初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)15篇【精選】
總結(jié)是指社會(huì)團(tuán)體、企業(yè)單位和個(gè)人在自身的某一時(shí)期、某一項(xiàng)目或某些工作告一段落或者全部完成后進(jìn)行回顧檢查、分析評(píng)價(jià),從而肯定成績(jī),得到經(jīng)驗(yàn),找出差距,得出教訓(xùn)和一些規(guī)律性認(rèn)識(shí)的一種書(shū)面材料,寫(xiě)總結(jié)有利于我們學(xué)習(xí)和工作能力的提高,不如靜下心來(lái)好好寫(xiě)寫(xiě)總結(jié)吧。那么總結(jié)要注意有什么內(nèi)容呢?下面是小編收集整理的初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié),希望對(duì)大家有所幫助。
初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)1
一、角的定義
“靜態(tài)”概念:有公共端點(diǎn)的兩條射線組成的圖形叫做角。
“動(dòng)態(tài)”概念:角可以看作是一條射線繞其端點(diǎn)從一個(gè)位置旋轉(zhuǎn)到另一個(gè)位置所形成的圖形。
如果一個(gè)角的兩邊成一條直線,那么這個(gè)角叫做平角;平角的一半叫直角;大于直角小于平角的角叫做鈍角;大于0小于直角的角叫做銳角。
二、角的換算:1周角=2平角=4直角=360°;
1平角=2直角=180°;
1直角=90°;
1度=60分=3600秒(即:1°=60′=3600″);
1分=60秒(即:1′=60″).
三、余角、補(bǔ)角的概念和性質(zhì):
概念:如果兩個(gè)角的和是一個(gè)平角,那么這兩個(gè)角叫做互為補(bǔ)角。
如果兩個(gè)角的和是一個(gè)直角,那么這兩個(gè)角叫做互為余角。
說(shuō)明:互補(bǔ)、互余是指兩個(gè)角的數(shù)量關(guān)系,沒(méi)有位置關(guān)系。
性質(zhì):同角(或等角)的余角相等;
同角(或等角)的補(bǔ)角相等。
四、角的比較方法:
角的大小比較,有兩種方法:
(1)度量法(利用量角器);
(2)疊合法(利用圓規(guī)和直尺)。
五、角平分線:從一個(gè)角的頂點(diǎn)引出的一條射線。把這個(gè)角分成相等的兩部分,這條射線叫做這個(gè)角的平分線。
常見(jiàn)考法
(1)考查與時(shí)鐘有關(guān)的問(wèn)題;(2)角的計(jì)算與度量。
誤區(qū)提醒
角的度、分、秒單位的換算是60進(jìn)制,而不是10進(jìn)制,換算時(shí)易受10進(jìn)制影響而出錯(cuò)。
初中數(shù)學(xué)知識(shí)點(diǎn)梳理
1.一元一次方程:只含有一個(gè)未知數(shù),并且未知數(shù)的次數(shù)是1,并且含未知數(shù)項(xiàng)的系數(shù)不是零的整式方程是一元一次方程。
2.一元一次方程的標(biāo)準(zhǔn)形式:ax+b=0(x是未知數(shù),a、b是已知數(shù),且a≠0)。
3.一元一次方程解法的一般步驟:整理方程……去分母……去括號(hào)……移項(xiàng)……合并同類項(xiàng)……系數(shù)化為1 ……(檢驗(yàn)方程的解)。
4.列一元一次方程解應(yīng)用題:
(1)讀題分析法:多用于“和,差,倍,分問(wèn)題”
仔細(xì)讀題,找出表示相等關(guān)系的.關(guān)鍵字,例如:“大,小,多,少,是,共,合,為,完成,增加,減少,配套—————”,利用這些關(guān)鍵字列出文字等式,并且據(jù)題意設(shè)出未知數(shù),最后利用題目中的量與量的關(guān)系填入代數(shù)式,得到方程。
(2)畫(huà)圖分析法:多用于“行程問(wèn)題”
利用圖形分析數(shù)學(xué)問(wèn)題是數(shù)形結(jié)合思想在數(shù)學(xué)中的體現(xiàn),仔細(xì)讀題,依照題意畫(huà)出有關(guān)圖形,使圖形各部分具有特定的含義,通過(guò)圖形找相等關(guān)系是解決問(wèn)題的關(guān)鍵,從而取得布列方程的依據(jù),最后利用量與量之間的關(guān)系(可把未知數(shù)看做已知量),填入有關(guān)的代數(shù)式是獲得方程的基礎(chǔ)。
11.列方程解應(yīng)用題的常用公式:
(1)行程問(wèn)題:距離=速度·時(shí)間;
(2)工程問(wèn)題:工作量=工效·工時(shí);
(3)比率問(wèn)題:部分=全體·比率;
(4)順逆流問(wèn)題:順流速度=靜水速度+水流速度,逆流速度=靜水速度—水流速度;
(5)商品價(jià)格問(wèn)題:售價(jià)=定價(jià)·折·,利潤(rùn)=售價(jià)—成本,;
(6)周長(zhǎng)、面積、體積問(wèn)題:C圓=2πR,S圓=πR2,C長(zhǎng)方形=2(a+b),S長(zhǎng)方形=ab,C正方形=4a,S正方形=a2,S環(huán)形=π(R2—r2),V長(zhǎng)方體=abc,V正方體=a3,V圓柱=πR2h,V圓錐= πR2h。
本章內(nèi)容是代數(shù)學(xué)的核心,也是所有代數(shù)方程的基礎(chǔ)。豐富多彩的問(wèn)題情境和解決問(wèn)題的快樂(lè)很容易激起學(xué)生對(duì)數(shù)學(xué)的樂(lè)趣,所以要注意引導(dǎo)學(xué)生從身邊的問(wèn)題研究起,進(jìn)行有效的數(shù)學(xué)活動(dòng)和合作交流,讓學(xué)生在主動(dòng)學(xué)習(xí)、探究學(xué)習(xí)的過(guò)程中獲得知識(shí),提升能力,體會(huì)數(shù)學(xué)思想方法。
初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)2
三角形兩邊:
定理三角形兩邊的和大于第三邊。
推論三角形兩邊的差小于第三邊。
三角形中位線定理:
三角形的中位線平行于第三邊,并且等于它的一半。
三角形的重心:
三角形的重心到頂點(diǎn)的距離是它到對(duì)邊中點(diǎn)距離的2倍。
在三角形中,連接一個(gè)頂點(diǎn)和它對(duì)邊中點(diǎn)的線段叫做三角形的中線,三角形的三條中線交于一點(diǎn),這一點(diǎn)叫做“三角形的重心”。
與三角形有關(guān)的角:
1、三角形的內(nèi)角和定理:三角形的內(nèi)角和為180°,與三角形的形狀無(wú)關(guān)。
2、直角三角形兩個(gè)銳角的關(guān)系:直角三角形的兩個(gè)銳角互余(相加為90°)。有兩個(gè)角互余的三角形是直角三角形。
3、三角形外角的性質(zhì):三角形的一個(gè)外角等于與它不相鄰的兩個(gè)內(nèi)角之和;三角形的一個(gè)外角大于與它不相鄰的任何一個(gè)內(nèi)角;三角形三個(gè)外角和為360°。
全等三角形的性質(zhì)和判定:
全等三角形共有5種判定方式:SSS、SAS、ASA、AAS、HL。特殊情況下平移、旋轉(zhuǎn)、對(duì)折也會(huì)構(gòu)成全等三角形。
(邊邊邊),即三邊對(duì)應(yīng)相等的兩個(gè)三角形全等。
(邊角邊),即三角形的其中兩條邊對(duì)應(yīng)相等,且兩條邊的夾角也對(duì)應(yīng)相等的兩個(gè)三角形全等。
(角邊角),即三角形的其中兩個(gè)角對(duì)應(yīng)相等,且兩個(gè)角夾的的邊也對(duì)應(yīng)相等的'兩個(gè)三角形全等。
(角角邊),即三角形的其中兩個(gè)角對(duì)應(yīng)相等,且對(duì)應(yīng)相等的角所對(duì)應(yīng)的邊也對(duì)應(yīng)相等的兩個(gè)三角形全等。
(斜邊、直角邊),即在直角三角形中一條斜邊和一條直角邊對(duì)應(yīng)相等的兩個(gè)直角三角形全等。
等邊三角形的判定:
1、三邊相等的三角形是等邊三角形(定義)。
2、三個(gè)內(nèi)角都相等的三角形是等邊三角形。
3、有一個(gè)角是60度的等腰三角形是等邊三角形。
4、有兩個(gè)角等于60度的三角形是等邊三角形。
初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)3
1、過(guò)兩點(diǎn)有且只有一條直線
2、兩點(diǎn)之間線段最短
3、同角或等角的補(bǔ)角相等——補(bǔ)角=180-角度。
4、同角或等角的余角相等——余角=90-角度。
5、過(guò)一點(diǎn)有且只有一條直線和已知直線垂直
6、直線外一點(diǎn)與直線上各點(diǎn)連接的所有線段中,垂線段最短
7、平行公理:經(jīng)過(guò)直線外一點(diǎn),有且只有一條直線與這條直線平行
8、如果兩條直線都和第三條直線平行,這兩條直線也互相平行
9、同位角相等,兩直線平行
10、內(nèi)錯(cuò)角相等,兩直線平行
11、同旁內(nèi)角互補(bǔ),兩直線平行
12、兩直線平行,同位角相等
13、兩直線平行,內(nèi)錯(cuò)角相等
14、兩直線平行,同旁內(nèi)角互補(bǔ)
15、定理
xxx兩邊的和大于第三邊
16、推論
xxx兩邊的差小于第三邊
17、xxx內(nèi)角和定理:
xxx三個(gè)內(nèi)角的和等于180°
18、推論1
直角xxx的兩個(gè)銳角互余
19、推論2
xxx的一個(gè)外角等于和它不相鄰的兩個(gè)內(nèi)角的和
20、推論3
xxx的一個(gè)外角大于任何一個(gè)和它不相鄰的內(nèi)角
21、全等xxx的對(duì)應(yīng)邊、對(duì)應(yīng)角相等
22、邊角邊公理(SAS):有兩邊和它們的夾角對(duì)應(yīng)相等的兩個(gè)xxx全等
23、角邊角公理(ASA):有兩角和它們的夾邊對(duì)應(yīng)相等的
兩個(gè)xxx全等
24、推論(AAS):有兩角和其中一角的對(duì)邊對(duì)應(yīng)相等的兩個(gè)xxx全等
25、邊邊邊公理(SSS):有三邊對(duì)應(yīng)相等的兩個(gè)xxx全等
26、斜邊、直角邊公理(HL):有斜邊和一條直角邊對(duì)應(yīng)相等的兩個(gè)直角xxx全等
27、定理1
在角的平分線上的點(diǎn)到這個(gè)角的兩邊的距離相等
28、定理2
到一個(gè)角的兩邊的距離相同的點(diǎn),在這個(gè)角的平分線上
29、角的平分線是到角的兩邊距離相等的所有點(diǎn)的集合
30、推論1
等腰xxx頂角的平分線平分底邊并且垂直于底邊
31、推論2
等腰xxx的頂角平分線、底邊上的中線和底邊上的高互相重合,即三線合一;
32、推論3
等邊xxx的各角都相等,并且每一個(gè)角都等于60°
33、等腰xxx的判定定理
如果一個(gè)xxx有兩個(gè)角相等,那么這兩個(gè)角所對(duì)的邊也相等(等角對(duì)等邊)
34、等腰xxx的性質(zhì)定理
等腰xxx的兩個(gè)底角相等
(即等邊對(duì)等角)
35、推論1
三個(gè)角都相等的xxx是等邊xxx
36、推論
有一個(gè)角等于60°的等腰xxx是等邊xxx
37、在直角xxx中,如果一個(gè)銳角等于30°那么它所對(duì)的直角邊等于斜邊的一半
38、直角xxx斜邊上的中線等于斜邊上的一半
39、定理
線段垂直平分線上的點(diǎn)和這條線段兩個(gè)端點(diǎn)的距離相等
40、逆定理
和一條線段兩個(gè)端點(diǎn)距離相等的點(diǎn),在這條線段的垂直平分線上
41、線段的垂直平分線可看作和線段兩端點(diǎn)距離相等的所有點(diǎn)的集合
42、定理1
關(guān)于某條直線對(duì)稱的兩個(gè)圖形是全等形
43、定理
如果兩個(gè)圖形關(guān)于某直線對(duì)稱,那么對(duì)稱軸是對(duì)應(yīng)點(diǎn)連線的垂直平分線
44、定理3
兩個(gè)圖形關(guān)于某直線對(duì)稱,如果它們的對(duì)應(yīng)線段或延長(zhǎng)線相交,那么交點(diǎn)在對(duì)稱軸上
45、逆定理
如果兩個(gè)圖形的對(duì)應(yīng)點(diǎn)連線被同一條直線垂直平分,那么這兩個(gè)圖形關(guān)于這條直線對(duì)稱
46、勾股定理
直角xxx兩直角邊a、b的平方和、等于斜邊c的平方,即a2+b2=c2
47、勾股定理的逆定理
如果xxx的三邊長(zhǎng)a、b、c有關(guān)系a2+b2=c2,那么這個(gè)xxx是直角xxx
48、定理
四邊形的內(nèi)角和等于360°
49、四邊形的外角和等于360°
50、多邊形內(nèi)角和定理
n邊形的內(nèi)角的和等于(n-2)×180°
51、推論
任意多邊的外角和等于360°
52、平行四邊形性質(zhì)定理1
平行四邊形的對(duì)角相等
53、平行四邊形性質(zhì)定理2
平行四邊形的對(duì)邊相等
54、推論
夾在兩條平行線間的平行線段相等
55、平行四邊形性質(zhì)定理3
平行四邊形的對(duì)角線互相平分
56、平行四邊形判定定理1
兩組對(duì)角分別相等的四邊形是平行四邊形
57、平行四邊形判定定理2
兩組對(duì)邊分別相等的四邊
形是平行四邊形
58、平行四邊形判定定理3
對(duì)角線互相平分的四邊形是平行四邊形
59、平行四邊形判定定理4
一組對(duì)邊平行相等的四邊形是平行四邊形
60、矩形性質(zhì)定理1
矩形的四個(gè)角都是直角
61、矩形性質(zhì)定理2
矩形的對(duì)角線相等
62、矩形判定定理1
有三個(gè)角是直角的.四邊形是矩形
63、矩形判定定理2
對(duì)角線相等的平行四邊形是矩形
64、菱形性質(zhì)定理1
菱形的四條邊都相等
65、菱形性質(zhì)定理2
菱形的對(duì)角線互相垂直,并且每一條對(duì)角線平分一組對(duì)角
66、菱形面積=對(duì)角線乘積的一半,即S=(a×b)÷2
67、菱形判定定理1
四邊都相等的四邊形是菱形
68、菱形判定定理2
對(duì)角線互相垂直的平行四邊形是菱形
69、正方形性質(zhì)定理1
正方形的四個(gè)角都是直角,四條邊都相等
70、正方形性質(zhì)定理2
正方形的兩條對(duì)角線相等,并且互相垂直平分,每條對(duì)角線平分一組對(duì)角
71、定理1
關(guān)于中心對(duì)稱的兩個(gè)圖形是全等的
72、定理2
關(guān)于中心對(duì)稱的兩個(gè)圖形,對(duì)稱點(diǎn)連線都經(jīng)過(guò)對(duì)稱中心,并且被對(duì)稱中心平分
73、逆定理
如果兩個(gè)圖形的對(duì)應(yīng)點(diǎn)連線都經(jīng)過(guò)某一點(diǎn),并且被這一點(diǎn)平分,那么這兩個(gè)圖形關(guān)于這一點(diǎn)對(duì)稱
74、等腰梯形性質(zhì)定理
等腰梯形在同一底上的兩個(gè)角相等
75、等腰梯形的兩條對(duì)角線相等
76、等腰梯形判定定理
在同一底上的兩個(gè)角相等的梯
形是等腰梯形
77、對(duì)角線相等的梯形是等腰梯形
78、平行線等分線段定理
如果一組平行線在一條直線上截得的線段相等,那么在其他直線上截得的線段也相等
79、推論1
經(jīng)過(guò)梯形一腰的中點(diǎn)與底平行的直線,必平分另一腰
80、推論2
經(jīng)過(guò)xxx一邊的中點(diǎn)與另一邊平行的直線,必平分第三邊
81、xxx中位線定理
xxx的中位線平行于第三邊,并且等于它的一半
82、梯形中位線定理
梯形的中位線平行于兩底,并且等于兩底和的一半
L=(a+b)÷2
S=L×h
83、(1)比例的基本性質(zhì):如果a:b=c:d,那么ad=bc
如果
ad=bc,那么a:b=c:d
84、(2)合比性質(zhì):如果a/b=c/d,那么(a±b)/b=(c±d)/d
85、(3)等比性質(zhì):如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b
86、平行線分線段成比例定理
三條平行線截兩條直線,所得的對(duì)應(yīng)線段成比例
87、推論
平行于xxx一邊的直線截其他兩邊(或兩邊的延長(zhǎng)線),所得的對(duì)應(yīng)線段成比例
88、定理
如果一條直線截xxx的兩邊(或兩邊的延長(zhǎng)線)所得的對(duì)應(yīng)線段成比例,那么這條直線平行于xxx的第三邊
89、平行于xxx的一邊,并且和其他兩邊相交的直線,所截得的xxx的三邊與原xxx三邊對(duì)應(yīng)成比例
90、定理
平行于xxx一邊的直線和其他兩邊(或兩邊的延長(zhǎng)線)相交,所構(gòu)成的xxx與原xxx相似
91、相似xxx判定定理1
兩角對(duì)應(yīng)相等,兩xxx相似(ASA)
92、直角xxx被斜邊上的高分成的兩個(gè)直角xxx和原xxx相似
93、判定定理2
兩邊對(duì)應(yīng)成比例且?jiàn)A角相等,兩xxx相似(SAS)
94、判定定理3
三邊對(duì)應(yīng)成比例,兩xxx相似(SSS)
95、定理
如果一個(gè)直角xxx的斜邊和一條直角邊與另一個(gè)直角xxx的斜邊和一條直角邊對(duì)應(yīng)成比例,那么這兩個(gè)直角xxx相似(HL)
96、性質(zhì)定理1
相似xxx對(duì)應(yīng)高的比,對(duì)應(yīng)中線的比與對(duì)應(yīng)角平分線的比都等于相似比
97、性質(zhì)定理2
相似xxx周長(zhǎng)的比等于相似比
98、性質(zhì)定理3
相似xxx面積的比等于相似比的平方
99、任意銳角的正弦值等于它的余角的余弦值,任意銳角的余弦值等于它的余角的正弦值sin(a)=cos(90-a),cos(a)=sin(90-a)
100、任意銳角的正切值等于它的余角的余切值,任意銳角的余切值等于它的余角的正切值tan(a)=cot(90-a),cot(a)=tan(90-a)
101、圓是定點(diǎn)的距離等于定長(zhǎng)的點(diǎn)的集合
102、圓的內(nèi)部可以看作是圓心的距離小于半徑的點(diǎn)的集合
103、圓的外部可以看作是圓心的距離大于半徑的點(diǎn)的集合
104、同圓或等圓的半徑相等
105、到定點(diǎn)的距離等于定長(zhǎng)的點(diǎn)的軌跡,是以定點(diǎn)為圓心,定長(zhǎng)為半徑的圓
106、和已知線段兩個(gè)端點(diǎn)的距離相等的點(diǎn)的軌跡,是著條線段的垂直平分線
107、到已知角的兩邊距離相等的點(diǎn)的軌跡,是這個(gè)角的平分線
108、到兩條平行線距離相等的點(diǎn)的軌跡,是和這兩條平行線平行且距離相等的一條直線
109、定理
不在同一直線上的三點(diǎn)確定一個(gè)圓。
110、垂徑定理
垂直于弦的直徑平分這條弦并且平分弦所對(duì)的兩條弧
111、推論1
、倨椒窒遥ú皇侵睆剑┑闹睆酱怪庇谙,并且平分弦所對(duì)的兩條弧
、谙业拇怪逼椒志經(jīng)過(guò)圓心,并且平分弦所對(duì)的兩條。ㄖ睆剑
、燮椒窒宜鶎(duì)的一條弧的直徑,垂直平分弦,并且平分弦所對(duì)的另一條弧
112、推論2
圓的兩條平行弦所夾的弧相等
113、圓是以圓心為對(duì)稱中心的中心對(duì)稱圖形
114、定理
在同圓或等圓中,相等的圓心角所對(duì)的弧相等,所對(duì)的弦相等,所對(duì)的弦的弦心距相等
115、推論
在同圓或等圓中,如果兩個(gè)圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相等那么它們所對(duì)應(yīng)的其余各組量都相等
116、定理
一條弧所對(duì)的圓周角等于它所對(duì)的圓心角的一半
117、推論1
同弧或等弧所對(duì)的圓周角相等;同圓或等圓中,相等的圓周角所對(duì)的弧也相等
118、推論2
半圓(或直徑)所對(duì)的圓周角是直角;90°的圓周角所對(duì)的弦是直徑
119、推論3
如果xxx一邊上的中線等于這邊的一半,那么這個(gè)xxx是直角xxx
120、定理
圓的內(nèi)接四邊形的對(duì)角互補(bǔ),并且任何一個(gè)外角都等于它的內(nèi)對(duì)角
121、①直線L和⊙O相交
0
、谥本L和⊙O相切
d=r
③直線L和⊙O相離
d>r
122、切線的判定定理
經(jīng)過(guò)半徑的外端并且垂直于這條半徑的直線是圓的切線
123、切線的性質(zhì)定理
圓的切線垂直于經(jīng)過(guò)切點(diǎn)的半徑
124、推論1
經(jīng)過(guò)圓心且垂直于切線的直線必經(jīng)過(guò)切點(diǎn)
125、推論2
經(jīng)過(guò)切點(diǎn)且垂直于切線的直線必經(jīng)過(guò)圓心
126、切線長(zhǎng)定理
從圓外一點(diǎn)引圓的兩條切線相交與一點(diǎn),它們的切線長(zhǎng)相等,圓心和這一點(diǎn)的連線平分兩條切線的夾角
127、圓的外切四邊形的兩組對(duì)邊的和相等
128、弦切角定理
弦切角等于它所夾的弧對(duì)的圓周角?
129、推論
如果兩個(gè)弦切角所夾的弧相等,那么這兩個(gè)弦切角也相等
130、相交弦定理
圓內(nèi)的兩條相交弦,被交點(diǎn)分成的兩條線段長(zhǎng)的積相等
131、推論
如果弦與直徑垂直相交,那么弦的一半是它分直徑xxx的兩條線段的比例中項(xiàng)
132、切割線定理
從圓外一點(diǎn)引圓的切線和割線,切線長(zhǎng)是這點(diǎn)到割線與圓交點(diǎn)的兩條線段長(zhǎng)的比例中項(xiàng)?
133、推論
從圓外一點(diǎn)引圓的兩條割線,這一點(diǎn)到每條
割線與圓的交點(diǎn)的兩條線段長(zhǎng)的積相等
134、如果兩個(gè)圓相切,那么切點(diǎn)一定在連心線上
135、①兩圓外離
d>R+r
、趦蓤A外切
d=R+r
③兩圓相交
R-r<d<R+r(R>r)
、軆蓤A內(nèi)切
d=R-r(R>r)
、輧蓤A內(nèi)含
d<R-r(R>r)
136、定理
相交兩圓的連心線垂直平分兩圓的公共弦
137、定理
把圓平均分成n(n≥3):
⑴依次連結(jié)各分點(diǎn)所得的多邊形是這個(gè)圓的內(nèi)接正n邊形
、平(jīng)過(guò)各分點(diǎn)作圓的切線,以相鄰切線的交點(diǎn)為頂點(diǎn)的多邊形是這個(gè)圓的外切正n邊形
138、定理
任何正多邊形都有一個(gè)外接圓和一個(gè)內(nèi)切圓,這兩個(gè)圓是同心圓
139、正n邊形的每個(gè)內(nèi)角都等于(n-2)×180°/n
140、定理
正n邊形的半徑和邊心距把正n邊形分成2n個(gè)全等的直角xxx
141、正n邊形的面積Sn=pn*rn/2
p表示正n邊形的周長(zhǎng)
142、正xxx面積√3a^2/4
a表示邊長(zhǎng)
143、如果在一個(gè)頂點(diǎn)周?chē)衚個(gè)正n邊形的角,由于這些角的和應(yīng)為360°,因此k×(n-2)180°/n=360°化為(n-2)(k-2)=4
144、弧長(zhǎng)計(jì)算公式:L=n兀R/180——》L=nR
145、扇形面積公式:S扇形=n兀R^2/360=LR/2
146、內(nèi)公切線長(zhǎng)=d-(R-r)
外公切線長(zhǎng)=d-(R+r)
初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)4
1.有理數(shù):
(1)凡能寫(xiě)成形式的數(shù),都是有理數(shù)。正整數(shù)、0、負(fù)整數(shù)統(tǒng)稱整數(shù);正分?jǐn)?shù)、負(fù)分?jǐn)?shù)統(tǒng)稱分?jǐn)?shù);整數(shù)和分?jǐn)?shù)統(tǒng)稱有理數(shù)。注意:0即不是正數(shù),也不是負(fù)數(shù);—a不一定是負(fù)數(shù),+a也不一定是正數(shù);p不是有理數(shù);
。2)有理數(shù)的分類:① ②
2.數(shù)軸:數(shù)軸是規(guī)定了原點(diǎn)、正方向、單位長(zhǎng)度的一條直線。
3.相反數(shù):
。1)只有符號(hào)不同的兩個(gè)數(shù),我們說(shuō)其中一個(gè)是另一個(gè)的相反數(shù);0的相反數(shù)還是0;
。2)相反數(shù)的和為0?a+b=0?a、b互為相反數(shù)。
4.絕對(duì)值:
。1)正數(shù)的絕對(duì)值是其本身,0的絕對(duì)值是0,負(fù)數(shù)的絕對(duì)值是它的相反數(shù);注意:絕對(duì)值的意義是數(shù)軸上表示某數(shù)的點(diǎn)離開(kāi)原點(diǎn)的距離;
。2)絕對(duì)值可表示為:或;絕對(duì)值的問(wèn)題經(jīng)常分類討論;
5.有理數(shù)比大。海1)正數(shù)的絕對(duì)值越大,這個(gè)數(shù)越大;(2)正數(shù)永遠(yuǎn)比0大,負(fù)數(shù)永遠(yuǎn)比0小;(3)正數(shù)大于一切負(fù)數(shù);(4)兩個(gè)負(fù)數(shù)比大小,絕對(duì)值大的反而小;(5)數(shù)軸上的兩個(gè)數(shù),右邊的數(shù)總比左邊的數(shù)大;(6)大數(shù)—小數(shù)> 0,小數(shù)—大數(shù)< 0。
6.互為倒數(shù):乘積為1的兩個(gè)數(shù)互為倒數(shù);注意:0沒(méi)有倒數(shù);若a≠0,那么的倒數(shù)是;若ab=1?a、b互為倒數(shù);若ab=—1?a、b互為負(fù)倒數(shù)。
7.有理數(shù)加法法則:
。1)同號(hào)兩數(shù)相加,取相同的符號(hào),并把絕對(duì)值相加;
。2)異號(hào)兩數(shù)相加,取絕對(duì)值較大的符號(hào),并用較大的絕對(duì)值減去較小的絕對(duì)值;
。3)一個(gè)數(shù)與0相加,仍得這個(gè)數(shù)。
8.有理數(shù)加法的'運(yùn)算律:
。1)加法的交換律:a+b=b+a;(2)加法的結(jié)合律:(a+b)+c=a+(b+c)。
9.有理數(shù)減法法則:減去一個(gè)數(shù),等于加上這個(gè)數(shù)的相反數(shù);即a—b=a+(—b)。
10.有理數(shù)乘法法則:
。1)兩數(shù)相乘,同號(hào)為正,異號(hào)為負(fù),并把絕對(duì)值相乘;
(2)任何數(shù)同零相乘都得零;
(3)幾個(gè)數(shù)相乘,有一個(gè)因式為零,積為零;各個(gè)因式都不為零,積的符號(hào)由負(fù)因式的個(gè)數(shù)決定。
11.有理數(shù)乘法的運(yùn)算律:
(1)乘法的交換律:ab=ba;(2)乘法的結(jié)合律:(ab)c=a(bc);
(3)乘法的分配律:a(b+c)=ab+ac 。
12.有理數(shù)除法法則:除以一個(gè)數(shù)等于乘以這個(gè)數(shù)的倒數(shù);注意:零不能做除數(shù),。
13.有理數(shù)乘方的法則:
。1)正數(shù)的任何次冪都是正數(shù);
。2)負(fù)數(shù)的奇次冪是負(fù)數(shù);負(fù)數(shù)的偶次冪是正數(shù);注意:當(dāng)n為正奇數(shù)時(shí):(—a)n=—an或(a —b)n=—(b—a)n,當(dāng)n為正偶數(shù)時(shí):(—a)n =an或(a—b)n=(b—a)n 。
14.乘方的定義:
。1)求相同因式積的運(yùn)算,叫做乘方;
。2)乘方中,相同的因式叫做底數(shù),相同因式的個(gè)數(shù)叫做指數(shù),乘方的結(jié)果叫做冪;
15.科學(xué)記數(shù)法:把一個(gè)大于10的數(shù)記成a×10n的形式,其中a是整數(shù)數(shù)位只有一位的數(shù),這種記數(shù)法叫科學(xué)記數(shù)法。
16.近似數(shù)的精確位:一個(gè)近似數(shù),四舍五入到那一位,就說(shuō)這個(gè)近似數(shù)的精確到那一位。
17.有效數(shù)字:從左邊第一個(gè)不為零的數(shù)字起,到精確的位數(shù)止,所有數(shù)字,都叫這個(gè)近似數(shù)的有效數(shù)字。
18.混合運(yùn)算法則:先乘方,后乘除,最后加減。
本章內(nèi)容要求學(xué)生正確認(rèn)識(shí)有理數(shù)的概念,在實(shí)際生活和學(xué)習(xí)數(shù)軸的基礎(chǔ)上,理解正負(fù)數(shù)、相反數(shù)、絕對(duì)值的意義所在。重點(diǎn)利用有理數(shù)的運(yùn)算法則解決實(shí)際問(wèn)題。
體驗(yàn)數(shù)學(xué)發(fā)展的一個(gè)重要原因是生活實(shí)際的需要。激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣,教師培養(yǎng)學(xué)生的觀察、歸納與概括的能力,使學(xué)生建立正確的數(shù)感和解決實(shí)際問(wèn)題的能力。教師在講授本章內(nèi)容時(shí),應(yīng)該多創(chuàng)設(shè)情境,充分體現(xiàn)學(xué)生學(xué)習(xí)的主體性地位。
初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)5
初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)及解法
基本知識(shí)
數(shù)與代數(shù)A、數(shù)與式:
1、有理數(shù)
有理數(shù):
、僬麛(shù)正整數(shù)/0/負(fù)整數(shù)
②分?jǐn)?shù)正分?jǐn)?shù)/負(fù)分?jǐn)?shù)
數(shù)軸:
、佼(huà)一條水平直線,在直線上取一點(diǎn)表示0(原點(diǎn)),選取某一長(zhǎng)度作為單位長(zhǎng)度,規(guī)定直線上向右的方向?yàn)檎较,就得到?shù)軸。
、谌魏我粋(gè)有理數(shù)都可以用數(shù)軸上的一個(gè)點(diǎn)來(lái)表示。
、廴绻麅蓚(gè)數(shù)只有符號(hào)不同,那么我們稱其中一個(gè)數(shù)為另外一個(gè)數(shù)的相反數(shù),也稱這兩個(gè)數(shù)互為相反數(shù)。在數(shù)軸上,表示互為相反數(shù)的兩個(gè)點(diǎn),位于原點(diǎn)的兩側(cè),并且與原點(diǎn)距離相等。
、軘(shù)軸上兩個(gè)點(diǎn)表示的數(shù),右邊的總比左邊的大。正數(shù)大于0,負(fù)數(shù)小于0,正數(shù)大于負(fù)數(shù)。
絕對(duì)值:
、僭跀(shù)軸上,一個(gè)數(shù)所對(duì)應(yīng)的點(diǎn)與原點(diǎn)的距離叫做該數(shù)的絕對(duì)值。
②正數(shù)的絕對(duì)值是他的本身、負(fù)數(shù)的絕對(duì)值是他的相反數(shù)、0的絕對(duì)值是0。兩個(gè)負(fù)數(shù)比較大小,絕對(duì)值大的反而小。
有理數(shù)的運(yùn)算:
加法:
、偻(hào)相加,取相同的符號(hào),把絕對(duì)值相加。
②異號(hào)相加,絕對(duì)值相等時(shí)和為0;絕對(duì)值不等時(shí),取絕對(duì)值較大的數(shù)的符號(hào),并用較大的絕對(duì)值減去較小的絕對(duì)值。
、垡粋(gè)數(shù)與0相加不變。
減法:減去一個(gè)數(shù),等于加上這個(gè)數(shù)的相反數(shù)。
乘法:
、賰蓴(shù)相乘,同號(hào)得正,異號(hào)得負(fù),絕對(duì)值相乘。
②任何數(shù)與0相乘得0。
③乘積為1的兩個(gè)有理數(shù)互為倒數(shù)。
除法:
、俪砸粋(gè)數(shù)等于乘以一個(gè)數(shù)的倒數(shù)。
、0不能作除數(shù)。
乘方:求N個(gè)相同因數(shù)A的積的運(yùn)算叫做乘方,乘方的結(jié)果叫冪,A叫底數(shù),N叫次數(shù)。
混合順序:先算乘法,再算乘除,最后算加減,有括號(hào)要先算括號(hào)里的。
2、實(shí)數(shù)
無(wú)理數(shù):無(wú)限不循環(huán)小數(shù)叫無(wú)理數(shù)
平方根:
、偃绻粋(gè)正數(shù)X的平方等于A,那么這個(gè)正數(shù)X就叫做A的算術(shù)平方根。
、谌绻粋(gè)數(shù)X的平方等于A,那么這個(gè)數(shù)X就叫做A的平方根。
、垡粋(gè)正數(shù)有2個(gè)平方根/0的平方根為0/負(fù)數(shù)沒(méi)有平方根。
④求一個(gè)數(shù)A的平方根運(yùn)算,叫做開(kāi)平方,其中A叫做被開(kāi)方數(shù)。
立方根:
、偃绻粋(gè)數(shù)X的立方等于A,那么這個(gè)數(shù)X就叫做A的立方根。
、谡龜(shù)的立方根是正數(shù)、0的立方根是0、負(fù)數(shù)的立方根是負(fù)數(shù)。
、矍笠粋(gè)數(shù)A的立方根的運(yùn)算叫開(kāi)立方,其中A叫做被開(kāi)方數(shù)。
實(shí)數(shù):
、賹(shí)數(shù)分有理數(shù)和無(wú)理數(shù)。
、谠趯(shí)數(shù)范圍內(nèi),相反數(shù),倒數(shù),絕對(duì)值的意義和有理數(shù)范圍內(nèi)的相反數(shù),倒數(shù),絕對(duì)值的意義完全一樣。
、勖恳粋(gè)實(shí)數(shù)都可以在數(shù)軸上的一個(gè)點(diǎn)來(lái)表示。
3、代數(shù)式
代數(shù)式:?jiǎn)为?dú)一個(gè)數(shù)或者一個(gè)字母也是代數(shù)式。
合并同類項(xiàng):①所含字母相同,并且相同字母的指數(shù)也相同的項(xiàng),叫做同類項(xiàng)。②把同類項(xiàng)合并成一項(xiàng)就叫做合并同類項(xiàng)。③在合并同類項(xiàng)時(shí),我們把同類項(xiàng)的系數(shù)相加,字母和字母的指數(shù)不變。
4、整式與分式
整式:
①數(shù)與字母的乘積的代數(shù)式叫單項(xiàng)式,幾個(gè)單項(xiàng)式的和叫多項(xiàng)式,單項(xiàng)式和多項(xiàng)式統(tǒng)稱整式。
②一個(gè)單項(xiàng)式中,所有字母的指數(shù)和叫做這個(gè)單項(xiàng)式的次數(shù)。
③一個(gè)多項(xiàng)式中,次數(shù)最高的項(xiàng)的次數(shù)叫做這個(gè)多項(xiàng)式的次數(shù)。
整式運(yùn)算:加減運(yùn)算時(shí),如果遇到括號(hào)先去括號(hào),再合并同類項(xiàng)。
冪的運(yùn)算:
① 同底數(shù)冪相乘:a^ma^n=a^(m+n)
、 冪的乘方:(a^m)n=a^mn
③ 積的乘方:(ab)^m=a^mb^m
④ 同底數(shù)冪相除:a^ma^n=a^(m-n) (a0)
這些公式也可以這樣用:⑤a^(m+n)= a^ma^n
、轪^mn=(a^m)n
⑦a^mb^m=(ab)^m
、 a^(m-n)= a^ma^n (a0)
整式的乘法:
、賳雾(xiàng)式與單項(xiàng)式相乘,把他們的系數(shù),相同字母的冪分別相乘,其余字母連同他的指數(shù)不變,作為積的因式。
、趩雾(xiàng)式與多項(xiàng)式相乘,就是根據(jù)分配律用單項(xiàng)式去乘多項(xiàng)式的每一項(xiàng),再把所得的積相加。
、鄱囗(xiàng)式與多項(xiàng)式相乘,先用一個(gè)多項(xiàng)式的每一項(xiàng)乘另外一個(gè)多項(xiàng)式的每一項(xiàng),再把所得的積相加。
公式兩條:平方差公式/完全平方公式
整式的除法:
、賳雾(xiàng)式相除,把系數(shù),同底數(shù)冪分別相除后,作為商的因式;對(duì)于只在被除式里含有的字母,則連同他的指數(shù)一起作為商的一個(gè)因式。
、诙囗(xiàng)式除以單項(xiàng)式,先把這個(gè)多項(xiàng)式的每一項(xiàng)分別除以單項(xiàng)式,再把所得的商相加。
分解因式:把一個(gè)多項(xiàng)式化成幾個(gè)整式的積的形式,這種變化叫做把這個(gè)多項(xiàng)式分解因式。
方法:提公因式法、運(yùn)用公式法、分組分解法、十字相乘法。
分式:①整式A除以整式B,如果除式B中含有分母,那么這個(gè)就是分式,對(duì)于任何一個(gè)分式,分母不為0。②分式的分子與分母同乘以或除以同一個(gè)不等于0的整式,分式的值不變。
分式的運(yùn)算:
乘法:把分子相乘的積作為積的分子,把分母相乘的積作為積的分母。
除法:除以一個(gè)分式等于乘以這個(gè)分式的倒數(shù)。
加減法:
、偻帜阜质较嗉訙p,分母不變,把分子相加減。
、诋惙帜傅姆质较韧ǚ,化為同分母的分式,再加減。
分式方程:
、俜帜钢泻形粗獢(shù)的方程叫分式方程。
、谑狗匠痰姆帜笧0的解稱為原方程的增根。
方程與不等式
1、方程與方程組
一元一次方程:
、僭谝粋(gè)方程中,只含有一個(gè)未知數(shù),并且未知數(shù)的指數(shù)是1,這樣的方程叫一元一次方程。
、诘仁絻蛇呁瑫r(shí)加上或減去或乘以或除以(不為0)一個(gè)代數(shù)式,所得結(jié)果仍是等式。
解一元一次方程的步驟:去分母,移項(xiàng),合并同類項(xiàng),未知數(shù)系數(shù)化為1。
二元一次方程:含有兩個(gè)未知數(shù),并且所含未知數(shù)的`項(xiàng)的次數(shù)都是1的方程叫做二元一次方程。
二元一次方程組:兩個(gè)二元一次方程組成的方程組叫做二元一次方程組。
適合一個(gè)二元一次方程的一組未知數(shù)的值,叫做這個(gè)二元一次方程的一個(gè)解。
二元一次方程組中各個(gè)方程的公共解,叫做這個(gè)二元一次方程的解。
解二元一次方程組的方法:代入消元法/加減消元法。
一元二次方程:只有一個(gè)未知數(shù),并且未知數(shù)的項(xiàng)的最高系數(shù)為2的方程
1、一元二次方程的二次函數(shù)的關(guān)系
大家已經(jīng)學(xué)過(guò)二次函數(shù)(即拋物線)了,對(duì)它也有很深的了解,在圖象中表示等等,其實(shí)一元二次方程也可以用二次函數(shù)來(lái)表示,其實(shí)一元二次方程也是二次函數(shù)的一個(gè)特殊情況,就是當(dāng)Y的0的時(shí)候就構(gòu)成了一元二次方程了。那如果在平面直角坐標(biāo)系中表示出來(lái),一元二次方程就是二次函數(shù)中,圖象與X軸的交點(diǎn)。也就是該方程的解了。
2、一元二次方程的解法
大家知道,二次函數(shù)有頂點(diǎn)式(,),這大家要記住,很重要,因?yàn)樵谏厦嬉呀?jīng)說(shuō)過(guò)了,一元二次方程也是二次函數(shù)的一部分,所以他也有自己的一個(gè)解法,利用他可以求出所有的一元一次方程的解。
(1)配方法
利用配方,使方程變?yōu)橥耆椒焦,在用直接開(kāi)平方法去求出解。
(2)分解因式法
提取公因式,套用公式法,和十字相乘法。在解一元二次方程的時(shí)候也一樣,利用這點(diǎn),把方程化為幾個(gè)乘積的形式去解。
(3)公式法
這方法也可以是在解一元二次方程的萬(wàn)能方法了,方程的根X1={-b+[b2-4ac)]}/2a,X2={-b-[b2-4ac)]}/2a
3、解一元二次方程的步驟:
(1)配方法的步驟:
先把常數(shù)項(xiàng)移到方程的右邊,再把二次項(xiàng)的系數(shù)化為1,再同時(shí)加上1次項(xiàng)的系數(shù)的一半的平方,最后配成完全平方公式。
(2)分解因式法的步驟:
把方程右邊化為0,然后看看是否能用提取公因式,公式法(這里指的是分解因式中的公式法)或十字相乘,如果可以,就可以化為乘積的形式。
(3)公式法
就把一元二次方程的各系數(shù)分別代入,這里二次項(xiàng)的系數(shù)為a,一次項(xiàng)的系數(shù)為b,常數(shù)項(xiàng)的系數(shù)為c。
4、韋達(dá)定理
利用韋達(dá)定理去了解,韋達(dá)定理就是在一元二次方程中,二根之和=,二根之積=
也可以表示為x1+x2=,x1x2=。利用韋達(dá)定理,可以求出一元二次方程中的各系數(shù),在題目中很常用。
5、一元一次方程根的情況
利用根的判別式去了解,根的判別式可在書(shū)面上可以寫(xiě)為△,讀作diao ta,而△=b2-4ac,這里可以分為3種情況:
I當(dāng)△0時(shí),一元二次方程有2個(gè)不相等的實(shí)數(shù)根;
II當(dāng)△=0時(shí),一元二次方程有2個(gè)相同的實(shí)數(shù)根;
III當(dāng)△0時(shí),一元二次方程沒(méi)有實(shí)數(shù)根(在這里,學(xué)到高中就會(huì)知道,這里有2個(gè)虛數(shù)根)。
2、不等式與不等式組
不等式:
、儆梅(hào)〉,=,〈號(hào)連接的式子叫不等式。
②不等式的兩邊都加上或減去同一個(gè)整式,不等號(hào)的方向不變。
、鄄坏仁降膬蛇叾汲艘曰蛘叱砸粋(gè)正數(shù),不等號(hào)方向不變。
、懿坏仁降膬蛇叾汲艘曰虺酝粋(gè)負(fù)數(shù),不等號(hào)方向相反。
不等式的解集:
、倌苁共坏仁匠闪⒌奈粗獢(shù)的值,叫做不等式的解。
②一個(gè)含有未知數(shù)的不等式的所有解,組成這個(gè)不等式的解集。
、矍蟛坏仁浇饧倪^(guò)程叫做解不等式。
一元一次不等式:左右兩邊都是整式,只含有一個(gè)未知數(shù),且未知數(shù)的最高次數(shù)是1的不等式叫一元一次不等式。
一元一次不等式組:
①關(guān)于同一個(gè)未知數(shù)的幾個(gè)一元一次不等式合在一起,就組成了一元一次不等式組。
、谝辉淮尾坏仁浇M中各個(gè)不等式的解集的公共部分,叫做這個(gè)一元一次不等式組的解集。
、矍蟛坏仁浇M解集的過(guò)程,叫做解不等式組。
一元一次不等式的符號(hào)方向:
在一元一次不等式中,不像等式那樣,等號(hào)是不變的,他是隨著你加或乘的運(yùn)算改變。
在不等式中,如果加上同一個(gè)數(shù)(或加上一個(gè)正數(shù)),不等式符號(hào)不改向;例如:AB,A+CB+C
在不等式中,如果減去同一個(gè)數(shù)(或加上一個(gè)負(fù)數(shù)),不等式符號(hào)不改向;例如:AB,A-CB-C
在不等式中,如果乘以同一個(gè)正數(shù),不等號(hào)不改向;例如:AB,A*CB*C(C0)
在不等式中,如果乘以同一個(gè)負(fù)數(shù),不等號(hào)改向;例如:AB,A*C
如果不等式乘以0,那么不等號(hào)改為等號(hào)
所以在題目中,要求出乘以的數(shù),那么就要看看題中是否出現(xiàn)一元一次不等式,如果出現(xiàn)了,那么不等式乘以的數(shù)就不等為0,否則不等式不成立。
函數(shù)
變量:因變量,自變量。
在用圖象表示變量之間的關(guān)系時(shí),通常用水平方向的數(shù)軸上的點(diǎn)自變量,用豎直方向的數(shù)軸上的點(diǎn)表示因變量。
一次函數(shù):
、偃魞蓚(gè)變量X,Y間的關(guān)系式可以表示成Y=KX+B(B為常數(shù),K不等于0)的形式,則稱Y是X的一次函數(shù)。
、诋(dāng)B=0時(shí),稱Y是X的正比例函數(shù)。
一次函數(shù)的圖象:①把一個(gè)函數(shù)的自變量X與對(duì)應(yīng)的因變量Y的值分別作為點(diǎn)的橫坐標(biāo)與縱坐標(biāo),在直角坐標(biāo)系內(nèi)描出它的對(duì)應(yīng)點(diǎn),所有這些點(diǎn)組成的圖形叫做該函數(shù)的圖象。②正比例函數(shù)Y=KX的圖象是經(jīng)過(guò)原點(diǎn)的一條直線。③在一次函數(shù)中,當(dāng)K〈0,B〈O,則經(jīng)234象限;當(dāng)K〈0,B〉0時(shí),則經(jīng)124象限;當(dāng)K〉0,B〈0時(shí),則經(jīng)134象限;當(dāng)K〉0,B〉0時(shí),則經(jīng)123象限。④當(dāng)K〉0時(shí),Y的值隨X值的增大而增大,當(dāng)X〈0時(shí),Y的值隨X值的增大而減少。
空間與圖形
圖形的認(rèn)識(shí)
1、點(diǎn),線,面
點(diǎn),線,面:
、賵D形是由點(diǎn),線,面構(gòu)成的。
②面與面相交得線,線與線相交得點(diǎn)。
、埸c(diǎn)動(dòng)成線,線動(dòng)成面,面動(dòng)成體。
展開(kāi)與折疊:
、僭诶庵,任何相鄰的兩個(gè)面的交線叫做棱,側(cè)棱是相鄰兩個(gè)側(cè)面的交線,棱柱的所有側(cè)棱長(zhǎng)相等,棱柱的上下底面的形狀相同,側(cè)面的形狀都是長(zhǎng)方體。
、贜棱柱就是底面圖形有N條邊的棱柱。
截一個(gè)幾何體:用一個(gè)平面去截一個(gè)圖形,截出的面叫做截面。
視圖:主視圖,左視圖,俯視圖。
多邊形:他們是由一些不在同一條直線上的線段依次首尾相連組成的封閉圖形。
弧、扇形:
、儆梢粭l弧和經(jīng)過(guò)這條弧的端點(diǎn)的兩條半徑所組成的圖形叫扇形。
、趫A可以分割成若干個(gè)扇形。
角
線:
、倬段有兩個(gè)端點(diǎn)。
、趯⒕段向一個(gè)方向無(wú)限延長(zhǎng)就形成了射線。射線只有一個(gè)端點(diǎn)。
③將線段的兩端無(wú)限延長(zhǎng)就形成了直線。直線沒(méi)有端點(diǎn)。
④經(jīng)過(guò)兩點(diǎn)有且只有一條直線。
比較長(zhǎng)短:
①兩點(diǎn)之間的所有連線中,線段最短。
、趦牲c(diǎn)之間線段的長(zhǎng)度,叫做這兩點(diǎn)之間的距離。
角的度量與表示:
、俳怯蓛蓷l具有公共端點(diǎn)的射線組成,兩條射線的公共端點(diǎn)是這個(gè)角的頂點(diǎn)。
、谝欢鹊1/60是一分,一分的1/60是一秒。
角的比較:
、俳且部梢钥闯墒怯梢粭l射線繞著他的端點(diǎn)旋轉(zhuǎn)而成的。
②一條射線繞著他的端點(diǎn)旋轉(zhuǎn),當(dāng)終邊和始邊成一條直線時(shí),所成的角叫做平角。始邊繼續(xù)旋轉(zhuǎn),當(dāng)他又和始邊重合時(shí),所成的角叫做周角。
、蹚囊粋(gè)角的頂點(diǎn)引出的一條射線,把這個(gè)角分成兩個(gè)相等的角,這條射線叫做這個(gè)角的平分線。
平行:
①同一平面內(nèi),不相交的兩條直線叫做平行線。
②經(jīng)過(guò)直線外一點(diǎn),有且只有一條直線與這條直線平行。
、廴绻麅蓷l直線都與第3條直線平行,那么這兩條直線互相平行。
垂直:
、偃绻麅蓷l直線相交成直角,那么這兩條直線互相垂直。
、诨ハ啻怪钡膬蓷l直線的交點(diǎn)叫做垂足。
③平面內(nèi),過(guò)一點(diǎn)有且只有一條直線與已知直線垂直。
垂直平分線:垂直和平分一條線段的直線叫垂直平分線。
垂直平分線垂直平分的一定是線段,不能是射線或直線,這根據(jù)射線和直線可以無(wú)限延長(zhǎng)有關(guān),再看后面的,垂直平分線是一條直線,所以在畫(huà)垂直平分線的時(shí)候,確定了2點(diǎn)后(關(guān)于畫(huà)法,后面會(huì)講)一定要把線段穿出2點(diǎn)。
垂直平分線定理:
性質(zhì)定理:在垂直平分線上的點(diǎn)到該線段兩端點(diǎn)的距離相等;
判定定理:到線段2端點(diǎn)距離相等的點(diǎn)在這線段的垂直平分線上
角平分線:把一個(gè)角平分的射線叫該角的角平分線。
定義中有幾個(gè)要點(diǎn)要注意一下的,就是角的角平分線是一條射線,不是線段也不是直線,很多時(shí),在題目中會(huì)出現(xiàn)直線,這是角平分線的對(duì)稱軸才會(huì)用直線的,這也涉及到軌跡的問(wèn)題,一個(gè)角個(gè)角平分線就是到角兩邊距離相等的點(diǎn)
性質(zhì)定理:角平分線上的點(diǎn)到該角兩邊的距離相等
判定定理:到角的兩邊距離相等的點(diǎn)在該角的角平分線上
正方形:一組鄰邊相等的矩形是正方形
性質(zhì):正方形具有平行四邊形、菱形、矩形的一切性質(zhì)
判定:
1、對(duì)角線相等的菱形
2、鄰邊相等的矩形
基本方法
1、配方法
所謂配方,就是把一個(gè)解析式利用恒等變形的方法,把其中的某些項(xiàng)配成一個(gè)或幾個(gè)多項(xiàng)式正整數(shù)次冪的和形式。通過(guò)配方解決數(shù)學(xué)問(wèn)題的方法叫配方法。其中,用的最多的是配成完全平方式。配方法是數(shù)學(xué)中一種重要的恒等變形的方法,它的應(yīng)用十分非常廣泛,在因式分解、化簡(jiǎn)根式、解方程、證明等式和不等式、求函數(shù)的極值和解析式等方面都經(jīng)常用到它。
2、因式分解法
因式分解,就是把一個(gè)多項(xiàng)式化成幾個(gè)整式乘積的形式。因式分解是恒等變形的基礎(chǔ),它作為數(shù)學(xué)的一個(gè)有力工具、一種數(shù)學(xué)方法在代數(shù)、幾何、三角等的解題中起著重要的作用。因式分解的方法有許多,除中學(xué)課本上介紹的提取公因式法、公式法、分組分解法、十字相乘法等外,還有如利用拆項(xiàng)添項(xiàng)、求根分解、換元、待定系數(shù)等等。
3、換元法
換元法是數(shù)學(xué)中一個(gè)非常重要而且應(yīng)用十分廣泛的解題方法。我們通常把未知數(shù)或變數(shù)稱為元,所謂換元法,就是在一個(gè)比較復(fù)雜的數(shù)學(xué)式子中,用新的變?cè)ゴ嬖降囊粋(gè)部分或改造原來(lái)的式子,使它簡(jiǎn)化,使問(wèn)題易于解決。
4、判別式法與韋達(dá)定理
一元二次方程ax2+bx+c=0(a、b、c屬于R,a0)根的判別,△=b2-4ac,不僅用來(lái)判定根的性質(zhì),而且作為一種解題方法,在代數(shù)式變形,解方程(組),解不等式,研究函數(shù)乃至幾何、三角運(yùn)算中都有非常廣泛的應(yīng)用。
韋達(dá)定理除了已知一元二次方程的一個(gè)根,求另一根;已知兩個(gè)數(shù)的和與積,求這兩個(gè)數(shù)等簡(jiǎn)單應(yīng)用外,還可以求根的對(duì)稱函數(shù),計(jì)論二次方程根的符號(hào),解對(duì)稱方程組,以及解一些有關(guān)二次曲線的問(wèn)題等
5、待定系數(shù)法
在解數(shù)學(xué)問(wèn)題時(shí),若先判斷所求的結(jié)果具有某種確定的形式,其中含有某些待定的系數(shù),而后根據(jù)題設(shè)條件列出關(guān)于待定系數(shù)的等式,最后解出這些待定系數(shù)的值或找到這些待定系數(shù)間的某種關(guān)系,從而解答數(shù)學(xué)問(wèn)題,這種解題方法稱為待定系數(shù)法。它是中學(xué)數(shù)學(xué)中常用的方法之一。
6、構(gòu)造法
在解題時(shí),我們常常會(huì)采用這樣的方法,通過(guò)對(duì)條件和結(jié)論的分析,構(gòu)造輔助元素,它可以是一個(gè)圖形、一個(gè)方程(組)、一個(gè)等式、一個(gè)函數(shù)、一個(gè)等價(jià)命題等,架起一座連接條件和結(jié)論的橋梁,從而使問(wèn)題得以解決,這種解題的數(shù)學(xué)方法,我們稱為構(gòu)造法。運(yùn)用構(gòu)造法解題,可以使代數(shù)、三角、幾何等各種數(shù)學(xué)知識(shí)互相滲透,有利于問(wèn)題的解決。
7、反證法
反證法是一種間接證法,它是先提出一個(gè)與命題的結(jié)論相反的假設(shè),然后,從這個(gè)假設(shè)出發(fā),經(jīng)過(guò)正確的推理,導(dǎo)致矛盾,從而否定相反的假設(shè),達(dá)到肯定原命題正確的一種方法。反證法可以分為歸謬反證法(結(jié)論的反面只有一種)與窮舉反證法(結(jié)論的反面不只一種)。用反證法證明一個(gè)命題的步驟,大體上分為:(1)反設(shè);(2)歸謬;(3)結(jié)論。
反設(shè)是反證法的基礎(chǔ),為了正確地作出反設(shè),掌握一些常用的互為否定的表述形式是有必要的,例如:是、不是;存在、不存在;平行于、不平行于;垂直于、不垂直于;等于、不等于;大(小)于、不大(小)于;都是、不都是;至少有一個(gè)、一個(gè)也沒(méi)有;至少有n個(gè)、至多有(n一1)個(gè);至多有一個(gè)、至少有兩個(gè);唯一、至少有兩個(gè)。
歸謬是反證法的關(guān)鍵,導(dǎo)出矛盾的過(guò)程沒(méi)有固定的模式,但必須從反設(shè)出發(fā),否則推導(dǎo)將成為無(wú)源之水,無(wú)本之木。推理必須嚴(yán)謹(jǐn)。導(dǎo)出的矛盾有如下幾種類型:與已知條件矛盾;與已知的公理、定義、定理、公式矛盾;與反設(shè)矛盾;自相矛盾。
8、面積法
平面幾何中講的面積公式以及由面積公式推出的與面積計(jì)算有關(guān)的性質(zhì)定理,不僅可用于計(jì)算面積,而且用它來(lái)證明平面幾何題有時(shí)會(huì)收到事半功倍的效果。運(yùn)用面積關(guān)系來(lái)證明或計(jì)算平面幾何題的方法,稱為面積方法,它是幾何中的一種常用方法。
用歸納法或分析法證明平面幾何題,其困難在添置輔助線。面積法的特點(diǎn)是把已知和未知各量用面積公式聯(lián)系起來(lái),通過(guò)運(yùn)算達(dá)到求證的結(jié)果。所以用面積法來(lái)解幾何題,幾何元素之間關(guān)系變成數(shù)量之間的關(guān)系,只需要計(jì)算,有時(shí)可以不添置補(bǔ)助線,即使需要添置輔助線,也很容易考慮到。
9、幾何變換法
在數(shù)學(xué)問(wèn)題的研究中,常常運(yùn)用變換法,把復(fù)雜性問(wèn)題轉(zhuǎn)化為簡(jiǎn)單性的問(wèn)題而得到解決。所謂變換是一個(gè)**的任一元素到同一**的元素的一個(gè)一一映射。中學(xué)數(shù)學(xué)中所涉及的變換主要是初等變換。有一些看來(lái)很難甚至于無(wú)法下手的習(xí)題,可以借助幾何變換法,化繁為簡(jiǎn),化難為易。另一方面,也可將變換的觀點(diǎn)滲透到中學(xué)數(shù)學(xué)教學(xué)中。將圖形從相等靜止條件下的研究和運(yùn)動(dòng)中的研究結(jié)合起來(lái),有利于對(duì)圖形本質(zhì)的認(rèn)識(shí)。
幾何變換包括:
(1)平移;
(2)旋轉(zhuǎn);
(3)對(duì)稱。
10、客觀性題的解題方法
選擇題是給出條件和結(jié)論,要求根據(jù)一定的關(guān)系找出正確答案的一類題型。選擇題的題型構(gòu)思精巧,形式靈活,可以比較全面地考察學(xué)生的基礎(chǔ)知識(shí)和基本技能,從而增大了試卷的容量和知識(shí)覆蓋面。
填空題是標(biāo)準(zhǔn)化考試的重要題型之一,它同選擇題一樣具有考查目標(biāo)明確,知識(shí)復(fù)蓋面廣,評(píng)卷準(zhǔn)確迅速,有利于考查學(xué)生的分析判斷能力和計(jì)算能力等優(yōu)點(diǎn),不同的是填空題未給出答案,可以防止學(xué)生猜估答案的情況。
要想迅速、正確地解選擇題、填空題,除了具有準(zhǔn)確的計(jì)算、嚴(yán)密的推理外,還要有解選擇題、填空題的方法與技巧。下面通過(guò)實(shí)例介紹常用方法。
(1)直接推演法:直接從命題給出的條件出發(fā),運(yùn)用概念、公式、定理等進(jìn)行推理或運(yùn)算,得出結(jié)論,選擇正確答案,這就是傳統(tǒng)的解題方法,這種解法叫直接推演法。
(2)驗(yàn)證法:由題設(shè)找出合適的驗(yàn)證條件,再通過(guò)驗(yàn)證,找出正確答案,亦可將供選擇的答案代入條件中去驗(yàn)證,找出正確答案,此法稱為驗(yàn)證法(也稱代入法)。當(dāng)遇到定量命題時(shí),常用此法。
(3)特殊元素法:用合適的特殊元素(如數(shù)或圖形)代入題設(shè)條件或結(jié)論中去,從而獲得解答。這種方法叫特殊元素法。
(4)排除、篩選法:對(duì)于正確答案有且只有一個(gè)的選擇題,根據(jù)數(shù)學(xué)知識(shí)或推理、演算,把不正確的結(jié)論排除,余下的結(jié)論再經(jīng)篩選,從而作出正確的結(jié)論的解法叫排除、篩選法。
(5)圖解法:借助于符合題設(shè)條件的圖形或圖象的性質(zhì)、特點(diǎn)來(lái)判斷,作出正確的選擇稱為圖解法。圖解法是解選擇題常用方法之一。
(6)分析法:直接通過(guò)對(duì)選擇題的條件和結(jié)論,作詳盡的分析、歸納和判斷,從而選出正確的結(jié)果,為分析法。
初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)6
1.有理數(shù):
(1)凡能寫(xiě)成形式的數(shù),都是有理數(shù)。正整數(shù)、0、負(fù)整數(shù)統(tǒng)稱整數(shù);正分?jǐn)?shù)、負(fù)分?jǐn)?shù)統(tǒng)稱分?jǐn)?shù);整數(shù)和分?jǐn)?shù)統(tǒng)稱有理數(shù)。注意:0即不是正數(shù),也不是負(fù)數(shù);—a不一定是負(fù)數(shù),+a也不一定是正數(shù);p不是有理數(shù);
(2)有理數(shù)的分類:① ②
2.數(shù)軸:數(shù)軸是規(guī)定了原點(diǎn)、正方向、單位長(zhǎng)度的一條直線。
3.相反數(shù):
(1)只有符號(hào)不同的兩個(gè)數(shù),我們說(shuō)其中一個(gè)是另一個(gè)的相反數(shù);0的相反數(shù)還是0;
(2)相反數(shù)的和為0?a+b=0?a、b互為相反數(shù)。
4.絕對(duì)值:
(1)正數(shù)的絕對(duì)值是其本身,0的絕對(duì)值是0,負(fù)數(shù)的絕對(duì)值是它的相反數(shù);注意:絕對(duì)值的意義是數(shù)軸上表示某數(shù)的點(diǎn)離開(kāi)原點(diǎn)的距離;
(2)絕對(duì)值可表示為:或;絕對(duì)值的問(wèn)題經(jīng)常分類討論;
5.有理數(shù)比大小:
(1)正數(shù)的絕對(duì)值越大,這個(gè)數(shù)越大;
(2)正數(shù)永遠(yuǎn)比0大,負(fù)數(shù)永遠(yuǎn)比0小;
(3)正數(shù)大于一切負(fù)數(shù);
(4)兩個(gè)負(fù)數(shù)比大小,絕對(duì)值大的反而小;
(5)數(shù)軸上的兩個(gè)數(shù),右邊的數(shù)總比左邊的數(shù)大;
(6)大數(shù)—小數(shù)> 0,小數(shù)—大數(shù)< 0。
6.互為倒數(shù):
乘積為1的兩個(gè)數(shù)互為倒數(shù);注意:0沒(méi)有倒數(shù);若a≠0,那么的倒數(shù)是;若ab=1,a、b互為倒數(shù);若ab=—1,a、b互為負(fù)倒數(shù)。
7.有理數(shù)加法法則:
(1)同號(hào)兩數(shù)相加,取相同的符號(hào),并把絕對(duì)值相加;
(2)異號(hào)兩數(shù)相加,取絕對(duì)值較大的符號(hào),并用較大的絕對(duì)值減去較小的絕對(duì)值;
(3)一個(gè)數(shù)與0相加,仍得這個(gè)數(shù)。
8.有理數(shù)加法的運(yùn)算律:
(1)加法的交換律:a+b=b+a;
(2)加法的結(jié)合律:(a+b)+c=a+(b+c)。
9.有理數(shù)減法法則:
減去一個(gè)數(shù),等于加上這個(gè)數(shù)的相反數(shù);即a—b=a+(—b)。
10.有理數(shù)乘法法則:
(1)兩數(shù)相乘,同號(hào)為正,異號(hào)為負(fù),并把絕對(duì)值相乘;
(2)任何數(shù)同零相乘都得零;
(3)幾個(gè)數(shù)相乘,有一個(gè)因式為零,積為零;各個(gè)因式都不為零,積的符號(hào)由負(fù)因式的個(gè)數(shù)決定。
11.有理數(shù)乘法的運(yùn)算律:
(1)乘法的交換律:ab=ba;(2)乘法的結(jié)合律:(ab)c=a(bc);
(3)乘法的分配律:a(b+c)=ab+ac 。
12.有理數(shù)除法法則:
除以一個(gè)數(shù)等于乘以這個(gè)數(shù)的'倒數(shù);注意:零不能做除數(shù)。
13.有理數(shù)乘方的法則:
(1)正數(shù)的任何次冪都是正數(shù);
(2)負(fù)數(shù)的奇次冪是負(fù)數(shù);負(fù)數(shù)的偶次冪是正數(shù);注意:當(dāng)n為正奇數(shù)時(shí):(—a)n=—an或(a —b)n=—(b—a)n,當(dāng)n為正偶數(shù)時(shí):(—a)n =an或(a—b)n=(b—a)n 。
14.乘方的定義:
(1)求相同因式積的運(yùn)算,叫做乘方;
(2)乘方中,相同的因式叫做底數(shù),相同因式的個(gè)數(shù)叫做指數(shù),乘方的結(jié)果叫做冪;
15.科學(xué)記數(shù)法:
把一個(gè)大于10的數(shù)記成a×10n的形式,其中a是整數(shù)數(shù)位只有一位的數(shù),這種記數(shù)法叫科學(xué)記數(shù)法。
16.近似數(shù)的精確位:
一個(gè)近似數(shù),四舍五入到那一位,就說(shuō)這個(gè)近似數(shù)的精確到那一位。
17.有效數(shù)字:
從左邊第一個(gè)不為零的數(shù)字起,到精確的位數(shù)止,所有數(shù)字,都叫這個(gè)近似數(shù)的有效數(shù)字。
18.混合運(yùn)算法則:
先乘方,后乘除,最后加減。
本章內(nèi)容要求學(xué)生正確認(rèn)識(shí)有理數(shù)的概念,在實(shí)際生活和學(xué)習(xí)數(shù)軸的基礎(chǔ)上,理解正負(fù)數(shù)、相反數(shù)、絕對(duì)值的意義所在。重點(diǎn)利用有理數(shù)的運(yùn)算法則解決實(shí)際問(wèn)題。
體驗(yàn)數(shù)學(xué)發(fā)展的一個(gè)重要原因是生活實(shí)際的需要。激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣,教師培養(yǎng)學(xué)生的觀察、歸納與概括的能力,使學(xué)生建立正確的數(shù)感和解決實(shí)際問(wèn)題的能力。教師在講授本章內(nèi)容時(shí),應(yīng)該多創(chuàng)設(shè)情境,充分體現(xiàn)學(xué)生學(xué)習(xí)的主體性地位。
有關(guān)初中數(shù)學(xué)知識(shí)點(diǎn)
一、圓
1、圓的有關(guān)性質(zhì)
在一個(gè)平面內(nèi),線段OA繞它固定的一個(gè)端點(diǎn)O旋轉(zhuǎn)一周,另一個(gè)端點(diǎn)A隨之旋轉(zhuǎn)所形成的圖形叫圓,固定的端點(diǎn)O叫圓心,線段OA叫半徑。
由圓的意義可知:
圓上各點(diǎn)到定點(diǎn)(圓心O)的距離等于定長(zhǎng)的點(diǎn)都在圓上。
就是說(shuō):圓是到定點(diǎn)的距離等于定長(zhǎng)的點(diǎn)的集合,圓的內(nèi)部可以看作是到圓。心的距離小于半徑的點(diǎn)的集合。
圓的外部可以看作是到圓心的距離大于半徑的點(diǎn)的集合。連結(jié)圓上任意兩點(diǎn)的線段叫做弦,經(jīng)過(guò)圓心的弦叫直徑。圓上任意兩點(diǎn)間的部分叫圓弧,簡(jiǎn)稱弧。
圓的任意一條直徑的兩個(gè)端點(diǎn)分圓成兩條弧,每一條弧都叫半圓,大于半圓的弧叫優(yōu)弧;小于半圓的.弧叫劣弧。由弦及其所對(duì)的弧組成的圓形叫弓形。
圓心相同,半徑不相等的兩個(gè)圓叫同心圓。
能夠重合的兩個(gè)圓叫等圓。
同圓或等圓的半徑相等。
在同圓或等圓中,能夠互相重合的弧叫等弧。
二、過(guò)三點(diǎn)的圓
1、過(guò)三點(diǎn)的圓
過(guò)三點(diǎn)的圓的作法:利用中垂線找圓心
定理不在同一直線上的三個(gè)點(diǎn)確定一個(gè)圓。
經(jīng)過(guò)三角形各頂點(diǎn)的圓叫三角形的外接圓,外接圓的圓心叫外心,這個(gè)三角形叫圓的內(nèi)接三角形。
2、反證法
反證法的三個(gè)步驟:
、偌僭O(shè)命題的結(jié)論不成立;
②從這個(gè)假設(shè)出發(fā),經(jīng)過(guò)推理論證,得出矛盾;
、塾擅艿贸黾僭O(shè)不正確,從而肯定命題的結(jié)論正確。
例如:求證三角形中最多只有一個(gè)角是鈍角。
證明:設(shè)有兩個(gè)以上是鈍角
則兩個(gè)鈍角之和>180°
與三角形內(nèi)角和等于180°矛盾。
∴不可能有二個(gè)以上是鈍角。
即最多只能有一個(gè)是鈍角。
三、垂直于弦的直徑
圓是軸對(duì)稱圖形,經(jīng)過(guò)圓心的每一條直線都是它的對(duì)稱軸。
垂徑定理:垂直于弦的直徑平分這條弦,并且平分弦所對(duì)的兩條弧。
推理1:平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對(duì)兩條弧。
弦的垂直平分線經(jīng)過(guò)圓心,并且平分弦所對(duì)的兩條弧。
平分弦所對(duì)的一條弧的直徑,垂直平分弦,并且平分弦所對(duì)的另一個(gè)條弧。
推理2:圓兩條平行弦所夾的弧相等。
四、圓心角、弧、弦、弦心距之間的關(guān)系
圓是以圓心為對(duì)稱中心的中心對(duì)稱圖形。
實(shí)際上,圓繞圓心旋轉(zhuǎn)任意一個(gè)角度,都能夠與原來(lái)的圖形重合。
頂點(diǎn)是圓心的角叫圓心角,從圓心到弦的距離叫弦心距。
定理:在同圓或等圓中,相等的圓心角所對(duì)的弧相等,所對(duì)的弦相等,所對(duì)的弦心距相等。
推理:在同圓或等圓中,如果兩個(gè)圓心角、兩條弧、兩條弦或兩條弦的弦心距中,有一組量相等,那么它們所對(duì)應(yīng)的其余各組量都分別相等。
五、圓周角
頂點(diǎn)在圓上,并且兩邊都和圓相交的角叫圓周角。
推理1:同弧或等弧所對(duì)的圓周角相等;同圓或等圓中,相等的圓周角所對(duì)的弧也相等。
推理2:半圓(或直徑)所對(duì)的圓周角是直角;90°的圓周角所對(duì)的弦是直徑。
推理3:如果三角形一邊上的中線等于這邊的一半,那么這個(gè)三角形是直角三角形。
由于以上的定理、推理,所添加輔助線往往是添加能構(gòu)成直徑上的圓周角的輔助線。
為什么要學(xué)習(xí)數(shù)學(xué)
作為一門(mén)普及度極廣的學(xué)科,數(shù)學(xué)在人類文明的發(fā)展史上一直占據(jù)著重要的地位。雖然很多人可能會(huì)對(duì)數(shù)學(xué)產(chǎn)生排斥,認(rèn)為它枯燥無(wú)味,但事實(shí)上,數(shù)學(xué)是所有學(xué)科的基石之一,對(duì)我們?nèi)粘I钜约拔磥?lái)的職業(yè)發(fā)展有著重大影響。下面我將詳細(xì)闡述學(xué)習(xí)數(shù)學(xué)的重要性。
首先,數(shù)學(xué)可以幫助我們提高邏輯思維能力。數(shù)學(xué)的學(xué)科性質(zhì)使我們?cè)趯W(xué)習(xí)的過(guò)程中時(shí)時(shí)刻刻面臨著思考、推理、證明等諸多問(wèn)題,而這些問(wèn)題正是鍛煉我們邏輯思維的好機(jī)會(huì)。通過(guò)長(zhǎng)期的學(xué)習(xí)和練習(xí),我們的思維能力得到提升,可以更加清晰地分析問(wèn)題,更快速地找到正確的答案。這對(duì)我們?cè)诠ぷ骱蜕钪卸挤浅S袔椭,尤其是在解決復(fù)雜問(wèn)題時(shí)更能得心應(yīng)手。
其次,數(shù)學(xué)在現(xiàn)代科技中起著至關(guān)重要的作用。在計(jì)算機(jī)科學(xué)、物理學(xué)、經(jīng)濟(jì)學(xué)、工程學(xué)等領(lǐng)域,數(shù)學(xué)可以幫助我們建立模型、分析數(shù)據(jù)、預(yù)測(cè)趨勢(shì),并且可以在實(shí)際應(yīng)用中優(yōu)化和改進(jìn)。例如,在人工智能領(lǐng)域,深度學(xué)習(xí)技術(shù)所涉及的數(shù)學(xué)概念包括線性代數(shù)、微積分和概率論等,如果沒(méi)有深厚的數(shù)學(xué)基礎(chǔ),很難理解和應(yīng)用這些技術(shù)。同時(shí),在工程學(xué)領(lǐng)域,許多機(jī)械、電子、化工等產(chǎn)品的設(shè)計(jì)和制造過(guò)程,也需要運(yùn)用到數(shù)學(xué)知識(shí),因此學(xué)習(xí)數(shù)學(xué)可以使我們更好地參與到現(xiàn)代科技的發(fā)展中。
除此之外,數(shù)學(xué)也是一種普遍使用的語(yǔ)言,許多學(xué)科和領(lǐng)域都使用數(shù)學(xué)語(yǔ)言進(jìn)行表達(dá)和交流。例如,在自然科學(xué)領(lǐng)域,生物學(xué)、化學(xué)、物理學(xué)等學(xué)科都使用數(shù)學(xué)語(yǔ)言來(lái)描述自然世界的規(guī)律和現(xiàn)象。在社會(huì)科學(xué)和商科領(lǐng)域,經(jīng)濟(jì)學(xué)和金融學(xué)運(yùn)用的數(shù)學(xué)概念,如微積分、線性代數(shù)和統(tǒng)計(jì)學(xué)等,使得我們能夠更好地理解經(jīng)濟(jì)和財(cái)務(wù)數(shù)據(jù),并進(jìn)行決策。因此,學(xué)習(xí)數(shù)學(xué)可以讓我們更好地理解、溝通和交流各個(gè)領(lǐng)域的知識(shí)。
最后,學(xué)習(xí)數(shù)學(xué)也可以為我們的職業(yè)發(fā)展帶來(lái)廣泛的機(jī)遇和發(fā)展空間。在許多領(lǐng)域,數(shù)學(xué)專業(yè)的畢業(yè)生都有很廣泛的就業(yè)機(jī)會(huì),如金融界、數(shù)據(jù)科學(xué)、研究機(jī)構(gòu)、教育等。數(shù)學(xué)專業(yè)的人才,不只會(huì)提供理論支持,同時(shí)也能夠解決現(xiàn)實(shí)中具體的問(wèn)題,使其在各自領(lǐng)域脫穎而出。
怎樣快速提高數(shù)學(xué)成績(jī)?
一、查缺補(bǔ)漏,主攻薄弱
請(qǐng)制作“失分分析表”,包括“不會(huì)做的”和“不該丟分的”兩部分,分析模擬考試等試卷失分情況,在緊跟老師復(fù)習(xí)的基礎(chǔ)上,針對(duì)自己的薄弱環(huán)節(jié)重點(diǎn)彌補(bǔ)、改進(jìn)。
別一味沖刺難題。做題是對(duì)理論知識(shí)的進(jìn)一步鞏固與實(shí)檢,我們要在理解的基礎(chǔ)上加強(qiáng)練習(xí),以達(dá)到鞏固的目的,但不能一味追求難題偏題。
因?yàn)橹锌荚嚲碇杏?0%是比較靈活的題型,只有10%是真正的難題。30%那部分題目是我們能拿但容易失分的題目,我們要做到盡量多拿分,但如果我們一味求難求險(xiǎn),就會(huì)因?yàn)楹鲆暬A(chǔ)題型的夯實(shí)和鞏固而失掉這部分該得的分。在基礎(chǔ)掌握后,有條件的同學(xué)可再進(jìn)行一些難題怪題的攻關(guān),這樣的策略才更能保證效率。
二、反思錯(cuò)題
不要盲目找題做,陷入題海中,不要“就題論題”停留在“這題我會(huì)了”的低水平上。解題能力是在反思中提升的。懂、會(huì)、悟是數(shù)學(xué)水平的三個(gè)層次。簡(jiǎn)單說(shuō),聽(tīng)懂了,但不一定會(huì),更不意味著真正領(lǐng)悟了。
三、克服無(wú)謂失分
如何避免審題出錯(cuò)?
原因:看太快。
應(yīng)對(duì)策略:
1.默讀法;2.重點(diǎn)字詞圈點(diǎn)勾畫(huà)法;3.審圖法。
如何降低計(jì)算失誤?
表面原因是粗心,其實(shí)是計(jì)算能力不足。平時(shí)對(duì)計(jì)算不以為然,認(rèn)為“沒(méi)有技術(shù)含量”。事實(shí)上計(jì)算也有很多“聰明算法”,如:邊化簡(jiǎn)邊計(jì)算、寧加勿減、寧乘勿除、小數(shù)化分?jǐn)?shù)、找最小最短的設(shè)元、放縮法、湊整法、圖象法等等計(jì)算技巧。
應(yīng)對(duì)策略:
1.不要為了趕時(shí)間而跳步計(jì)算;
2.寧可筆算,少用口算,更不要再抱著計(jì)算器;
3.對(duì)平時(shí)易算錯(cuò)的題型,可以驗(yàn)算一遍。
四、關(guān)注幾個(gè)重點(diǎn)問(wèn)題
1.新定義題型、非常規(guī)題型、存在性問(wèn)題。
2.分析法—執(zhí)果索因,逆向思維,倒過(guò)來(lái)想,假設(shè)存在;不完全歸納法—根據(jù)例子,大膽猜想、努力驗(yàn)證。反例排除法、特殊圖形(特殊位置、極端值)探究法等。
提高數(shù)學(xué)成績(jī)常用方法有哪些
1、預(yù)習(xí)
預(yù)期常常由于 “沒(méi)時(shí)間,看不懂,不必要”等等原因被忽略。實(shí)際上預(yù)習(xí)是學(xué)習(xí)的必要過(guò)程,更是提高自學(xué)能力的好方法。
2、學(xué)會(huì)聽(tīng)課
聽(tīng)分析、聽(tīng)思路、聽(tīng)?wèi)?yīng)用,關(guān)鍵內(nèi)容一字不漏,注意記錄。
3、做好錯(cuò)題本
每個(gè)會(huì)學(xué)習(xí)的學(xué)生都會(huì)有錯(cuò)題本。調(diào)查發(fā)現(xiàn)那些沒(méi)有錯(cuò)題本,或者是只做不用的同學(xué),學(xué)習(xí)效果都不好。
4、用好課外書(shū)
正確認(rèn)識(shí)網(wǎng)絡(luò)課程和課外書(shū)籍,是副食,是幫助吸收的良藥。
5、注重?cái)?shù)學(xué)思維方法的培養(yǎng)
要注意數(shù)學(xué)思想和方法的指導(dǎo),站得高,才能看得遠(yuǎn)。
初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)7
一、基本知識(shí)
一、數(shù)與代數(shù)
A、數(shù)與式:
1、有理數(shù):
、僬麛(shù)→正整數(shù),0,負(fù)整數(shù);
、诜?jǐn)?shù)→正分?jǐn)?shù),負(fù)分?jǐn)?shù)
數(shù)軸:
、佼(huà)一條水平直線,在直線上取一點(diǎn)表示0(原點(diǎn)),選取某一長(zhǎng)度作為單位長(zhǎng)度,規(guī)定直線上向右的方向?yàn)檎较,就得到?shù)軸。
、谌魏我粋(gè)有理數(shù)都可以用數(shù)軸上的一個(gè)點(diǎn)來(lái)表示。
、廴绻麅蓚(gè)數(shù)只有符號(hào)不同,那么我們稱其中一個(gè)數(shù)為另外一個(gè)數(shù)的相反數(shù),也稱這兩個(gè)數(shù)互為相反數(shù)。在數(shù)軸上,表示互為相反數(shù)的兩個(gè)點(diǎn),位于原點(diǎn)的兩側(cè),并且與原點(diǎn)距離相等。
、軘(shù)軸上兩個(gè)點(diǎn)表示的數(shù),右邊的總比左邊的大。正數(shù)大于0,負(fù)數(shù)小于0,正數(shù)大于負(fù)數(shù)。
絕對(duì)值:
、僭跀(shù)軸上,一個(gè)數(shù)所對(duì)應(yīng)的點(diǎn)與原點(diǎn)的距離叫做該數(shù)的絕對(duì)值。
、谡龜(shù)的絕對(duì)值是他的本身、負(fù)數(shù)的絕對(duì)值是他的相反數(shù)、0的絕對(duì)值是0、兩個(gè)負(fù)數(shù)比較大小,絕對(duì)值大的反而小。
有理數(shù)的運(yùn)算:帶上符號(hào)進(jìn)行正常運(yùn)算。
加法:
、偻(hào)相加,取相同的符號(hào),把絕對(duì)值相加。
、诋愄(hào)相加,絕對(duì)值相等時(shí)和為0;絕對(duì)值不等時(shí),取絕對(duì)值較大的數(shù)的符號(hào),并用較大的絕對(duì)值減去較小的絕對(duì)值。
、垡粋(gè)數(shù)與0相加不變。
減法:減去一個(gè)數(shù),等于加上這個(gè)數(shù)的相反數(shù)。
乘法:
、賰蓴(shù)相乘,同號(hào)得正,異號(hào)得負(fù),絕對(duì)值相乘。
、谌魏螖(shù)與0相乘得0、
、鄢朔e為1的兩個(gè)有理數(shù)互為倒數(shù)。
除法:
、俪砸粋(gè)數(shù)等于乘以一個(gè)數(shù)的倒數(shù)。
、0不能作除數(shù)。
乘方:求N個(gè)相同因數(shù)A的積的運(yùn)算叫做乘方,乘方的結(jié)果叫冪,A叫底數(shù),N叫次數(shù)或指數(shù)。
混合順序:先算乘法,再算乘除,最后算加減,有括號(hào)要先算括號(hào)里的。
2、實(shí)數(shù)
無(wú)理數(shù)
無(wú)理數(shù):無(wú)限不循環(huán)小數(shù)叫無(wú)理數(shù),例如:π=…
平方根:
、偃绻粋(gè)正數(shù)X的平方等于A,那么這個(gè)正數(shù)X就叫做A的算術(shù)平方根。
、谌绻粋(gè)數(shù)X的平方等于A,那么這個(gè)數(shù)X就叫做A的平方根。
、垡粋(gè)正數(shù)有2個(gè)平方根;0的平方根為0;負(fù)數(shù)沒(méi)有平方根。
、芮笠粋(gè)數(shù)A的平方根運(yùn)算,叫做開(kāi)平方,其中A叫做被開(kāi)方數(shù)。
立方根:
、偃绻粋(gè)數(shù)X的立方等于A,那么這個(gè)數(shù)X就叫做A的立方根。
、谡龜(shù)的立方根是正數(shù)、0的立方根是0、負(fù)數(shù)的立方根是負(fù)數(shù)。
、矍笠粋(gè)數(shù)A的立方根的運(yùn)算叫開(kāi)立方,其中A叫做被開(kāi)方數(shù)。
實(shí)數(shù):
、賹(shí)數(shù)分有理數(shù)和無(wú)理數(shù)。
、谠趯(shí)數(shù)范圍內(nèi),相反數(shù),倒數(shù),絕對(duì)值的意義和有理數(shù)范圍內(nèi)的相反數(shù),倒數(shù),絕對(duì)值的意義完全一樣;
、勖恳粋(gè)實(shí)數(shù)都可以在數(shù)軸上的一個(gè)點(diǎn)來(lái)表示。
3、代數(shù)式
代數(shù)式:?jiǎn)为?dú)一個(gè)數(shù)或者一個(gè)字母也是代數(shù)式。
合并同類項(xiàng):
、偎帜赶嗤,并且相同字母的指數(shù)也相同的項(xiàng),叫做同類項(xiàng);②把同類項(xiàng)合并成一項(xiàng)就叫做合并同類項(xiàng)。
、墼诤喜⑼愴(xiàng)時(shí),我們把同類項(xiàng)的系數(shù)相加,字母和字母的指數(shù)不變。
4、整式與分式
整式:
、贁(shù)與字母的乘積的代數(shù)式叫單項(xiàng)式,幾個(gè)單項(xiàng)式的和叫多項(xiàng)式,單項(xiàng)式和多項(xiàng)式統(tǒng)稱整式。
、谝粋(gè)單項(xiàng)式中,所有字母的指數(shù)和叫做這個(gè)單項(xiàng)式的次數(shù)。
、垡粋(gè)多項(xiàng)式中,次數(shù)最高的項(xiàng)的次數(shù)叫做這個(gè)多項(xiàng)式的次數(shù)。
整式運(yùn)算:加減運(yùn)算時(shí),如果遇到括號(hào)先去括號(hào),再合并同類項(xiàng)。
冪的運(yùn)算:
A^M+A^N=A^(M+N)
(A^M)^N=A^(MN
。ˋ/B)^N=A^N/B^N
除法一樣。
整式的乘法:
、賳雾(xiàng)式與單項(xiàng)式相乘,把他們的系數(shù),相同字母的冪分別相乘,其余字母連同他的指數(shù)不變,作為積的因式。
、趩雾(xiàng)式與多項(xiàng)式相乘,就是根據(jù)分配律用單項(xiàng)式去乘多項(xiàng)式的每一項(xiàng),再把所得的積相加。
③多項(xiàng)式與多項(xiàng)式相乘,先用一個(gè)多項(xiàng)式的每一項(xiàng)乘另外一個(gè)多項(xiàng)式的每一項(xiàng),再把所得的積相加。
公式兩條:平方差公式:A^2—B^2=(A+B)(A—B);
完全平方公式:(A+B)^2=A^2+2AB+B^2;(A—B)^2=A^2—2AB+B^2、
整式的除法:
、賳雾(xiàng)式相除,把系數(shù),同底數(shù)冪分別相除后,作為商的因式;對(duì)于只在被除式里含有的字母,則連同他的指數(shù)一起作為商的一個(gè)因式。
②多項(xiàng)式除以單項(xiàng)式,先把這個(gè)多項(xiàng)式的每一項(xiàng)分別除以單項(xiàng)式,再把所得的商相加。
分解因式:把一個(gè)多項(xiàng)式化成幾個(gè)整式的積的形式,這種變化叫做把這個(gè)多項(xiàng)式分解因式。
方法:提公因式法、運(yùn)用公式法、分組分解法、十字相乘法。
分式:
、僬紸除以整式B,如果除式B中含有分母,那么這個(gè)就是分式,對(duì)于任何一個(gè)分式,分母不為0、
、诜质降姆肿优c分母同乘以或除以同一個(gè)不等于0的整式,分式的值不變。
分式的運(yùn)算:
乘法:把分子相乘的積作為積的分子,把分母相乘的積作為積的分母。
除法:除以一個(gè)分式等于乘以這個(gè)分式的倒數(shù)。
加減法:
①同分母分式相加減,分母不變,把分子相加減。
、诋惙帜傅姆质较韧ǚ,化為同分母的分式,再加減。
分式方程:
、俜帜钢泻形粗獢(shù)的方程叫分式方程。
、谑狗匠痰姆帜笧0的解稱為原方程的增根。
B、方程與不等式
1、方程與方程組
一元一次方程:
①在一個(gè)方程中,只含有一個(gè)未知數(shù),并且未知數(shù)的指數(shù)是1,這樣的方程叫一元一次方程。
、诘仁絻蛇呁瑫r(shí)加上或減去或乘以或除以(不為0)一個(gè)代數(shù)式,所得結(jié)果仍是等式。
解一元一次方程的步驟:去分母,移項(xiàng),合并同類項(xiàng),未知數(shù)系數(shù)化為1、
二元一次方程:含有兩個(gè)未知數(shù),并且所含未知數(shù)的項(xiàng)的次數(shù)都是1的`方程叫做二元一次方程。
二元一次方程組:兩個(gè)二元一次方程組成的方程組叫做二元一次方程組。
適合一個(gè)二元一次方程的一組未知數(shù)的值,叫做這個(gè)二元一次方程的一個(gè)解。
二元一次方程組中各個(gè)方程的公共解,叫做這個(gè)二元一次方程組的解。
解二元一次方程組的方法:代入消元法;加減消元法。
一元二次方程:只有一個(gè)未知數(shù),并且未知數(shù)的項(xiàng)的最高系數(shù)為2的方程:ax^2+bx+c=0;
1)一元二次方程的二次函數(shù)的關(guān)系
大家已經(jīng)學(xué)過(guò)二次函數(shù)(即拋物線)了,對(duì)他也有很深的了解,好像解法,在圖象中表示等等,其實(shí)一元二次方程也可以用二次函數(shù)來(lái)表示,其實(shí)一元二次方程也是二次函數(shù)的一個(gè)特殊情況,就是當(dāng)Y=0的時(shí)候就構(gòu)成了一元二次方程了。那如果在平面直角坐標(biāo)系中表示出來(lái),一元二次方程就是二次函數(shù)中,圖像與X軸的交點(diǎn)。也就是該方程的解了
2)一元二次方程的解法
大家知道,二次函數(shù)有頂點(diǎn)式(—b/2a,4ac—b^2/4a),這大家要記住,很重要,因?yàn)樵谏厦嬉呀?jīng)說(shuō)過(guò)了,一元二次方程也是二次函數(shù)的一部分,所以他也有自己的一個(gè)解法,利用他可以求出所有的一元一次方程的解
(1)配方法
利用配方,使方程變?yōu)橥耆椒焦,在用直接開(kāi)平方法去求出解
。2)分解因式法
提取公因式,套用公式法,和十字相乘法。在解一元二次方程的時(shí)候也一樣,利用這點(diǎn),把方程化為幾個(gè)乘積的形式去解
。3)公式法
這方法也可以是在解一元二次方程的萬(wàn)能方法了,方程的根X1={—b+√[b^2—4ac)]}/2a,X2={—b—√[b^2—4ac)]}/2a
3)解一元二次方程的步驟:
。1)配方法的步驟:
先把常數(shù)項(xiàng)移到方程的右邊,再把二次項(xiàng)的系數(shù)化為1,再同時(shí)加上1次項(xiàng)的系數(shù)的一半的平方,最后配成完全平方公式
。2)分解因式法的步驟:
把方程右邊化為0,然后看看是否能用提取公因式,公式法(這里指的是分解因式中的公式法)或十字相乘,如果可以,就可以化為乘積的形式
。3)公式法
就把一元二次方程的各系數(shù)分別代入,這里二次項(xiàng)的系數(shù)為a,一次項(xiàng)的系數(shù)為b,常數(shù)項(xiàng)的系數(shù)為c
4)韋達(dá)定理
利用韋達(dá)定理去了解,韋達(dá)定理就是在一元二次方程中,二根之和=—b/a,二根之積=c/a
也可以表示為x1+x2=—b/a,x1x2=c/a。利用韋達(dá)定理,可以求出一元二次方程中的各系數(shù),在題目中很常用
5)一元二次方程根的情況
利用根的判別式去了解,根的判別式可在書(shū)面上可以寫(xiě)為“△”,讀作“diao ta”,而△=b2—4ac,這里可以分為3種情況:
I當(dāng)△>0時(shí),一元二次方程有2個(gè)不相等的實(shí)數(shù)根;
II當(dāng)△=0時(shí),一元二次方程有2個(gè)相同的實(shí)數(shù)根;
III當(dāng)△B,則A+C>B+C;
在不等式中,如果減去同一個(gè)數(shù)(或加上一個(gè)負(fù)數(shù)),不等式符號(hào)不改向;
例如:如果A>B,則A—C>B—C;
在不等式中,如果乘以同一個(gè)正數(shù),不等式符號(hào)不改向;
例如:如果A>B,則A*C>B*C(C>0);
在不等式中,如果乘以同一個(gè)負(fù)數(shù),不等號(hào)改向;
例如:如果A>B,則A*C
如果不等式乘以0,那么不等號(hào)改為等號(hào);
所以在題目中,要求出乘以的數(shù),那么就要看看題中是否出現(xiàn)一元一次不等式,如果出現(xiàn)了,那么不等式乘的數(shù)就不等于0,否則不等式不成立;
3、函數(shù)
變量:因變量Y,自變量X。
在用圖像表示變量之間的關(guān)系時(shí),通常用水平方向的數(shù)軸上的點(diǎn)自變量,用豎直方向的數(shù)軸上的點(diǎn)表示因變量。
一次函數(shù):
、偃魞蓚(gè)變量X,Y間的關(guān)系式可以表示成Y=KX+B(B為常數(shù),K不等于0)的形式,則稱Y是X的一次函數(shù)。
、诋(dāng)B=0時(shí),稱Y是X的正比例函數(shù)。
一次函數(shù)的圖像:
、侔岩粋(gè)函數(shù)的自變量X與對(duì)應(yīng)的因變量Y的值分別作為點(diǎn)的橫坐標(biāo)與縱坐標(biāo),在直角坐標(biāo)系內(nèi)描出它的對(duì)應(yīng)點(diǎn),所有這些點(diǎn)組成的圖形叫做該函數(shù)的圖像。
、谡壤瘮(shù)Y=KX的圖像是經(jīng)過(guò)原點(diǎn)的一條直線。
、墼谝淮魏瘮(shù)中,當(dāng)K〈0,B〈O時(shí),則經(jīng)234象限;
當(dāng)K〈0,B〉0時(shí),則經(jīng)124象限;
當(dāng)K〉0,B〈0時(shí),則經(jīng)134象限;
當(dāng)K〉0,B〉0時(shí),則經(jīng)123象限。
、墚(dāng)K〉0時(shí),Y的值隨X值的增大而增大,當(dāng)X〈0時(shí),Y的值隨X值的增大而減少。
二空間與圖形
A、圖形的認(rèn)識(shí)
1、點(diǎn),線,面
點(diǎn),線,面:
、賵D形是由點(diǎn),線,面構(gòu)成的。
、诿媾c面相交得線,線與線相交得點(diǎn)。
、埸c(diǎn)動(dòng)成線,線動(dòng)成面,面動(dòng)成體。
展開(kāi)與折疊:
、僭诶庵,任何相鄰的兩個(gè)面的交線叫做棱,側(cè)棱是相鄰兩個(gè)側(cè)面的交線,棱柱的所有側(cè)棱長(zhǎng)相等,棱柱的上下底面的形狀相同,側(cè)面的形狀都是長(zhǎng)方體。
、贜棱柱就是底面圖形有N條邊的棱柱,上下底面就是N邊形。
截一個(gè)幾何體:用一個(gè)平面去截一個(gè)圖形,截出的面叫做截面。
視圖:主視圖,左視圖,俯視圖。
多邊形:他們是由一些不在同一條直線上的線段依次首尾相連組成的封閉圖形。
弧、扇形:
、儆梢粭l弧和經(jīng)過(guò)這條弧的端點(diǎn)的兩條半徑所組成的圖形叫扇形。
、趫A可以分割成若干個(gè)扇形。
2、角
線:
、倬段有兩個(gè)端點(diǎn)。
、趯⒕段向一個(gè)方向無(wú)限延長(zhǎng)就形成了射線。射線只有一個(gè)端點(diǎn)。
、蹖⒕段的兩端無(wú)限延長(zhǎng)就形成了直線。直線沒(méi)有端點(diǎn)。
、芙(jīng)過(guò)兩點(diǎn)有且只有一條直線。
比較長(zhǎng)短:
、賰牲c(diǎn)之間的所有連線中,線段最短。兩點(diǎn)之間直線最短。
、趦牲c(diǎn)之間線段的長(zhǎng)度,叫做這兩點(diǎn)之間的距離。
角的度量與表示:
、俳怯蓛蓷l具有公共端點(diǎn)的射線組成,兩條射線的公共端點(diǎn)是這個(gè)角的頂點(diǎn)。
、谝欢鹊1/60是一分,一分的1/60是一秒。即:60分為1度,60秒為1分。
角的比較:
、俳且部梢钥闯墒怯梢粭l射線繞著他的端點(diǎn)旋轉(zhuǎn)而成的。
、谝粭l射線繞著他的端點(diǎn)旋轉(zhuǎn),當(dāng)終邊和始邊成一條直線時(shí),所成的角叫做平角,180、始邊繼續(xù)旋轉(zhuǎn),當(dāng)他又和始邊重合時(shí),所成的角叫做周角,360、
、蹚囊粋(gè)角的頂點(diǎn)引出的一條射線,把這個(gè)角分成兩個(gè)相等的角,這條射線叫做這個(gè)角的平分線。
平行:
①同一平面內(nèi),不相交的兩條直線叫做平行線。
、诮(jīng)過(guò)直線外一點(diǎn),有且只有一條直線與這條直線平行。
、廴绻麅蓷l直線都與第3條直線平行,那么這兩條直線互相平行。
垂直:
、偃绻麅蓷l直線相交成直角,那么這兩條直線互相垂直。
、诨ハ啻怪钡膬蓷l直線的交點(diǎn)叫做垂足。
、燮矫鎯(nèi),過(guò)一點(diǎn)有且只有一條直線與已知直線垂直。
垂直平分線:垂直和平分一條線段的直線叫垂直平分線。
垂直平分線垂直平分的一定是線段,不能是射線或直線,這根據(jù)射線和直線可以無(wú)限延長(zhǎng)有關(guān),再看后面的,垂直平分線是一條直線,所以在畫(huà)垂直平分線的時(shí)候,確定了2點(diǎn)后(關(guān)于畫(huà)法,后面會(huì)講)一定要把線段穿出2點(diǎn)。
垂直平分線定理:
性質(zhì)定理:在垂直平分線上的點(diǎn)到該線段兩端點(diǎn)的距離相等;
判定定理:到線段2端點(diǎn)距離相等的點(diǎn)在這線段的垂直平分線上;
角平分線:把一個(gè)角平分的射線叫該角的角平分線。
定義中有幾個(gè)要點(diǎn)要注意一下的:角的角平分線是一條射線,不是線段也不是直線,很多時(shí),在題目中會(huì)出現(xiàn)直線,這是角平分線的對(duì)稱軸才會(huì)用直線的,這也涉及到軌跡的問(wèn)題,一個(gè)角的角平分線就是到角兩邊距離相等的點(diǎn)的集合。
性質(zhì)定理:角平分線上的點(diǎn)到該角兩邊的距離相等;
判定定理:到角的兩邊距離相等的點(diǎn)在該角的角平分線上;
正方形:一組鄰邊相等的矩形是正方形
性質(zhì):正方形具有平行四邊形、菱形、矩形的一切性質(zhì)
判定:
1、對(duì)角線相等的菱形
2、鄰邊相等的矩形
二、基本定理
1、過(guò)兩點(diǎn)有且只有一條直線
2、兩點(diǎn)之間線段最短
3、同角或等角的補(bǔ)角相等——補(bǔ)角=180—角度。
4、同角或等角的余角相等——余角=90—角度。
5、過(guò)一點(diǎn)有且只有一條直線和已知直線垂直
6、直線外一點(diǎn)與直線上各點(diǎn)連接的所有線段中,垂線段最短
7、平行公理:經(jīng)過(guò)直線外一點(diǎn),有且只有一條直線與這條直線平行
8、如果兩條直線都和第三條直線平行,這兩條直線也互相平行
9、同位角相等,兩直線平行
10、內(nèi)錯(cuò)角相等,兩直線平行
11、同旁內(nèi)角互補(bǔ),兩直線平行
12、兩直線平行,同位角相等
13、兩直線平行,內(nèi)錯(cuò)角相等
14、兩直線平行,同旁內(nèi)角互補(bǔ)
15、定理:三角形兩邊的和大于第三邊
16、推論:三角形兩邊的差小于第三邊
17、三角形內(nèi)角和定理:三角形三個(gè)內(nèi)角的和等于180°
18、推論1:直角三角形的兩個(gè)銳角互余
19、推論2:三角形的一個(gè)外角等于和它不相鄰的兩個(gè)內(nèi)角的和
20、推論3:三角形的一個(gè)外角大于任何一個(gè)和它不相鄰的內(nèi)角
21、全等三角形的對(duì)應(yīng)邊、對(duì)應(yīng)角相等
22、邊角邊公理(SAS):有兩邊和它們的夾角對(duì)應(yīng)相等的兩個(gè)三角形全等
23、角邊角公理(ASA):有兩角和它們的夾邊對(duì)應(yīng)相等的兩個(gè)三角形全等
24、推論(AAS):有兩角和其中一角的對(duì)邊對(duì)應(yīng)相等的兩個(gè)三角形全等
25、邊邊邊公理(SSS):有三邊對(duì)應(yīng)相等的兩個(gè)三角形全等
26、斜邊、直角邊公理(HL):有斜邊和一條直角邊對(duì)應(yīng)相等的兩個(gè)直角三角形全等
27、定理1:在角的平分線上的點(diǎn)到這個(gè)角的兩邊的距離相等
28、定理2:到一個(gè)角的兩邊的距離相同的點(diǎn),在這個(gè)角的平分線上
29、角的平分線是到角的兩邊距離相等的所有點(diǎn)的集合
30、推論1:等腰三角形頂角的平分線平分底邊并且垂直于底邊
31、推論2:等腰三角形的頂角平分線、底邊上的中線和底邊上的高互相重合,即三線合一;
32、推論3:等邊三角形的各角都相等,并且每一個(gè)角都等于60°
33、等腰三角形的判定定理:如果一個(gè)三角形有兩個(gè)角相等,那么這兩個(gè)角所對(duì)的邊也相等(等角對(duì)等邊)
34、等腰三角形的性質(zhì)定理:等腰三角形的兩個(gè)底角相等(即等邊對(duì)等角)
35、推論1:三個(gè)角都相等的三角形是等邊三角形
36、推論:有一個(gè)角等于60°的等腰三角形是等邊三角形
37、在直角三角形中,如果一個(gè)銳角等于30°那么它所對(duì)的直角邊等于斜邊的一半
38、直角三角形斜邊上的中線等于斜邊上的一半
39、定理:線段垂直平分線上的點(diǎn)和這條線段兩個(gè)端點(diǎn)的距離相等
40、逆定理:和一條線段兩個(gè)端點(diǎn)距離相等的點(diǎn),在這條線段的垂直平分線上
41、線段的垂直平分線可看作和線段兩端點(diǎn)距離相等的所有點(diǎn)的集合
42、定理1:關(guān)于某條直線對(duì)稱的兩個(gè)圖形是全等形
43、定理:如果兩個(gè)圖形關(guān)于某直線對(duì)稱,那么對(duì)稱軸是對(duì)應(yīng)點(diǎn)連線的垂直平分線
44、定理3:兩個(gè)圖形關(guān)于某直線對(duì)稱,如果它們的對(duì)應(yīng)線段或延長(zhǎng)線相交,那么交點(diǎn)在對(duì)稱軸上
45、逆定理:如果兩個(gè)圖形的對(duì)應(yīng)點(diǎn)連線被同一條直線垂直平分,那么這兩個(gè)圖形關(guān)于這條直線對(duì)稱
46、勾股定理:直角三角形兩直角邊a、b的平方和、等于斜邊c的平方,即a2+b2=c2
47、勾股定理的逆定理:如果三角形的三邊長(zhǎng)a、b、c有關(guān)系a2+b2=c2,那么這個(gè)三角形是直角三角形
48、定理:四邊形的內(nèi)角和等于360°
49、四邊形的外角和等于360°
50、多邊形內(nèi)角和定理:n邊形的內(nèi)角的和等于(n—2)×180°
51、推論:任意多邊的外角和等于360°
52、平行四邊形性質(zhì)定理1:平行四邊形的對(duì)角相等
53、平行四邊形性質(zhì)定理2:行四邊形的對(duì)邊相等
54、推論:夾在兩條平行線間的平行線段相等
55、平行四邊形性質(zhì)定理3:平行四邊形的對(duì)角線互相平分
56、平行四邊形判定定理1:兩組對(duì)角分別相等的四邊形是平行四邊形
57、平行四邊形判定定理2:兩組對(duì)邊分別相等的四邊形是平行四邊形
58、平行四邊形判定定理3:對(duì)角線互相平分的四邊形是平行四邊形
59、平行四邊形判定定理4:一組對(duì)邊平行相等的四邊形是平行四邊形
60、矩形性質(zhì)定理1:矩形的四個(gè)角都是直角
61、矩形性質(zhì)定理2:矩形的對(duì)角線相等
62、矩形判定定理1:有三個(gè)角是直角的四邊形是矩形
63、矩形判定定理2:對(duì)角線相等的平行四邊形是矩形
64、菱形性質(zhì)定理1:菱形的四條邊都相等
65、菱形性質(zhì)定理2:菱形的對(duì)角線互相垂直,并且每一條對(duì)角線平分一組對(duì)角
66、菱形面積=對(duì)角線乘積的一半,即S=(a×b)÷2
67、菱形判定定理1:四邊都相等的四邊形是菱形
68、菱形判定定理2:對(duì)角線互相垂直的平行四邊形是菱形
69、正方形性質(zhì)定理1:正方形的四個(gè)角都是直角,四條邊都相等
70、正方形性質(zhì)定理2:正方形的兩條對(duì)角線相等,并且互相垂直平分,每條對(duì)角線平分一組對(duì)角
71、定理1:關(guān)于中心對(duì)稱的兩個(gè)圖形是全等的
72、定理2:關(guān)于中心對(duì)稱的兩個(gè)圖形,對(duì)稱點(diǎn)連線都經(jīng)過(guò)對(duì)稱中心,并且被對(duì)稱中心平分
73、逆定理:如果兩個(gè)圖形的對(duì)應(yīng)點(diǎn)連線都經(jīng)過(guò)某一點(diǎn),并且被這一點(diǎn)平分,那么這兩個(gè)圖形關(guān)于這一點(diǎn)對(duì)稱
74、等腰梯形性質(zhì)定理:等腰梯形在同一底上的兩個(gè)角相等
75、等腰梯形的兩條對(duì)角線相等
76、等腰梯形判定定理:在同一底上的兩個(gè)角相等的梯形是等腰梯形
77、對(duì)角線相等的梯形是等腰梯形
78、平行線等分線段定理:如果一組平行線在一條直線上截得的線段相等,那么在其他直線上截得的線段也相等
79、推論1:經(jīng)過(guò)梯形一腰的中點(diǎn)與底平行的直線,必平分另一腰
80、推論2:經(jīng)過(guò)三角形一邊的中點(diǎn)與另一邊平行的直線,必平分第三邊
81、三角形中位線定理:三角形的中位線平行于第三邊,并且等于它的一半
82、梯形中位線定理:梯形的中位線平行于兩底,并且等于兩底和的一半L=(a+b)÷2,S=L×h
83、(1)比例的基本性質(zhì):如果a:b=c:d,那么ad=bc,ad=bc,那么a:b=c:d
84、(2)合比性質(zhì):如果a/b=c/d,那么(a±b)/b=(c±d)/d
85、(3)等比性質(zhì):如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b
86、平行線分線段成比例定理:三條平行線截兩條直線,所得的對(duì)應(yīng)線段成比例
87、推論:平行于三角形一邊的直線截其他兩邊(或兩邊的延長(zhǎng)線),所得的對(duì)應(yīng)線段成比例
88、定理:如果一條直線截三角形的兩邊(或兩邊的延長(zhǎng)線)所得的對(duì)應(yīng)線段成比例,那么這條直線平行于三角形的第三邊
89、平行于三角形的一邊,并且和其他兩邊相交的直線,所截得的三角形的三邊與原三角形三邊對(duì)應(yīng)成比例
90、定理:平行于三角形一邊的直線和其他兩邊(或兩邊的延長(zhǎng)線)相交,所構(gòu)成的三角形與原三角形相似
91、相似三角形判定定理1:兩角對(duì)應(yīng)相等,兩三角形相似(ASA)
92、直角三角形被斜邊上的高分成的兩個(gè)直角三角形和原三角形相似
93、判定定理2:兩邊對(duì)應(yīng)成比例且?jiàn)A角相等,兩三角形相似(SAS)
94、判定定理3:三邊對(duì)應(yīng)成比例,兩三角形相似(SSS)
95、定理:如果一個(gè)直角三角形的斜邊和一條直角邊與另一個(gè)直角三角形的斜邊和一條直角邊對(duì)應(yīng)成比例,那么這兩個(gè)直角三角形相似(HL)
96、性質(zhì)定理1:相似三角形對(duì)應(yīng)高的比,對(duì)應(yīng)中線的比與對(duì)應(yīng)角平分線的比都等于相似比
97、性質(zhì)定理2:相似三角形周長(zhǎng)的比等于相似比
98、性質(zhì)定理3:相似三角形面積的比等于相似比的平方
99、任意銳角的正弦值等于它的余角的余弦值,任意銳角的余弦值等于它的余角的正弦值sin(a)=cos(90—a),cos(a)=sin(90—a)(a<90)
100、任意銳角的正切值等于它的余角的余切值,任意銳角的余切值等于它的余角的正切值tan(a)=cot(90—a),cot(a)=tan(90—a)
101、圓是定點(diǎn)的距離等于定長(zhǎng)的點(diǎn)的集合
102、圓的內(nèi)部可以看作是圓心的距離小于半徑的點(diǎn)的集合
103、圓的外部可以看作是圓心的距離大于半徑的點(diǎn)的集合
104、同圓或等圓的半徑相等
105、到定點(diǎn)的距離等于定長(zhǎng)的點(diǎn)的軌跡,是以定點(diǎn)為圓心,定長(zhǎng)為半徑的圓
106、和已知線段兩個(gè)端點(diǎn)的距離相等的點(diǎn)的軌跡,是著條線段的垂直平分線
107、到已知角的兩邊距離相等的點(diǎn)的軌跡,是這個(gè)角的平分線
108、到兩條平行線距離相等的點(diǎn)的軌跡,是和這兩條平行線平行且距離相等的一條直線
109、定理:不在同一直線上的三點(diǎn)確定一個(gè)圓。
110、垂徑定理:垂直于弦的直徑平分這條弦并且平分弦所對(duì)的兩條弧
111、推論1
、倨椒窒遥ú皇侵睆剑┑闹睆酱怪庇谙,并且平分弦所對(duì)的兩條弧
、谙业拇怪逼椒志經(jīng)過(guò)圓心,并且平分弦所對(duì)的兩條。ㄖ睆剑
、燮椒窒宜鶎(duì)的一條弧的直徑,垂直平分弦,并且平分弦所對(duì)的另一條弧
112、推論2
圓的兩條平行弦所夾的弧相等
113、圓是以圓心為對(duì)稱中心的中心對(duì)稱圖形
114、定理
在同圓或等圓中,相等的圓心角所對(duì)的弧相等,所對(duì)的弦相等,所對(duì)的弦的弦心距相等
115、推論
在同圓或等圓中,如果兩個(gè)圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相等那么它們所對(duì)應(yīng)的其余各組量都相等
116、定理
一條弧所對(duì)的圓周角等于它所對(duì)的圓心角的一半
117、推論1
同弧或等弧所對(duì)的圓周角相等;同圓或等圓中,相等的圓周角所對(duì)的弧也相等
118、推論2
半圓(或直徑)所對(duì)的圓周角是直角;90°的圓周角所對(duì)的弦是直徑
119、推論3
如果三角形一邊上的中線等于這邊的一半,那么這個(gè)三角形是直角三角形
120、定理
圓的內(nèi)接四邊形的對(duì)角互補(bǔ),并且任何一個(gè)外角都等于它的內(nèi)對(duì)角
121、①直線L和⊙O相交0<=d<r
、谥本L和⊙O相切d=r
、壑本L和⊙O相離d>r
122、切線的判定定理
經(jīng)過(guò)半徑的外端并且垂直于這條半徑的直線是圓的切線
123、切線的性質(zhì)定理
圓的切線垂直于經(jīng)過(guò)切點(diǎn)的半徑
124、推論1
經(jīng)過(guò)圓心且垂直于切線的直線必經(jīng)過(guò)切點(diǎn)
125、推論2
經(jīng)過(guò)切點(diǎn)且垂直于切線的直線必經(jīng)過(guò)圓心
126、切線長(zhǎng)定理
從圓外一點(diǎn)引圓的兩條切線相交與一點(diǎn),它們的切線長(zhǎng)相等,圓心和這一點(diǎn)的連線平分兩條切線的夾角
127、圓的外切四邊形的兩組對(duì)邊的和相等
128、弦切角定理
弦切角等于它所夾的弧對(duì)的圓周角?
129、推論
如果兩個(gè)弦切角所夾的弧相等,那么這兩個(gè)弦切角也相等
130、相交弦定理
圓內(nèi)的兩條相交弦,被交點(diǎn)分成的兩條線段長(zhǎng)的積相等
131、推論
如果弦與直徑垂直相交,那么弦的一半是它分直徑所成的兩條線段的比例中項(xiàng)
132、切割線定理
從圓外一點(diǎn)引圓的切線和割線,切線長(zhǎng)是這點(diǎn)到割線與圓交點(diǎn)的兩條線段長(zhǎng)的比例中項(xiàng)?
133、推論
從圓外一點(diǎn)引圓的兩條割線,這一點(diǎn)到每條
割線與圓的交點(diǎn)的兩條線段長(zhǎng)的積相等
134、如果兩個(gè)圓相切,那么切點(diǎn)一定在連心線上
135、①兩圓外離d>R+r
、趦蓤A外切d=R+r
、蹆蓤A相交R—r<d<R+r(R>r)
、軆蓤A內(nèi)切d=R—r(R>r)
⑤兩圓內(nèi)含d<R—r(R>r)
136、定理
相交兩圓的連心線垂直平分兩圓的公共弦
137、定理
把圓平均分成n(n≥3):
、乓来芜B結(jié)各分點(diǎn)所得的多邊形是這個(gè)圓的內(nèi)接正n邊形
、平(jīng)過(guò)各分點(diǎn)作圓的切線,以相鄰切線的交點(diǎn)為頂點(diǎn)的多邊形是這個(gè)圓的外切正n邊形
138、定理
任何正多邊形都有一個(gè)外接圓和一個(gè)內(nèi)切圓,這兩個(gè)圓是同心圓
139、正n邊形的每個(gè)內(nèi)角都等于(n—2)×180°/n
140、定理
正n邊形的半徑和邊心距把正n邊形分成2n個(gè)全等的直角三角形
141、正n邊形的面積Sn=pn*rn/2,p表示正n邊形的周長(zhǎng)
142、正三角形面積√3a^2/4,a表示邊長(zhǎng)
143、如果在一個(gè)頂點(diǎn)周?chē)衚個(gè)正n邊形的角,由于這些角的和應(yīng)為360°,因此k×(n—2)180°/n=360°化為(n—2)(k—2)=4
144、弧長(zhǎng)計(jì)算公式:L=n兀R/180——》L=nR
145、扇形面積公式:S扇形=n兀R^2/360=LR/2
146、內(nèi)公切線長(zhǎng)=d—(R—r),外公切線長(zhǎng)=d—(R+r)
初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)8
1.相似三角形定義:
對(duì)應(yīng)角相等,對(duì)應(yīng)邊成比例的三角形,叫做相似三角形。
2.相似三角形的表示方法:用符號(hào)"∽"表示,讀作"相似于"。
3.相似三角形的相似比:
相似三角形的對(duì)應(yīng)邊的比叫做相似比。
4.相似三角形的預(yù)備定理:
平行于三角形一邊的直線和其他兩邊(或兩邊的延長(zhǎng)線)相交,所截成的三角形與原三角形相似。
從表中可以看出只要將全等三角形判定定理中的"對(duì)應(yīng)邊相等"的條件改為"對(duì)應(yīng)邊
成比例"就可得到相似三角形的判定定理,這就是我們數(shù)學(xué)中的用類比的方法,在舊知識(shí)的基礎(chǔ)上找出新知識(shí)并從中探究新知識(shí)掌握的方法。
6.直角三角形相似:
(1)直角三角形被斜邊上的高分成兩個(gè)直角三角形和原三角形相似。
(2)如果一個(gè)直角三角形的.斜邊和一條直角邊與另一個(gè)直角三角形的斜邊和一條直角邊對(duì)應(yīng)成比例,那么這兩個(gè)直角三角形相似。
7.相似三角形的性質(zhì)定理:
(1)相似三角形的對(duì)應(yīng)角相等。
(2)相似三角形的對(duì)應(yīng)邊成比例。
(3)相似三角形的對(duì)應(yīng)高線的比,對(duì)應(yīng)中線的比和對(duì)應(yīng)角平分線的比都等于相似比。
(4)相似三角形的周長(zhǎng)比等于相似比。
(5)相似三角形的面積比等于相似比的平方。
8. 相似三角形的傳遞性
如果△ABC∽△A1B1C1,△A1B1C1∽△A2B2C2,那么△ABC∽A2B2C2
初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)9
初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié):中位線
知識(shí)要點(diǎn):梯形的中位線平行于兩底,并且等于兩底和的一半。
1.中位線概念
(1)三角形中位線定義:連接三角形兩邊中點(diǎn)的線段叫做三角形的中位線。
(2)梯形中位線定義:連結(jié)梯形兩腰中點(diǎn)的線段叫做梯形的中位線。
注意:
(1)要把三角形的中位線與三角形的中線區(qū)分開(kāi)。三角形中線是連結(jié)一頂點(diǎn)和它對(duì)邊的中點(diǎn),而三角形中位線是連結(jié)三角形兩邊中點(diǎn)的線段。
(2)梯形的中位線是連結(jié)兩腰中點(diǎn)的線段而不是連結(jié)兩底中點(diǎn)的線段。
(3)兩個(gè)中位線定義間的聯(lián)系:可以把三角形看成是上底為零時(shí)的梯形,這時(shí)梯形的中位線就變成三角形的中位線。
2.中位線定理
(1)三角形中位線定理:三角形的中位線平行于第三邊并且等于它的一半.
三角形兩邊中點(diǎn)的連線(中位線)平行于第BC邊,且等于第三邊的一半。
知識(shí)要領(lǐng)總結(jié):三角形的中位線所構(gòu)成的小三角形(中點(diǎn)三角形)面積是原三角形面積的四分之一。
初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié):平面直角坐標(biāo)系
下面是對(duì)平面直角坐標(biāo)系的內(nèi)容學(xué)習(xí),希望同學(xué)們很好的掌握下面的內(nèi)容。
平面直角坐標(biāo)系
平面直角坐標(biāo)系:在平面內(nèi)畫(huà)兩條互相垂直、原點(diǎn)重合的數(shù)軸,組成平面直角坐標(biāo)系。
水平的數(shù)軸稱為x軸或橫軸,豎直的數(shù)軸稱為y軸或縱軸,兩坐標(biāo)軸的交點(diǎn)為平面直角坐標(biāo)系的原點(diǎn)。
平面直角坐標(biāo)系的要素:①在同一平面②兩條數(shù)軸③互相垂直④原點(diǎn)重合
三個(gè)規(guī)定:
①正方向的規(guī)定橫軸取向右為正方向,縱軸取向上為正方向
②單位長(zhǎng)度的規(guī)定;一般情況,橫軸、縱軸單位長(zhǎng)度相同;實(shí)際有時(shí)也可不同,但同一數(shù)軸上必須相同。
③象限的規(guī)定:右上為第一象限、左上為第二象限、左下為第三象限、右下為第四象限。
相信上面對(duì)平面直角坐標(biāo)系知識(shí)的講解學(xué)習(xí),同學(xué)們已經(jīng)能很好的掌握了吧,希望同學(xué)們都能考試成功。
初中數(shù)學(xué)知識(shí)點(diǎn):平面直角坐標(biāo)系的構(gòu)成
對(duì)于平面直角坐標(biāo)系的'構(gòu)成內(nèi)容,下面我們一起來(lái)學(xué)習(xí)哦。
平面直角坐標(biāo)系的構(gòu)成
在同一個(gè)平面上互相垂直且有公共原點(diǎn)的兩條數(shù)軸構(gòu)成平面直角坐標(biāo)系,簡(jiǎn)稱為直角坐標(biāo)系。通常,兩條數(shù)軸分別置于水平位置與鉛直位置,取向右與向上的方向分別為兩條數(shù)軸的正方向。水平的數(shù)軸叫做X軸或橫軸,鉛直的數(shù)軸叫做Y軸或縱軸,X軸或Y軸統(tǒng)稱為坐標(biāo)軸,它們的公共原點(diǎn)O稱為直角坐標(biāo)系的原點(diǎn)。
通過(guò)上面對(duì)平面直角坐標(biāo)系的構(gòu)成知識(shí)的講解學(xué)習(xí),希望同學(xué)們對(duì)上面的內(nèi)容都能很好的掌握,同學(xué)們認(rèn)真學(xué)習(xí)吧。
初中數(shù)學(xué)知識(shí)點(diǎn):點(diǎn)的坐標(biāo)的性質(zhì)
下面是對(duì)數(shù)學(xué)中點(diǎn)的坐標(biāo)的性質(zhì)知識(shí)學(xué)習(xí),同學(xué)們認(rèn)真看看哦。
點(diǎn)的坐標(biāo)的性質(zhì)
建立了平面直角坐標(biāo)系后,對(duì)于坐標(biāo)系平面內(nèi)的任何一點(diǎn),我們可以確定它的坐標(biāo)。反過(guò)來(lái),對(duì)于任何一個(gè)坐標(biāo),我們可以在坐標(biāo)平面內(nèi)確定它所表示的一個(gè)點(diǎn)。
對(duì)于平面內(nèi)任意一點(diǎn)C,過(guò)點(diǎn)C分別向X軸、Y軸作垂線,垂足在X軸、Y軸上的對(duì)應(yīng)點(diǎn)a,b分別叫做點(diǎn)C的橫坐標(biāo)、縱坐標(biāo),有序?qū)崝?shù)對(duì)(a,b)叫做點(diǎn)C的坐標(biāo)。
一個(gè)點(diǎn)在不同的象限或坐標(biāo)軸上,點(diǎn)的坐標(biāo)不一樣。
希望上面對(duì)點(diǎn)的坐標(biāo)的性質(zhì)知識(shí)講解學(xué)習(xí),同學(xué)們都能很好的掌握,相信同學(xué)們會(huì)在考試中取得優(yōu)異成績(jī)的。
初中數(shù)學(xué)知識(shí)點(diǎn):因式分解的一般步驟
關(guān)于數(shù)學(xué)中因式分解的一般步驟內(nèi)容學(xué)習(xí),我們做下面的知識(shí)講解。
因式分解的一般步驟
如果多項(xiàng)式有公因式就先提公因式,沒(méi)有公因式的多項(xiàng)式就考慮運(yùn)用公式法;若是四項(xiàng)或四項(xiàng)以上的多項(xiàng)式,
通常采用分組分解法,最后運(yùn)用十字相乘法分解因式。因此,可以概括為:“一提”、“二套”、“三分組”、“四十字”。
注意:因式分解一定要分解到每一個(gè)因式都不能再分解為止,否則就是不完全的因式分解,若題目沒(méi)有明確指出在哪個(gè)范圍內(nèi)因式分解,應(yīng)該是指在有理數(shù)范圍內(nèi)因式分解,因此分解因式的結(jié)果,必須是幾個(gè)整式的積的形式。
相信上面對(duì)因式分解的一般步驟知識(shí)的內(nèi)容講解學(xué)習(xí),同學(xué)們已經(jīng)能很好的掌握了吧,希望同學(xué)們會(huì)考出好成績(jī)。
初中數(shù)學(xué)知識(shí)點(diǎn):因式分解
下面是對(duì)數(shù)學(xué)中因式分解內(nèi)容的知識(shí)講解,希望同學(xué)們認(rèn)真學(xué)習(xí)。
因式分解
因式分解定義:把一個(gè)多項(xiàng)式化成幾個(gè)整式的積的形式的變形叫把這個(gè)多項(xiàng)式因式分解。
因式分解要素:①結(jié)果必須是整式②結(jié)果必須是積的形式③結(jié)果是等式④
因式分解與整式乘法的關(guān)系:m(a+b+c)
公因式:一個(gè)多項(xiàng)式每項(xiàng)都含有的公共的因式,叫做這個(gè)多項(xiàng)式各項(xiàng)的公因式。
公因式確定方法:①系數(shù)是整數(shù)時(shí)取各項(xiàng)最大公約數(shù)。②相同字母取最低次冪③系數(shù)最大公約數(shù)與相同字母取最低次冪的積就是這個(gè)多項(xiàng)式各項(xiàng)的公因式。
提取公因式步驟:
、俅_定公因式。②確定商式③公因式與商式寫(xiě)成積的形式。
分解因式注意;
①不準(zhǔn)丟字母
、诓粶(zhǔn)丟常數(shù)項(xiàng)注意查項(xiàng)數(shù)
③雙重括號(hào)化成單括號(hào)
、芙Y(jié)果按數(shù)單字母單項(xiàng)式多項(xiàng)式順序排列
⑤相同因式寫(xiě)成冪的形式
、奘醉(xiàng)負(fù)號(hào)放括號(hào)外
⑦括號(hào)內(nèi)同類項(xiàng)合并。
通過(guò)上面對(duì)因式分解內(nèi)容知識(shí)的講解學(xué)習(xí),相信同學(xué)們已經(jīng)能很好的掌握了吧,希望上面的內(nèi)容給同學(xué)們的學(xué)習(xí)很好的幫助。
初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)10
一、“三步六環(huán)”復(fù)習(xí)課型范式構(gòu)建的背景分析
(一)初三數(shù)學(xué)總復(fù)習(xí)的低效教學(xué)影響了中考教學(xué)質(zhì)量的提高
初三數(shù)學(xué)的復(fù)習(xí)教學(xué),注重“四基”(基礎(chǔ)知識(shí)、基本技能、基本思想和基本活動(dòng)經(jīng)驗(yàn))的鞏固和“四能”(發(fā)現(xiàn)問(wèn)題、提出問(wèn)題、分析問(wèn)題、解決問(wèn)題的能力)的提升。由于受復(fù)習(xí)教學(xué)方法傳統(tǒng)、時(shí)間不足等因素的限制,往往不能處理好知識(shí)鞏固與能力提升之間的關(guān)系,導(dǎo)致復(fù)習(xí)教學(xué)實(shí)效不強(qiáng)。尤其是在初三下學(xué)期的復(fù)習(xí)教學(xué)中,大多數(shù)教師采用“一基礎(chǔ)二專題三綜合”的復(fù)習(xí)方式,使得復(fù)習(xí)教學(xué)“高耗低效”,不能大大提高學(xué)生發(fā)現(xiàn)問(wèn)題、提出問(wèn)題、分析問(wèn)題和解決問(wèn)題的能力。同時(shí)在復(fù)習(xí)教學(xué)中,往往采用市面上的教輔資料,內(nèi)容超標(biāo),試題偏難,不符合復(fù)習(xí)教學(xué)的要求,制約著初三中考數(shù)學(xué)教學(xué)質(zhì)量的提高。
。ǘ叭搅h(huán)”復(fù)習(xí)課型范式是課改實(shí)驗(yàn)教學(xué)的時(shí)代產(chǎn)物
目前,基礎(chǔ)教育課程改革深入推進(jìn),雖然帶來(lái)了許多可喜的變化,但許多一線初三教師在實(shí)踐中看到了許多隱藏的教學(xué)危機(jī)。如何利用小組合作學(xué)習(xí)提高初三中考的教學(xué)質(zhì)量,是許多課改實(shí)驗(yàn)學(xué)校面臨的重大課題。筆者對(duì)任教學(xué)校班級(jí)的學(xué)生進(jìn)行了抽樣訪談,訪談分析反映出初三學(xué)生數(shù)學(xué)總復(fù)習(xí)階段的四個(gè)問(wèn)題:一是不熟悉中考數(shù)學(xué)考綱的考試要求和考試目標(biāo),沒(méi)有明確的初三數(shù)學(xué)總復(fù)習(xí)的方向;二是數(shù)學(xué)基礎(chǔ)知識(shí)掌握不夠全面,沒(méi)有完整的認(rèn)知結(jié)構(gòu),對(duì)初中數(shù)學(xué)知識(shí)的邏輯關(guān)系不清晰;三是數(shù)學(xué)基本解題技能掌握不足,對(duì)初中數(shù)學(xué)知識(shí)的應(yīng)用把握不清;四是數(shù)學(xué)基本思想和基本活動(dòng)經(jīng)驗(yàn)欠缺,不能靈活地運(yùn)用所學(xué)知識(shí)和技能。
“三步六環(huán)”復(fù)習(xí)課型范式的實(shí)踐研究,能轉(zhuǎn)變教師復(fù)習(xí)課的教學(xué)理念,建立更加適合本地區(qū)教學(xué)實(shí)際情況的初三數(shù)學(xué)“三步六環(huán)”復(fù)習(xí)課型的范式,掌握更加科學(xué)有效的復(fù)習(xí)方法,形成優(yōu)質(zhì)的初三數(shù)學(xué)復(fù)習(xí)教學(xué)資源,提升初三教師的.數(shù)學(xué)專業(yè)能力,轉(zhuǎn)變學(xué)生的數(shù)學(xué)學(xué)習(xí)方式,提升學(xué)生的課堂參與度,變被動(dòng)的枯燥復(fù)習(xí)為主動(dòng)的興趣探究,從而提高初三數(shù)學(xué)的教學(xué)質(zhì)量。
二、“三步六環(huán)”復(fù)習(xí)課型范式構(gòu)建的策略分析
(一)關(guān)鍵詞的概念界定
1、復(fù)習(xí)課型。復(fù)習(xí)課型是根據(jù)學(xué)生的認(rèn)知特點(diǎn)和規(guī)律,在學(xué)習(xí)的某一階段,以鞏固、疏理已學(xué)知識(shí)、技能,促進(jìn)知識(shí)系統(tǒng)化,提高學(xué)生運(yùn)用所學(xué)知識(shí)解決問(wèn)題的能力為主要任務(wù)的一種課型。開(kāi)展數(shù)學(xué)復(fù)習(xí)課的目的是溫故知新,查漏補(bǔ)缺,完善認(rèn)知結(jié)構(gòu),促進(jìn)學(xué)生解題思想方法的形成,發(fā)展數(shù)學(xué)能力,增強(qiáng)學(xué)生運(yùn)用數(shù)學(xué)知識(shí)解決問(wèn)題的能力。
2、“三步六環(huán)”。這是一種適合初三數(shù)學(xué)總復(fù)習(xí)教學(xué)的高效課堂模式,其基本框架如下:
主要包括:
。1)“三步”:第一步“先做后講”,體現(xiàn)在三點(diǎn):①學(xué)生提前1~2天完成下發(fā)的復(fù)習(xí)導(dǎo)學(xué)案;②老師及時(shí)批改了解學(xué)生的預(yù)習(xí)情況;③老師根據(jù)考綱、課標(biāo),結(jié)合學(xué)生的預(yù)習(xí)反饋進(jìn)行二次備課。
第二步“反思診斷”,體現(xiàn)在四點(diǎn):①有反思――作業(yè)講評(píng);②有跟進(jìn)――針對(duì)內(nèi)容的重難點(diǎn)和學(xué)生的易錯(cuò)點(diǎn);③有變式――針對(duì)內(nèi)容的重難點(diǎn)和學(xué)生的易錯(cuò)點(diǎn);④有系統(tǒng)――二次訂正整理。
第三步“滾動(dòng)測(cè)試”,體現(xiàn)在兩點(diǎn):①滾動(dòng)及時(shí)――重點(diǎn)考查近期重難點(diǎn)、易錯(cuò)點(diǎn)知識(shí);②反饋評(píng)價(jià)――關(guān)注師徒、小組捆綁評(píng)價(jià)。
。2)“六環(huán)”:指初三數(shù)學(xué)復(fù)習(xí)課堂教學(xué)的六個(gè)步驟:自主復(fù)習(xí)、合作交流、展示質(zhì)疑、典例精講、訓(xùn)練達(dá)標(biāo)、總結(jié)評(píng)價(jià)。這六環(huán)環(huán)h遞進(jìn)、相輔相成。只有保持復(fù)習(xí)課堂高效的可持續(xù)性,才能保障中考教學(xué)質(zhì)量的提升,這里很關(guān)鍵的兩點(diǎn)因素應(yīng)務(wù)必關(guān)注:其一,教師要精心研讀課標(biāo)考綱,悉心研究中考試題,用心編制總復(fù)習(xí)導(dǎo)學(xué)案,為學(xué)生高效進(jìn)行總復(fù)習(xí)指明方向;其二,課堂教學(xué)中的發(fā)展性評(píng)價(jià)應(yīng)及時(shí)跟進(jìn),讓學(xué)生學(xué)會(huì)反思?xì)w納,分享復(fù)習(xí)的快樂(lè)。
初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)11
一、數(shù)與代數(shù)
1.有理數(shù)
有理數(shù):包括正整數(shù)、0和負(fù)整數(shù)。
數(shù)軸:包括原點(diǎn)、正方向和單位長(zhǎng)度。
相反數(shù):只有符號(hào)不同的兩個(gè)數(shù)叫做互為相反數(shù)。
絕對(duì)值:正數(shù)的絕對(duì)值是其本身,負(fù)數(shù)的絕對(duì)值是它的相反數(shù),0的絕對(duì)值是0。
2.整式與分式
整式:包括單項(xiàng)式和多項(xiàng)式。
分式:包括一般形式和特殊形式。
代數(shù)式:包括單字母、單項(xiàng)式和多項(xiàng)式。
二、空間與圖形
1.點(diǎn)、線、面
點(diǎn):沒(méi)有大小,沒(méi)有長(zhǎng)度。
線:沒(méi)有寬度,只有長(zhǎng)度。
面:有長(zhǎng)度和寬度,沒(méi)有高度。
2.基本圖形
直線:包括直線、射線、線段。
角:包括平角、周角和一般的角。
三角形:包括等邊三角形、等腰三角形和一般三角形。
四邊形:包括矩形、正方形、梯形和平行四邊形。
圓:包括圓的性質(zhì)和圓的定理。
三、統(tǒng)計(jì)與概率
1.統(tǒng)計(jì)
統(tǒng)計(jì)圖:包括扇形統(tǒng)計(jì)圖、折線統(tǒng)計(jì)圖和條形統(tǒng)計(jì)圖。
統(tǒng)計(jì)表:包括簡(jiǎn)單統(tǒng)計(jì)表和復(fù)合統(tǒng)計(jì)表。
數(shù)據(jù)的收集與整理:包括抽樣調(diào)查、全面調(diào)查和自主調(diào)查。
2.概率
隨機(jī)事件:包括必然事件、不可能事件和隨機(jī)事件。
概率:包括計(jì)算事件發(fā)生的概率和隨機(jī)事件的.概率。
以上是初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)的主要內(nèi)容,這些知識(shí)點(diǎn)是數(shù)學(xué)學(xué)習(xí)的基礎(chǔ),需要學(xué)生熟練掌握和應(yīng)用。
初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)12
初中數(shù)學(xué)例題的知識(shí)點(diǎn)梳理
有理數(shù)的加法運(yùn)算:同號(hào)相加一邊倒;異號(hào)相加“大”減“小”,符號(hào)跟著大的跑;絕對(duì)值相等“零”正好。【注】“大”減“小”是指絕對(duì)值的大小。
合并同類項(xiàng):合并同類項(xiàng),法則不能忘,只求系數(shù)和,字母、指數(shù)不變樣。
去、添括號(hào)法則:去括號(hào)、添括號(hào),關(guān)鍵看符號(hào),括號(hào)前面是正號(hào),去、添括號(hào)不變號(hào),括號(hào)前面是負(fù)號(hào),去、添括號(hào)都變號(hào)。
恒等變換:兩個(gè)數(shù)字來(lái)相減,互換位置最常見(jiàn),正負(fù)只看其指數(shù),奇數(shù)變號(hào)偶不變。(a—b)2n+1=—(b—a)2n+1(a—b)2n=(b—a)2n
平方差公式:平方差公式有兩項(xiàng),符號(hào)相反切記牢,首加尾乘首減尾,莫與完全公式相混淆。
完全平方:完全平方有三項(xiàng),首尾符號(hào)是同鄉(xiāng),首平方、尾平方,首尾二倍放中央;首±尾括號(hào)帶平方,尾項(xiàng)符號(hào)隨中央。
因式分解:一提(公因式)二套(公式)三分組,細(xì)看幾項(xiàng)不離譜,兩項(xiàng)只用平方差,三項(xiàng)十字相乘法,陣法熟練不馬虎,四項(xiàng)仔細(xì)看清楚,若有三個(gè)平方數(shù)(項(xiàng)),就用一三來(lái)分組,否則二二去分組,五項(xiàng)、六項(xiàng)更多項(xiàng),二三、三三試分組,以上若都行不通,拆項(xiàng)、添項(xiàng)看清楚。
“代入”口決:挖去字母換上數(shù)(式),數(shù)字、字母都保留;換上分?jǐn)?shù)或負(fù)數(shù),給它帶上小括弧,原括弧內(nèi)出(現(xiàn))括弧,逐級(jí)向下變括弧(小—中—大)
單項(xiàng)式運(yùn)算:加、減、乘、除、乘(開(kāi))方,三級(jí)運(yùn)算分得清,系數(shù)進(jìn)行同級(jí)(運(yùn))算,指數(shù)運(yùn)算降級(jí)(進(jìn))行。
一元一次不等式解題的一般步驟:去分母、去括號(hào),移項(xiàng)時(shí)候要變號(hào),同類項(xiàng)、合并好,再把系數(shù)來(lái)除掉,兩邊除(以)負(fù)數(shù)時(shí),不等號(hào)改向別忘了。
一元一次不等式組的解集:大大取較大,小小取較小,小大,大小取中間,大小,小大無(wú)處找。
一元二次不等式、一元一次絕對(duì)值不等式的解集:大(魚(yú))于(吃)取兩邊,小(魚(yú))于(吃)取中間。
分式混合運(yùn)算法則:分式四則運(yùn)算,順序乘除加減,乘除同級(jí)運(yùn)算,除法符號(hào)須變(乘);乘法進(jìn)行化簡(jiǎn),因式分解在先,分子分母相約,然后再行運(yùn)算;加減分母需同,分母化積關(guān)鍵;找出最簡(jiǎn)公分母,通分不是很難;變號(hào)必須兩處,結(jié)果要求最簡(jiǎn)。
分式方程的解法步驟:同乘最簡(jiǎn)公分母,化成整式寫(xiě)清楚,求得解后須驗(yàn)根,原(根)留、增(根)舍別含糊。
最簡(jiǎn)根式的條件:最簡(jiǎn)根式三條件,號(hào)內(nèi)不把分母含,冪指(數(shù))根指(數(shù))要互質(zhì),冪指比根指小一點(diǎn)。
特殊點(diǎn)坐標(biāo)特征:坐標(biāo)平面點(diǎn)(x,y),橫在前來(lái)縱在后;(+,+),(—,+),(—,—)和(+,—),四個(gè)象限分前后;X軸上y為0,x為0在Y軸。
象限角的'平分線:象限角的平分線,坐標(biāo)特征有特點(diǎn),一、三橫縱都相等,二、四橫縱確相反。
平行某軸的直線:平行某軸的直線,點(diǎn)的坐標(biāo)有講究,直線平行X軸,縱坐標(biāo)相等橫不同;直線平行于Y軸,點(diǎn)的橫坐標(biāo)仍照舊。
對(duì)稱點(diǎn)坐標(biāo):對(duì)稱點(diǎn)坐標(biāo)要記牢,相反數(shù)位置莫混淆,X軸對(duì)稱y相反,Y軸對(duì)稱,x前面添負(fù)號(hào);原點(diǎn)對(duì)稱最好記,橫縱坐標(biāo)變符號(hào)。
自變量的取值范圍:分式分母不為零,偶次根下負(fù)不行;零次冪底數(shù)不為零,整式、奇次根全能行。
函數(shù)圖像的移動(dòng)規(guī)律:若把一次函數(shù)解析式寫(xiě)成y=k(x+0)+b、二次函數(shù)的解析式寫(xiě)成y=a(x+h)2+k的形式,則用下面后的口訣“左右平移在括號(hào),上下平移在末稍,左正右負(fù)須牢記,上正下負(fù)錯(cuò)不了”。
一次函數(shù)圖像與性質(zhì)口訣:一次函數(shù)是直線,圖像經(jīng)過(guò)仨象限;正比例函數(shù)更簡(jiǎn)單,經(jīng)過(guò)原點(diǎn)一直線;兩個(gè)系數(shù)k與b,作用之大莫小看,k是斜率定夾角,b與Y軸來(lái)相見(jiàn),k為正來(lái)右上斜,x增減y增減;k為負(fù)來(lái)左下展,變化規(guī)律正相反;k的絕對(duì)值越大,線離橫軸就越遠(yuǎn)。
二次函數(shù)圖像與性質(zhì)口訣:二次函數(shù)拋物線,圖象對(duì)稱是關(guān)鍵;開(kāi)口、頂點(diǎn)和交點(diǎn),它們確定圖象現(xiàn);開(kāi)口、大小由a斷,c與Y軸來(lái)相見(jiàn),b的符號(hào)較特別,符號(hào)與a相關(guān)聯(lián);頂點(diǎn)位置先找見(jiàn),Y軸作為參考線,左同右異中為0,牢記心中莫混亂;頂點(diǎn)坐標(biāo)最重要,一般式配方它就現(xiàn),橫標(biāo)即為對(duì)稱軸,縱標(biāo)函數(shù)最值見(jiàn)。若求對(duì)稱軸位置,符號(hào)反,一般、頂點(diǎn)、交點(diǎn)式,不同表達(dá)能互換。
反比例函數(shù)圖像與性質(zhì)口訣:反比例函數(shù)有特點(diǎn),雙曲線相背離的遠(yuǎn);k為正,圖在一、三(象)限,k為負(fù),圖在二、四(象)限;圖在一、三函數(shù)減,兩個(gè)分支分別減。圖在二、四正相反,兩個(gè)分支分別添;線越長(zhǎng)越近軸,永遠(yuǎn)與軸不沾邊。
巧記三角函數(shù)定義:初中所學(xué)的三角函數(shù)有正弦、余弦、正切、余切,它們實(shí)際是三角形邊的比值,可以把兩個(gè)字用/隔開(kāi),再用下面的一句話記定義:一位不高明的廚子教徒弟殺魚(yú),說(shuō)了這么一句話:正對(duì)魚(yú)磷(余鄰)直刀切。正:
正弦或正切,對(duì):對(duì)邊即正是對(duì);余:余弦或余弦,鄰:鄰邊即余是鄰;切是直角邊。
三角函數(shù)的增減性:正增余減。
特殊三角函數(shù)值記憶:首先記住30度、45度、60度的正弦值、余弦值的分母都是2、正切、余切的分母都是3,分子記口訣“123,321,三九二十七”既可。
數(shù)字巧記:=1.414(意思意思而已)=1.7321(三人一起商量)=2.236(吾量量山路)=2.449(糧食是酒)=2.645(二流是我)=2.828(二爸二爸)=3.16(山藥,六兩)
平行四邊形的判定:要證平行四邊形,兩個(gè)條件才能行,一證對(duì)邊都相等,或證對(duì)邊都平行,一組對(duì)邊也可以,必須相等且平行。對(duì)角線,是個(gè)寶,互相平分“跑不了”,對(duì)角相等也有用,“兩組對(duì)角”才能成。
梯形問(wèn)題的輔助線:移動(dòng)梯形對(duì)角線,兩腰之和成一線;平行移動(dòng)一條腰,兩腰同在“△”現(xiàn);延長(zhǎng)兩腰交一點(diǎn),“△”中有平行線;作出梯形兩高線,矩形顯示在眼前;已知腰上一中線,莫忘作出中位線。
添加輔助線歌:輔助線,怎么添?找出規(guī)律是關(guān)鍵,題中若有角(平)分線,可向兩邊作垂線;線段垂直平分線,引向兩端把線連,三角形邊兩中點(diǎn),連接則成中位線;三角形中有中線,延長(zhǎng)中線翻一番。
圓的證明歌:圓的證明不算難,常把半徑直徑連;有弦可作弦心距,它定垂直平分弦;直徑是圓最大弦,直圓周角立上邊,它若垂直平分弦,垂徑、射影響耳邊;還有與圓有關(guān)角,勿忘相互有關(guān)聯(lián),圓周、圓心、弦切角,細(xì)找關(guān)系把線連。同弧圓周角相等,證題用它最多見(jiàn),圓中若有弦切角,夾弧找到就好辦;圓有內(nèi)接四邊形,對(duì)角互補(bǔ)記心間,外角等于內(nèi)對(duì)角,四邊形定內(nèi)接圓;直角相對(duì)或共弦,試試加個(gè)輔助圓;若是證題打轉(zhuǎn)轉(zhuǎn),四點(diǎn)共圓可解難;要想證明圓切線,垂直半徑過(guò)外端,直線與圓有共點(diǎn),證垂直來(lái)半徑連,直線與圓未給點(diǎn),需證半徑作垂線;四邊形有內(nèi)切圓,對(duì)邊和等是條件;如果遇到圓與圓,弄清位置很關(guān)鍵,兩圓相切作公切,兩圓相交連公弦。
學(xué)霸分享的數(shù)學(xué)復(fù)習(xí)技巧
1、把答案蓋住看例題
例題不能帶著答案去看,不然會(huì)認(rèn)為自己就是這么,其實(shí)自己并沒(méi)有理解透徹。
所以,在看例題時(shí),把解答蓋住,自己去做,做完或做不出時(shí)再去看。這時(shí)要想一想,自己做的哪里與解答不同,哪里沒(méi)想到,該注意什么,哪一種方法更好,還有沒(méi)有另外的解法。
經(jīng)過(guò)上面的訓(xùn)練,自己的思維空間擴(kuò)展了,看問(wèn)題也全面了。如果把題目徹底搞清了,在題后精煉幾個(gè)批注,說(shuō)明此題的“題眼”及巧妙之處,收獲會(huì)更大。
2、研究每題都考什么
數(shù)學(xué)能力的提高離不開(kāi)做題,“熟能生巧”這個(gè)簡(jiǎn)單的道理大家都懂。但做題不是搞題海戰(zhàn)術(shù),而是要通過(guò)一題聯(lián)想到很多題。
3、錯(cuò)一次反思一次
每次業(yè)及考試或多或少會(huì)發(fā)生些錯(cuò)誤,這并不可怕,要緊的是避免類似的錯(cuò)誤再次重現(xiàn)。因此平時(shí)注意把錯(cuò)題記下來(lái)。
學(xué)生若能將每次考試或練習(xí)中出現(xiàn)的錯(cuò)誤記錄下來(lái)分析,并盡力保證在下次考試時(shí)不發(fā)生同樣錯(cuò)誤,那么以后人生中最重要的高考也就能避免犯錯(cuò)了。
4、分析試卷總結(jié)經(jīng)驗(yàn)
每次考試結(jié)束試卷發(fā)下來(lái),要認(rèn)真分析得失,總結(jié)經(jīng)驗(yàn)教訓(xùn)。特別是將試卷中出現(xiàn)的錯(cuò)誤進(jìn)行分類。
數(shù)學(xué)解題方法分別有哪些
1、配方法
所謂的公式是使用變換解析方程的同構(gòu)方法,并將其中的一些分配給一個(gè)或多個(gè)多項(xiàng)式正整數(shù)冪的和形式。通過(guò)配方解決數(shù)學(xué)問(wèn)題的公式。其中,用的最多的是配成完全平方式。匹配方法是數(shù)學(xué)中不斷變形的重要方法,其應(yīng)用非常廣泛,在分解,簡(jiǎn)化根,它通常用于求解方程,證明方程和不等式,找到函數(shù)的極值和解析表達(dá)式。
2、因式分解法
因式分解是將多項(xiàng)式轉(zhuǎn)換為幾個(gè)積分產(chǎn)品的乘積。分解是恒定變形的基礎(chǔ)。除了引入中學(xué)教科書(shū)中介紹的公因子法,公式法,群體分解法,交叉乘法法等外,還有很多方法可以進(jìn)行因式分解。還有一些項(xiàng)目,如拆除物品的使用,根分解,替換,未確定的系數(shù)等等。
3、換元法
替代方法是數(shù)學(xué)中一個(gè)非常重要和廣泛使用的解決問(wèn)題的方法。我們通常稱未知或變?cè)。用新?參數(shù)替換原始公式的一部分或重新構(gòu)建原始公式可以更簡(jiǎn)單,更容易解決。
4、判別式法與韋達(dá)定理
一元二次方程ax2+ bx+ c=0(a、 b、 c屬于R,a≠0)根的判別,= b2—4 ac,不僅用來(lái)確定根的性質(zhì),還作為一個(gè)問(wèn)題解決方法,代數(shù)變形,求解方程(組),求解不等式,研究函數(shù),甚至幾何以及三角函數(shù)都有非常廣泛的應(yīng)用。
韋達(dá)定理除了知道二次方程的根外,還找到另一根;考慮到兩個(gè)數(shù)的和和乘積的簡(jiǎn)單應(yīng)用并尋找這兩個(gè)數(shù),也可以找到根的對(duì)稱函數(shù)并量化二次方程根的符號(hào)。求解對(duì)稱方程并解決一些與二次曲線有關(guān)的問(wèn)題等,具有非常廣泛的應(yīng)用。
5、待定系數(shù)法
在解決數(shù)學(xué)問(wèn)題時(shí),如果我們首先判斷我們所尋找的結(jié)果具有一定的形式,其中包含某些未決的系數(shù),然后根據(jù)問(wèn)題的條件列出未確定系數(shù)的方程,最后找到未確定系數(shù)的值或這些待定系數(shù)之間的關(guān)系。為了解決數(shù)學(xué)問(wèn)題,這種問(wèn)題解決方法被稱為待定系數(shù)法。它是中學(xué)數(shù)學(xué)中常用的方法之一。
6、構(gòu)造法
在解決問(wèn)題時(shí),我們通常通過(guò)分析條件和結(jié)論來(lái)使用這些方法來(lái)構(gòu)建輔助元素。它可以是一個(gè)圖表,一個(gè)方程(組),一個(gè)方程,一個(gè)函數(shù),一個(gè)等價(jià)的命題等,架起連接條件和結(jié)論的橋梁。為了解決這個(gè)問(wèn)題,這種解決問(wèn)題的數(shù)學(xué)方法,我們稱之為構(gòu)造方法。運(yùn)用結(jié)構(gòu)方法解決問(wèn)題可以使代數(shù),三角形,幾何等數(shù)學(xué)知識(shí)相互滲透,有助于解決問(wèn)題。
數(shù)學(xué)經(jīng)常遇到的問(wèn)題解答
1、要提高數(shù)學(xué)成績(jī)首先要做什么?
這一點(diǎn),是很多學(xué)生所關(guān)注的,要提高數(shù)學(xué)成績(jī),首先就應(yīng)該從基礎(chǔ)知識(shí)學(xué)起。不少同學(xué)覺(jué)得基礎(chǔ)知識(shí)過(guò)于簡(jiǎn)單,看兩遍基本上就都會(huì)了。這種“自我感覺(jué)良好”其實(shí)是一種錯(cuò)覺(jué),而真正考試時(shí)又覺(jué)得無(wú)從下手,這還是基礎(chǔ)不牢的表現(xiàn),因此要提高數(shù)學(xué)成績(jī)先要把基礎(chǔ)夯實(shí)。
2、基礎(chǔ)不好怎么學(xué)好數(shù)學(xué)?
對(duì)于基礎(chǔ)差的同學(xué)來(lái)說(shuō),課本是就是學(xué)好數(shù)學(xué)的秘籍,把課本上的定義、公式、定理全部弄懂,力爭(zhēng)在理解的基礎(chǔ)上全部背熟,每一道例題、每一道課后題都要掌握。我們知道只有把公式、定理爛熟于心,才能舉一反三、活學(xué)活用,把課本的知識(shí)學(xué)透有兩個(gè)好處,第一,強(qiáng)化基礎(chǔ);第二,提高得分能力。
3、是否要采用題海戰(zhàn)術(shù)?
方法君曾不止一次提到了“題海戰(zhàn)術(shù)”,題海戰(zhàn)術(shù)究竟可不可取呢?“題海戰(zhàn)術(shù)”其實(shí)也是一種學(xué)習(xí)方法,但很多學(xué)生只知道做題,不懂得總結(jié),體現(xiàn)不出任何的學(xué)習(xí)效果。因此在做題后要總結(jié)至關(guān)重要,只有認(rèn)真總結(jié)才能不斷積累做題經(jīng)驗(yàn),這樣才能取得理想成績(jī)。
4、做題總是粗心怎么辦?
很多學(xué)生成績(jī)不好,會(huì)說(shuō)自己是因?yàn)榇中膶?dǎo)致的,其實(shí)“粗心”只是借口,真正的原因就是題做得少、基礎(chǔ)知識(shí)不牢、沒(méi)有清晰的解題思路、計(jì)算能力不強(qiáng)。因此在平時(shí)的學(xué)習(xí)中,一定要注重熟練度和精準(zhǔn)度的練習(xí)。如果總是給自己找“粗心”的借口,也就變相否定了自己的學(xué)習(xí)弱點(diǎn),所以,要告訴自己,高中數(shù)學(xué)沒(méi)有“粗心”只有“不用心”。
初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)13
在初中數(shù)學(xué)課堂教學(xué)中,小結(jié)一般作為總結(jié)本課,開(kāi)啟下一課的鑰匙。但是在具體執(zhí)行過(guò)程中,受到時(shí)間、學(xué)生心態(tài)、教師課堂設(shè)計(jì)水平等因素的限制,初中數(shù)學(xué)課堂小結(jié)在運(yùn)用的過(guò)程中呈現(xiàn)出多種問(wèn)題。究其原因是多方面的,而其最主要的原因則來(lái)源于教師對(duì)學(xué)生心理的把握力度不夠。心理學(xué)專家在當(dāng)代少年兒童的大腦結(jié)構(gòu)分析基礎(chǔ)上所做出的研究表明,在初中階段的學(xué)生對(duì)課程的關(guān)注度主要集中在前15分鐘,個(gè)別注意力比較好的學(xué)生能堅(jiān)持到15~25分鐘,隨著時(shí)間的推移,從25分鐘到45分鐘之間學(xué)生的記憶力和注意力則出現(xiàn)了逐漸下滑的趨勢(shì)。由此可見(jiàn),教師在做初中數(shù)學(xué)課程設(shè)計(jì)時(shí),僅僅按照傳統(tǒng)習(xí)慣將課堂小結(jié)作為課末總結(jié)的方式并不科學(xué),對(duì)學(xué)生的課堂學(xué)習(xí)和課下探索延伸起不到推動(dòng)作用。
由此,在新的知識(shí)環(huán)節(jié)講解和學(xué)習(xí)的過(guò)程中,對(duì)課堂小結(jié)的設(shè)計(jì),教師應(yīng)該通過(guò)巧妙的規(guī)劃,實(shí)現(xiàn)溫故知新,而這又是對(duì)本堂課程的總結(jié)和反思的過(guò)程,具有極強(qiáng)的邏輯性和漸進(jìn)性,環(huán)環(huán)相扣,同時(shí)要為學(xué)生的思考和課下探索的延伸留出獨(dú)立的空間。因此,按照具體的操作,本文以浙教版初中數(shù)學(xué)“探索多邊形的內(nèi)角和”的課堂學(xué)習(xí)為例,對(duì)課堂小結(jié)的運(yùn)用從以下兩個(gè)方面進(jìn)行闡述。
一、撥迷梳“理”,溫故知新
七年級(jí)“探索多邊形的內(nèi)角和”一課的教學(xué)重點(diǎn)是讓學(xué)生了解什么是多邊形、什么是內(nèi)角、如何求內(nèi)角和、如何在現(xiàn)實(shí)生活中利用此種計(jì)算方法。新課標(biāo)要求,學(xué)生作為教學(xué)主體,對(duì)課程重點(diǎn)內(nèi)容的了解和領(lǐng)悟主要是以他們自身的動(dòng)手操作為主,這也是教師在教案設(shè)計(jì)時(shí)的主要切入點(diǎn)之一。在明確本堂課的教學(xué)重點(diǎn)之后,教師需要對(duì)以往學(xué)習(xí)過(guò)的知識(shí)點(diǎn)進(jìn)行梳理,并找出與本堂課有關(guān)聯(lián)性的知識(shí)點(diǎn),在課程初始時(shí)作為引導(dǎo),通過(guò)對(duì)以往知識(shí)點(diǎn)的回顧,如三角形、相交線等已學(xué)知識(shí)點(diǎn)引出本堂課的重點(diǎn)。而后面即將學(xué)習(xí)的課程,如“多姿多彩幾何圖形”等的相應(yīng)測(cè)試,也可以作為學(xué)生課堂及課后的延伸知識(shí)點(diǎn),在教師的課程講解過(guò)程中予以貫穿。當(dāng)然,在課程設(shè)計(jì)初期,教師要尤為注意的是,應(yīng)根據(jù)本堂課知識(shí)點(diǎn)的重點(diǎn)排序,由主到輔、由簡(jiǎn)入深地安排好具有節(jié)奏感的講解內(nèi)容及小結(jié),而作為延伸思考的`知識(shí)點(diǎn)在每個(gè)小結(jié)部分可以按照其相關(guān)性和重要性進(jìn)行穿插安排。
二、動(dòng)手操作,注重反思
“探索多邊形的內(nèi)角和”中,多邊形的概念是本課各個(gè)難點(diǎn)展開(kāi)的基礎(chǔ),按照多邊形的概念,教師可以讓學(xué)生用線、卡紙、鐵絲等工具自行制作凹多邊形或凸多變形,以體驗(yàn)多邊形的曲線美。引導(dǎo)學(xué)生嘗試以拉伸和縮小的方式構(gòu)架出凹多邊形和凸多變形后,教師可以讓學(xué)生按照體驗(yàn)來(lái)描述二者的區(qū)別和相同點(diǎn),并以此作為小結(jié)。當(dāng)學(xué)生做完歸納后,根據(jù)本課“多邊形的內(nèi)角和主要以凸多邊形為主”的教學(xué)目標(biāo)要求,教師可提問(wèn):“同學(xué)們目前已經(jīng)了解了二者的區(qū)別,本堂課要講解的‘多邊形內(nèi)角和’主要以凸多邊形為基礎(chǔ),但是為什么我們不以凹多邊形為基礎(chǔ)呢?請(qǐng)同學(xué)們仔細(xì)想想原因!苯處煹倪@種講解模式既可以為下面對(duì)“內(nèi)角和”的重點(diǎn)講解作鋪墊,又可以讓學(xué)生深入思考之前對(duì)凹凸多邊形的描述是否恰當(dāng),是否符合多邊形的數(shù)學(xué)性規(guī)律。
在此種引導(dǎo)方法下,學(xué)生會(huì)按照下一個(gè)知識(shí)點(diǎn)的內(nèi)容來(lái)反思之前的小結(jié)是否具有全面性。在反復(fù)的思考和對(duì)比過(guò)程中,學(xué)生的邏輯思維可以得到充分的訓(xùn)練。這對(duì)培養(yǎng)學(xué)生的數(shù)學(xué)思維,以及對(duì)知識(shí)點(diǎn)的重復(fù)性推敲和反思能力的提升具有促進(jìn)作用。一旦學(xué)生在思考和探討的過(guò)程中,摸索到數(shù)學(xué)本身的規(guī)律,并從復(fù)雜多樣的數(shù)學(xué)知識(shí)點(diǎn)中找到其原本的架構(gòu),自然會(huì)在頭腦中建立起一個(gè)符合自身記憶和領(lǐng)悟需要的數(shù)學(xué)知識(shí)體系。
三、大道從簡(jiǎn),循環(huán)漸進(jìn)
大道從簡(jiǎn),按照初中數(shù)學(xué)的知識(shí)點(diǎn)架構(gòu)來(lái)看,每堂課的每個(gè)知識(shí)點(diǎn)都可以在被重點(diǎn)提煉之后作為節(jié)點(diǎn)來(lái)布置課堂小結(jié)。以數(shù)學(xué)的邏輯思維傳承性為基礎(chǔ),課堂上的下一個(gè)知識(shí)點(diǎn)就可以作為反思和推敲上一個(gè)小結(jié)的試金石,如此循環(huán)往復(fù)后,課末的最終知識(shí)點(diǎn)總結(jié)則對(duì)本課所有知識(shí)點(diǎn)小結(jié)進(jìn)行有效的補(bǔ)充和完善,進(jìn)而延伸出下堂課以及與本堂課重點(diǎn)內(nèi)容相關(guān)的其他數(shù)學(xué)知識(shí)點(diǎn)的探索和思考。
當(dāng)然,這種教學(xué)方法也同樣可以運(yùn)用到其他學(xué)科的教學(xué)中。借助教師的漸進(jìn)式誘導(dǎo),學(xué)生會(huì)自主加入到課堂探索中,通過(guò)由簡(jiǎn)到難、由淺入深的逐層遞進(jìn)式反思和討論提升在課堂中的興趣度和專注度。
初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)14
初中數(shù)學(xué)的學(xué)科地位很高,一直以來(lái)是三大學(xué)科之一,影響著物理化學(xué)的學(xué)習(xí)。
圓心角
在同圓或等圓中,相等的圓心角所對(duì)的弧相等,所對(duì)的弦相等,所對(duì)的弦心距也相等。
推理過(guò)程
根據(jù)旋轉(zhuǎn)的性質(zhì),將∠aob繞圓心o旋轉(zhuǎn)到∠a'ob'的位置時(shí),顯然∠aob=∠a'ob',射線oa與oa'重合,ob與ob'重合,而同圓的半徑相等,oa=oa',ob=ob',從而點(diǎn)a與a'重合,b與b'重合。
因此,弧ab與弧a'b'重合,ab與a'b'重合。即
弧ab=弧a'b',ab=a'b'。
則得到上面定理。
同樣還可以得到:
在同圓或等圓中,如果兩條弧相等,那么他們所對(duì)的圓心角相等,所對(duì)的.弦相等,所對(duì)的弦心距也相等。
在同圓或等圓中,如果兩條弦相等,那么他們所對(duì)的圓心角相等,所對(duì)的弧相等,所對(duì)的弦心距也相等。
所以,在同圓或等圓中,兩個(gè)圓心角、兩條弧、兩條弦中有一組量相等,它們所對(duì)應(yīng)的其余各組量也相等。
圓的圓心角知識(shí)要領(lǐng)很容易掌握,經(jīng)常會(huì)出現(xiàn)在關(guān)于圓的證明題中。
初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)15
一、關(guān)于初高中數(shù)學(xué)成績(jī)分化原因的分析
1、環(huán)境與心理的變化。
對(duì)高一新生來(lái)講,環(huán)境可以說(shuō)是全新的,新教材、新同學(xué)、新教師、新集體……學(xué)生有一個(gè)由陌生到熟悉的適應(yīng)過(guò)程。另外,經(jīng)過(guò)緊張的中考復(fù)習(xí),考取了自己理想的高中,必有些學(xué)生產(chǎn)生“松口氣”想法,入學(xué)后無(wú)緊迫感。也有些學(xué)生有畏懼心理,他們?cè)谌雽W(xué)前,就耳聞高中數(shù)學(xué)很難學(xué),高中數(shù)學(xué)課一開(kāi)始也確是些難理解的抽象概念,如映射、集合、異面直線等,使他們從開(kāi)始就處于怵頭無(wú)趣的被動(dòng)局面。以上這些因素都嚴(yán)重影響高一新生的學(xué)習(xí)質(zhì)量。
2、教材的變化。
首先,初中數(shù)學(xué)教材內(nèi)容通俗具體,多為常量,題型少而簡(jiǎn)單;而高中數(shù)學(xué)內(nèi)容抽象,多研究變量、字母,不僅注重計(jì)算,而且還注重理論分析,這與初中相比增加了難度。
其次,由于近幾年教材內(nèi)容的調(diào)整,雖然初高中教材都降低了難度,但相比之下,初中降低的幅度大,而高中由于受高考的限制,教師都不敢降低難度,造成了高中數(shù)學(xué)實(shí)際難度沒(méi)有降低。因此,從一定意義上講,調(diào)整后的教材不僅沒(méi)有縮小初高中教材內(nèi)容的難度差距,反而加大了。
3、課時(shí)的變化。
在初中,由于內(nèi)容少,題型簡(jiǎn)單,課時(shí)較充足。因此,課容量小,進(jìn)度慢,對(duì)重難點(diǎn)內(nèi)容均有充足時(shí)間反復(fù)強(qiáng)調(diào),對(duì)各類習(xí)題的解法,教師有時(shí)間進(jìn)行舉例示范,學(xué)生也有足夠時(shí)間進(jìn)行鞏固。而到高中,由于知識(shí)點(diǎn)增多,靈活性加大和新工時(shí)制實(shí)行,使課時(shí)減少,課容量增大,進(jìn)度加快,對(duì)重難點(diǎn)內(nèi)容沒(méi)有更多的時(shí)間強(qiáng)調(diào),對(duì)各類型題也不可能講全講細(xì)和鞏固強(qiáng)化。這也使高一新生開(kāi)始不適應(yīng)高中學(xué)習(xí)而影響成績(jī)的提高。
4、學(xué)法的變化。
在初中,教師講得細(xì),類型歸納得全,練得熟,考試時(shí),學(xué)生只要記準(zhǔn)概念、公式及教師所講例題類型,一般均可對(duì)號(hào)入座取得好成績(jī)。因此,學(xué)生習(xí)慣于圍著教師轉(zhuǎn),不注重獨(dú)立思考和對(duì)規(guī)律的歸納總結(jié)。到高中,由于內(nèi)容多時(shí)間少,教師不可能把知識(shí)應(yīng)用形式和題型講全講細(xì),只能選講一些具有典型性的題目,以落實(shí)“三基”培養(yǎng)能力。因此,高中數(shù)學(xué)學(xué)習(xí)要求學(xué)生要勤于思考,善于歸納總結(jié)規(guī)律,掌握數(shù)學(xué)思想方法,做到舉一反三,觸類旁通。然而,剛?cè)雽W(xué)的高一新生,往往繼續(xù)沿用初中學(xué)法,致使學(xué)習(xí)困難較多,完成當(dāng)天作業(yè)都很困難,更沒(méi)有預(yù)習(xí)、復(fù)習(xí)及總結(jié)等自我消化自我調(diào)整的時(shí)間。這顯然不利于良好學(xué)法的形成和學(xué)習(xí)質(zhì)量的提高。
二、搞好初高中銜接所采取的主要措施
1、做好準(zhǔn)備工作,為搞好銜接打好基礎(chǔ)。
、俑愫萌雽W(xué)教育。這是搞好銜接的基礎(chǔ)工作,也是首要工作。通過(guò)入學(xué)教育提高學(xué)生對(duì)初高中銜接重要性的認(rèn)識(shí),增強(qiáng)緊迫感,消除松懈情緒,初步了解高中數(shù)學(xué)學(xué)習(xí)的特點(diǎn),為其它措施的落實(shí)奠定基礎(chǔ)這里主要做好四項(xiàng)工作:一是給學(xué)生講清高一數(shù)學(xué)在整個(gè)中學(xué)數(shù)學(xué)中所占的位置和作用;二是結(jié)合實(shí)例,采取與初中對(duì)比的方法,給學(xué)生講清高中數(shù)學(xué)內(nèi)容體系特點(diǎn)和課堂教學(xué)特點(diǎn);三是結(jié)合實(shí)例給學(xué)生講明初高中數(shù)學(xué)在學(xué)法上存在的本質(zhì)區(qū)別,并向?qū)W生介紹一些優(yōu)秀學(xué)法,指出注意事項(xiàng);四是請(qǐng)高年級(jí)學(xué)生談體會(huì)講感受,引導(dǎo)學(xué)生少走彎路,盡快適應(yīng)高中學(xué)習(xí)。
、诿宓讛(shù),規(guī)劃教學(xué)。
為了搞好初高中銜接,教師首先要摸清學(xué)生的學(xué)習(xí)基礎(chǔ),然后以此來(lái)規(guī)劃自己的教學(xué)和落實(shí)教學(xué)要求,以提高教學(xué)的針對(duì)性。在教學(xué)實(shí)際中,我們一方面通過(guò)進(jìn)行摸底測(cè)試和對(duì)入學(xué)成績(jī)的分析,了解學(xué)生的基礎(chǔ);另一方面,認(rèn)真學(xué)習(xí)和比較初高中教學(xué)大綱和教材,以全面了解初高中數(shù)學(xué)知識(shí)體系,找出初高中知識(shí)的銜接點(diǎn)、區(qū)別點(diǎn)和需要鋪路搭橋的知識(shí)點(diǎn),以使備課和講課更符合學(xué)生實(shí)際,更具有針對(duì)性。
2、優(yōu)化課堂教學(xué)環(huán)節(jié),搞好初高中銜接。
、倭⒆阌诖缶V和教材,尊重學(xué)生實(shí)際,實(shí)行層次教學(xué)。高一數(shù)學(xué)中有許多難理解和掌握的知識(shí)點(diǎn),如集合、映射等,對(duì)高一新生來(lái)講確實(shí)困難較大。因此,在教學(xué)中,應(yīng)從高一學(xué)生實(shí)際出發(fā),采勸低起點(diǎn)、小梯度、多訓(xùn)練、分層次”的方法,將教學(xué)目標(biāo)分解成若干遞進(jìn)層次逐層落實(shí)。在速度上,放慢起始進(jìn)度,逐步加快教學(xué)節(jié)奏。在知識(shí)導(dǎo)入上,多由實(shí)例和已知引入。在知識(shí)落實(shí)上,先落實(shí)“死”課本,后變通延伸用活課本。在難點(diǎn)知識(shí)講解上,從學(xué)生理解和掌握的實(shí)際出發(fā),對(duì)教材作必要層次處理和知識(shí)鋪墊,并對(duì)知識(shí)的理解要點(diǎn)和應(yīng)用注意點(diǎn)作必要總結(jié)及舉例說(shuō)明。
②重視新舊知識(shí)的聯(lián)系與區(qū)別,建立知識(shí)網(wǎng)絡(luò)。初高中數(shù)學(xué)有很多銜接知識(shí)點(diǎn),如函數(shù)概念、平面幾何與立體幾何相關(guān)知識(shí)等,到高中,它們有的加深了,有的研究范圍擴(kuò)大了,有些在初中成立的結(jié)論到高中可能不成立。因此,在講授新知識(shí)時(shí),我們有意引導(dǎo)學(xué)生聯(lián)系舊知識(shí),復(fù)習(xí)和區(qū)別舊知識(shí),特別注重對(duì)那些易錯(cuò)易混的知識(shí)加以分析、比較和區(qū)別。這樣可達(dá)到溫故知新、溫故而探新的效果。
、壑匾曊故局R(shí)的形成過(guò)程和方法探索過(guò)程,培養(yǎng)學(xué)生創(chuàng)造能力。高中數(shù)學(xué)較初中抽象性強(qiáng),應(yīng)用靈活,這就要求學(xué)生對(duì)知識(shí)理解要透,應(yīng)用要活,不能只停留在對(duì)知識(shí)結(jié)論的死記硬套上,這就要求教師應(yīng)向?qū)W生展示新知識(shí)和新解法的產(chǎn)生背景、形成和探索過(guò)程,不僅使學(xué)生掌握知識(shí)和方法的本質(zhì),提高應(yīng)用的靈活性,而且還使學(xué)生學(xué)會(huì)如何質(zhì)疑和解疑的思想方法,促進(jìn)創(chuàng)造性思維能力的提高。
、苤匾暸囵B(yǎng)學(xué)生自我反思自我總結(jié)的良好習(xí)慣,提高學(xué)習(xí)的自覺(jué)性。高中數(shù)學(xué)概括性強(qiáng),題目靈活多變,只靠課上聽(tīng)懂是不夠的,需要課后進(jìn)行認(rèn)真消化,認(rèn)真總結(jié)歸納。這就要求學(xué)生應(yīng)具備善于自我反思和自我總結(jié)的能力。為此,我們?cè)诮虒W(xué)中,抓住時(shí)機(jī)積極培養(yǎng)。在單元結(jié)束時(shí),幫助學(xué)生進(jìn)行自我章節(jié)小結(jié),在解題后,積極引導(dǎo)學(xué)生反思:思解題思路和步驟,思一題多解和一題多變,思解題方法和解題規(guī)律的總結(jié)。由此培養(yǎng)學(xué)生善于進(jìn)行自我反思的習(xí)慣,擴(kuò)大知識(shí)和方法的應(yīng)用范圍,提高學(xué)習(xí)效率。
、葜匾晫n}教學(xué)。利用專題教學(xué),集中精力攻克難點(diǎn),強(qiáng)化重點(diǎn)和彌補(bǔ)弱點(diǎn),系統(tǒng)歸納總結(jié)某一類問(wèn)題的'前后知識(shí)、應(yīng)用形式、解決方法和解題規(guī)律。并借此機(jī)會(huì)對(duì)學(xué)生進(jìn)行學(xué)法的指點(diǎn),有意滲透數(shù)學(xué)思想方法。
3、加強(qiáng)學(xué)法指導(dǎo)。
高中數(shù)學(xué)教學(xué)要把對(duì)學(xué)生加強(qiáng)學(xué)法指導(dǎo)作為教學(xué)的重要任務(wù)之一。指導(dǎo)以培養(yǎng)學(xué)習(xí)能力為重點(diǎn),狠抓學(xué)習(xí)基本環(huán)節(jié),如“怎樣預(yù)習(xí)”、“怎樣聽(tīng)課”等等。
具體措施有三:一是寓學(xué)法指導(dǎo)于知識(shí)講解、作業(yè)講評(píng)、試卷分析等教學(xué)活動(dòng)之中,這種形式貼近學(xué)生學(xué)習(xí)實(shí)際,易被學(xué)生接受;二是舉辦系列講座,介紹學(xué)習(xí)方法;三是定期進(jìn)行學(xué)法交流,同學(xué)間互相取長(zhǎng)補(bǔ)短,共同提高。
4、優(yōu)化教育管理環(huán)節(jié),促進(jìn)初高中良好銜接。
、僦匾曔\(yùn)用情感和成功原理,喚起學(xué)生學(xué)好數(shù)學(xué)的熱情。搞好初高中銜接,除了優(yōu)化教學(xué)環(huán)節(jié)外,還應(yīng)充分發(fā)揮情感和心理的積極作用。我們?cè)诟咭唤虒W(xué)中,注意運(yùn)用情感和成功原理,調(diào)動(dòng)學(xué)生學(xué)習(xí)熱情,培養(yǎng)學(xué)習(xí)數(shù)學(xué)興趣。學(xué)生學(xué)不好數(shù)學(xué),少責(zé)怪學(xué)生,要多找自己的原因。要深入學(xué)生當(dāng)中,從各方面了解關(guān)心他們,特別是差生,幫助他們解決思想、學(xué)習(xí)及生活上存在的問(wèn)題。給他們多講數(shù)學(xué)在各行各業(yè)廣泛應(yīng)用,講祖國(guó)四化建設(shè)需要大批懂?dāng)?shù)學(xué)的專家學(xué)者;講愛(ài)因斯坦在初中一次數(shù)學(xué)竟沒(méi)有考及格,但他沒(méi)有氣餒,終于成了一名偉大科學(xué)家,華羅庚在學(xué)生時(shí)代奮發(fā)圖強(qiáng),終于在數(shù)學(xué)研究中做出了卓越貢獻(xiàn),等等。使學(xué)生提高認(rèn)識(shí),增強(qiáng)學(xué)好數(shù)學(xué)的信心。在提問(wèn)和布置作業(yè)時(shí),從學(xué)生實(shí)際出發(fā),多給學(xué)生創(chuàng)設(shè)成功的機(jī)會(huì),以體會(huì)成功的喜悅,激發(fā)學(xué)習(xí)熱情。
、谥匾暸囵B(yǎng)學(xué)生正確對(duì)待困難和挫折的良好心理素質(zhì)。由于高中數(shù)學(xué)的特點(diǎn),決定了高一學(xué)生在學(xué)習(xí)中的困難大挫折多。為此,我們?cè)诮虒W(xué)中注意培養(yǎng)學(xué)生正確對(duì)待困難和挫折的良好心理素質(zhì),使他們善于在失敗面前,能冷靜地總結(jié)教訓(xùn),振作精神,主動(dòng)調(diào)整自己的學(xué)習(xí),并努力爭(zhēng)取今后的勝利。平時(shí)多注意觀察學(xué)生情緒變化,開(kāi)展心理咨詢,做好個(gè)別學(xué)生思想工作。
、垭娨曋R(shí)的反饋和落實(shí)。通過(guò)建立多渠道的反饋途徑,及時(shí)收集學(xué)生對(duì)知識(shí)的掌握情況和對(duì)教學(xué)的意見(jiàn),為及時(shí)矯上學(xué)生的錯(cuò)誤,調(diào)整教學(xué),提高教學(xué)針對(duì)性提供依據(jù)。知識(shí)落實(shí)的思路為:以落實(shí)“三基”為中心,實(shí)行分層落實(shí),做到提優(yōu)補(bǔ)差。主要措施是:平時(shí)練習(xí)層次化,單元結(jié)束考查制度化,做到章節(jié)會(huì),單元清。
【初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)】相關(guān)文章:
初中數(shù)學(xué)必備知識(shí)點(diǎn)總結(jié)03-01
初中數(shù)學(xué)幾何知識(shí)點(diǎn)總結(jié)11-05
初中數(shù)學(xué)函數(shù)知識(shí)點(diǎn)總結(jié)11-24
初中數(shù)學(xué)圓的知識(shí)點(diǎn)總結(jié)12-05
初中數(shù)學(xué)函數(shù)知識(shí)點(diǎn)總結(jié)06-14
數(shù)學(xué)初中知識(shí)點(diǎn)總結(jié)06-10
初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)07-14
初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)07-15