當(dāng)前位置:育文網(wǎng)>初中>初中數(shù)學(xué)> 初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)

初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)

時(shí)間:2023-12-04 15:59:07 初中數(shù)學(xué) 我要投稿

(優(yōu))初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)

  總結(jié)就是把一個(gè)時(shí)段的學(xué)習(xí)、工作或其完成情況進(jìn)行一次全面系統(tǒng)的總結(jié),通過它可以全面地、系統(tǒng)地了解以往的學(xué)習(xí)和工作情況,讓我們來為自己寫一份總結(jié)吧。那么總結(jié)要注意有什么內(nèi)容呢?以下是小編為大家整理的初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié),僅供參考,大家一起來看看吧。

(優(yōu))初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)

初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)1

  本章內(nèi)容通過讓學(xué)生經(jīng)歷觀察、操作等過程了解旋轉(zhuǎn)的概念,探索旋轉(zhuǎn)的性質(zhì),進(jìn)一步發(fā)展空間觀察,培養(yǎng)幾何思維和審美意識(shí),在實(shí)際問題中體驗(yàn)數(shù)學(xué)的快樂,激發(fā)對(duì)學(xué)習(xí)學(xué)習(xí)。

  一.知識(shí)框架

  二.知識(shí)概念

  1.旋轉(zhuǎn):在平面內(nèi),將一個(gè)圖形繞一個(gè)圖形按某個(gè)方向轉(zhuǎn)動(dòng)一個(gè)角度,這樣的運(yùn)動(dòng)叫做圖形的旋轉(zhuǎn)。這個(gè)定點(diǎn)叫做旋轉(zhuǎn)中心,轉(zhuǎn)動(dòng)的角度叫做旋轉(zhuǎn)角。(圖形的旋轉(zhuǎn)是圖形上的每一點(diǎn)在平面上繞著某個(gè)固定點(diǎn)旋轉(zhuǎn)固定角度的位置移動(dòng),其中對(duì)應(yīng)點(diǎn)到旋轉(zhuǎn)中心的距離相等,對(duì)應(yīng)線段的長(zhǎng)度、對(duì)應(yīng)角的大小相等,旋轉(zhuǎn)前后圖形的大小和形狀沒有改變。)

  2.旋轉(zhuǎn)對(duì)稱中心:把一個(gè)圖形繞著一個(gè)定點(diǎn)旋轉(zhuǎn)一個(gè)角度后,與初始圖形重合,這種圖形叫做旋轉(zhuǎn)對(duì)稱圖形,這個(gè)定點(diǎn)叫做旋轉(zhuǎn)對(duì)稱中心,旋轉(zhuǎn)的`角度叫做旋轉(zhuǎn)角(旋轉(zhuǎn)角小于0°,大于360°)。

  3.中心對(duì)稱和中心對(duì)稱圖形是兩個(gè)不同而又緊密聯(lián)系的概念.區(qū)別是:中心對(duì)稱是指兩個(gè)全等圖形之間的相互位置關(guān)系,這兩個(gè)圖形關(guān)于一點(diǎn)對(duì)稱,這個(gè)點(diǎn)是對(duì)稱中心,兩個(gè)圖形關(guān)于點(diǎn)的對(duì)稱也叫做中心對(duì)稱.成中心對(duì)稱的兩個(gè)圖形中,其中一個(gè)上所有點(diǎn)關(guān)于對(duì)稱中心的對(duì)稱點(diǎn)都在另一個(gè)圖形上,反之,另一個(gè)圖形上所有點(diǎn)的對(duì)稱點(diǎn),又都在這個(gè)圖形上;而中心對(duì)稱圖形是指一個(gè)圖形本身成中心對(duì)稱.中心對(duì)稱圖形上所有點(diǎn)關(guān)于對(duì)稱中心的對(duì)稱點(diǎn)都在這個(gè)圖形本身上.如果將中心對(duì)稱的兩個(gè)圖形看成一個(gè)整體(一個(gè)圖形),那么這個(gè)圖形就是中心對(duì)稱圖形;一個(gè)中心對(duì)稱圖形,如果把對(duì)稱的部分看成是兩個(gè)圖形,那么它們又是關(guān)于中心對(duì)稱.

  4.中心對(duì)稱圖形與中心對(duì)稱:

  中心對(duì)稱圖形:如果把一個(gè)圖形繞著某一點(diǎn)旋轉(zhuǎn)180度后能與自身重合,那么我們就說,這個(gè)圖形成中心對(duì)稱圖形。

  中心對(duì)稱:如果把一個(gè)圖形繞著某一點(diǎn)旋轉(zhuǎn)180度后能與另一個(gè)圖形重合,那么我們就說,這兩個(gè)圖形成中心對(duì)稱。

  5.把一個(gè)圖形繞著某一點(diǎn)旋轉(zhuǎn)180°,如果它能與另一個(gè)圖形重合,那么就說這兩個(gè)圖形關(guān)于這個(gè)點(diǎn)對(duì)稱或中心對(duì)稱(centralsymmetry),這個(gè)點(diǎn)叫做對(duì)稱中心,這兩個(gè)圖形的對(duì)應(yīng)點(diǎn)叫做關(guān)于中心的對(duì)稱點(diǎn)。

  6.中心對(duì)稱的性質(zhì):

  關(guān)于中心對(duì)稱的兩個(gè)圖形是全等形。

  關(guān)于中心對(duì)稱的兩個(gè)圖形,對(duì)稱點(diǎn)連線都經(jīng)過對(duì)稱中心,并且被對(duì)稱中心平分。關(guān)于中心對(duì)稱的兩個(gè)圖形,對(duì)應(yīng)線段平行(或者在同一直線上)且相等。

初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)2

  第一章有理數(shù)

  一、正數(shù)和負(fù)數(shù)

  ⒈正數(shù)和負(fù)數(shù)的概念

  負(fù)數(shù):比0小的數(shù)正數(shù):比0大的數(shù)0既不是正數(shù),也不是負(fù)數(shù)

  注意:①字母a可以表示任意數(shù),當(dāng)a表示正數(shù)時(shí),—a是負(fù)數(shù);當(dāng)a表示負(fù)數(shù)時(shí),—a是正數(shù);當(dāng)a表示0時(shí),—a仍是0。(如果出判斷題為:帶正號(hào)的數(shù)是正數(shù),帶負(fù)號(hào)的數(shù)是負(fù)數(shù),這種說法是錯(cuò)誤的,例如+a,—a就不能做出簡(jiǎn)單判斷)

 、谡龜(shù)有時(shí)也可以在前面加“+”,有時(shí)“+”省略不寫。所以省略“+”的正數(shù)的符號(hào)是正號(hào)。

  2、具有相反意義的量

  若正數(shù)表示某種意義的量,則負(fù)數(shù)可以表示具有與該正數(shù)相反意義的量,比如:

  零上8℃表示為:+8℃;零下8℃表示為:—8℃

  支出與收入;增加與減少;盈利與虧損;北與南;東與西;漲與跌;增長(zhǎng)與降低等等是相對(duì)相反量,它們計(jì)數(shù):比原先多了的數(shù),增加增長(zhǎng)了的數(shù)一般記為正數(shù);相反,比原先少了的數(shù),減少降低了的數(shù)一般記為負(fù)數(shù)。 3.0表示的意義

 、0表示“沒有”,如教室里有0個(gè)人,就是說教室里沒有人;

 、0是正數(shù)和負(fù)數(shù)的分界線,0既不是正數(shù),也不是負(fù)數(shù)。

  二、有理數(shù)

  1、有理數(shù)的概念

 、耪麛(shù)、0、負(fù)整數(shù)統(tǒng)稱為整數(shù)(0和正整數(shù)統(tǒng)稱為自然數(shù))

 、普?jǐn)?shù)和負(fù)分?jǐn)?shù)統(tǒng)稱為分?jǐn)?shù)

 、钦麛(shù),0,負(fù)整數(shù),正分?jǐn)?shù),負(fù)分?jǐn)?shù)都可以寫成分?jǐn)?shù)的形式,這樣的數(shù)稱為有理數(shù)。

  理解:只有能化成分?jǐn)?shù)的數(shù)才是有理數(shù)。①π是無限不循環(huán)小數(shù),不能寫成分?jǐn)?shù)形式,不是有理數(shù)。②有限小數(shù)和無限循環(huán)小數(shù)都可化成分?jǐn)?shù),都是有理數(shù)。

  注意:引入負(fù)數(shù)以后,奇數(shù)和偶數(shù)的范圍也擴(kuò)大了,像—2,—4,—6,—8?也是偶數(shù),—1,—3,—5?也是奇數(shù)。

  2、(1)凡能寫成q(p,q為整數(shù)且p?0)形式的數(shù),都是有理數(shù)。正整數(shù)、0、負(fù)整數(shù)統(tǒng)稱整數(shù);正分?jǐn)?shù)、負(fù)p

  分?jǐn)?shù)統(tǒng)稱分?jǐn)?shù);整數(shù)和分?jǐn)?shù)統(tǒng)稱有理數(shù)。注意:0即不是正數(shù),也不是負(fù)數(shù);—a不一定是負(fù)數(shù),+a也不一定是正數(shù);?不是有理數(shù);

  學(xué)霸分享的數(shù)學(xué)復(fù)習(xí)技巧

  1、把答案蓋住看例題

  例題不能帶著答案去看,不然會(huì)認(rèn)為自己就是這么,其實(shí)自己并沒有理解透徹。

  所以,在看例題時(shí),把解答蓋住,自己去做,做完或做不出時(shí)再去看。這時(shí)要想一想,自己做的哪里與解答不同,哪里沒想到,該注意什么,哪一種方法更好,還有沒有另外的解法。

  經(jīng)過上面的訓(xùn)練,自己的.思維空間擴(kuò)展了,看問題也全面了。如果把題目徹底搞清了,在題后精煉幾個(gè)批注,說明此題的“題眼”及巧妙之處,收獲會(huì)更大。

  2、研究每題都考什么

  數(shù)學(xué)能力的提高離不開做題,“熟能生巧”這個(gè)簡(jiǎn)單的道理大家都懂。但做題不是搞題海戰(zhàn)術(shù),而是要通過一題聯(lián)想到很多題。

  3、錯(cuò)一次反思一次

  每次業(yè)及考試或多或少會(huì)發(fā)生些錯(cuò)誤,這并不可怕,要緊的是避免類似的錯(cuò)誤再次重現(xiàn)。因此平時(shí)注意把錯(cuò)題記下來。

  學(xué)生若能將每次考試或練習(xí)中出現(xiàn)的錯(cuò)誤記錄下來分析,并盡力保證在下次考試時(shí)不發(fā)生同樣錯(cuò)誤,那么以后人生中最重要的高考也就能避免犯錯(cuò)了。

  4、分析試卷總結(jié)經(jīng)驗(yàn)

  每次考試結(jié)束試卷發(fā)下來,要認(rèn)真分析得失,總結(jié)經(jīng)驗(yàn)教訓(xùn)。特別是將試卷中出現(xiàn)的錯(cuò)誤進(jìn)行分類。

  數(shù)學(xué)解題方法分別有哪些

  1、配方法

  所謂的公式是使用變換解析方程的同構(gòu)方法,并將其中的一些分配給一個(gè)或多個(gè)多項(xiàng)式正整數(shù)冪的和形式。通過配方解決數(shù)學(xué)問題的公式。其中,用的最多的是配成完全平方式。匹配方法是數(shù)學(xué)中不斷變形的重要方法,其應(yīng)用非常廣泛,在分解,簡(jiǎn)化根,它通常用于求解方程,證明方程和不等式,找到函數(shù)的極值和解析表達(dá)式。

  2、因式分解法

  因式分解是將多項(xiàng)式轉(zhuǎn)換為幾個(gè)積分產(chǎn)品的乘積。分解是恒定變形的基礎(chǔ)。除了引入中學(xué)教科書中介紹的公因子法,公式法,群體分解法,交叉乘法法等外,還有很多方法可以進(jìn)行因式分解。還有一些項(xiàng)目,如拆除物品的使用,根分解,替換,未確定的系數(shù)等等。

  3、換元法

  替代方法是數(shù)學(xué)中一個(gè)非常重要和廣泛使用的解決問題的方法。我們通常稱未知或變?cè)。用新的參?shù)替換原始公式的一部分或重新構(gòu)建原始公式可以更簡(jiǎn)單,更容易解決。

  4、判別式法與韋達(dá)定理

  一元二次方程ax2+ bx+ c=0(a、 b、 c屬于R,a≠0)根的判別,= b2—4 ac,不僅用來確定根的性質(zhì),還作為一個(gè)問題解決方法,代數(shù)變形,求解方程(組),求解不等式,研究函數(shù),甚至幾何以及三角函數(shù)都有非常廣泛的應(yīng)用。

  韋達(dá)定理除了知道二次方程的根外,還找到另一根;考慮到兩個(gè)數(shù)的和和乘積的簡(jiǎn)單應(yīng)用并尋找這兩個(gè)數(shù),也可以找到根的對(duì)稱函數(shù)并量化二次方程根的符號(hào)。求解對(duì)稱方程并解決一些與二次曲線有關(guān)的問題等,具有非常廣泛的應(yīng)用。

  5、待定系數(shù)法

  在解決數(shù)學(xué)問題時(shí),如果我們首先判斷我們所尋找的結(jié)果具有一定的形式,其中包含某些未決的系數(shù),然后根據(jù)問題的條件列出未確定系數(shù)的方程,最后找到未確定系數(shù)的值或這些待定系數(shù)之間的關(guān)系。為了解決數(shù)學(xué)問題,這種問題解決方法被稱為待定系數(shù)法。它是中學(xué)數(shù)學(xué)中常用的方法之一。

  6、構(gòu)造法

  在解決問題時(shí),我們通常通過分析條件和結(jié)論來使用這些方法來構(gòu)建輔助元素。它可以是一個(gè)圖表,一個(gè)方程(組),一個(gè)方程,一個(gè)函數(shù),一個(gè)等價(jià)的命題等,架起連接條件和結(jié)論的橋梁。為了解決這個(gè)問題,這種解決問題的數(shù)學(xué)方法,我們稱之為構(gòu)造方法。運(yùn)用結(jié)構(gòu)方法解決問題可以使代數(shù),三角形,幾何等數(shù)學(xué)知識(shí)相互滲透,有助于解決問題。

  數(shù)學(xué)經(jīng)常遇到的問題解答

  1、要提高數(shù)學(xué)成績(jī)首先要做什么?

  這一點(diǎn),是很多學(xué)生所關(guān)注的,要提高數(shù)學(xué)成績(jī),首先就應(yīng)該從基礎(chǔ)知識(shí)學(xué)起。不少同學(xué)覺得基礎(chǔ)知識(shí)過于簡(jiǎn)單,看兩遍基本上就都會(huì)了。這種“自我感覺良好”其實(shí)是一種錯(cuò)覺,而真正考試時(shí)又覺得無從下手,這還是基礎(chǔ)不牢的表現(xiàn),因此要提高數(shù)學(xué)成績(jī)先要把基礎(chǔ)夯實(shí)。

  2、基礎(chǔ)不好怎么學(xué)好數(shù)學(xué)?

  對(duì)于基礎(chǔ)差的同學(xué)來說,課本是就是學(xué)好數(shù)學(xué)的秘籍,把課本上的定義、公式、定理全部弄懂,力爭(zhēng)在理解的基礎(chǔ)上全部背熟,每一道例題、每一道課后題都要掌握。我們知道只有把公式、定理爛熟于心,才能舉一反三、活學(xué)活用,把課本的知識(shí)學(xué)透有兩個(gè)好處,第一,強(qiáng)化基礎(chǔ);第二,提高得分能力。

  3、是否要采用題海戰(zhàn)術(shù)?

  方法君曾不止一次提到了“題海戰(zhàn)術(shù)”,題海戰(zhàn)術(shù)究竟可不可取呢?“題海戰(zhàn)術(shù)”其實(shí)也是一種學(xué)習(xí)方法,但很多學(xué)生只知道做題,不懂得總結(jié),體現(xiàn)不出任何的學(xué)習(xí)效果。因此在做題后要總結(jié)至關(guān)重要,只有認(rèn)真總結(jié)才能不斷積累做題經(jīng)驗(yàn),這樣才能取得理想成績(jī)。

  4、做題總是粗心怎么辦?

  很多學(xué)生成績(jī)不好,會(huì)說自己是因?yàn)榇中膶?dǎo)致的,其實(shí)“粗心”只是借口,真正的原因就是題做得少、基礎(chǔ)知識(shí)不牢、沒有清晰的解題思路、計(jì)算能力不強(qiáng)。因此在平時(shí)的學(xué)習(xí)中,一定要注重熟練度和精準(zhǔn)度的練習(xí)。如果總是給自己找“粗心”的借口,也就變相否定了自己的學(xué)習(xí)弱點(diǎn),所以,要告訴自己,高中數(shù)學(xué)沒有“粗心”只有“不用心”。

  為什么要學(xué)習(xí)數(shù)學(xué)

  作為一門普及度極廣的學(xué)科,數(shù)學(xué)在人類文明的發(fā)展史上一直占據(jù)著重要的地位。雖然很多人可能會(huì)對(duì)數(shù)學(xué)產(chǎn)生排斥,認(rèn)為它枯燥無味,但事實(shí)上,數(shù)學(xué)是所有學(xué)科的基石之一,對(duì)我們?nèi)粘I钜约拔磥淼穆殬I(yè)發(fā)展有著重大影響。下面我將詳細(xì)闡述學(xué)習(xí)數(shù)學(xué)的重要性。

  首先,數(shù)學(xué)可以幫助我們提高邏輯思維能力。數(shù)學(xué)的學(xué)科性質(zhì)使我們?cè)趯W(xué)習(xí)的過程中時(shí)時(shí)刻刻面臨著思考、推理、證明等諸多問題,而這些問題正是鍛煉我們邏輯思維的好機(jī)會(huì)。通過長(zhǎng)期的學(xué)習(xí)和練習(xí),我們的思維能力得到提升,可以更加清晰地分析問題,更快速地找到正確的答案。這對(duì)我們?cè)诠ぷ骱蜕钪卸挤浅S袔椭绕涫窃诮鉀Q復(fù)雜問題時(shí)更能得心應(yīng)手。

  其次,數(shù)學(xué)在現(xiàn)代科技中起著至關(guān)重要的作用。在計(jì)算機(jī)科學(xué)、物理學(xué)、經(jīng)濟(jì)學(xué)、工程學(xué)等領(lǐng)域,數(shù)學(xué)可以幫助我們建立模型、分析數(shù)據(jù)、預(yù)測(cè)趨勢(shì),并且可以在實(shí)際應(yīng)用中優(yōu)化和改進(jìn)。例如,在人工智能領(lǐng)域,深度學(xué)習(xí)技術(shù)所涉及的數(shù)學(xué)概念包括線性代數(shù)、微積分和概率論等,如果沒有深厚的數(shù)學(xué)基礎(chǔ),很難理解和應(yīng)用這些技術(shù)。同時(shí),在工程學(xué)領(lǐng)域,許多機(jī)械、電子、化工等產(chǎn)品的設(shè)計(jì)和制造過程,也需要運(yùn)用到數(shù)學(xué)知識(shí),因此學(xué)習(xí)數(shù)學(xué)可以使我們更好地參與到現(xiàn)代科技的發(fā)展中。

  除此之外,數(shù)學(xué)也是一種普遍使用的語言,許多學(xué)科和領(lǐng)域都使用數(shù)學(xué)語言進(jìn)行表達(dá)和交流。例如,在自然科學(xué)領(lǐng)域,生物學(xué)、化學(xué)、物理學(xué)等學(xué)科都使用數(shù)學(xué)語言來描述自然世界的規(guī)律和現(xiàn)象。在社會(huì)科學(xué)和商科領(lǐng)域,經(jīng)濟(jì)學(xué)和金融學(xué)運(yùn)用的數(shù)學(xué)概念,如微積分、線性代數(shù)和統(tǒng)計(jì)學(xué)等,使得我們能夠更好地理解經(jīng)濟(jì)和財(cái)務(wù)數(shù)據(jù),并進(jìn)行決策。因此,學(xué)習(xí)數(shù)學(xué)可以讓我們更好地理解、溝通和交流各個(gè)領(lǐng)域的知識(shí)。

  最后,學(xué)習(xí)數(shù)學(xué)也可以為我們的職業(yè)發(fā)展帶來廣泛的機(jī)遇和發(fā)展空間。在許多領(lǐng)域,數(shù)學(xué)專業(yè)的畢業(yè)生都有很廣泛的就業(yè)機(jī)會(huì),如金融界、數(shù)據(jù)科學(xué)、研究機(jī)構(gòu)、教育等。數(shù)學(xué)專業(yè)的人才,不只會(huì)提供理論支持,同時(shí)也能夠解決現(xiàn)實(shí)中具體的問題,使其在各自領(lǐng)域脫穎而出。

初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)3

  定義

  對(duì)應(yīng)角相等,對(duì)應(yīng)邊成比例的兩個(gè)三角形叫做相似三角形

  比值與比的概念

  比值是一個(gè)具體的數(shù)字如:AB/EF=2

  而比不是一個(gè)具體的數(shù)字如:AB/EF=2:1判定方法

  證兩個(gè)相似三角形應(yīng)該把表示對(duì)應(yīng)頂點(diǎn)的字母寫在對(duì)應(yīng)的位置上。如果是文字語言的“△ABC與△DEF相似”,那么就說明這兩個(gè)三角形的對(duì)應(yīng)頂點(diǎn)可能沒有寫在對(duì)應(yīng)的位置上,而如果是符號(hào)語言的“△ABC∽△DEF”,那么就說明這兩個(gè)三角形的對(duì)應(yīng)頂點(diǎn)寫在了對(duì)應(yīng)的位置上。

  方法一(預(yù)備定理)

  平行于三角形一邊的直線截其它兩邊所在的直線,截得的三角形與原三角形相似。(這是相似三角形判定的定理,是以下判定方法證明的基礎(chǔ)。這個(gè)引理的證明方法需要平行線與線段成比例的證明)

  方法二

  如果一個(gè)三角形的兩個(gè)角與另一個(gè)三角形的兩個(gè)角對(duì)應(yīng)相等,那么這兩個(gè)三角形相似。

  方法三

  如果兩個(gè)三角形的兩組對(duì)應(yīng)邊成比例,并且相應(yīng)的夾角相等,

  那么這兩個(gè)三角形相似

  方法四

  如果兩個(gè)三角形的三組對(duì)應(yīng)邊成比例,那么這兩個(gè)三角形相似

  方法五(定義)

  對(duì)應(yīng)角相等,對(duì)應(yīng)邊成比例的兩個(gè)三角形叫做相似三角形

  三個(gè)基本型

  Z型A型反A型

  方法六

  兩個(gè)直角三角形中,斜邊與直角邊對(duì)應(yīng)成比例,那么兩三角形相似。一定相似的三角形

  1、兩個(gè)全等的.三角形

  (全等三角形是特殊的相似三角形,相似比為1:1)

  2、兩個(gè)等腰三角形

  (兩個(gè)等腰三角形,如果其中的任意一個(gè)頂角或底角相等,那么這兩個(gè)等腰三角形相似。)

  3、兩個(gè)等邊三角形

  (兩個(gè)等邊三角形,三角都是60度,且邊邊相等,所以相似)

  4、直角三角形中由斜邊的高形成的三個(gè)三角形(母子三角形)

  圖形的學(xué)習(xí)需要大家對(duì)于知識(shí)的詳細(xì)了解和滲透,而不是一帶而過。

初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)4

  一、特殊的平行四邊形:

  1.矩形:

 。1)定義:有一個(gè)角是直角的平行四邊形。

 。2)性質(zhì):矩形的四個(gè)角都是直角;矩形的對(duì)角線平分且相等。

 。3)判定定理:

 、儆幸粋(gè)角是直角的平行四邊形叫做矩形。

 、趯(duì)角線相等的平行四邊形是矩形。

 、塾腥齻(gè)角是直角的四邊形是矩形。

  直角三角形的性質(zhì):直角三角形中所對(duì)的直角邊等于斜邊的一半。

  2.菱形:

  (1)定義:鄰邊相等的平行四邊形。

 。2)性質(zhì):菱形的四條邊都相等;菱形的兩條對(duì)角線互相垂直,并且每一條對(duì)角線平分一組對(duì)角。

  (3)判定定理:

 、僖唤M鄰邊相等的平行四邊形是菱形。

 、趯(duì)角線互相垂直的平行四邊形是菱形。

  ③四條邊相等的四邊形是菱形。

 。4)面積:

  3.正方形:

  (1)定義:一個(gè)角是直角的菱形或鄰邊相等的矩形。

 。2)性質(zhì):四條邊都相等,四個(gè)角都是直角,對(duì)角線互相垂直平分。正方形既是矩形,又是菱形。

 。3)正方形判定定理:

 、賹(duì)角線互相垂直平分且相等的四邊形是正方形;

 、谝唤M鄰邊相等,一個(gè)角為直角的平行四邊形是正方形;

  ③對(duì)角線互相垂直的.矩形是正方形;

 、茑忂呄嗟鹊木匦问钦叫

 、萦幸粋(gè)角是直角的菱形是正方形;

 、迣(duì)角線相等的菱形是正方形。

  二、矩形、菱形、正方形與平行四邊形、四邊形之間的聯(lián)系:

  1.矩形、菱形和正方形都是特殊的平行四邊形,其性質(zhì)都是在平行四邊形的基礎(chǔ)上擴(kuò)充來的。矩形是由平行四邊形增加“一個(gè)角為90°”的條件得到的,它在角和對(duì)角線方面具有比平行四邊形更多的特性;菱形是由平行四邊形增加“一組鄰邊相等”的條件得到的,它在邊和對(duì)角線方面具有比平行四邊形更多的特性;正方形是由平行四邊形增加“一組鄰邊相等”和“一個(gè)角為90°”兩個(gè)條件得到的,它在邊、角和對(duì)角線方面都具有比平行四邊形更多的特性。

  2.矩形、菱形的判定可以根據(jù)出發(fā)點(diǎn)不同而分成兩類:一類是以四邊形為出發(fā)點(diǎn)進(jìn)行判定,另一類是以平行四邊形為出發(fā)點(diǎn)進(jìn)行判定。而正方形除了上述兩個(gè)出發(fā)點(diǎn)外,還可以從矩形和菱形出發(fā)進(jìn)行判定。

  三、判定一個(gè)四邊形是特殊四邊形的步驟:

  常見考法

  (1)利用菱形、矩形、正方形的性質(zhì)進(jìn)行邊、角以及面積等計(jì)算;

 。2)靈活運(yùn)用判定定理證明一個(gè)四邊形(或平行四邊形)是菱形、矩形、正方形;

 。3)一些折疊問題;

 。4)矩形與直角三角形和等腰三角形有著密切聯(lián)系、正方形與等腰直角三角形也有著密切聯(lián)系。所以,以此為背景可以設(shè)置許多考題。

  誤區(qū)提醒

 。1)平行四邊形的所有性質(zhì)矩形、菱形、正方形都具有,但矩形、菱形、正方形具有的性質(zhì)平行四邊形不一定具有,這點(diǎn)易出現(xiàn)混淆;

 。2)矩形、菱形具有的性質(zhì)正方形都具有,而正方形具有的性質(zhì),矩形不一定具有,菱形也不一定具有,這點(diǎn)也易出現(xiàn)混淆;

  (3)不能正確的理解和運(yùn)用判定定理進(jìn)行證明,(如在證明菱形時(shí),把四條邊相等的四邊形是菱形誤解成兩組鄰邊相等的四邊形是菱形);

  (4)再利用對(duì)角線長(zhǎng)度求菱形的面積時(shí),忘記乘;

  (5)判定一個(gè)四邊形是特殊的平行四邊形的條件不充分。

初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)5

  字母表示數(shù)

  代數(shù)式的概念:

  用運(yùn)算符號(hào)(加、減、乘除、乘方、開方等)把數(shù)與表示數(shù)的字母連接而成的式子叫做代數(shù)式。單獨(dú)的一個(gè)數(shù)或一個(gè)字母也是代數(shù)式。

  注意:①代數(shù)式中除了含有數(shù)、字母和運(yùn)算符號(hào)外,還可以有括號(hào);

 、诖鷶(shù)式中不含有“=、>、<、≠”等符號(hào)。等式和不等式都不是代數(shù)式,但等號(hào)和不等號(hào)兩邊的式子一般都是代數(shù)式;

  ③代數(shù)式中的字母所表示的數(shù)必須要使這個(gè)代數(shù)式有意義,是實(shí)際問題的要符合實(shí)際問題的意義。

  代數(shù)式的書寫格式:

  ①代數(shù)式中出現(xiàn)乘號(hào),通常省略不寫,如vt;

  ②數(shù)字與字母相乘時(shí),數(shù)字應(yīng)寫在字母前面,如4a;

 、蹘Х?jǐn)?shù)與字母相乘時(shí),應(yīng)先把帶分?jǐn)?shù)化成假分?jǐn)?shù)后與字母相乘,如應(yīng)寫作;

 、軘(shù)字與數(shù)字相乘,一般仍用“×”號(hào),即“×”號(hào)不省略;

 、菰诖鷶(shù)式中出現(xiàn)除法運(yùn)算時(shí),一般按照分?jǐn)?shù)的寫法來寫,如4÷(a-4)應(yīng)寫作;注意:分?jǐn)?shù)線具有“÷”號(hào)和括號(hào)的雙重作用。

 、拊诒硎竞(或)差的代差的代數(shù)式后有單位名稱的,則必須把代數(shù)式括起來,再將單位名稱寫在式子的后面,如平方米

  代數(shù)式的系數(shù):

  代數(shù)式中的數(shù)字中的數(shù)字因數(shù)叫做代數(shù)式的系數(shù)。如3x,4y的系數(shù)分別為3,4。

  注意:①單個(gè)字母的系數(shù)是1,如a的系數(shù)是1;

  ②只含字母因數(shù)的代數(shù)式的系數(shù)是1或-1,如-ab的系數(shù)是-1。a3b的系數(shù)是1

  代數(shù)式的項(xiàng):

  代數(shù)式表示6x2、-2x、-7的和,6x2、-2x、-7是它的項(xiàng),其中把不含字母的項(xiàng)叫做常數(shù)項(xiàng)

  注意:在交待某一項(xiàng)時(shí),應(yīng)與前面的符號(hào)一起交待。

  同類項(xiàng):

  所含字母相同,并且相同字母的指數(shù)也相同的項(xiàng)叫做同類項(xiàng)。

  注意:①判斷幾個(gè)代數(shù)式是否是同類項(xiàng)有兩個(gè)條件:a.所含字母相同;b.相同字母的指數(shù)也相同。這兩個(gè)條件缺一不可;

 、谕愴(xiàng)與系數(shù)無關(guān),與字母的排列順序無關(guān);

 、蹘讉(gè)常數(shù)項(xiàng)也是同類項(xiàng)。

  合差同類項(xiàng):

  把代數(shù)式中的同類項(xiàng)合并成一項(xiàng),叫做合并同類項(xiàng)。

  ①合并同類項(xiàng)的理論根據(jù)是逆用乘法分配律;

 、诤喜⑼愴(xiàng)的法則是把同類項(xiàng)的系數(shù)相加,所得結(jié)果作為系數(shù),字母和字母的指數(shù)不變。

  注意:

 、偃绻麅蓚(gè)同類項(xiàng)的系數(shù)互為相反數(shù),合并同類項(xiàng)后結(jié)果為0;

 、诓皇峭愴(xiàng)的不能合并,不能合并的項(xiàng),在每步運(yùn)算中都要寫上;

  ③只要不再有同類項(xiàng),就是最后結(jié)果,結(jié)果還是代數(shù)式。

  根據(jù)去括號(hào)法則去括號(hào):

  括號(hào)前面是“+”號(hào),把括號(hào)和它前面的“+”號(hào)去掉,括號(hào)里各項(xiàng)都不改變符號(hào);括號(hào)前面是“-”號(hào)去掉,括號(hào)里各項(xiàng)都改變符號(hào)。

  根據(jù)分配律去括號(hào):

  括號(hào)前面是“+”號(hào)看成+1,括號(hào)前面是“-”號(hào)看成-1,根據(jù)乘法的分配律用+1或-1去乘括號(hào)里的每一項(xiàng)以達(dá)到去括號(hào)的目的。

  注意:

 、偃ダㄌ(hào)時(shí),要連同括號(hào)前面的符號(hào)一起去掉;

  ②去括號(hào)時(shí),首先要弄清楚括號(hào)前是“+”號(hào)還是“-”號(hào);

 、鄹淖兎(hào)時(shí),各項(xiàng)都變號(hào);不改變符號(hào)時(shí),各項(xiàng)都不變號(hào)。

  北師大初中數(shù)學(xué)知識(shí)點(diǎn)

  絕對(duì)值

  ⒈絕對(duì)值的幾何定義

  一般地,數(shù)軸上表示數(shù)a的點(diǎn)與原點(diǎn)的距離叫做a的絕對(duì)值,記作|a|。

  2.絕對(duì)值的代數(shù)定義

 、乓粋(gè)正數(shù)的絕對(duì)值是它本身;⑵一個(gè)負(fù)數(shù)的絕對(duì)值是它的相反數(shù);⑶0的絕對(duì)值是0.

  可用字母表示為:

 、偃绻鸻>0,那么|a|=a;②如果a<0,那么|a|=-a;③如果a=0,那么|a|=0。

  可歸納為①:a≥0,<═>|a|=a(非負(fù)數(shù)的絕對(duì)值等于本身;絕對(duì)值等于本身的數(shù)是非負(fù)數(shù)。)②a≤0,<═>|a|=-a(非正數(shù)的絕對(duì)值等于其相反數(shù);絕對(duì)值等于其相反數(shù)的數(shù)是非正數(shù)。)經(jīng)典考題

  如數(shù)軸所示,化簡(jiǎn)下列各數(shù)

  |a|,|b|,|c|,|a-b|,|a-c|,|b+c|

  解:由題知道,因?yàn)閍>0,b<0,c<0,a-b>0,a-c>0,b+c<0,

  所以|a|=a,|b|=-b,|c|=-c,|a-b|=a-b,|a-c|=a-c,|b+c|=-(b+c)=-b-c

  3.絕對(duì)值的性質(zhì)

  任何一個(gè)有理數(shù)的絕對(duì)值都是非負(fù)數(shù),也就是說絕對(duì)值具有非負(fù)性。所以,a取任何有理數(shù),都有|a|≥0。即⑴0的絕對(duì)值是0;絕對(duì)值是0的數(shù)是0.即:a=0<═>|a|=0;

 、埔粋(gè)數(shù)的絕對(duì)值是非負(fù)數(shù),絕對(duì)值最小的數(shù)是0.即:|a|≥0;

  ⑶任何數(shù)的絕對(duì)值都不小于原數(shù)。即:|a|≥a;

 、冉^對(duì)值是相同正數(shù)的數(shù)有兩個(gè),它們互為相反數(shù)。即:若|x|=a(a>0),則x=±a;

 、苫橄喾磾(shù)的兩數(shù)的絕對(duì)值相等。即:|-a|=|a|或若a+b=0,則|a|=|b|;

 、式^對(duì)值相等的兩數(shù)相等或互為相反數(shù)。即:|a|=|b|,則a=b或a=-b;

  ⑺若幾個(gè)數(shù)的絕對(duì)值的和等于0,則這幾個(gè)數(shù)就同時(shí)為0。即|a|+|b|=0,則a=0且b=0。

  (非負(fù)數(shù)的常用性質(zhì):若幾個(gè)非負(fù)數(shù)的和為0,則有且只有這幾個(gè)非負(fù)數(shù)同時(shí)為0)

  如何整理數(shù)學(xué)學(xué)科課堂筆記

  一、內(nèi)容提綱。老師講課大多有提綱,并且講課時(shí)老師會(huì)將一堂課的線索脈絡(luò)、重點(diǎn)難點(diǎn)等,簡(jiǎn)明清晰地呈現(xiàn)在黑板上。同時(shí),教師會(huì)使之富有條理性和直觀性。記下這些內(nèi)容提綱,便于課后復(fù)習(xí)回顧,整體把握知識(shí)框架,對(duì)所學(xué)知識(shí)做到胸有成竹、清晰完整。

  二、疑難問題。將課堂上未聽懂的問題及時(shí)記下來,便于課后請(qǐng)教同學(xué)或老師,把問題弄懂弄通。教師在組織課堂教學(xué)時(shí),受到時(shí)空的限制,不可能做到顧及每一位同學(xué)。相應(yīng)的,一些問題對(duì)部分學(xué)生來說,是屬于疑難問題,由于課堂上來不及思考成熟,記下疑難問題,可在課后繼續(xù)加以思考和探究,加以理解和掌握,不致出現(xiàn)知識(shí)的斷層、方法的缺陷。

  三、思路方法。對(duì)老師在課堂上介紹的解題方法和分析思路也應(yīng)及時(shí)記下,課后加以消化,若有疑惑,先作獨(dú)立分析,因?yàn)橛锌赡苁亲约豪斫忮e(cuò)誤造成的,也有可能是老師講課疏忽造成的,記下來后,便于課后及時(shí)與老師商榷和探討。勤記老師講的解題技巧、思路及方法,這對(duì)于啟迪思維,開闊視野,開發(fā)智力,培養(yǎng)能力,并對(duì)提高解題水平大有益處。在這基礎(chǔ)上,若能主動(dòng)鉆研,另辟蹊徑,則更難能可貴。

  四、歸納總結(jié)。注意記下老師的課后總結(jié),這對(duì)于濃縮一堂課的內(nèi)容,找出重點(diǎn)及各部分之間的聯(lián)系,掌握基本概念、公式、定理,尋找規(guī)律,融會(huì)貫通課堂內(nèi)容都很有作用。同時(shí),很多有經(jīng)驗(yàn)的老師在課后小結(jié)時(shí),一方面是承上歸納所學(xué)內(nèi)容,另一方面又是啟下布置預(yù)習(xí)任務(wù)或點(diǎn)明后面所要學(xué)的內(nèi)容,做好筆記可以把握學(xué)習(xí)的主動(dòng)權(quán),提前作準(zhǔn)備,做到目標(biāo)任務(wù)明確。

  五、錯(cuò)誤反思。學(xué)習(xí)過程中不可避免地會(huì)犯這樣或那樣的錯(cuò)誤,記下自己所犯的錯(cuò)誤,并用紅筆醒目地加以標(biāo)注,以警示自己,同時(shí)也應(yīng)注明錯(cuò)誤成因,正確思路及方法,在反思中成熟,在反思中提高。

  數(shù)學(xué)常用解題技巧有哪些

  第一,應(yīng)堅(jiān)持由易到難的做題順序。近年來高考數(shù)學(xué)試題的設(shè)置是8道選擇題、6道填空題、6到大題,通常稱為866結(jié)構(gòu)。在實(shí)體設(shè)置的結(jié)構(gòu)中有三個(gè)小高峰,選擇題是由易到難,最難的題是第8題。填空題同樣是這樣設(shè)置的。也是第9題容易到第14題最難,大題從第15題到第20題,它們的設(shè)置也是這樣的。根據(jù)這樣的試題結(jié)構(gòu),應(yīng)先做前面容易的,基礎(chǔ)好一點(diǎn)的考生就先做前7個(gè)選擇,前5個(gè)填空、前5個(gè)大題,稱為是755結(jié)構(gòu);A(chǔ)差的就是644,先把自己能做的、會(huì)做的拿到手。這是第一點(diǎn)。

  第二,審題是關(guān)鍵。把題給看清楚了再動(dòng)筆答題,看清楚題以后問什么、已知什么、讓你做什么,把這些問題搞清楚了,自己制訂了一個(gè)完整的解題策略,在開始寫的時(shí)候,這個(gè)時(shí)候是很快就可以完成的。

  第三,屬于非智力因素導(dǎo)致想不起來。本來是很簡(jiǎn)單的題比如說是做到第三題、第四題的時(shí)候不是難題,但想不起來了,卡住了,這時(shí)候怎么辦?雖然是簡(jiǎn)單題卻不會(huì)做怎么辦?應(yīng)先跳過去,不是這道題不會(huì)做嗎?后面還有很多的簡(jiǎn)單題呢,把后面的題做一做,不要在考場(chǎng)上愣神,先跳過去做其他的題,等穩(wěn)定下來以后再回過頭來看會(huì)頓悟,豁然開朗。

  第四,做選擇題的時(shí)候應(yīng)運(yùn)用最好的解題方法。因?yàn)檫x擇題和填空題都是看結(jié)果不看過程,因此在這個(gè)過程中都應(yīng)不擇手段,只要是能把正確的結(jié)論找到就行。考生常用的方法是直接法,從已知的開始也不看它的四個(gè)選項(xiàng),從頭到尾寫完了之后一看答案就寫上去了。另外就是特質(zhì)法(音),一些出現(xiàn)字母、特別是不等式,這時(shí)候給它賦一個(gè)值,代進(jìn)去這時(shí)候速度會(huì)比較快,正確地找出結(jié)果來。再就是數(shù)形結(jié)合法。最后實(shí)在不行了,就將四個(gè)選項(xiàng)代入驗(yàn)證,看看哪個(gè)符合就是哪個(gè)了。填空題用上述的直接法、特質(zhì)法、數(shù)形結(jié)合法三種方法都適合。做大題的時(shí)候要特別注意解題步驟,規(guī)范答題可以減少失分。簡(jiǎn)單地說,規(guī)范答題就是從上一步的.原因到下一步的結(jié)論,這是一個(gè)必然的過程,讓誰寫、誰看都是這樣的。因?yàn)槭裁此允裁词且粋(gè)必然的過程,這是規(guī)范答題。

  學(xué)霸分享的數(shù)學(xué)復(fù)習(xí)技巧

  1、把答案蓋住看例題

  例題不能帶著答案去看,不然會(huì)認(rèn)為自己就是這么,其實(shí)自己并沒有理解透徹。

  所以,在看例題時(shí),把解答蓋住,自己去做,做完或做不出時(shí)再去看。這時(shí)要想一想,自己做的哪里與解答不同,哪里沒想到,該注意什么,哪一種方法更好,還有沒有另外的解法。

  經(jīng)過上面的訓(xùn)練,自己的思維空間擴(kuò)展了,看問題也全面了。如果把題目徹底搞清了,在題后精煉幾個(gè)批注,說明此題的“題眼”及巧妙之處,收獲會(huì)更大。

  2、研究每題都考什么

  數(shù)學(xué)能力的提高離不開做題,“熟能生巧”這個(gè)簡(jiǎn)單的道理大家都懂。但做題不是搞題海戰(zhàn)術(shù),而是要通過一題聯(lián)想到很多題。

  3、錯(cuò)一次反思一次

  每次業(yè)及考試或多或少會(huì)發(fā)生些錯(cuò)誤,這并不可怕,要緊的是避免類似的錯(cuò)誤再次重現(xiàn)。因此平時(shí)注意把錯(cuò)題記下來。

  學(xué)生若能將每次考試或練習(xí)中出現(xiàn)的錯(cuò)誤記錄下來分析,并盡力保證在下次考試時(shí)不發(fā)生同樣錯(cuò)誤,那么以后人生中最重要的高考也就能避免犯錯(cuò)了.

  4、分析試卷總結(jié)經(jīng)驗(yàn)

  每次考試結(jié)束試卷發(fā)下來,要認(rèn)真分析得失,總結(jié)經(jīng)驗(yàn)教訓(xùn)。特別是將試卷中出現(xiàn)的錯(cuò)誤進(jìn)行分類。

  數(shù)學(xué)解題方法分別有哪些

  1、配方法

  所謂的公式是使用變換解析方程的同構(gòu)方法,并將其中的一些分配給一個(gè)或多個(gè)多項(xiàng)式正整數(shù)冪的和形式。通過配方解決數(shù)學(xué)問題的公式。其中,用的最多的是配成完全平方式。匹配方法是數(shù)學(xué)中不斷變形的重要方法,其應(yīng)用非常廣泛,在分解,簡(jiǎn)化根,它通常用于求解方程,證明方程和不等式,找到函數(shù)的極值和解析表達(dá)式。

  2、因式分解法

  因式分解是將多項(xiàng)式轉(zhuǎn)換為幾個(gè)積分產(chǎn)品的乘積。分解是恒定變形的基礎(chǔ)。除了引入中學(xué)教科書中介紹的公因子法,公式法,群體分解法,交叉乘法法等外,還有很多方法可以進(jìn)行因式分解。還有一些項(xiàng)目,如拆除物品的使用,根分解,替換,未確定的系數(shù)等等。

  3、換元法

  替代方法是數(shù)學(xué)中一個(gè)非常重要和廣泛使用的解決問題的方法。我們通常稱未知或變?cè)S眯碌膮?shù)替換原始公式的一部分或重新構(gòu)建原始公式可以更簡(jiǎn)單,更容易解決。

  4、判別式法與韋達(dá)定理

  一元二次方程 ax2+ bx+ c=0( a、 b、 c屬于 R, a≠0)根的判別, = b2-4 ac,不僅用來確定根的性質(zhì),還作為一個(gè)問題解決方法,代數(shù)變形,求解方程(組),求解不等式,研究函數(shù),甚至幾何以及三角函數(shù)都有非常廣泛的應(yīng)用。

  韋達(dá)定理除了知道二次方程的根外,還找到另一根;考慮到兩個(gè)數(shù)的和和乘積的簡(jiǎn)單應(yīng)用并尋找這兩個(gè)數(shù),也可以找到根的對(duì)稱函數(shù)并量化二次方程根的符號(hào)。求解對(duì)稱方程并解決一些與二次曲線有關(guān)的問題等,具有非常廣泛的應(yīng)用。

  5、待定系數(shù)法

  在解決數(shù)學(xué)問題時(shí),如果我們首先判斷我們所尋找的結(jié)果具有一定的形式,其中包含某些未決的系數(shù),然后根據(jù)問題的條件列出未確定系數(shù)的方程,最后找到未確定系數(shù)的值或這些待定系數(shù)之間的關(guān)系。為了解決數(shù)學(xué)問題,這種問題解決方法被稱為待定系數(shù)法。它是中學(xué)數(shù)學(xué)中常用的方法之一。

  6、構(gòu)造法

  在解決問題時(shí),我們通常通過分析條件和結(jié)論來使用這些方法來構(gòu)建輔助元素。它可以是一個(gè)圖表,一個(gè)方程(組),一個(gè)方程,一個(gè)函數(shù),一個(gè)等價(jià)的命題等,架起連接條件和結(jié)論的橋梁。為了解決這個(gè)問題,這種解決問題的數(shù)學(xué)方法,我們稱之為構(gòu)造方法。運(yùn)用結(jié)構(gòu)方法解決問題可以使代數(shù),三角形,幾何等數(shù)學(xué)知識(shí)相互滲透,有助于解決問題。

初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)6

  一、平移變換:

  1、概念:在平面內(nèi),將一個(gè)圖形沿著某個(gè)方向移動(dòng)一定的距離,這樣的圖形運(yùn)動(dòng)叫做平移。

  2、性質(zhì):

 。1)平移前后圖形全等;

  (2)對(duì)應(yīng)點(diǎn)連線平行或在同一直線上且相等。

  3、平移的作圖步驟和方法:

  (1)分清題目要求,確定平移的方向和平移的距離。

 。2)分析所作的圖形,找出構(gòu)成圖形的關(guān)健點(diǎn)。

 。3)沿一定的方向,按一定的距離平移各個(gè)關(guān)健點(diǎn)。

  (4)連接所作的各個(gè)關(guān)鍵點(diǎn),并標(biāo)上相應(yīng)的`字母。

  (5)寫出結(jié)論。

  二、旋轉(zhuǎn)變換:

  1、概念:在平面內(nèi),將一個(gè)圖形繞一個(gè)定點(diǎn)沿某個(gè)方向轉(zhuǎn)動(dòng)一個(gè)角度,這樣的圖形運(yùn)動(dòng)叫做旋轉(zhuǎn)。

  說明:

  (1)圖形的旋轉(zhuǎn)是由旋轉(zhuǎn)中心和旋轉(zhuǎn)的角度所決定的;

 。2)旋轉(zhuǎn)過程中旋轉(zhuǎn)中心始終保持不動(dòng)。

 。3)旋轉(zhuǎn)過程中旋轉(zhuǎn)的方向是相同的。

  (4)旋轉(zhuǎn)過程靜止時(shí),圖形上一個(gè)點(diǎn)的旋轉(zhuǎn)角度是一樣的。⑤旋轉(zhuǎn)不改變圖形的大小和形狀。

  2、性質(zhì):

 。1)對(duì)應(yīng)點(diǎn)到旋轉(zhuǎn)中心的距離相等;

 。2)對(duì)應(yīng)點(diǎn)與旋轉(zhuǎn)中心所連線段的夾角等于旋轉(zhuǎn)角;

  (3)旋轉(zhuǎn)前、后的圖形全等。

  3、旋轉(zhuǎn)作圖的步驟和方法:

 。1)確定旋轉(zhuǎn)中心及旋轉(zhuǎn)方向、旋轉(zhuǎn)角;

 。2)找出圖形的關(guān)鍵點(diǎn);

  (3)將圖形的關(guān)鍵點(diǎn)和旋轉(zhuǎn)中心連接起來,然后按旋轉(zhuǎn)方向分別將它們旋轉(zhuǎn)一個(gè)旋轉(zhuǎn)角度數(shù),得到這些關(guān)鍵點(diǎn)的對(duì)應(yīng)點(diǎn);

 。4)按原圖形順次連接這些對(duì)應(yīng)點(diǎn),所得到的圖形就是旋轉(zhuǎn)后的圖形。

  說明:在旋轉(zhuǎn)作圖時(shí),一對(duì)對(duì)應(yīng)點(diǎn)與旋轉(zhuǎn)中心的夾角即為旋轉(zhuǎn)角。

  4、常見考法

  (1)把平移旋轉(zhuǎn)結(jié)合起來證明三角形全等;

  (2)利用平移變換與旋轉(zhuǎn)變換的性質(zhì),設(shè)計(jì)一些題目。

  誤區(qū)提醒

  (1)弄反了坐標(biāo)平移的上加下減,左減右加的規(guī)律;

 。2)平移與旋轉(zhuǎn)的性質(zhì)沒有掌握。

初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)7

  一、基本知識(shí)

  一、數(shù)與代數(shù)

  A、數(shù)與式:

  1、有理數(shù):①整數(shù)→正整數(shù),0,負(fù)整數(shù);

 、诜?jǐn)?shù)→正分?jǐn)?shù),負(fù)分?jǐn)?shù)

  數(shù)軸:①畫一條水平直線,在直線上取一點(diǎn)表示0(原點(diǎn)),選取某一長(zhǎng)度作為單位長(zhǎng)度,規(guī)定直線上向右的方向?yàn)檎较,就得到?shù)軸。

  ②任何一個(gè)有理數(shù)都可以用數(shù)軸上的一個(gè)點(diǎn)來表示。

 、廴绻麅蓚(gè)數(shù)只有符號(hào)不同,那么我們稱其中一個(gè)數(shù)為另外一個(gè)數(shù)的相反數(shù),也稱這兩個(gè)數(shù)互為相反數(shù)。在數(shù)軸上,表示互為相反數(shù)的兩個(gè)點(diǎn),位于原點(diǎn)的兩側(cè),并且與原點(diǎn)距離相等。

 、軘(shù)軸上兩個(gè)點(diǎn)表示的數(shù),右邊的總比左邊的大。正數(shù)大于0,負(fù)數(shù)小于0,正數(shù)大于負(fù)數(shù)。

  絕對(duì)值:①在數(shù)軸上,一個(gè)數(shù)所對(duì)應(yīng)的點(diǎn)與原點(diǎn)的距離叫做該數(shù)的絕對(duì)值。

 、谡龜(shù)的絕對(duì)值是他的本身、負(fù)數(shù)的絕對(duì)值是他的相反數(shù)、0的絕對(duì)值是0。兩個(gè)負(fù)數(shù)比較大小,絕對(duì)值大的反而小。

  有理數(shù)的運(yùn)算:帶上符號(hào)進(jìn)行正常運(yùn)算。

  加法:

 、偻(hào)相加,取相同的符號(hào),把絕對(duì)值相加。

 、诋愄(hào)相加,絕對(duì)值相等時(shí)和為0;絕對(duì)值不等時(shí),取絕對(duì)值較大的數(shù)的符號(hào),并用較大的絕對(duì)值減去較小的絕對(duì)值。

 、垡粋(gè)數(shù)與0相加不變。

  減法:減去一個(gè)數(shù),等于加上這個(gè)數(shù)的相反數(shù)。

  乘法:①兩數(shù)相乘,同號(hào)得正,異號(hào)得負(fù),絕對(duì)值相乘。

 、谌魏螖(shù)與0相乘得0。

 、鄢朔e為1的兩個(gè)有理數(shù)互為倒數(shù)。

  除法:①除以一個(gè)數(shù)等于乘以一個(gè)數(shù)的倒數(shù)。

  ②0不能作除數(shù)。

  乘方:求N個(gè)相同因數(shù)A的積的運(yùn)算叫做乘方,乘方的結(jié)果叫冪,A叫底數(shù),N叫次數(shù)或指數(shù)。

  混合順序:先算乘法,再算乘除,最后算加減,有括號(hào)要先算括號(hào)里的。

  2、實(shí)數(shù)

  無理數(shù)

  無理數(shù):無限不循環(huán)小數(shù)叫無理數(shù),例如:π=3.1415926…

  平方根:①如果一個(gè)正數(shù)X的平方等于A,那么這個(gè)正數(shù)X就叫做A的算術(shù)平方根。

 、谌绻粋(gè)數(shù)X的平方等于A,那么這個(gè)數(shù)X就叫做A的平方根。

 、垡粋(gè)正數(shù)有2個(gè)平方根;0的平方根為0;負(fù)數(shù)沒有平方根。

  ④求一個(gè)數(shù)A的平方根運(yùn)算,叫做開平方,其中A叫做被開方數(shù)。

  立方根:①如果一個(gè)數(shù)X的立方等于A,那么這個(gè)數(shù)X就叫做A的立方根。

 、谡龜(shù)的立方根是正數(shù)、0的立方根是0、負(fù)數(shù)的立方根是負(fù)數(shù)。

 、矍笠粋(gè)數(shù)A的立方根的運(yùn)算叫開立方,其中A叫做被開方數(shù)。

  實(shí)數(shù):①實(shí)數(shù)分有理數(shù)和無理數(shù)。

 、谠趯(shí)數(shù)范圍內(nèi),相反數(shù),倒數(shù),絕對(duì)值的意義和有理數(shù)范圍內(nèi)的相反數(shù),倒數(shù),絕對(duì)值的意義完全一樣;

 、勖恳粋(gè)實(shí)數(shù)都可以在數(shù)軸上的一個(gè)點(diǎn)來表示。

  3、代數(shù)式

  代數(shù)式:?jiǎn)为?dú)一個(gè)數(shù)或者一個(gè)字母也是代數(shù)式。

  合并同類項(xiàng):①所含字母相同,并且相同字母的指數(shù)也相同的項(xiàng),叫做同類項(xiàng);②把同類項(xiàng)合并成一項(xiàng)就叫做合并同類項(xiàng)。

 、墼诤喜⑼愴(xiàng)時(shí),我們把同類項(xiàng)的系數(shù)相加,字母和字母的指數(shù)不變。

  4、整式與分式

  整式:①數(shù)與字母的乘積的代數(shù)式叫單項(xiàng)式,幾個(gè)單項(xiàng)式的和叫多項(xiàng)式,單項(xiàng)式和多項(xiàng)式統(tǒng)稱整式。

  ②一個(gè)單項(xiàng)式中,所有字母的指數(shù)和叫做這個(gè)單項(xiàng)式的次數(shù)。

  ③一個(gè)多項(xiàng)式中,次數(shù)最高的項(xiàng)的次數(shù)叫做這個(gè)多項(xiàng)式的次數(shù)。

  整式運(yùn)算:加減運(yùn)算時(shí),如果遇到括號(hào)先去括號(hào),再合并同類項(xiàng)。

  冪的運(yùn)算:

  A^M+A^N=A^(M+N)

 。ˋ^M)^N=A^(MN

  )

 。ˋ/B)^N=A^N/B^N

  除法一樣。

  整式的乘法:

 、賳雾(xiàng)式與單項(xiàng)式相乘,把他們的系數(shù),相同字母的冪分別相乘,其余字母連同他的指數(shù)不變,作為積的因式。

 、趩雾(xiàng)式與多項(xiàng)式相乘,就是根據(jù)分配律用單項(xiàng)式去乘多項(xiàng)式的每一項(xiàng),再把所得的積相加。

  ③多項(xiàng)式與多項(xiàng)式相乘,先用一個(gè)多項(xiàng)式的每一項(xiàng)乘另外一個(gè)多項(xiàng)式的每一項(xiàng),再把所得的積相加。

  公式兩條:平方差公式:A^2-B^2=(A+B)(A-B);

  完全平方公式:(A+B)^2=A^2+2AB+B^2;(A-B)^2=A^2-2AB+B^2。

  整式的除法:①單項(xiàng)式相除,把系數(shù),同底數(shù)冪分別相除后,作為商的因式;對(duì)于只在被除式里含有的字母,則連同他的指數(shù)一起作為商的一個(gè)因式。

 、诙囗(xiàng)式除以單項(xiàng)式,先把這個(gè)多項(xiàng)式的每一項(xiàng)分別除以單項(xiàng)式,再把所得的商相加。

  分解因式:把一個(gè)多項(xiàng)式化成幾個(gè)整式的積的形式,這種變化叫做把這個(gè)多項(xiàng)式分解因式。

  方法:提公因式法、運(yùn)用公式法、分組分解法、十字相乘法。

  分式:①整式A除以整式B,如果除式B中含有分母,那么這個(gè)就是分式,對(duì)于任何一個(gè)分式,分母不為0。

  ②分式的分子與分母同乘以或除以同一個(gè)不等于0的整式,分式的值不變。

  分式的運(yùn)算:

  乘法:把分子相乘的積作為積的分子,把分母相乘的積作為積的分母。

  除法:除以一個(gè)分式等于乘以這個(gè)分式的倒數(shù)。

  加減法:①同分母分式相加減,分母不變,把分子相加減。

  ②異分母的分式先通分,化為同分母的分式,再加減。

  分式方程:①分母中含有未知數(shù)的方程叫分式方程。

 、谑狗匠痰姆帜笧0的解稱為原方程的增根。

  B、方程與不等式

  1、方程與方程組

  一元一次方程:①在一個(gè)方程中,只含有一個(gè)未知數(shù),并且未知數(shù)的指數(shù)是1,這樣的方程叫一元一次方程。

  ②等式兩邊同時(shí)加上或減去或乘以或除以(不為0)一個(gè)代數(shù)式,所得結(jié)果仍是等式。

  解一元一次方程的步驟:去分母,移項(xiàng),合并同類項(xiàng),未知數(shù)系數(shù)化為1。

  二元一次方程:含有兩個(gè)未知數(shù),并且所含未知數(shù)的項(xiàng)的次數(shù)都是1的方程叫做二元一次方程。

  二元一次方程組:兩個(gè)二元一次方程組成的方程組叫做二元一次方程組。

  適合一個(gè)二元一次方程的一組未知數(shù)的值,叫做這個(gè)二元一次方程的一個(gè)解。

  二元一次方程組中各個(gè)方程的公共解,叫做這個(gè)二元一次方程組的解。

  解二元一次方程組的方法:代入消元法;加減消元法。

  一元二次方程:只有一個(gè)未知數(shù),并且未知數(shù)的項(xiàng)的最高系數(shù)為2的方程:ax^2+bx+c=0;

  1)一元二次方程的二次函數(shù)的關(guān)系

  大家已經(jīng)學(xué)過二次函數(shù)(即拋物線)了,對(duì)他也有很深的了解,好像解法,在圖象中表示等等,其實(shí)一元二次方程也可以用二次函數(shù)來表示,其實(shí)一元二次方程也是二次函數(shù)的一個(gè)特殊情況,就是當(dāng)Y=0的時(shí)候就構(gòu)成了一元二次方程了。那如果在平面直角坐標(biāo)系中表示出來,一元二次方程就是二次函數(shù)中,圖像與X軸的交點(diǎn)。也就是該方程的解了

  2)一元二次方程的解法

  大家知道,二次函數(shù)有頂點(diǎn)式(-b/2a

  ,4ac-b^2/4a),這大家要記住,很重要,因?yàn)樵谏厦嬉呀?jīng)說過了,一元二次方程也是二次函數(shù)的一部分,所以他也有自己的一個(gè)解法,利用他可以求出所有的一元一次方程的解

  (1)配方法

  利用配方,使方程變?yōu)橥耆椒焦,在用直接開平方法去求出解

  (2)分解因式法

  提取公因式,套用公式法,和十字相乘法。在解一元二次方程的時(shí)候也一樣,利用這點(diǎn),把方程化為幾個(gè)乘積的形式去解

  (3)公式法

  這方法也可以是在解一元二次方程的萬能方法了,方程的根X1={-b+√[b^2-4ac)]}/2a,X2={-b-√[b^2-4ac)]}/2a

  3)解一元二次方程的步驟:

  (1)配方法的.步驟:

  先把常數(shù)項(xiàng)移到方程的右邊,再把二次項(xiàng)的系數(shù)化為1,再同時(shí)加上1次項(xiàng)的系數(shù)的一半的平方,最后配成完全平方公式

  (2)分解因式法的步驟:

  把方程右邊化為0,然后看看是否能用提取公因式,公式法(這里指的是分解因式中的公式法)或十字相乘,如果可以,就可以化為乘積的形式

  (3)公式法

  就把一元二次方程的各系數(shù)分別代入,這里二次項(xiàng)的系數(shù)為a,一次項(xiàng)的系數(shù)為b,常數(shù)項(xiàng)的系數(shù)為c

  4)韋達(dá)定理

  利用韋達(dá)定理去了解,韋達(dá)定理就是在一元二次方程中,二根之和=-b/a,二根之積=c/a

  也可以表示為x1+x2=-b/a,x1x2=c/a。利用韋達(dá)定理,可以求出一元二次方程中的各系數(shù),在題目中很常用

  5)一元二次方程根的情況

  利用根的判別式去了解,根的判別式可在書面上可以寫為“△”,讀作“diao

  ta”,而△=b2-4ac,這里可以分為3種情況:

  I當(dāng)△>0時(shí),一元二次方程有2個(gè)不相等的實(shí)數(shù)根;

  II當(dāng)△=0時(shí),一元二次方程有2個(gè)相同的實(shí)數(shù)根;

  III當(dāng)△B,則A+C>B+C;

  在不等式中,如果減去同一個(gè)數(shù)(或加上一個(gè)負(fù)數(shù)),不等式符號(hào)不改向;

  例如:如果A>B,則A-C>B-C;

  在不等式中,如果乘以同一個(gè)正數(shù),不等式符號(hào)不改向;

  例如:如果A>B,則A*C>B*C(C>0);

  在不等式中,如果乘以同一個(gè)負(fù)數(shù),不等號(hào)改向;

  例如:如果A>B,則A*C

  如果不等式乘以0,那么不等號(hào)改為等號(hào);

  所以在題目中,要求出乘以的數(shù),那么就要看看題中是否出現(xiàn)一元一次不等式,如果出現(xiàn)了,那么不等式乘的數(shù)就不等于0,否則不等式不成立;

  3、函數(shù)

  變量:因變量Y,自變量X。

  在用圖像表示變量之間的關(guān)系時(shí),通常用水平方向的數(shù)軸上的點(diǎn)自變量,用豎直方向的數(shù)軸上的點(diǎn)表示因變量。

  一次函數(shù):①若兩個(gè)變量X,Y間的關(guān)系式可以表示成Y=KX+B(B為常數(shù),K不等于0)的形式,則稱Y是X的一次函數(shù)。

 、诋(dāng)B=0時(shí),稱Y是X的正比例函數(shù)。

  一次函數(shù)的圖像:

 、侔岩粋(gè)函數(shù)的自變量X與對(duì)應(yīng)的因變量Y的值分別作為點(diǎn)的橫坐標(biāo)與縱坐標(biāo),在直角坐標(biāo)系內(nèi)描出它的對(duì)應(yīng)點(diǎn),所有這些點(diǎn)組成的圖形叫做該函數(shù)的圖像。

  ②正比例函數(shù)Y=KX的圖像是經(jīng)過原點(diǎn)的一條直線。

 、墼谝淮魏瘮(shù)中,當(dāng)K〈0,B〈O時(shí),則經(jīng)234象限;

  當(dāng)K〈0,B〉0時(shí),則經(jīng)124象限;

  當(dāng)K〉0,B〈0時(shí),則經(jīng)134象限;

  當(dāng)K〉0,B〉0時(shí),則經(jīng)123象限。

  ④當(dāng)K〉0時(shí),Y的值隨X值的增大而增大,當(dāng)X〈0時(shí),Y的值隨X值的增大而減少。

  二空間與圖形

  A、圖形的認(rèn)識(shí)

  1、點(diǎn),線,面

  點(diǎn),線,面:①圖形是由點(diǎn),線,面構(gòu)成的。

 、诿媾c面相交得線,線與線相交得點(diǎn)。

 、埸c(diǎn)動(dòng)成線,線動(dòng)成面,面動(dòng)成體。

  展開與折疊:①在棱柱中,任何相鄰的兩個(gè)面的交線叫做棱,側(cè)棱是相鄰兩個(gè)側(cè)面的交線,棱柱的所有側(cè)棱長(zhǎng)相等,棱柱的上下底面的形狀相同,側(cè)面的形狀都是長(zhǎng)方體。

 、贜棱柱就是底面圖形有N條邊的棱柱,上下底面就是N邊形。

  截一個(gè)幾何體:用一個(gè)平面去截一個(gè)圖形,截出的面叫做截面。

  視圖:主視圖,左視圖,俯視圖。

  多邊形:他們是由一些不在同一條直線上的線段依次首尾相連組成的封閉圖形。

  弧、扇形:①由一條弧和經(jīng)過這條弧的端點(diǎn)的兩條半徑所組成的圖形叫扇形。

 、趫A可以分割成若干個(gè)扇形。

  2、角

  線:①線段有兩個(gè)端點(diǎn)。

 、趯⒕段向一個(gè)方向無限延長(zhǎng)就形成了射線。射線只有一個(gè)端點(diǎn)。

 、蹖⒕段的兩端無限延長(zhǎng)就形成了直線。直線沒有端點(diǎn)。

  ④經(jīng)過兩點(diǎn)有且只有一條直線。

  比較長(zhǎng)短:①兩點(diǎn)之間的所有連線中,線段最短。兩點(diǎn)之間直線最短。

 、趦牲c(diǎn)之間線段的長(zhǎng)度,叫做這兩點(diǎn)之間的距離。

  角的度量與表示:①角由兩條具有公共端點(diǎn)的射線組成,兩條射線的公共端點(diǎn)是這個(gè)角的頂點(diǎn)。

 、谝欢鹊1/60是一分,一分的1/60是一秒。即:60分為1度,60秒為1分。

  角的比較:①角也可以看成是由一條射線繞著他的端點(diǎn)旋轉(zhuǎn)而成的。

 、谝粭l射線繞著他的端點(diǎn)旋轉(zhuǎn),當(dāng)終邊和始邊成一條直線時(shí),所成的角叫做平角,180。始邊繼續(xù)旋轉(zhuǎn),當(dāng)他又和始邊重合時(shí),所成的角叫做周角,360。

  ③從一個(gè)角的頂點(diǎn)引出的一條射線,把這個(gè)角分成兩個(gè)相等的角,這條射線叫做這個(gè)角的平分線。

  平行:①同一平面內(nèi),不相交的兩條直線叫做平行線。

 、诮(jīng)過直線外一點(diǎn),有且只有一條直線與這條直線平行。

  ③如果兩條直線都與第3條直線平行,那么這兩條直線互相平行。

  垂直:①如果兩條直線相交成直角,那么這兩條直線互相垂直。

 、诨ハ啻怪钡膬蓷l直線的交點(diǎn)叫做垂足。

  ③平面內(nèi),過一點(diǎn)有且只有一條直線與已知直線垂直。

  垂直平分線:垂直和平分一條線段的直線叫垂直平分線。

  垂直平分線垂直平分的一定是線段,不能是射線或直線,這根據(jù)射線和直線可以無限延長(zhǎng)有關(guān),再看后面的,垂直平分線是一條直線,所以在畫垂直平分線的時(shí)候,確定了2點(diǎn)后(關(guān)于畫法,后面會(huì)講)一定要把線段穿出2點(diǎn)。

  垂直平分線定理:

  性質(zhì)定理:在垂直平分線上的點(diǎn)到該線段兩端點(diǎn)的距離相等;

  判定定理:到線段2端點(diǎn)距離相等的點(diǎn)在這線段的垂直平分線上;

  角平分線:把一個(gè)角平分的射線叫該角的角平分線。

  定義中有幾個(gè)要點(diǎn)要注意一下的:角的角平分線是一條射線,不是線段也不是直線,很多時(shí),在題目中會(huì)出現(xiàn)直線,這是角平分線的對(duì)稱軸才會(huì)用直線的,這也涉及到軌跡的問題,一個(gè)角的角平分線就是到角兩邊距離相等的點(diǎn)的集合。

  性質(zhì)定理:角平分線上的點(diǎn)到該角兩邊的距離相等;

  判定定理:到角的兩邊距離相等的點(diǎn)在該角的角平分線上;

  正方形:一組鄰邊相等的矩形是正方形

  性質(zhì):正方形具有平行四邊形、菱形、矩形的一切性質(zhì)

  判定:1、對(duì)角線相等的菱形2、鄰邊相等的矩形

  二、基本定理

  1、過兩點(diǎn)有且只有一條直線

  2、兩點(diǎn)之間線段最短

  3、同角或等角的補(bǔ)角相等

  ——補(bǔ)角=180-角度。

  4、同角或等角的余角相等——余角=90-角度。

  5、過一點(diǎn)有且只有一條直線和已知直線垂直

  6、直線外一點(diǎn)與直線上各點(diǎn)連接的所有線段中,垂線段最短

  7、平行公理:經(jīng)過直線外一點(diǎn),有且只有一條直線與這條直線平行

  8、如果兩條直線都和第三條直線平行,這兩條直線也互相平行

  9、同位角相等,兩直線平行

  10、內(nèi)錯(cuò)角相等,兩直線平行

  11、同旁內(nèi)角互補(bǔ),兩直線平行

  12、兩直線平行,同位角相等

  13、兩直線平行,內(nèi)錯(cuò)角相等

  14、兩直線平行,同旁內(nèi)角互補(bǔ)

  15、定理

  三角形兩邊的和大于第三邊

  16、推論

  三角形兩邊的差小于第三邊

  17、三角形內(nèi)角和定理:

  三角形三個(gè)內(nèi)角的和等于180°

  18、推論1

  直角三角形的兩個(gè)銳角互余

  19、推論2

  三角形的一個(gè)外角等于和它不相鄰的兩個(gè)內(nèi)角的和

  20、推論3

  三角形的一個(gè)外角大于任何一個(gè)和它不相鄰的內(nèi)角

  21、全等三角形的對(duì)應(yīng)邊、對(duì)應(yīng)角相等

  22、邊角邊公理(SAS):有兩邊和它們的夾角對(duì)應(yīng)相等的兩個(gè)三角形全等

  23、角邊角公理(

  ASA):有兩角和它們的夾邊對(duì)應(yīng)相等的

  兩個(gè)三角形全等

  24、推論(AAS):有兩角和其中一角的對(duì)邊對(duì)應(yīng)相等的兩個(gè)三角形全等

  25、邊邊邊公理(SSS):有三邊對(duì)應(yīng)相等的兩個(gè)三角形全等

  26、斜邊、直角邊公理(HL):有斜邊和一條直角邊對(duì)應(yīng)相等的兩個(gè)直角三角形全等

  27、定理1

  在角的平分線上的點(diǎn)到這個(gè)角的兩邊的距離相等

  28、定理2

  到一個(gè)角的兩邊的距離相同的點(diǎn),在這個(gè)角的平分線上

  29、角的平分線是到角的兩邊距離相等的所有點(diǎn)的集合

  30、推論1

  等腰三角形頂角的平分線平分底邊并且垂直于底邊

  31、推論2等腰三角形的頂角平分線、底邊上的中線和底邊上的高互相重合,即三線合一;

  32、推論3

  等邊三角形的各角都相等,并且每一個(gè)角都等于60°

  33、等腰三角形的判定定理

  如果一個(gè)三角形有兩個(gè)角相等,那么這兩個(gè)角所對(duì)的邊也相等(等角對(duì)等邊)

  34、等腰三角形的性質(zhì)定理

  等腰三角形的兩個(gè)底角相等

  (即等邊對(duì)等角)

  35、推論1

  三個(gè)角都相等的三角形是等邊三角形

  36、推論

  有一個(gè)角等于60°的等腰三角形是等邊三角形

  37、在直角三角形中,如果一個(gè)銳角等于30°那么它所對(duì)的直角邊等于斜邊的一半

  38、直角三角形斜邊上的中線等于斜邊上的一半

  39、定理

  線段垂直平分線上的點(diǎn)和這條線段兩個(gè)端點(diǎn)的距離相等

  40、逆定理

  和一條線段兩個(gè)端點(diǎn)距離相等的點(diǎn),在這條線段的垂直平分線上

  41、線段的垂直平分線可看作和線段兩端點(diǎn)距離相等的所有點(diǎn)的集合

  42、定理1

  關(guān)于某條直線對(duì)稱的兩個(gè)圖形是全等形

  43、定理

  如果兩個(gè)圖形關(guān)于某直線對(duì)稱,那么對(duì)稱軸是對(duì)應(yīng)點(diǎn)連線的垂直平分線

  44、定理3

  兩個(gè)圖形關(guān)于某直線對(duì)稱,如果它們的對(duì)應(yīng)線段或延長(zhǎng)線相交,那么交點(diǎn)在對(duì)稱軸上

  45、逆定理

  如果兩個(gè)圖形的對(duì)應(yīng)點(diǎn)連線被同一條直線垂直平分,那么這兩個(gè)圖形關(guān)于這條直線對(duì)稱

  46、勾股定理

  直角三角形兩直角邊a、b的平方和、等于斜邊c的平方,即a2+b2=c2

  47、勾股定理的逆定理

  如果三角形的三邊長(zhǎng)a、b、c有關(guān)系a2+b2=c2,那么這個(gè)三角形是直角三角形

  48、定理

  四邊形的內(nèi)角和等于360°

  49、四邊形的外角和等于360°

  50、多邊形內(nèi)角和定理

  n邊形的內(nèi)角的和等于(n-2)×180°

  51、推論

  任意多邊的外角和等于360°

  52、平行四邊形性質(zhì)定理1

  平行四邊形的對(duì)角相等

  53、平行四邊形性質(zhì)定理2

  平行四邊形的對(duì)邊相等

  54、推論

  夾在兩條平行線間的平行線段相等

  55、平行四邊形性質(zhì)定理3

  平行四邊形的對(duì)角線互相平分

  56、平行四邊形判定定理1

  兩組對(duì)角分別相等的四邊形是平行四邊形

  57、平行四邊形判定定理2

  兩組對(duì)邊分別相等的四邊

  形是平行四邊形

  58、平行四邊形判定定理3

  對(duì)角線互相平分的四邊形是平行四邊形

  59、平行四邊形判定定理4

  一組對(duì)邊平行相等的四邊形是平行四邊形

  60、矩形性質(zhì)定理1

  矩形的四個(gè)角都是直角

  61、矩形性質(zhì)定理2

  矩形的對(duì)角線相等

  62、矩形判定定理1

  有三個(gè)角是直角的四邊形是矩形

  63、矩形判定定理2

  對(duì)角線相等的平行四邊形是矩形

  64、菱形性質(zhì)定理1

  菱形的四條邊都相等

  65、菱形性質(zhì)定理2

  菱形的對(duì)角線互相垂直,并且每一條對(duì)角線平分一組對(duì)角

  66、菱形面積=對(duì)角線乘積的一半,即S=(a×b)÷2

  67、菱形判定定理1

  四邊都相等的四邊形是菱形

  68、菱形判定定理2

  對(duì)角線互相垂直的平行四邊形是菱形

  69、正方形性質(zhì)定理1

  正方形的四個(gè)角都是直角,四條邊都相等

  70、正方形性質(zhì)定理2正方形的兩條對(duì)角線相等,并且互相垂直平分,每條對(duì)角線平分一組對(duì)角

  71、定理1

  關(guān)于中心對(duì)稱的兩個(gè)圖形是全等的

  72、定理2

  關(guān)于中心對(duì)稱的兩個(gè)圖形,對(duì)稱點(diǎn)連線都經(jīng)過對(duì)稱中心,并且被對(duì)稱中心平分

  73、逆定理

  如果兩個(gè)圖形的對(duì)應(yīng)點(diǎn)連線都經(jīng)過某一點(diǎn),并且被這一點(diǎn)平分,那么這兩個(gè)圖形關(guān)于這一點(diǎn)對(duì)稱

  74、等腰梯形性質(zhì)定理

  等腰梯形在同一底上的兩個(gè)角相等

  75、等腰梯形的兩條對(duì)角線相等

  76、等腰梯形判定定理

  在同一底上的兩個(gè)角相等的梯

  形是等腰梯形

  77、對(duì)角線相等的梯形是等腰梯形

  78、平行線等分線段定理

  如果一組平行線在一條直線上截得的線段相等,那么在其他直線上截得的線段也相等

  79、推論1

  經(jīng)過梯形一腰的中點(diǎn)與底平行的直線,必平分另一腰

  80、推論2

  經(jīng)過三角形一邊的中點(diǎn)與另一邊平行的直線,必平分第三邊

  81、三角形中位線定理

  三角形的中位線平行于第三邊,并且等于它的一半

  82、梯形中位線定理

  梯形的中位線平行于兩底,并且等于兩底和的一半

  L=(a+b)÷2

  S=L×h

  83、(1)比例的基本性質(zhì):如果a:b=c:d,那么ad=bc

  如果

  ad=bc,那么a:b=c:d

  84、(2)合比性質(zhì):如果a/b=c/d,那么(a±b)/b=(c±d)/d

  85、(3)等比性質(zhì):如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b

  86、平行線分線段成比例定理

  三條平行線截兩條直線,所得的對(duì)應(yīng)線段成比例

  87、推論

  平行于三角形一邊的直線截其他兩邊(或兩邊的延長(zhǎng)線),所得的對(duì)應(yīng)線段成比例

  88、定理

  如果一條直線截三角形的兩邊(或兩邊的延長(zhǎng)線)所得的對(duì)應(yīng)線段成比例,那么這條直線平行于三角形的第三邊

  89、平行于三角形的一邊,并且和其他兩邊相交的直線,

  所截得的三角形的三邊與原三角形三邊對(duì)應(yīng)成比例

  90、定理

  平行于三角形一邊的直線和其他兩邊(或兩邊的延長(zhǎng)線)相交,所構(gòu)成的三角形與原三角形相似

  91、相似三角形判定定理1

  兩角對(duì)應(yīng)相等,兩三角形相似(ASA)

  92、直角三角形被斜邊上的高分成的兩個(gè)直角三角形和原三角形相似

  93、判定定理2

  兩邊對(duì)應(yīng)成比例且夾角相等,兩三角形相似(SAS)

  94、判定定理3

  三邊對(duì)應(yīng)成比例,兩三角形相似(SSS)

  95、定理

  如果一個(gè)直角三角形的斜邊和一條直角邊與另一個(gè)直角三角形的斜邊和一條直角邊對(duì)應(yīng)成比例,那么這兩個(gè)直角三角形相似(HL)

  96、性質(zhì)定理1

  相似三角形對(duì)應(yīng)高的比,對(duì)應(yīng)中線的比與對(duì)應(yīng)角平分線的比都等于相似比

  97、性質(zhì)定理2

  相似三角形周長(zhǎng)的比等于相似比

  98、性質(zhì)定理3

  相似三角形面積的比等于相似比的平方

  99、任意銳角的正弦值等于它的余角的余弦值,任意銳角的余弦值等于它的余角的正弦值sin(a)=cos(90-a),cos(a)=sin(90-a)

  (a<90)

  100、任意銳角的正切值等于它的余角的余切值,任意銳角的余切值等于它的余角的正切值tan(a)=cot(90-a),cot(a)=tan(90-a)

  101、圓是定點(diǎn)的距離等于定長(zhǎng)的點(diǎn)的集合

  102、圓的內(nèi)部可以看作是圓心的距離小于半徑的點(diǎn)的集合

  103、圓的外部可以看作是圓心的距離大于半徑的點(diǎn)的集合

  104、同圓或等圓的半徑相等

  105、到定點(diǎn)的距離等于定長(zhǎng)的點(diǎn)的軌跡,是以定點(diǎn)為圓心,定長(zhǎng)為半徑的圓

  106、和已知線段兩個(gè)端點(diǎn)的距離相等的點(diǎn)的軌跡,是著條線段的垂直平分線

  107、到已知角的兩邊距離相等的點(diǎn)的軌跡,是這個(gè)角的平分線

  108、到兩條平行線距離相等的點(diǎn)的軌跡,是和這兩條平行線平行且距離相等的一條直線

  109、定理

  不在同一直線上的三點(diǎn)確定一個(gè)圓。

  110、垂徑定理

  垂直于弦的直徑平分這條弦并且平分弦所對(duì)的兩條弧

  111、推論1

  ①平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對(duì)的兩條弧

  ②弦的垂直平分線經(jīng)過圓心,并且平分弦所對(duì)的兩條。ㄖ睆剑

  ③平分弦所對(duì)的一條弧的直徑,垂直平分弦,并且平分弦所對(duì)的另一條弧

  112、推論2

  圓的兩條平行弦所夾的弧相等

  113、圓是以圓心為對(duì)稱中心的中心對(duì)稱圖形

  114、定理

  在同圓或等圓中,相等的圓心角所對(duì)的弧相等,所對(duì)的弦相等,所對(duì)的弦的弦心距相等

  115、推論

  在同圓或等圓中,如果兩個(gè)圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相等那么它們所對(duì)應(yīng)的其余各組量都相等

  116、定理

  一條弧所對(duì)的圓周角等于它所對(duì)的圓心角的一半

  117、推論1

  同弧或等弧所對(duì)的圓周角相等;同圓或等圓中,相等的圓周角所對(duì)的弧也相等

  118、推論2

  半圓(或直徑)所對(duì)的圓周角是直角;90°的圓周角所對(duì)的弦是直徑

  119、推論3

  如果三角形一邊上的中線等于這邊的一半,那么這個(gè)三角形是直角三角形

  120、定理

  圓的內(nèi)接四邊形的對(duì)角互補(bǔ),并且任何一個(gè)外角都等于它的內(nèi)對(duì)角

  121、①直線L和⊙O相交

  0<=d<r

 、谥本L和⊙O相切

  d=r

  ③直線L和⊙O相離

  d>r

  122、切線的判定定理

  經(jīng)過半徑的外端并且垂直于這條半徑的直線是圓的切線

  123、切線的性質(zhì)定理

  圓的切線垂直于經(jīng)過切點(diǎn)的半徑

  124、推論1

  經(jīng)過圓心且垂直于切線的直線必經(jīng)過切點(diǎn)

  125、推論2

  經(jīng)過切點(diǎn)且垂直于切線的直線必經(jīng)過圓心

  126、切線長(zhǎng)定理

  從圓外一點(diǎn)引圓的兩條切線相交與一點(diǎn),它們的切線長(zhǎng)相等

  ,圓心和這一點(diǎn)的連線平分兩條切線的夾角

  127、圓的外切四邊形的兩組對(duì)邊的和相等

  128、弦切角定理

  弦切角等于它所夾的弧對(duì)的圓周角?

  129、推論

  如果兩個(gè)弦切角所夾的弧相等,那么這兩個(gè)弦切角也相等

  130、相交弦定理

  圓內(nèi)的兩條相交弦,被交點(diǎn)分成的兩條線段長(zhǎng)的積相等

  131、推論

  如果弦與直徑垂直相交,那么弦的一半是它分直徑所成的兩條線段的比例中項(xiàng)

  132、切割線定理

  從圓外一點(diǎn)引圓的切線和割線,切線長(zhǎng)是這點(diǎn)到割線與圓交點(diǎn)的兩條線段長(zhǎng)的比例中項(xiàng)?

  133、推論

  從圓外一點(diǎn)引圓的兩條割線,這一點(diǎn)到每條

  割線與圓的交點(diǎn)的兩條線段長(zhǎng)的積相等

  134、如果兩個(gè)圓相切,那么切點(diǎn)一定在連心線上

  135、①兩圓外離

  d>R+r

 、趦蓤A外切

  d=R+r

 、蹆蓤A相交

  R-r<d<R+r(R>r)

 、軆蓤A內(nèi)切

  d=R-r(R>r)

 、輧蓤A內(nèi)含

  d<R-r(R>r)

  136、定理

  相交兩圓的連心線垂直平分兩圓的公共弦

  137、定理

  把圓平均分成n(n≥3):

 、乓来芜B結(jié)各分點(diǎn)所得的多邊形是這個(gè)圓的內(nèi)接正n邊形

 、平(jīng)過各分點(diǎn)作圓的切線,以相鄰切線的交點(diǎn)為頂點(diǎn)的多邊形是這個(gè)圓的外切正n邊形

  138、定理

  任何正多邊形都有一個(gè)外接圓和一個(gè)內(nèi)切圓,這兩個(gè)圓是同心圓

  139、正n邊形的每個(gè)內(nèi)角都等于(n-2)×180°/n

  140、定理

  正n邊形的半徑和邊心距把正n邊形分成2n個(gè)全等的直角三角形

  141、正n邊形的面積Sn=pn*rn/2

  p表示正n邊形的周長(zhǎng)

  142、正三角形面積√3a^2/4

  a表示邊長(zhǎng)

  143、如果在一個(gè)頂點(diǎn)周圍有k個(gè)正n邊形的角,由于這些角的和應(yīng)為360°,因此k×(n-2)180°/n=360°化為(n-2)(k-2)=4

  144、弧長(zhǎng)計(jì)算公式:L=n兀R/180——》L=nR

  145、扇形面積公式:S扇形=n兀R^2/360=LR/2

  146、內(nèi)公切線長(zhǎng)=d-(R-r)

  外公切線長(zhǎng)=d-(R+r)

初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)8

  初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié):中位線

  知識(shí)要點(diǎn):梯形的中位線平行于兩底,并且等于兩底和的一半。

  1.中位線概念

  (1)三角形中位線定義:連接三角形兩邊中點(diǎn)的線段叫做三角形的中位線。

  (2)梯形中位線定義:連結(jié)梯形兩腰中點(diǎn)的線段叫做梯形的中位線。

  注意:

  (1)要把三角形的中位線與三角形的中線區(qū)分開。三角形中線是連結(jié)一頂點(diǎn)和它對(duì)邊的中點(diǎn),而三角形中位線是連結(jié)三角形兩邊中點(diǎn)的線段。

  (2)梯形的中位線是連結(jié)兩腰中點(diǎn)的線段而不是連結(jié)兩底中點(diǎn)的線段。

  (3)兩個(gè)中位線定義間的聯(lián)系:可以把三角形看成是上底為零時(shí)的梯形,這時(shí)梯形的中位線就變成三角形的中位線。

  2.中位線定理

  (1)三角形中位線定理:三角形的中位線平行于第三邊并且等于它的一半.

  三角形兩邊中點(diǎn)的連線(中位線)平行于第BC邊,且等于第三邊的一半。

  知識(shí)要領(lǐng)總結(jié):三角形的中位線所構(gòu)成的小三角形(中點(diǎn)三角形)面積是原三角形面積的四分之一。

  初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié):平面直角坐標(biāo)系

  下面是對(duì)平面直角坐標(biāo)系的內(nèi)容學(xué)習(xí),希望同學(xué)們很好的掌握下面的內(nèi)容。

  平面直角坐標(biāo)系

  平面直角坐標(biāo)系:在平面內(nèi)畫兩條互相垂直、原點(diǎn)重合的數(shù)軸,組成平面直角坐標(biāo)系。

  水平的數(shù)軸稱為x軸或橫軸,豎直的數(shù)軸稱為y軸或縱軸,兩坐標(biāo)軸的交點(diǎn)為平面直角坐標(biāo)系的原點(diǎn)。

  平面直角坐標(biāo)系的要素:①在同一平面②兩條數(shù)軸③互相垂直④原點(diǎn)重合

  三個(gè)規(guī)定:

 、僬较虻囊(guī)定橫軸取向右為正方向,縱軸取向上為正方向

  ②單位長(zhǎng)度的規(guī)定;一般情況,橫軸、縱軸單位長(zhǎng)度相同;實(shí)際有時(shí)也可不同,但同一數(shù)軸上必須相同。

 、巯笙薜囊(guī)定:右上為第一象限、左上為第二象限、左下為第三象限、右下為第四象限。

  相信上面對(duì)平面直角坐標(biāo)系知識(shí)的講解學(xué)習(xí),同學(xué)們已經(jīng)能很好的掌握了吧,希望同學(xué)們都能考試成功。

  初中數(shù)學(xué)知識(shí)點(diǎn):平面直角坐標(biāo)系的構(gòu)成

  對(duì)于平面直角坐標(biāo)系的構(gòu)成內(nèi)容,下面我們一起來學(xué)習(xí)哦。

  平面直角坐標(biāo)系的構(gòu)成

  在同一個(gè)平面上互相垂直且有公共原點(diǎn)的兩條數(shù)軸構(gòu)成平面直角坐標(biāo)系,簡(jiǎn)稱為直角坐標(biāo)系。通常,兩條數(shù)軸分別置于水平位置與鉛直位置,取向右與向上的方向分別為兩條數(shù)軸的正方向。水平的數(shù)軸叫做X軸或橫軸,鉛直的數(shù)軸叫做Y軸或縱軸,X軸或Y軸統(tǒng)稱為坐標(biāo)軸,它們的'公共原點(diǎn)O稱為直角坐標(biāo)系的原點(diǎn)。

  通過上面對(duì)平面直角坐標(biāo)系的構(gòu)成知識(shí)的講解學(xué)習(xí),希望同學(xué)們對(duì)上面的內(nèi)容都能很好的掌握,同學(xué)們認(rèn)真學(xué)習(xí)吧。

  初中數(shù)學(xué)知識(shí)點(diǎn):點(diǎn)的坐標(biāo)的性質(zhì)

  下面是對(duì)數(shù)學(xué)中點(diǎn)的坐標(biāo)的性質(zhì)知識(shí)學(xué)習(xí),同學(xué)們認(rèn)真看看哦。

  點(diǎn)的坐標(biāo)的性質(zhì)

  建立了平面直角坐標(biāo)系后,對(duì)于坐標(biāo)系平面內(nèi)的任何一點(diǎn),我們可以確定它的坐標(biāo)。反過來,對(duì)于任何一個(gè)坐標(biāo),我們可以在坐標(biāo)平面內(nèi)確定它所表示的一個(gè)點(diǎn)。

  對(duì)于平面內(nèi)任意一點(diǎn)C,過點(diǎn)C分別向X軸、Y軸作垂線,垂足在X軸、Y軸上的對(duì)應(yīng)點(diǎn)a,b分別叫做點(diǎn)C的橫坐標(biāo)、縱坐標(biāo),有序?qū)崝?shù)對(duì)(a,b)叫做點(diǎn)C的坐標(biāo)。

  一個(gè)點(diǎn)在不同的象限或坐標(biāo)軸上,點(diǎn)的坐標(biāo)不一樣。

  希望上面對(duì)點(diǎn)的坐標(biāo)的性質(zhì)知識(shí)講解學(xué)習(xí),同學(xué)們都能很好的掌握,相信同學(xué)們會(huì)在考試中取得優(yōu)異成績(jī)的。

  初中數(shù)學(xué)知識(shí)點(diǎn):因式分解的一般步驟

  關(guān)于數(shù)學(xué)中因式分解的一般步驟內(nèi)容學(xué)習(xí),我們做下面的知識(shí)講解。

  因式分解的一般步驟

  如果多項(xiàng)式有公因式就先提公因式,沒有公因式的多項(xiàng)式就考慮運(yùn)用公式法;若是四項(xiàng)或四項(xiàng)以上的多項(xiàng)式,

  通常采用分組分解法,最后運(yùn)用十字相乘法分解因式。因此,可以概括為:“一提”、“二套”、“三分組”、“四十字”。

  注意:因式分解一定要分解到每一個(gè)因式都不能再分解為止,否則就是不完全的因式分解,若題目沒有明確指出在哪個(gè)范圍內(nèi)因式分解,應(yīng)該是指在有理數(shù)范圍內(nèi)因式分解,因此分解因式的結(jié)果,必須是幾個(gè)整式的積的形式。

  相信上面對(duì)因式分解的一般步驟知識(shí)的內(nèi)容講解學(xué)習(xí),同學(xué)們已經(jīng)能很好的掌握了吧,希望同學(xué)們會(huì)考出好成績(jī)。

  初中數(shù)學(xué)知識(shí)點(diǎn):因式分解

  下面是對(duì)數(shù)學(xué)中因式分解內(nèi)容的知識(shí)講解,希望同學(xué)們認(rèn)真學(xué)習(xí)。

  因式分解

  因式分解定義:把一個(gè)多項(xiàng)式化成幾個(gè)整式的積的形式的變形叫把這個(gè)多項(xiàng)式因式分解。

  因式分解要素:①結(jié)果必須是整式②結(jié)果必須是積的形式③結(jié)果是等式④

  因式分解與整式乘法的關(guān)系:m(a+b+c)

  公因式:一個(gè)多項(xiàng)式每項(xiàng)都含有的公共的因式,叫做這個(gè)多項(xiàng)式各項(xiàng)的公因式。

  公因式確定方法:①系數(shù)是整數(shù)時(shí)取各項(xiàng)最大公約數(shù)。②相同字母取最低次冪③系數(shù)最大公約數(shù)與相同字母取最低次冪的積就是這個(gè)多項(xiàng)式各項(xiàng)的公因式。

  提取公因式步驟:

 、俅_定公因式。②確定商式③公因式與商式寫成積的形式。

  分解因式注意;

 、俨粶(zhǔn)丟字母

 、诓粶(zhǔn)丟常數(shù)項(xiàng)注意查項(xiàng)數(shù)

  ③雙重括號(hào)化成單括號(hào)

  ④結(jié)果按數(shù)單字母單項(xiàng)式多項(xiàng)式順序排列

  ⑤相同因式寫成冪的形式

 、奘醉(xiàng)負(fù)號(hào)放括號(hào)外

  ⑦括號(hào)內(nèi)同類項(xiàng)合并。

  通過上面對(duì)因式分解內(nèi)容知識(shí)的講解學(xué)習(xí),相信同學(xué)們已經(jīng)能很好的掌握了吧,希望上面的內(nèi)容給同學(xué)們的學(xué)習(xí)很好的幫助。

初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)9

  一、重要概念

  1.總體:考察對(duì)象的全體。

  2.個(gè)體:總體中每一個(gè)考察對(duì)象。

  3.樣本:從總體中抽出的一部分個(gè)體。

  4.樣本容量:樣本中個(gè)體的數(shù)目。

  5.眾數(shù):一組數(shù)據(jù)中,出現(xiàn)次數(shù)最多的數(shù)據(jù)。

  6.中位數(shù):將一組數(shù)據(jù)按大小依次排列,處在最中間位置的一個(gè)數(shù)(或最中間位置的兩個(gè)數(shù)據(jù)的平均數(shù))

  二、計(jì)算方法

  1.樣本平均數(shù):⑴;⑵若,…,,則(a—常數(shù),…,接近較整的常數(shù)a);⑶加權(quán)平均數(shù):;⑷平均數(shù)是刻劃數(shù)據(jù)的集中趨勢(shì)(集中位置)的特征數(shù)。通常用樣本平均數(shù)去估計(jì)總體平均數(shù),樣本容量越大,估計(jì)越準(zhǔn)確。

  2.樣本方差:⑴;⑵若,,…,,則(a—接近、、…、的平均數(shù)的較“整”的常數(shù));若、、…、較“小”較“整”,則;⑶樣本方差是刻劃數(shù)據(jù)的離散程度(波動(dòng)大小)的特征數(shù),當(dāng)樣本容量較大時(shí),樣本方差非常接近總體方差,通常用樣本方差去估計(jì)總體方差。

  3.樣本標(biāo)準(zhǔn)差:

  三、應(yīng)用舉例(略)

  初三數(shù)學(xué)知識(shí)點(diǎn):第四章直線形

  ★重點(diǎn)★相交線與平行線、三角形、四邊形的有關(guān)概念、判定、性質(zhì)。

  ☆內(nèi)容提要☆

  一、直線、相交線、平行線

  1.線段、射線、直線三者的區(qū)別與聯(lián)系

  從“圖形”、“表示法”、“界限”、“端點(diǎn)個(gè)數(shù)”、“基本性質(zhì)”等方面加以分析。

  2.線段的中點(diǎn)及表示

  3.直線、線段的基本性質(zhì)(用“線段的基本性質(zhì)”論證“三角形兩邊之和大于第三邊”)

  4.兩點(diǎn)間的距離(三個(gè)距離:點(diǎn)-點(diǎn);點(diǎn)-線;線-線)

  5.角(平角、周角、直角、銳角、鈍角)

  6.互為余角、互為補(bǔ)角及表示方法

  7.角的平分線及其表示

  8.垂線及基本性質(zhì)(利用它證明“直角三角形中斜邊大于直角邊”)

  9.對(duì)頂角及性質(zhì)

  10.平行線及判定與性質(zhì)(互逆)(二者的區(qū)別與聯(lián)系)

  11.常用定理:①同平行于一條直線的兩條直線平行(傳遞性);②同垂直于一條直線的兩條直線平行。

  12.定義、命題、命題的組成

  13.公理、定理

  14.逆命題

  二、三角形

  分類:⑴按邊分;

 、瓢唇欠

  1.定義(包括內(nèi)、外角)

  2.三角形的邊角關(guān)系:⑴角與角:①內(nèi)角和及推論;②外角和;③n邊形內(nèi)角和;④n邊形外角和。⑵邊與邊:三角形兩邊之和大于第三邊,兩邊之差小于第三邊。⑶角與邊:在同一三角形中

  3.三角形的主要線段

  討論:①定義②x線的.交點(diǎn)—三角形的×心③性質(zhì)

 、俑呔②中線③角平分線④中垂線⑤中位線

 、乓话闳切微铺厥馊切危褐苯侨切巍⒌妊切、等邊三角形

  4.特殊三角形(直角三角形、等腰三角形、等邊三角形、等腰直角三角形)的判定與性質(zhì)

  5.全等三角形

  ⑴一般三角形全等的判定(sas、asa、aas、sss)

 、铺厥馊切稳鹊呐卸ǎ孩僖话惴椒á趯S梅椒

  6.三角形的面積

 、乓话阌(jì)算公式⑵性質(zhì):等底等高的三角形面積相等。

  7.重要輔助線

 、胖悬c(diǎn)配中點(diǎn)構(gòu)成中位線;⑵加倍中線;⑶添加輔助平行線

  8.證明方法

 、胖苯幼C法:綜合法、分析法

 、崎g接證法—反證法:①反設(shè)②歸謬③結(jié)論

  ⑶證線段相等、角相等常通過證三角形全等

  ⑷證線段倍分關(guān)系:加倍法、折半法

 、勺C線段和差關(guān)系:延結(jié)法、截余法

  ⑹證面積關(guān)系:將面積表示出來

  三、四邊形

  分類表:

  1.一般性質(zhì)(角)

 、艃(nèi)角和:360°

  ⑵順次連結(jié)各邊中點(diǎn)得平行四邊形。

  推論1:順次連結(jié)對(duì)角線相等的四邊形各邊中點(diǎn)得菱形。

  推論2:順次連結(jié)對(duì)角線互相垂直的四邊形各邊中點(diǎn)得矩形。

 、峭饨呛停360°

  2.特殊四邊形

  ⑴研究它們的一般方法:

 、破叫兴倪呅巍⒕匦、菱形、正方形;梯形、等腰梯形的定義、性質(zhì)和判定

 、桥卸ú襟E:四邊形→平行四邊形→矩形→正方形

  ┗→菱形——↑

  ⑷對(duì)角線的紐帶作用:

  3.對(duì)稱圖形

 、泡S對(duì)稱(定義及性質(zhì));⑵中心對(duì)稱(定義及性質(zhì))

  4.有關(guān)定理:①平行線等分線段定理及其推論1、2

 、谌切、梯形的中位線定理

  ③平行線間的距離處處相等。(如,找下圖中面積相等的三角形)

  5.重要輔助線:①常連結(jié)四邊形的對(duì)角線;②梯形中!捌揭埔谎、“平移對(duì)角線”、“作高”、“連結(jié)頂點(diǎn)和對(duì)腰中點(diǎn)并延長(zhǎng)與底邊相交”轉(zhuǎn)化為三角形。

  6.作圖:任意等分線段。

初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)10

  一、圓

  1、圓的有關(guān)性質(zhì)

  在一個(gè)平面內(nèi),線段OA繞它固定的一個(gè)端點(diǎn)O旋轉(zhuǎn)一周,另一個(gè)端點(diǎn)A隨之旋轉(zhuǎn)所形成的圖形叫圓,固定的端點(diǎn)O叫圓心,線段OA叫半徑。

  由圓的意義可知:

  圓上各點(diǎn)到定點(diǎn)(圓心O)的距離等于定長(zhǎng)的點(diǎn)都在圓上。

  就是說:圓是到定點(diǎn)的距離等于定長(zhǎng)的點(diǎn)的集合,圓的內(nèi)部可以看作是到圓。心的距離小于半徑的點(diǎn)的集合。

  圓的外部可以看作是到圓心的距離大于半徑的點(diǎn)的集合。連結(jié)圓上任意兩點(diǎn)的線段叫做弦,經(jīng)過圓心的弦叫直徑。圓上任意兩點(diǎn)間的部分叫圓弧,簡(jiǎn)稱弧。

  圓的`任意一條直徑的兩個(gè)端點(diǎn)分圓成兩條弧,每一條弧都叫半圓,大于半圓的弧叫優(yōu)弧。小于半圓的弧叫劣弧。由弦及其所對(duì)的弧組成的圓形叫弓形。

  圓心相同,半徑不相等的兩個(gè)圓叫同心圓。

  能夠重合的兩個(gè)圓叫等圓。

  同圓或等圓的半徑相等。

  在同圓或等圓中,能夠互相重合的弧叫等弧。

  二、過三點(diǎn)的圓

  1、過三點(diǎn)的圓

  過三點(diǎn)的圓的作法:利用中垂線找圓心

  定理不在同一直線上的三個(gè)點(diǎn)確定一個(gè)圓。

  經(jīng)過三角形各頂點(diǎn)的圓叫三角形的外接圓,外接圓的圓心叫外心,這個(gè)三角形叫圓的內(nèi)接三角形。

  2、反證法

  反證法的三個(gè)步驟:

 、偌僭O(shè)命題的結(jié)論不成立。

 、趶倪@個(gè)假設(shè)出發(fā),經(jīng)過推理論證,得出矛盾。

 、塾擅艿贸黾僭O(shè)不正確,從而肯定命題的結(jié)論正確。

  例如:求證三角形中最多只有一個(gè)角是鈍角。

  證明:設(shè)有兩個(gè)以上是鈍角。

  則兩個(gè)鈍角之和>180°

  與三角形內(nèi)角和等于180°矛盾。

  不可能有二個(gè)以上是鈍角。

  即最多只能有一個(gè)是鈍角。

  三、垂直于弦的直徑

  圓是軸對(duì)稱圖形,經(jīng)過圓心的每一條直線都是它的對(duì)稱軸。

  垂徑定理:垂直于弦的直徑平分這條弦,并且平分弦所對(duì)的兩條弧。

  推理1:平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對(duì)兩條弧。

  弦的垂直平分線經(jīng)過圓心,并且平分弦所對(duì)的兩條弧。

  平分弦所對(duì)的一條弧的直徑,垂直平分弦,并且平分弦所對(duì)的另一個(gè)條弧。

  推理2:圓兩條平行弦所夾的弧相等。

  四、圓心角、弧、弦、弦心距之間的關(guān)系

  圓是以圓心為對(duì)稱中心的中心對(duì)稱圖形。

  實(shí)際上,圓繞圓心旋轉(zhuǎn)任意一個(gè)角度,都能夠與原來的圖形重合。

  頂點(diǎn)是圓心的角叫圓心角,從圓心到弦的距離叫弦心距。

  定理:在同圓或等圓中,相等的圓心角所對(duì)的弧相等,所對(duì)的弦相等,所對(duì)的弦心距相等。

  推理:在同圓或等圓中,如果兩個(gè)圓心角、兩條弧、兩條弦或兩條弦的弦心距中,有一組量相等,那么它們所對(duì)應(yīng)的其余各組量都分別相等。

  五、圓周角

  頂點(diǎn)在圓上,并且兩邊都和圓相交的角叫圓周角。

  推理1:同弧或等弧所對(duì)的圓周角相等。同圓或等圓中,相等的圓周角所對(duì)的弧也相等。

  推理2:半圓(或直徑)所對(duì)的圓周角是直角。90°的圓周角所對(duì)的弦是直徑。

  推理3:如果三角形一邊上的中線等于這邊的一半,那么這個(gè)三角形是直角三角形。

  由于以上的定理、推理,所添加輔助線往往是添加能構(gòu)成直徑上的圓周角的輔助線。

初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)11

  1、正數(shù)和負(fù)數(shù)的有關(guān)概念

  (1)正數(shù):

  比0大的數(shù)叫做正數(shù);

  負(fù)數(shù):比0小的數(shù)叫做負(fù)數(shù);

  0既不是正數(shù),也不是負(fù)數(shù)。

  (2)正數(shù)和負(fù)數(shù)表示相反意義的量。

  2、有理數(shù)的概念及分類

  3、有關(guān)數(shù)軸

  (1)數(shù)軸的三要素:原點(diǎn)、正方向、單位長(zhǎng)度。數(shù)軸是一條直線。

  (2)所有有理數(shù)都可以用數(shù)軸上的點(diǎn)來表示,但數(shù)軸上的點(diǎn)不一定都是有理數(shù)。

  (3)數(shù)軸上,右邊的數(shù)總比左邊的數(shù)大;表示正數(shù)的點(diǎn)在原點(diǎn)的右側(cè),表示負(fù)數(shù)的點(diǎn)在原點(diǎn)的左側(cè)。

  (2)相反數(shù):符號(hào)不同、絕對(duì)值相等的兩個(gè)數(shù)互為相反數(shù)。

  若a、b互為相反數(shù),則a+b=0;

  相反數(shù)是本身的是0,正數(shù)的相反數(shù)是負(fù)數(shù),負(fù)數(shù)的相反數(shù)是正數(shù)。

  (3)絕對(duì)值最小的數(shù)是0;絕對(duì)值是本身的數(shù)是非負(fù)數(shù)。

  4、任何數(shù)的絕對(duì)值是非負(fù)數(shù)。

  最小的正整數(shù)是1,最大的負(fù)整數(shù)是-1。

  5、利用絕對(duì)值比較大小

  兩個(gè)正數(shù)比較:絕對(duì)值大的那個(gè)數(shù)大;

  兩個(gè)負(fù)數(shù)比較:先算出它們的絕對(duì)值,絕對(duì)值大的反而小。

  6、有理數(shù)加法

  (1)符號(hào)相同的兩數(shù)相加:和的符號(hào)與兩個(gè)加數(shù)的符號(hào)一致,和的絕對(duì)值等于兩個(gè)加數(shù)絕對(duì)值之和。

  (2)符號(hào)相反的兩數(shù)相加:當(dāng)兩個(gè)加數(shù)絕對(duì)值不等時(shí),和的符號(hào)與絕對(duì)值較大的加數(shù)的符號(hào)相同,和的.絕對(duì)值等于加數(shù)中較大的絕對(duì)值減去較小的絕對(duì)值;當(dāng)兩個(gè)加數(shù)絕對(duì)值相等時(shí),兩個(gè)加數(shù)互為相反數(shù),和為零。

  (3)一個(gè)數(shù)同零相加,仍得這個(gè)數(shù)。

  加法的交換律:a+b=b+a

  加法的結(jié)合律:(a+b)+c=a+(b+c)

  7、有理數(shù)減法:

  減去一個(gè)數(shù),等于加上這個(gè)數(shù)的相反數(shù)。

  8、在把有理數(shù)加減混合運(yùn)算統(tǒng)一為最簡(jiǎn)的形式,負(fù)數(shù)前面的加號(hào)可以省略不寫。

  例如:14+12+(-25)+(-17)可以寫成省略括號(hào)的形式:14+12 -25-17,可以讀作“正14加12減25減17”,也可以讀作“正14、正12、負(fù)25、負(fù)17的和!

  9、有理數(shù)的乘法

  兩個(gè)數(shù)相乘,同號(hào)得正,異號(hào)得負(fù),再把絕對(duì)值相乘;任何數(shù)與0相乘都得0。

  第一步:確定積的符號(hào)第二步:絕對(duì)值相乘

  10、乘積的符號(hào)的確定

  幾個(gè)有理數(shù)相乘,因數(shù)都不為0時(shí),積的符號(hào)由負(fù)因數(shù)的個(gè)數(shù)確定:當(dāng)負(fù)因數(shù)有奇數(shù)個(gè)時(shí),積為負(fù);

  當(dāng)負(fù)因數(shù)有偶數(shù)個(gè)時(shí),積為正。幾個(gè)有理數(shù)相乘,有一個(gè)因數(shù)為零,積就為零。

  11、倒數(shù):

  乘積為1的兩個(gè)數(shù)互為倒數(shù),0沒有倒數(shù)。

  正數(shù)的倒數(shù)是正數(shù),負(fù)數(shù)的倒數(shù)是負(fù)數(shù)。(互為倒數(shù)的兩個(gè)數(shù)符號(hào)一定相同)

  倒數(shù)是本身的只有1和-1。

  初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)2平面直角坐標(biāo)系

  平面直角坐標(biāo)系:在平面內(nèi)畫兩條互相垂直、原點(diǎn)重合的數(shù)軸,組成平面直角坐標(biāo)系。

  水平的數(shù)軸稱為x軸或橫軸,豎直的數(shù)軸稱為y軸或縱軸,兩坐標(biāo)軸的交點(diǎn)為平面直角坐標(biāo)系的原點(diǎn)。

  平面直角坐標(biāo)系的要素:

 、僭谕黄矫

 、趦蓷l數(shù)軸

 、刍ハ啻怪

  ④原點(diǎn)重合

  三個(gè)規(guī)定:

 、僬较虻囊(guī)定橫軸取向右為正方向,縱軸取向上為正方向。

 、趩挝婚L(zhǎng)度的規(guī)定;一般情況,橫軸、縱軸單位長(zhǎng)度相同;實(shí)際有時(shí)也可不同,但同一數(shù)軸上必須相同。

  ③象限的規(guī)定:右上為第一象限、左上為第二象限、左下為第三象限、右下為第四象限。

  相信上面對(duì)平面直角坐標(biāo)系知識(shí)的講解學(xué)習(xí),同學(xué)們已經(jīng)能很好的掌握了吧,希望同學(xué)們都能考試成功。

  初中數(shù)學(xué)知識(shí)點(diǎn):平面直角坐標(biāo)系的構(gòu)成。

  對(duì)于平面直角坐標(biāo)系的構(gòu)成內(nèi)容,下面我們一起來學(xué)習(xí)哦。

  平面直角坐標(biāo)系的構(gòu)成。

  在同一個(gè)平面上互相垂直且有公共原點(diǎn)的兩條數(shù)軸構(gòu)成平面直角坐標(biāo)系,簡(jiǎn)稱為直角坐標(biāo)系。通常,兩條數(shù)軸分別置于水平位置與鉛直位置,取向右與向上的方向分別為兩條數(shù)軸的正方向。水平的數(shù)軸叫做X軸或橫軸,鉛直的數(shù)軸叫做Y軸或縱軸,X軸或Y軸統(tǒng)稱為坐標(biāo)軸,它們的公共原點(diǎn)O稱為直角坐標(biāo)系的原點(diǎn)。

初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)12

  第一章圖形的變換

  考點(diǎn)一、平移(3~5分)

  1、定義

  把一個(gè)圖形整體沿某一方向移動(dòng),會(huì)得到一個(gè)新的圖形,新圖形與原圖形的形狀和大小完全相同,圖形的這種移動(dòng)叫做平移變換,簡(jiǎn)稱平移。

  2、性質(zhì)

  (1)平移不改變圖形的大小和形狀,但圖形上的每個(gè)點(diǎn)都沿同一方向進(jìn)行了移動(dòng)

  (2)連接各組對(duì)應(yīng)點(diǎn)的線段平行(或在同一直線上)且相等。

  考點(diǎn)二、軸對(duì)稱(3~5分)

  1、定義

  把一個(gè)圖形沿著某條直線折疊,如果它能夠與另一個(gè)圖形重合,那么就說這兩個(gè)圖形關(guān)于這條直線成軸對(duì)稱,該直線叫做對(duì)稱軸。

  2、性質(zhì)

  (1)關(guān)于某條直線對(duì)稱的兩個(gè)圖形是全等形。

  (2)如果兩個(gè)圖形關(guān)于某直線對(duì)稱,那么對(duì)稱軸是對(duì)應(yīng)點(diǎn)連線的垂直平分線。

  (3)兩個(gè)圖形關(guān)于某直線對(duì)稱,如果它們的對(duì)應(yīng)線段或延長(zhǎng)線相交,那么交點(diǎn)在對(duì)稱軸上。

  3、判定

  如果兩個(gè)圖形的對(duì)應(yīng)點(diǎn)連線被同一條直線垂直平分,那么這兩個(gè)圖形關(guān)于這條直線對(duì)稱。

  4、軸對(duì)稱圖形

  把一個(gè)圖形沿著某條直線折疊,如果直線兩旁的部分能夠互相重合,那么這個(gè)圖形叫做軸對(duì)稱圖形,這條直線就是它的對(duì)稱軸。

  考點(diǎn)三、旋轉(zhuǎn)(3~8分)

  1、定義

  把一個(gè)圖形繞某一點(diǎn)o轉(zhuǎn)動(dòng)一個(gè)角度的圖形變換叫做旋轉(zhuǎn),其中o叫做旋轉(zhuǎn)中心,轉(zhuǎn)動(dòng)的角叫做旋轉(zhuǎn)角。

  2、性質(zhì)

  (1)對(duì)應(yīng)點(diǎn)到旋轉(zhuǎn)中心的距離相等。

  (2)對(duì)應(yīng)點(diǎn)與旋轉(zhuǎn)中心所連線段的夾角等于旋轉(zhuǎn)角。

  考點(diǎn)四、中心對(duì)稱(3分)

  1、定義

  把一個(gè)圖形繞著某一個(gè)點(diǎn)旋轉(zhuǎn)180°,如果旋轉(zhuǎn)后的圖形能夠和原來的圖形互相重合,那么這個(gè)圖形叫做中心對(duì)稱圖形,這個(gè)點(diǎn)就是它的對(duì)稱中心。

  2、性質(zhì)

  (1)關(guān)于中心對(duì)稱的兩個(gè)圖形是全等形。

  (2)關(guān)于中心對(duì)稱的兩個(gè)圖形,對(duì)稱點(diǎn)連線都經(jīng)過對(duì)稱中心,并且被對(duì)稱中心平分。

  (3)關(guān)于中心對(duì)稱的兩個(gè)圖形,對(duì)應(yīng)線段平行(或在同一直線上)且相等。

  3、判定

  如果兩個(gè)圖形的對(duì)應(yīng)點(diǎn)連線都經(jīng)過某一點(diǎn),并且被這一點(diǎn)平分,那么這兩個(gè)圖形關(guān)于這一點(diǎn)對(duì)稱。

  4、中心對(duì)稱圖形

  把一個(gè)圖形繞某一個(gè)點(diǎn)旋轉(zhuǎn)180°,如果旋轉(zhuǎn)后的圖形能夠和原來的圖形互相重合,那么這個(gè)圖形叫做中心對(duì)稱圖形,這個(gè)店就是它的對(duì)稱中心。

  考點(diǎn)五、坐標(biāo)系中對(duì)稱點(diǎn)的特征(3分)

  1、關(guān)于原點(diǎn)對(duì)稱的點(diǎn)的特征

  兩個(gè)點(diǎn)關(guān)于原點(diǎn)對(duì)稱時(shí),它們的坐標(biāo)的符號(hào)相反,即點(diǎn)p(x,y)關(guān)于原點(diǎn)的對(duì)稱點(diǎn)為p’(-x,-y)

  2、關(guān)于x軸對(duì)稱的點(diǎn)的特征

  兩個(gè)點(diǎn)關(guān)于x軸對(duì)稱時(shí),它們的坐標(biāo)中,x相等,y的符號(hào)相反,即點(diǎn)p(x,y)關(guān)于x軸的對(duì)稱點(diǎn)為p’(x,-y)

  3、關(guān)于y軸對(duì)稱的點(diǎn)的特征

  兩個(gè)點(diǎn)關(guān)于y軸對(duì)稱時(shí),它們的坐標(biāo)中,y相等,x的符號(hào)相反,即點(diǎn)p(x,y)關(guān)于y軸的對(duì)稱點(diǎn)為p’(-x,y)

  第二章圖形的相似

  考點(diǎn)一、比例線段(3分)

  1、比例線段的相關(guān)概念

  如果選用同一長(zhǎng)度單位量得兩條線段a,b的長(zhǎng)度分別為m,n,那么就說這兩條線段的比是,或?qū)懗蒩:b=m:n

  在兩條線段的比a:b中,a叫做比的前項(xiàng),b叫做比的.后項(xiàng)。

  在四條線段中,如果其中兩條線段的比等于另外兩條線段的比,那么這四條線段叫做成比例線段,簡(jiǎn)稱比例線段

  若四條a,b,c,d滿足或a:b=c:d,那么a,b,c,d叫做組成比例的項(xiàng),線段a,d叫做比例外項(xiàng),線段b,c叫做比例內(nèi)項(xiàng),線段的d叫做a,b,c的第四比例項(xiàng)。

  如果作為比例內(nèi)項(xiàng)的是兩條相同的線段,即或a:b=b:c,那么線段b叫做線段a,c的比例中項(xiàng)。

  2、比例的性質(zhì)

  (1)基本性質(zhì)

 、賏:b=c:dad=bc

  ②a:b=b:c

  (2)更比性質(zhì)(交換比例的內(nèi)項(xiàng)或外項(xiàng))

  (交換內(nèi)項(xiàng))

  (交換外項(xiàng))

  (同時(shí)交換內(nèi)項(xiàng)和外項(xiàng))

  (3)反比性質(zhì)(交換比的前項(xiàng)、后項(xiàng)):

  (4)合比性質(zhì):

  (5)等比性質(zhì):

  3、黃金分割

  把線段ab分成兩條線段ac,bc(ac>bc),并且使ac是ab和bc的比例中項(xiàng),叫做把線段ab黃金分割,點(diǎn)c叫做線段ab的黃金分割點(diǎn),其中ac=ab0.618ab

  考點(diǎn)二、平行線分線段成比例定理(3~5分)

  三條平行線截兩條直線,所得的對(duì)應(yīng)線段成比例。

  推論:

  (1)平行于三角形一邊的直線截其他兩邊(或兩邊的延長(zhǎng)線),所得的對(duì)應(yīng)線段成比例。

  逆定理:如果一條直線截三角形的兩邊(或兩邊的延長(zhǎng)線)所得的對(duì)應(yīng)線段成比例,那么這條直線平行于三角形的第三邊。

  (2)平行于三角形一邊且和其他兩邊相交的直線截得的三角形的三邊與原三角形的三邊對(duì)應(yīng)成比例。

  考點(diǎn)三、相似三角形(3~8分)

  1、相似三角形的概念

  對(duì)應(yīng)角相等,對(duì)應(yīng)邊成比例的三角形叫做相似三角形。相似用符號(hào)“∽”來表示,讀作“相似于”。相似三角形對(duì)應(yīng)邊的比叫做相似比(或相似系數(shù))。

  2、相似三角形的基本定理

  平行于三角形一邊的直線和其他兩邊(或兩邊的延長(zhǎng)線)相交,所構(gòu)成的三角形與原三角形相似。

  用數(shù)學(xué)語言表述如下:

  ∵de∥bc,∴△ade∽△abc

  相似三角形的等價(jià)關(guān)系:

  (1)反身性:對(duì)于任一△abc,都有△abc∽△abc;

  (2)對(duì)稱性:若△abc∽△a’b’c’,則△a’b’c’∽△abc

  (3)傳遞性:若△abc∽△a’b’c’,并且△a’b’c’∽△a’’b’’c’’,則△abc∽△a’’b’’c’’。

  3、三角形相似的判定

  (1)三角形相似的判定方法

  ①定義法:對(duì)應(yīng)角相等,對(duì)應(yīng)邊成比例的兩個(gè)三角形相似

  ②平行法:平行于三角形一邊的直線和其他兩邊(或兩邊的延長(zhǎng)線)相交,所構(gòu)成的三角形與原三角形相似

  ③判定定理1:如果一個(gè)三角形的兩個(gè)角與另一個(gè)三角形的兩個(gè)角對(duì)應(yīng)相等,那么這兩個(gè)三角形相似,可簡(jiǎn)述為兩角對(duì)應(yīng)相等,兩三角形相似。

 、芘卸ǘɡ2:如果一個(gè)三角形的兩條邊和另一個(gè)三角形的兩條邊對(duì)應(yīng)相等,并且夾角相等,那么這兩個(gè)三角形相似,可簡(jiǎn)述為兩邊對(duì)應(yīng)成比例且夾角相等,兩三角形相似。

 、菖卸ǘɡ3:如果一個(gè)三角形的三條邊與另一個(gè)三角形的三條邊對(duì)應(yīng)成比例,那么這兩個(gè)三角形相似,可簡(jiǎn)述為三邊對(duì)應(yīng)成比例,兩三角形相似

  (2)直角三角形相似的判定方法

 、僖陨细鞣N判定方法均適用

  ②定理:如果一個(gè)直角三角形的斜邊和一條直角邊與另一個(gè)直角三角形的斜邊和一條直角邊對(duì)應(yīng)成比例,那么這兩個(gè)直角三角形相似

  ③垂直法:直角三角形被斜邊上的高分成的兩個(gè)直角三角形與原三角形相似。

  4、相似三角形的性質(zhì)

  (1)相似三角形的對(duì)應(yīng)角相等,對(duì)應(yīng)邊成比例

  (2)相似三角形對(duì)應(yīng)高的比、對(duì)應(yīng)中線的比與對(duì)應(yīng)角平分線的比都等于相似比

  (3)相似三角形周長(zhǎng)的比等于相似比

  (4)相似三角形面積的比等于相似比的平方。

  5、相似多邊形

  (1)如果兩個(gè)邊數(shù)相同的多邊形的對(duì)應(yīng)角相等,對(duì)應(yīng)邊成比例,那么這兩個(gè)多邊形叫做相似多邊形。相似多邊形對(duì)應(yīng)邊的比叫做相似比(或相似系數(shù))

  (2)相似多邊形的性質(zhì)

  ①相似多邊形的對(duì)應(yīng)角相等,對(duì)應(yīng)邊成比例

 、谙嗨贫噙呅沃荛L(zhǎng)的比、對(duì)應(yīng)對(duì)角線的比都等于相似比

 、巯嗨贫噙呅沃械膶(duì)應(yīng)三角形相似,相似比等于相似多邊形的相似比

 、芟嗨贫噙呅蚊娣e的比等于相似比的平方

  6、位似圖形

  如果兩個(gè)圖形不僅是相似圖形,而且每組對(duì)應(yīng)點(diǎn)所在直線都經(jīng)過同一個(gè)點(diǎn),那么這樣的兩個(gè)圖形叫做位似圖形,這個(gè)點(diǎn)叫做位似中心,此時(shí)的相似比叫做位似比。

  性質(zhì):每一組對(duì)應(yīng)點(diǎn)和位似中心在同一直線上,它們到位似中心的距離之比都等于位似比。

  由一個(gè)圖形得到它的位似圖形的變換叫做位似變換。利用位似變換可以把一個(gè)圖形放大或縮小。

初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)13

  1、一元二次方程解法:

  (1)配方法:(X±a)2=b(b≥0)注:二次項(xiàng)系數(shù)必須化為1

  (2)公式法:aX2+bX+C=0(a≠0)確定a,b,c的值,計(jì)算b2-4ac≥0

  若b2-4ac>0則有兩個(gè)不相等的實(shí)根,若b2-4ac=0則有兩個(gè)相等的.實(shí)根,若b2-4ac<0則無解

  若b2-4ac≥0則用公式X=-b±√b2-4ac/2a注:必須化為一般形式

  (3)分解因式法

 、偬峁蚴椒ǎ簃a+mb=0→m(a+b)=0

  平方差公式:a2-b2=0→(a+b)(a-b)=0

 、谶\(yùn)用公式法:

  完全平方公式:a2±2ab+b2=0→(a±b)2=0

 、凼窒喑朔

  2、銳角三角函數(shù)定義

  銳角角A的正弦(sin),余弦(cos)和正切(tan),余切(cot)以及正割(sec),余割(csc)都叫做角A的銳角三角函數(shù)。

  正弦(sin):對(duì)邊比斜邊,即sinA=a/c;

  余弦(cos):鄰邊比斜邊,即cosA=b/c;

  正切(tan):對(duì)邊比鄰邊,即tanA=a/b;

  余切(cot):鄰邊比對(duì)邊,即cotA=b/a;

  3、積的關(guān)系

  sinα=tanα·cosα

  cosα=cotα·sinα

  tanα=sinα·secα

  cotα=cosα·cscα

  secα=tanα·cscα

  cscα=secα·cotα

  4、倒數(shù)關(guān)系

  tanα·cotα=1

  sinα·cscα=1

  cosα·secα=1

  5、兩角和差公式

  sin(A+B) = sinAcosB+cosAsinB

  sin(A-B) = sinAcosB-cosAsinB

  cos(A+B) = cosAcosB-sinAsinB

  cos(A-B) = cosAcosB+sinAsinB

  tan(A+B) = (tanA+tanB)/(1-tanAtanB)

  tan(A-B) = (tanA-tanB)/(1+tanAtanB)

  cot(A+B) = (cotAcotB-1)/(cotB+cotA)

  cot(A-B) = (cotAcotB+1)/(cotB-cotA)

初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)14

  第二章整式的加減

  2、1整式

  1、單項(xiàng)式:由數(shù)字和字母乘積組成的式子。系數(shù),單項(xiàng)式的次數(shù)、單項(xiàng)式指的是數(shù)或字母的積的代數(shù)式、單獨(dú)一個(gè)數(shù)或一個(gè)字母也是單項(xiàng)式、因此,判斷代數(shù)式是否是單項(xiàng)式,關(guān)鍵要看代數(shù)式中數(shù)與字母是否是乘積關(guān)系,即分母中不含有字母,若式子中含有加、減運(yùn)算關(guān)系,其也不是單項(xiàng)式、

  2、單項(xiàng)式的系數(shù):是指單項(xiàng)式中的數(shù)字因數(shù);

  3、單項(xiàng)數(shù)的次數(shù):是指單項(xiàng)式中所有字母的.指數(shù)的和、

  4、多項(xiàng)式:幾個(gè)單項(xiàng)式的和。判斷代數(shù)式是否是多項(xiàng)式,關(guān)鍵要看代數(shù)式中的每一項(xiàng)是否是單項(xiàng)式、每個(gè)單項(xiàng)式稱項(xiàng),常數(shù)項(xiàng),多項(xiàng)式的次數(shù)就是多項(xiàng)式中次數(shù)的次數(shù)。多項(xiàng)式的次數(shù)是指多項(xiàng)式里次數(shù)項(xiàng)的次數(shù),這里是次數(shù)項(xiàng),其次數(shù)是6;多項(xiàng)式的項(xiàng)是指在多項(xiàng)式中,每一個(gè)單項(xiàng)式、特別注意多項(xiàng)式的項(xiàng)包括它前面的性質(zhì)符號(hào)、

  5、它們都是用字母表示數(shù)或列式表示數(shù)量關(guān)系。注意單項(xiàng)式和多項(xiàng)式的每一項(xiàng)都包括它前面的符號(hào)。

  6、單項(xiàng)式和多項(xiàng)式統(tǒng)稱為整式。

  2、2整式的加減

  1、同類項(xiàng):所含字母相同,并且相同字母的指數(shù)也相同的項(xiàng)。與字母前面的系數(shù)(≠0)無關(guān)。

  2、同類項(xiàng)必須同時(shí)滿足兩個(gè)條件:(1)所含字母相同;(2)相同字母的次數(shù)相同,二者缺一不可、同類項(xiàng)與系數(shù)大小、字母的排列順序無關(guān)

  3、合并同類項(xiàng):把多項(xiàng)式中的同類項(xiàng)合并成一項(xiàng)?梢赃\(yùn)用交換律,結(jié)合律和分配律。

  4、合并同類項(xiàng)法則:合并同類項(xiàng)后,所得項(xiàng)的系數(shù)是合并前各同類項(xiàng)的系數(shù)的和,且字母部分不變;

  5、去括號(hào)法則:去括號(hào),看符號(hào):是正號(hào),不變號(hào);是負(fù)號(hào),全變號(hào)。

  6、整式加減的一般步驟:

  一去、二找、三合

 。1)如果遇到括號(hào)按去括號(hào)法則先去括號(hào)、(2)結(jié)合同類項(xiàng)、(3)合并同類項(xiàng)葫蘆島

初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)15

  1.圓是以圓心為對(duì)稱中心的中心對(duì)稱圖形;同圓或等圓的半徑相等。

  2.到定點(diǎn)的距離等于定長(zhǎng)的點(diǎn)的軌跡,是以定點(diǎn)為圓心,定長(zhǎng)為半徑的圓。

  3.定理在同圓或等圓中,相等的圓心角所對(duì)的弧相等,所對(duì)的弦相等,所對(duì)的弦的弦心距相等。

  4.圓是定點(diǎn)的距離等于定長(zhǎng)的點(diǎn)的集合。

  5.圓的內(nèi)部可以看作是圓心的距離小于半徑的點(diǎn)的集合;圓的外部可以看作是圓心的距離大于半徑的點(diǎn)的集合。

  6.不在同一直線上的三點(diǎn)確定一個(gè)圓。

  7.垂徑定理垂直于弦的直徑平分這條弦并且平分弦所對(duì)的兩條弧。

  推論1:

 、倨椒窒(不是直徑)的直徑垂直于弦,并且平分弦所對(duì)的兩條弧;

  ②弦的垂直平分線經(jīng)過圓心,并且平分弦所對(duì)的兩條弧;

 、燮椒窒宜鶎(duì)的一條弧的直徑,垂直平分弦,并且平分弦所對(duì)的另一條弧。

  推論2:圓的兩條平行弦所夾的弧相等。

  8.推論在同圓或等圓中,如果兩個(gè)圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相等那么它們所對(duì)應(yīng)的其余各組量都相等。

  9.定理圓的內(nèi)接四邊形的對(duì)角互補(bǔ),并且任何一個(gè)外角都等于它的內(nèi)對(duì)角。

  10.經(jīng)過切點(diǎn)且垂直于切線的直線必經(jīng)過圓心。

  11.切線的`判定定理經(jīng)過半徑的外端并且垂直于這條半徑的直線是圓的切線。

  12.切線的性質(zhì)定理圓的切線垂直于經(jīng)過切點(diǎn)的半徑。

  13.經(jīng)過圓心且垂直于切線的直線必經(jīng)過切點(diǎn)

  14.切線長(zhǎng)定理從圓外一點(diǎn)引圓的兩條切線,它們的切線長(zhǎng)相等,圓心和這一點(diǎn)的連線平分兩條切線的夾角。

  15.圓的外切四邊形的兩組對(duì)邊的和相等外角等于內(nèi)對(duì)角。

  16.如果兩個(gè)圓相切,那么切點(diǎn)一定在連心線上。

  17.

  ①兩圓外離d>R+r

 、趦蓤A外切d=R+r

  ③兩圓相交d>R-r)

 、軆蓤A內(nèi)切d=R-r(R>r)

 、輧蓤A內(nèi)含d=r)

  18.定理把圓分成n(n≥3):

 、乓来芜B結(jié)各分點(diǎn)所得的多邊形是這個(gè)圓的內(nèi)接正n邊形

 、平(jīng)過各分點(diǎn)作圓的切線,以相鄰切線的交點(diǎn)為頂點(diǎn)的多邊形是這個(gè)圓的外切正n邊形。

  19.定理任何正多邊形都有一個(gè)外接圓和一個(gè)內(nèi)切圓,這兩個(gè)圓是同心圓。

  20.弧長(zhǎng)計(jì)算公式:L=n兀R/180;扇形面積公式:S扇形=n兀R^2/360=LR/2。

  21.內(nèi)公切線長(zhǎng)= d-(R-r)外公切線長(zhǎng)= d-(R+r)。

  22.定理一條弧所對(duì)的圓周角等于它所對(duì)的圓心角的一半。

  23.推論1同弧或等弧所對(duì)的圓周角相等;同圓或等圓中,相等的圓周角所對(duì)的弧也相等。

  24.推論2半圓(或直徑)所對(duì)的圓周角是直角;90°的圓周角所對(duì)的弦是直徑。

【初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)】相關(guān)文章:

初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)04-07

初中數(shù)學(xué)圓知識(shí)點(diǎn)總結(jié)04-06

初中數(shù)學(xué)函數(shù)知識(shí)點(diǎn)總結(jié)11-24

數(shù)學(xué)初中函數(shù)知識(shí)點(diǎn)總結(jié)04-29

初中數(shù)學(xué)必考知識(shí)點(diǎn)總結(jié)04-25

初中數(shù)學(xué)蘇教版知識(shí)點(diǎn)總結(jié)04-25

初中數(shù)學(xué)代數(shù)知識(shí)點(diǎn)總結(jié)04-25

數(shù)學(xué)初中全部知識(shí)點(diǎn)總結(jié)04-25

初中數(shù)學(xué)必備知識(shí)點(diǎn)總結(jié)03-01

初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)07-14