當(dāng)前位置:育文網(wǎng)>初中>初中數(shù)學(xué)> 初中數(shù)學(xué)解直角三角形的重要知識(shí)點(diǎn)歸納

初中數(shù)學(xué)解直角三角形的重要知識(shí)點(diǎn)歸納

時(shí)間:2022-03-25 18:53:29 初中數(shù)學(xué) 我要投稿
  • 相關(guān)推薦

關(guān)于初中數(shù)學(xué)解直角三角形的重要知識(shí)點(diǎn)歸納

  解直角三角形

關(guān)于初中數(shù)學(xué)解直角三角形的重要知識(shí)點(diǎn)歸納

  解直角三角形需要用到勾股定理(弦)定理,又稱畢達(dá)哥拉斯定理或畢氏定理(Pythagoras Theorem)。數(shù)學(xué)公式中常寫作a^2+b^2=c^2,其中a和b分別為直角三角形兩直角邊,c為斜邊。

  勾股弦數(shù)是指一組能使勾股定理關(guān)系成立的三個(gè)正整數(shù)。比如:3,4,5。

  常見的勾股弦數(shù)有:3,4,5;6,8,10;5,12,13;10,24,26;等等。

  其中,互素的勾股數(shù)組成為基本勾股數(shù)組,例如:3,4,5;5,12,13;8,15,17等等

  直角三角形的解法基本上離不開的就是勾股定理。

  平面直角坐標(biāo)系

  平面直角坐標(biāo)系:在平面內(nèi)畫兩條互相垂直、原點(diǎn)重合的數(shù)軸,組成平面直角坐標(biāo)系。

  水平的數(shù)軸稱為x軸或橫軸,豎直的數(shù)軸稱為y軸或縱軸,兩坐標(biāo)軸的交點(diǎn)為平面直角坐標(biāo)系的原點(diǎn)。

  平面直角坐標(biāo)系的要素:①在同一平面②兩條數(shù)軸③互相垂直④原點(diǎn)重合

  三個(gè)規(guī)定:

 、僬较虻囊(guī)定橫軸取向右為正方向,縱軸取向上為正方向

  ②單位長(zhǎng)度的規(guī)定;一般情況,橫軸、縱軸單位長(zhǎng)度相同;實(shí)際有時(shí)也可不同,但同一數(shù)軸上必須相同。

  ③象限的規(guī)定:右上為第一象限、左上為第二象限、左下為第三象限、右下為第四象限。

  相信上面對(duì)平面直角坐標(biāo)系知識(shí)的講解學(xué)習(xí),同學(xué)們已經(jīng)能很好的掌握了吧,希望同學(xué)們都能考試成功。

  初中數(shù)學(xué)知識(shí)點(diǎn):平面直角坐標(biāo)系的構(gòu)成

  平面直角坐標(biāo)系的構(gòu)成

  在同一個(gè)平面上互相垂直且有公共原點(diǎn)的兩條數(shù)軸構(gòu)成平面直角坐標(biāo)系,簡(jiǎn)稱為直角坐標(biāo)系。通常,兩條數(shù)軸分別置于水平位置與鉛直位置,取向右與向上的方向分別為兩條數(shù)軸的正方向。水平的數(shù)軸叫做X軸或橫軸,鉛直的數(shù)軸叫做Y軸或縱軸,X軸或Y軸統(tǒng)稱為坐標(biāo)軸,它們的公共原點(diǎn)O稱為直角坐標(biāo)系的原點(diǎn)。

  點(diǎn)的坐標(biāo)的性質(zhì)

  建立了平面直角坐標(biāo)系后,對(duì)于坐標(biāo)系平面內(nèi)的任何一點(diǎn),我們可以確定它的坐標(biāo)。反過(guò)來(lái),對(duì)于任何一個(gè)坐標(biāo),我們可以在坐標(biāo)平面內(nèi)確定它所表示的一個(gè)點(diǎn)。

  對(duì)于平面內(nèi)任意一點(diǎn)C,過(guò)點(diǎn)C分別向X軸、Y軸作垂線,垂足在X軸、Y軸上的對(duì)應(yīng)點(diǎn)a,b分別叫做點(diǎn)C的橫坐標(biāo)、縱坐標(biāo),有序?qū)崝?shù)對(duì)(a,b)叫做點(diǎn)C的坐標(biāo)。

  一個(gè)點(diǎn)在不同的象限或坐標(biāo)軸上,點(diǎn)的坐標(biāo)不一樣。

  因式分解的一般步驟

  如果多項(xiàng)式有公因式就先提公因式,沒有公因式的多項(xiàng)式就考慮運(yùn)用公式法;若是四項(xiàng)或四項(xiàng)以上的多項(xiàng)式,

  通常采用分組分解法,最后運(yùn)用十字相乘法分解因式。因此,可以概括為:“一提”、“二套”、“三分組”、“四十字”。

  注意:因式分解一定要分解到每一個(gè)因式都不能再分解為止,否則就是不完全的因式分解,若題目沒有明確指出在哪個(gè)范圍內(nèi)因式分解,應(yīng)該是指在有理數(shù)范圍內(nèi)因式分解,因此分解因式的結(jié)果,必須是幾個(gè)整式的積的形式。

  因式分解

  因式分解定義:把一個(gè)多項(xiàng)式化成幾個(gè)整式的積的形式的變形叫把這個(gè)多項(xiàng)式因式分解。

  因式分解要素:①結(jié)果必須是整式②結(jié)果必須是積的形式③結(jié)果是等式④

  因式分解與整式乘法的關(guān)系:m(a+b+c)

  公因式:一個(gè)多項(xiàng)式每項(xiàng)都含有的公共的因式,叫做這個(gè)多項(xiàng)式各項(xiàng)的公因式。

  公因式確定方法:①系數(shù)是整數(shù)時(shí)取各項(xiàng)最大公約數(shù)。②相同字母取最低次冪③系數(shù)最大公約數(shù)與相同字母取最低次冪的積就是這個(gè)多項(xiàng)式各項(xiàng)的公因式。

  提取公因式步驟:

 、俅_定公因式。②確定商式③公因式與商式寫成積的形式。

  分解因式注意;

 、俨粶(zhǔn)丟字母

  ②不準(zhǔn)丟常數(shù)項(xiàng)注意查項(xiàng)數(shù)

 、垭p重括號(hào)化成單括號(hào)

 、芙Y(jié)果按數(shù)單字母單項(xiàng)式多項(xiàng)式順序排列

 、菹嗤蚴綄懗蓛绲男问

 、奘醉(xiàng)負(fù)號(hào)放括號(hào)外

 、呃ㄌ(hào)內(nèi)同類項(xiàng)合并。

【初中數(shù)學(xué)解直角三角形的重要知識(shí)點(diǎn)歸納】相關(guān)文章:

初中數(shù)學(xué)知識(shí)點(diǎn)歸納.07-30

初中數(shù)學(xué)圓的知識(shí)點(diǎn)歸納04-15

初中數(shù)學(xué)通分的重要知識(shí)點(diǎn)04-15

初中數(shù)學(xué)知識(shí)點(diǎn)歸納總結(jié)12-02

初中數(shù)學(xué)橢圓的方程知識(shí)點(diǎn)歸納04-07

初中數(shù)學(xué)圓錐的體積知識(shí)點(diǎn)歸納03-31

初中數(shù)學(xué)垂線的性質(zhì)知識(shí)點(diǎn)歸納04-07

初中數(shù)學(xué)有序數(shù)對(duì)的知識(shí)點(diǎn)歸納04-01

初中數(shù)學(xué)直線方程知識(shí)點(diǎn)歸納04-01

數(shù)學(xué)初中全部重要知識(shí)點(diǎn)總結(jié)04-25