù)習(xí)工作

  "人人都能獲得良好的數(shù)學(xué)教育,不同的人在數(shù)學(xué)上得到不同的發(fā)展"。這是新課程標(biāo)準(zhǔn)努力倡導(dǎo)的目標(biāo)。也是我們總復(fù)習(xí)工作的出發(fā)點(diǎn)。20xx年版的《初中數(shù)學(xué)新課程標(biāo)準(zhǔn)》(以下簡(jiǎn)稱《課程標(biāo)準(zhǔn)》)以及歷年的《河北省文化課考試說明》(以下簡(jiǎn)稱《考試說明》)中所確定的必學(xué)內(nèi)容是要求所有學(xué)生都應(yīng)當(dāng)學(xué)習(xí)的,一定要教好學(xué)好,降低難度、減輕學(xué)生過重的學(xué)習(xí)負(fù)擔(dān),正是為了使學(xué)生掌握那些最基本、最重要的內(nèi)容,使絕大多數(shù)同學(xué)能學(xué)得好,增強(qiáng)信心,大面積提高教學(xué)質(zhì)量。另一方面,對(duì)學(xué)有余力的同學(xué)也要?jiǎng)?chuàng)造條件,指導(dǎo)他們進(jìn)一步學(xué)習(xí),充分發(fā)揮他們的數(shù)學(xué)才能,做到既面向全體學(xué)生又因材施教。這一重要的教學(xué)指導(dǎo)思想,也是我們初三數(shù)學(xué)總復(fù)習(xí)必須遵循的方針。

  3、從學(xué)生的實(shí)際出發(fā),有序地進(jìn)行初三數(shù)學(xué)總復(fù)習(xí)

  教學(xué)是師生雙方的共同活動(dòng),教師的教是為學(xué)生積極主動(dòng)地學(xué)。初三總復(fù)習(xí)時(shí)間短,內(nèi)容多,要想取得較好的復(fù)習(xí)效果,除教師鉆研《課標(biāo)》與《考試說明》,通曉教材,突出重點(diǎn)之外,還要調(diào)查研究、了解學(xué)生、明確難點(diǎn),從學(xué)生實(shí)際出發(fā),進(jìn)行復(fù)習(xí)。否則,課的'起點(diǎn)高了,學(xué)生接受有困難,起點(diǎn)低了,講得太容易了,學(xué)生聽起來乏味厭煩,使復(fù)習(xí)課不能有的放矢,對(duì)癥下藥、因材施教。因此,要了解學(xué)生的思想狀況,復(fù)習(xí)的學(xué)習(xí)態(tài)度和方法;要了解學(xué)生對(duì)哪些知識(shí)是掌握提比較好的,哪些知識(shí)理解得不夠深透,還有哪些知識(shí)是應(yīng)當(dāng)補(bǔ)缺的,哪些知識(shí)是普遍性的問題,哪些知識(shí)是個(gè)別性問題,充分估計(jì)學(xué)生的實(shí)際水平究竟如何。

  4、突出數(shù)學(xué)思想方法,狠抓"四基"的落實(shí)

  數(shù)學(xué)思想方法是數(shù)學(xué)知識(shí)的精髓,是溝通數(shù)學(xué)知識(shí)與運(yùn)算能力的橋梁。教師應(yīng)在平時(shí)教學(xué)中不斷引導(dǎo)學(xué)生從數(shù)學(xué)知識(shí)中提煉數(shù)學(xué)思想,注重運(yùn)用數(shù)學(xué)思想去分析問題與解決問題,并有意識(shí)、有目的地結(jié)合教材逐步滲透給學(xué)生:轉(zhuǎn)化的思想、數(shù)形結(jié)合的思想、分類討論的思想、方程的思想、函數(shù)的思想,要求學(xué)生理解待定系數(shù)法、消元法、降次法、配方法、換元法。對(duì)學(xué)習(xí)成績(jī)好的學(xué)生,還應(yīng)激發(fā)他們?nèi)タ偨Y(jié)帶全局性的數(shù)學(xué)思想方法。

  20xx年版初中數(shù)學(xué)課程標(biāo)準(zhǔn)明確提出"四基",即基礎(chǔ)知識(shí)、基本技能、基本思想和基本活動(dòng)經(jīng)驗(yàn)。要使學(xué)生復(fù)習(xí)好基礎(chǔ)知識(shí)和掌握基本技能,首先要使學(xué)生正確理解概念,對(duì)易混的概念抓住它們之間的區(qū)別與聯(lián)系,同時(shí)要抓基本運(yùn)算、抓基本數(shù)學(xué)方法和思維方法;靖拍睢⒒具\(yùn)算必須反復(fù)地練習(xí),才能達(dá)到純熟和鞏固。凡屬這方面的錯(cuò)誤,必復(fù)習(xí)一段、練習(xí)一段、檢查一段。務(wù)求落實(shí)"段段清",以掌握知識(shí)的本質(zhì)為標(biāo)準(zhǔn)。當(dāng)然還要注意因材施教,逐步深入。

初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)11

  初中數(shù)學(xué)基礎(chǔ)知識(shí)點(diǎn)

  平方根:①如果一個(gè)正數(shù)X的平方等于A,那么這個(gè)正數(shù)X就叫做A的算術(shù)平方根。②如果一個(gè)數(shù)X的平方等于A,那么這個(gè)數(shù)X就叫做A的平方根。③一個(gè)正數(shù)有2個(gè)平方根/0的平方根為0/負(fù)數(shù)沒有平方根。④求一個(gè)數(shù)A的平方根運(yùn)算,叫做開平方,其中A叫做被開方數(shù)。

  立方根:①如果一個(gè)數(shù)X的立方等于A,那么這個(gè)數(shù)X就叫做A的立方根。②正數(shù)的立方根是正數(shù)、0的立方根是0、負(fù)數(shù)的立方根是負(fù)數(shù)。③求一個(gè)數(shù)A的立方根的運(yùn)算叫開立方,其中A叫做被開方數(shù)。

  實(shí)數(shù):①實(shí)數(shù)分有理數(shù)和無理數(shù)。②在實(shí)數(shù)范圍內(nèi),相反數(shù),倒數(shù),絕對(duì)值的意義和有理數(shù)范圍內(nèi)的相反數(shù),倒數(shù),絕對(duì)值的意義完全一樣。③每一個(gè)實(shí)數(shù)都可以在數(shù)軸上的一個(gè)點(diǎn)來表示。

  初中數(shù)學(xué)平行四邊形的性質(zhì)知識(shí)點(diǎn)

  1.定義:兩組對(duì)邊分別平行的四邊形叫平行四邊形

  2.平行四邊形的性質(zhì)

  (1)平行四邊形的對(duì)邊平行且相等;

  (2)平行四邊形的鄰角互補(bǔ),對(duì)角相等;

  (3)平行四邊形的對(duì)角線互相平分;

  3.平行四邊形的判定

  平行四邊形是幾何中一個(gè)重要內(nèi)容,如何根據(jù)平行四邊形的性質(zhì),判定一個(gè)四邊形是平行四邊形是個(gè)重點(diǎn),下面就對(duì)平行四邊形的五種判定方法,進(jìn)行劃分:

  第一類:與四邊形的'對(duì)邊有關(guān)

  (1)兩組對(duì)邊分別平行的四邊形是平行四邊形;

  (2)兩組對(duì)邊分別相等的四邊形是平行四邊形;

  (3)一組對(duì)邊平行且相等的四邊形是平行四邊形;

  第二類:與四邊形的對(duì)角有關(guān)

  (4)兩組對(duì)角分別相等的四邊形是平行四邊形;

  第三類:與四邊形的對(duì)角線有關(guān)

  (5)對(duì)角線互相平分的四邊形是平行四邊形

  初中數(shù)學(xué)函數(shù)知識(shí)點(diǎn)總結(jié)

  1.一次函數(shù)

  (1)定義:形如y=kx+b(k、b是常數(shù),且k≠0)的函數(shù),叫做一次函數(shù)。特別地,當(dāng)b=0時(shí),y是x的正比例函數(shù)。即:y=kx(k為常數(shù),k≠0)

  所以,正比例函數(shù)是特殊的一次函數(shù)。

  (2)一次函數(shù)的圖像及性質(zhì):

  1在一次函數(shù)上的任意一點(diǎn)P(x,y),都滿足等式:y=kx+b。

  2一次函數(shù)與y軸交點(diǎn)的坐標(biāo)總是(0,b),與x軸總是交于(-b/k,0)。

  3正比例函數(shù)的圖像總是過原點(diǎn)。

  4k,b與函數(shù)圖像所在象限的關(guān)系:

  當(dāng)k>0時(shí),y隨x的增大而增大;當(dāng)k<0時(shí),y隨x的增大而減小。

  當(dāng)k>0,b>0時(shí),直線通過一、二、三象限;

  當(dāng)k>0,b<0時(shí),直線通過一、三、四象限;

  當(dāng)k<0,b>0時(shí),直線通過一、二、四象限;

  當(dāng)k<0,b<0時(shí),直線通過二、三、四象限;

  當(dāng)b=0時(shí),直線通過原點(diǎn)O(0,0)表示的是正比例函數(shù)的圖像。

  這時(shí),當(dāng)k>0時(shí),直線只通過一、三象限;當(dāng)k<0時(shí),直線只通過二、四象限。

  2.二次函數(shù)

  (1)定義:一般地,自變量x和因變量y之間存在如下關(guān)系:y=ax^2+bx+c(a,b,c為常數(shù),a≠0,),稱y為x的二次函數(shù)。

  (2)二次函數(shù)的三種表達(dá)式

  一般式:y=ax^2+bx+c(a,b,c為常數(shù),a≠0);

  頂點(diǎn)式:y=a(x-h)^2+k(拋物線的頂點(diǎn)P(h,k));

  交點(diǎn)式:

  (3)二次函數(shù)的圖像與性質(zhì)

  1二次函數(shù)的圖像是一條拋物線。

  2拋物線是軸對(duì)稱圖形。對(duì)稱軸為直線x=-b/2a。

  特別地,當(dāng)b=0時(shí),拋物線的對(duì)稱軸是y軸(即直線x=0)。

  3二次項(xiàng)系數(shù)a決定拋物線的開口方向。

  當(dāng)a>0時(shí),拋物線向上開口;

  當(dāng)a<0時(shí),拋物線向下開口。

  4一次項(xiàng)系數(shù)b和二次項(xiàng)系數(shù)a共同決定對(duì)稱軸的位置。

  當(dāng)a與b同號(hào)時(shí)(即ab>0),對(duì)稱軸在y軸左;

  當(dāng)a與b異號(hào)時(shí)(即ab<0),對(duì)稱軸在y軸右。

  5拋物線與x軸交點(diǎn)個(gè)數(shù)

  Δ=b^2-4ac>0時(shí),拋物線與x軸有2個(gè)交點(diǎn);

  Δ=b^2-4ac=0時(shí),拋物線與x軸有1個(gè)交點(diǎn);

  Δ=b^2-4ac<0時(shí),拋物線與x軸沒有交點(diǎn)。

  3.反比例函數(shù)

  (1)定義:形如y=k/x(k為常數(shù)且k≠0) 的函數(shù),叫做反比例函數(shù)。

  (2)反比例函數(shù)圖像性質(zhì):

  1反比例函數(shù)的圖像為雙曲線;

  當(dāng)K>0時(shí),反比例函數(shù)圖像經(jīng)過一,三象限,是減函數(shù);

  當(dāng)K<0時(shí),反比例函數(shù)圖像經(jīng)過二,四象限,是增函數(shù);

  反比例函數(shù)圖像只能無限趨向于坐標(biāo)軸,無法和坐標(biāo)軸相交。

  2由于反比例函數(shù)屬于奇函數(shù),有f(-x)=-f(x),圖像關(guān)于原點(diǎn)對(duì)稱。

初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)12

  一、初中數(shù)學(xué)基本概念

  1.方程:含有未知數(shù)的等式叫做方程。

  2.一元一次方程:只含有一個(gè)未知數(shù),并且未知數(shù)的次數(shù)是1,并且含未知數(shù)項(xiàng)的系數(shù)不是零的整式方程是一元一次方程。

  3.二元一次方程:含有兩個(gè)未知數(shù),并且未知數(shù)的次數(shù)是1的二元一次方程。

  4.二元一次方程組:由兩個(gè)二元一次方程組成的方程組。

  5.一元二次方程:含有一個(gè)未知數(shù),并且未知數(shù)的最高次數(shù)是2的整式方程。

  6.一元二次方程的解:使一元二次方程左右兩邊相等的未知數(shù)的值。

  7.一元二次方程的根:一元二次方程的解。

  8.一元二次方程的判別式:當(dāng)a是正數(shù)時(shí),如果一元二次方程左右兩邊相等時(shí),那么這個(gè)一元二次方程有兩個(gè)不相等的實(shí)數(shù)根;當(dāng)a是負(fù)數(shù)時(shí),如果一元二次方程左右兩邊相等時(shí),那么這個(gè)一元二次方程沒有實(shí)數(shù)根;當(dāng)a是零時(shí),如果一元二次方程左右兩邊相等時(shí),那么這個(gè)一元二次方程有兩個(gè)相等的實(shí)數(shù)根。

  9.函數(shù):在某變化過程中有兩個(gè)變量x、y,如果對(duì)于x在某一范圍內(nèi)的每一個(gè)確定的值,y都有唯一的值與它對(duì)應(yīng),那么稱y是x的函數(shù),x叫做自變量。

  10.一次函數(shù):在某個(gè)變化過程中有兩個(gè)變量x、y,如果對(duì)于x在某一范圍內(nèi)的每一個(gè)確定的值,y都有唯一的值與它對(duì)應(yīng),那么稱y是x的一次函數(shù)。

  11.正比例函數(shù):在某個(gè)變化過程中有兩個(gè)變量x、y,如果對(duì)于x在某一范圍內(nèi)的每一個(gè)確定的值,y都有唯一的值與它對(duì)應(yīng),并且這個(gè)數(shù)值在比例上成正比,那么稱y是x的比例函數(shù)。

  12.反比例函數(shù):在某個(gè)變化過程中有兩個(gè)變量x、y,如果對(duì)于x在某一范圍內(nèi)的每一個(gè)確定的值,y都有唯一的值與它對(duì)應(yīng),并且這個(gè)數(shù)值在比例上成反比,那么稱y是x的反比例函數(shù)。

  13.平行四邊形:在同一個(gè)平面內(nèi)兩組對(duì)角分別平行的四邊形叫做平行四邊形。

  14.矩形:有一個(gè)內(nèi)角是直角的平行四邊形叫做矩形。

  15.菱形:有兩組鄰邊相等的平行四邊形叫做菱形。

  16.正方形:四邊相等的矩形叫做正方形。

  17.等腰梯形:兩條腰相等的梯形叫做等腰梯形。

  18.三角形:在同一個(gè)平面內(nèi)由不在同一條直線上的三條線段首尾順次相接所組成的圖形叫做三角形。

  19.中線:連接一個(gè)頂點(diǎn)和它對(duì)邊的中點(diǎn)的線段叫做中線。

  20.高線:從三角形的一個(gè)頂點(diǎn)向它的對(duì)邊作垂線,垂足與頂點(diǎn)之間的線段叫做高線。

  21.角平分線:三角形的一個(gè)內(nèi)角的平分線與它的對(duì)邊相交,這個(gè)角的頂點(diǎn)與交點(diǎn)之間的線段叫做角平分線。

  22.中位線:連接三角形兩邊中點(diǎn)的線段叫做中位線。

  23.軸對(duì)稱圖形:一條物體沿一條直線折疊后,直線兩旁的部分能夠互相重合,那么這個(gè)圖形叫做軸對(duì)稱圖形。

  24.直接開平方法:形如x2=p或者(nx+m)2=p(p≥0)的一元二次方程可采用直接開平方的方法解一元二次方程的方法。

  25.配方法:把一元二次方程的常數(shù)項(xiàng)移到方程的右邊,兩邊加上一次項(xiàng)系數(shù)的.一半的平方,再用右邊的式子除以左邊的式子,得到一個(gè)平方的形式,再用直接開平方的方法求解一元二次方程的方法。

  26.公式法:用求根公式解一元二次方程的方法。

  27.因式分解法:將一元二次方程分解成兩個(gè)一次因式的積等于0的一元二次方程,然后將各個(gè)因式分解,得到一元一次方程,再用直接開方法求解一元一次方程的方法。

  二、初中數(shù)學(xué)基本運(yùn)算

  1.整式:?jiǎn)雾?xiàng)式和多項(xiàng)式的統(tǒng)稱。

  2.單項(xiàng)式:由數(shù)字和字母的積組成的代數(shù)式叫做單項(xiàng)式。單獨(dú)的一個(gè)數(shù)字或字母也叫做單項(xiàng)式。

  3.多項(xiàng)式:幾個(gè)單項(xiàng)式的和叫做多項(xiàng)式。每個(gè)單項(xiàng)式叫做多項(xiàng)式的項(xiàng)。其中不含字母的項(xiàng)叫做常數(shù)

初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)13

  一次函數(shù):一次函數(shù)圖像與性質(zhì)是中考必考的內(nèi)容之一。中考試題中分值約為10分左右題型多樣,形式靈活,綜合應(yīng)用性強(qiáng)。甚至有存在探究題目出現(xiàn)。

  主要考察內(nèi)容:

 、贂(huì)畫一次函數(shù)的圖像,并掌握其性質(zhì)。

  ②會(huì)根據(jù)已知條件,利用待定系數(shù)法確定一次函數(shù)的解析式。

 、勰苡靡淮魏瘮(shù)解決實(shí)際問題。

 、芸疾煲籭c函數(shù)與二元一次方程組,一元一次不等式的關(guān)系。

  突破方法:

 、僬_理解掌握一次函數(shù)的概念,圖像和性質(zhì)。

  ②運(yùn)用數(shù)學(xué)結(jié)合的思想解與一次函數(shù)圖像有關(guān)的問題。

  ③掌握用待定系數(shù)法球一次函數(shù)解析式。

 、茏鲆恍┚C合題的訓(xùn)練,提高分析問題的能力。

  函數(shù)性質(zhì):

  1.y的變化值與對(duì)應(yīng)的x的變化值成正比例,比值為k.即:y=kx+b(k,b為常數(shù),k≠0),∵當(dāng)x增加m,k(x+m)+b=y+km,km/m=k。

  2.當(dāng)x=0時(shí),b為函數(shù)在y軸上的點(diǎn),坐標(biāo)為(0,b)。

  3當(dāng)b=0時(shí)(即y=kx),一次函數(shù)圖像變?yōu)檎壤瘮?shù),正比例函數(shù)是特殊的一次函數(shù)。

  4.在兩個(gè)一次函數(shù)表達(dá)式中:

  當(dāng)兩一次函數(shù)表達(dá)式中的k相同,b也相同時(shí),兩一次函數(shù)圖像重合;當(dāng)兩一次函數(shù)表達(dá)式中的k相同,b不相同時(shí),兩一次函數(shù)圖像平行;當(dāng)兩一次函數(shù)表達(dá)式中的k不相同,b不相同時(shí),兩一次函數(shù)圖像相交;當(dāng)兩一次函數(shù)表達(dá)式中的k不相同,b相同時(shí),兩一次函數(shù)圖像交于y軸上的同一點(diǎn)(0,b)。若兩個(gè)變量x,y間的關(guān)系式可以表示成Y=KX+b(k,b為常數(shù),k不等于0)則稱y是x的一次函數(shù)圖像性質(zhì)

  1、作法與圖形:通過如下3個(gè)步驟:

 。1)列表.

  (2)描點(diǎn);[一般取兩個(gè)點(diǎn),根據(jù)“兩點(diǎn)確定一條直線”的道理,也可叫“兩點(diǎn)法”。一般的y=kx+b(k≠0)的圖象過(0,b)和(-b/k,0)兩點(diǎn)畫直線即可。

  正比例函數(shù)y=kx(k≠0)的圖象是過坐標(biāo)原點(diǎn)的`一條直線,一般取(0,0)和(1,k)兩點(diǎn)。(3)連線,可以作出一次函數(shù)的圖象一條直線。因此,作一次函數(shù)的圖象只需知道2點(diǎn),并連成直線即可。(通常找函數(shù)圖象與x軸和y軸的交點(diǎn)分別是-k分之b與0,0與b).

  2、性質(zhì):

 。1)在一次函數(shù)上的任意一點(diǎn)P(x,y),都滿足等式:y=kx+b(k≠0)。

 。2)一次函數(shù)與y軸交點(diǎn)的坐標(biāo)總是(0,b),與x軸總是交于(-b/k,0)正比例函數(shù)的圖像都是過原點(diǎn)。

  3、函數(shù)不是數(shù),它是指某一變化過程中兩個(gè)變量之間的關(guān)系。

  4、k,b與函數(shù)圖像所在象限:

  y=kx時(shí)(即b等于0,y與x成正比例):

  當(dāng)k>0時(shí),直線必通過第一、三象限,y隨x的增大而增大;當(dāng)k0,b>0,這時(shí)此函數(shù)的圖象經(jīng)過第一、二、三象限;當(dāng)k>0,b

初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)14

  一、平移變換:

  1、概念:在平面內(nèi),將一個(gè)圖形沿著某個(gè)方向移動(dòng)一定的距離,這樣的圖形運(yùn)動(dòng)叫做平移。

  2、性質(zhì):

  (1)平移前后圖形全等;

 。2)對(duì)應(yīng)點(diǎn)連線平行或在同一直線上且相等。

  3、平移的作圖步驟和方法:

 。1)分清題目要求,確定平移的方向和平移的距離。

  (2)分析所作的圖形,找出構(gòu)成圖形的關(guān)健點(diǎn)。

 。3)沿一定的方向,按一定的距離平移各個(gè)關(guān)健點(diǎn)。

  (4)連接所作的各個(gè)關(guān)鍵點(diǎn),并標(biāo)上相應(yīng)的字母。

 。5)寫出結(jié)論。

  二、旋轉(zhuǎn)變換:

  1、概念:在平面內(nèi),將一個(gè)圖形繞一個(gè)定點(diǎn)沿某個(gè)方向轉(zhuǎn)動(dòng)一個(gè)角度,這樣的圖形運(yùn)動(dòng)叫做旋轉(zhuǎn)。

  說明:

  (1)圖形的'旋轉(zhuǎn)是由旋轉(zhuǎn)中心和旋轉(zhuǎn)的角度所決定的;

 。2)旋轉(zhuǎn)過程中旋轉(zhuǎn)中心始終保持不動(dòng)。

 。3)旋轉(zhuǎn)過程中旋轉(zhuǎn)的方向是相同的。

 。4)旋轉(zhuǎn)過程靜止時(shí),圖形上一個(gè)點(diǎn)的旋轉(zhuǎn)角度是一樣的。⑤旋轉(zhuǎn)不改變圖形的大小和形狀。

  2、性質(zhì):

 。1)對(duì)應(yīng)點(diǎn)到旋轉(zhuǎn)中心的距離相等;

  (2)對(duì)應(yīng)點(diǎn)與旋轉(zhuǎn)中心所連線段的夾角等于旋轉(zhuǎn)角;

 。3)旋轉(zhuǎn)前、后的圖形全等。

  3、旋轉(zhuǎn)作圖的步驟和方法:

 。1)確定旋轉(zhuǎn)中心及旋轉(zhuǎn)方向、旋轉(zhuǎn)角;

 。2)找出圖形的關(guān)鍵點(diǎn);

  (3)將圖形的關(guān)鍵點(diǎn)和旋轉(zhuǎn)中心連接起來,然后按旋轉(zhuǎn)方向分別將它們旋轉(zhuǎn)一個(gè)旋轉(zhuǎn)角度數(shù),得到這些關(guān)鍵點(diǎn)的對(duì)應(yīng)點(diǎn);

 。4)按原圖形順次連接這些對(duì)應(yīng)點(diǎn),所得到的圖形就是旋轉(zhuǎn)后的圖形。

  說明:在旋轉(zhuǎn)作圖時(shí),一對(duì)對(duì)應(yīng)點(diǎn)與旋轉(zhuǎn)中心的夾角即為旋轉(zhuǎn)角。

  4、常見考法

  (1)把平移旋轉(zhuǎn)結(jié)合起來證明三角形全等;

 。2)利用平移變換與旋轉(zhuǎn)變換的性質(zhì),設(shè)計(jì)一些題目。

  誤區(qū)提醒

 。1)弄反了坐標(biāo)平移的上加下減,左減右加的規(guī)律;

  (2)平移與旋轉(zhuǎn)的性質(zhì)沒有掌握。

初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)15

  代數(shù)部分:有理數(shù)、無理數(shù)、實(shí)數(shù)整式、分式、二次根式一元一次方程、一元二次方程、二(三)元一次方程組、二元二次方程組、分式方程、一元一次不等式函數(shù)(一次函數(shù)、二次函數(shù)、反比例函數(shù))

  幾何部分:線段、角相交線、平行線三角形、四邊形、相似形、圓。

  1、實(shí)數(shù)的分類

  有理數(shù):整數(shù)(包括:正整數(shù)、0、負(fù)整數(shù))和分?jǐn)?shù)(包括:有限小數(shù)和無限環(huán)循小數(shù))都是有理數(shù)。如:—3,0.231,0.737373......

  無理數(shù):無限不環(huán)循小數(shù)叫做無理數(shù)如:π,—,0.1010010001......(兩個(gè)1之間依次多1個(gè)0)。

  實(shí)數(shù):有理數(shù)和無理數(shù)統(tǒng)稱為實(shí)數(shù)。

  2、無理數(shù)

  在理解無理數(shù)時(shí),要抓住"無限不循環(huán)"這一時(shí)之,它包含兩層意思:一是無限小數(shù);二是不循環(huán)。二者缺一不可。歸納起來有四類:

  (1)開方開不盡的數(shù),如等;

 。2)有特定意義的數(shù),如圓周率π,或化簡(jiǎn)后含有π的數(shù),如+8等;

 。3)有特定結(jié)構(gòu)的數(shù),如0.1010010001......等;

  (4)某些三角函數(shù),如sin60o等。

  注意:判斷一個(gè)實(shí)數(shù)的屬性(如有理數(shù)、無理數(shù)),應(yīng)遵循:一化簡(jiǎn),二辨析,三判斷。要注意:"神似"或"形似"都不能作為判斷的標(biāo)準(zhǔn)。

  3、非負(fù)數(shù):正實(shí)數(shù)與零的統(tǒng)稱。(表為:x≥0)

  常見的非負(fù)數(shù)有:

  性質(zhì):若干個(gè)非負(fù)數(shù)的和為0,則每個(gè)非負(fù)擔(dān)數(shù)均為0。

  4、數(shù)軸:規(guī)定了原點(diǎn)、正方向和單位長(zhǎng)度的直線叫做數(shù)軸(畫數(shù)軸時(shí),要注意上述規(guī)定的三要素缺一不可)。

  解題時(shí)要真正掌握數(shù)形結(jié)合的思想,理解實(shí)數(shù)與數(shù)軸的點(diǎn)是一一對(duì)應(yīng)的,并能靈活運(yùn)用。

  ①畫一條水平直線,在直線上取一點(diǎn)表示0(原點(diǎn)),選取某一長(zhǎng)度作為單位長(zhǎng)度,規(guī)定直線上向右的方向?yàn)檎较颍偷玫綌?shù)軸("三要素")。

  ②任何一個(gè)有理數(shù)都可以用數(shù)軸上的`一個(gè)點(diǎn)來表示。

  ③如果兩個(gè)數(shù)只有符號(hào)不同,那么我們稱其中一個(gè)數(shù)為另外一個(gè)數(shù)的相反數(shù),也稱這兩個(gè)數(shù)互為相反數(shù)。

  作用:A、直觀地比較實(shí)數(shù)的大;B、明確體現(xiàn)絕對(duì)值意義;C、建立點(diǎn)與實(shí)數(shù)的一一對(duì)應(yīng)關(guān)系。

  5、相反數(shù)

  實(shí)數(shù)與它的相反數(shù)時(shí)一對(duì)數(shù)(只有符號(hào)不同的兩個(gè)數(shù)叫做互為相反數(shù),零的相反數(shù)是零),從數(shù)軸上看,互為相反數(shù)的兩個(gè)數(shù)所對(duì)應(yīng)的點(diǎn)關(guān)于原點(diǎn)對(duì)稱,如果a與b互為相反數(shù),則有a+b=0,a=—b,反之亦成立。

  即:(1)實(shí)數(shù)的相反數(shù)是。

【初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)】相關(guān)文章:

初中數(shù)學(xué)函數(shù)知識(shí)點(diǎn)總結(jié)11-24

初中數(shù)學(xué)圓的知識(shí)點(diǎn)總結(jié)12-05

初中數(shù)學(xué)幾何知識(shí)點(diǎn)總結(jié)11-05

初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)07-14

初中數(shù)學(xué)必備知識(shí)點(diǎn)總結(jié)03-01

初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)07-15

初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)(精)05-15

初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)(推薦)05-15

(優(yōu))初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)12-04

初中數(shù)學(xué)知識(shí)點(diǎn)歸納總結(jié)12-02