(熱門)初中數(shù)學(xué)知識點總結(jié)歸納2篇
總結(jié)是在某一時期、某一項目或某些工作告一段落或者全部完成后進行回顧檢查、分析評價,從而得出教訓(xùn)和一些規(guī)律性認(rèn)識的一種書面材料,它可以給我們下一階段的學(xué)習(xí)和工作生活做指導(dǎo),讓我們來為自己寫一份總結(jié)吧。那么你知道總結(jié)如何寫嗎?下面是小編精心整理的初中數(shù)學(xué)知識點總結(jié)歸納,僅供參考,大家一起來看看吧。
初中數(shù)學(xué)知識點總結(jié)歸納1
1、菱形的定義:有一組鄰邊相等的平行四邊形叫做菱形。
2、菱形的性質(zhì):
、啪匦尉哂衅叫兴倪呅蔚囊磺行再|(zhì);
、屏庑蔚乃臈l邊都相等;
⑶菱形的兩條對角線互相垂直,并且每一條對角線平分一組對角。
、攘庑问禽S對稱圖形。
提示:利用菱形的性質(zhì)可證得線段相等、角相等,它的對角線互相垂直且把菱形分成四個全等的直角三角形,由此又可與勾股定理聯(lián)系,可得對角線與邊之間的關(guān)系,即邊長的平方等于對角線一半的平方和。
3、因式分解定義:把一個多項式化成幾個整式的積的形式的變形叫把這個多項式因式分解。
4、因式分解要素:
、俳Y(jié)果必須是整式
、诮Y(jié)果必須是積的形式
③結(jié)果是等式
、芤蚴椒纸馀c整式乘法的關(guān)系:m(a+b+c)
5、公因式:一個多項式每項都含有的'公共的因式,叫做這個多項式各項的公因式。
6、公因式確定方法:
①系數(shù)是整數(shù)時取各項最大公約數(shù)。
、谙嗤帜溉∽畹痛蝺
③系數(shù)最大公約數(shù)與相同字母取最低次冪的積就是這個多項式各項的公因式。
7、提取公因式步驟:
、俅_定公因式。
、诖_定商式
③公因式與商式寫成積的形式。
8、平方根表示法:一個非負數(shù)a的平方根記作,讀作正負根號a。a叫被開方數(shù)。
9、中被開方數(shù)的取值范圍:被開方數(shù)a≥0
10、平方根性質(zhì):
、僖粋正數(shù)的平方根有兩個,它們互為相反數(shù)。
、0的平方根是它本身0。
、圬摂(shù)沒有平方根開平方;求一個數(shù)的平方根的運算,叫做開平方。
11、平方根與算術(shù)平方根區(qū)別:定義不同、表示方法不同、個數(shù)不同、取值范圍不同。
12、聯(lián)系:二者之間存在著從屬關(guān)系;存在條件相同;0的算術(shù)平方根與平方根都是0
13、含根號式子的意義:表示a的平方根,表示a的算術(shù)平方根,表示a的負的平方根。
14、求正數(shù)a的算術(shù)平方根的方法;
完全平方數(shù)類型:
①想誰的平方是數(shù)a。
、谒詀的平方根是多少。
、塾檬阶颖硎尽
求正數(shù)a的算術(shù)平方根,只需找出平方后等于a的正數(shù)。
初中數(shù)學(xué)知識點總結(jié)歸納2
1、一元二次方程解法:
(1)配方法:(X±a)2=b(b≥0)注:二次項系數(shù)必須化為1
(2)公式法:aX2+bX+C=0(a≠0)確定a,b,c的值,計算b2-4ac≥0
若b2-4ac>0則有兩個不相等的實根,若b2-4ac=0則有兩個相等的'實根,若b2-4ac<0則無解
若b2-4ac≥0則用公式X=-b±√b2-4ac/2a注:必須化為一般形式
(3)分解因式法
、偬峁蚴椒ǎ簃a+mb=0→m(a+b)=0
平方差公式:a2-b2=0→(a+b)(a-b)=0
②運用公式法:
完全平方公式:a2±2ab+b2=0→(a±b)2=0
、凼窒喑朔
2、銳角三角函數(shù)定義
銳角角A的正弦(sin),余弦(cos)和正切(tan),余切(cot)以及正割(sec),余割(csc)都叫做角A的銳角三角函數(shù)。
正弦(sin):對邊比斜邊,即sinA=a/c;
余弦(cos):鄰邊比斜邊,即cosA=b/c;
正切(tan):對邊比鄰邊,即tanA=a/b;
余切(cot):鄰邊比對邊,即cotA=b/a;
3、積的關(guān)系
sinα=tanα·cosα
cosα=cotα·sinα
tanα=sinα·secα
cotα=cosα·cscα
secα=tanα·cscα
cscα=secα·cotα
4、倒數(shù)關(guān)系
tanα·cotα=1
sinα·cscα=1
cosα·secα=1
5、兩角和差公式
sin(A+B) = sinAcosB+cosAsinB
sin(A-B) = sinAcosB-cosAsinB
cos(A+B) = cosAcosB-sinAsinB
cos(A-B) = cosAcosB+sinAsinB
tan(A+B) = (tanA+tanB)/(1-tanAtanB)
tan(A-B) = (tanA-tanB)/(1+tanAtanB)
cot(A+B) = (cotAcotB-1)/(cotB+cotA)
cot(A-B) = (cotAcotB+1)/(cotB-cotA)
【初中數(shù)學(xué)知識點總結(jié)歸納】相關(guān)文章:
初中數(shù)學(xué)知識點歸納總結(jié)12-02
初中數(shù)學(xué)知識點總結(jié)歸納03-05
初中數(shù)學(xué)知識點歸納.07-30
初中數(shù)學(xué)知識點歸納01-24