- 相關(guān)推薦
初中冀教版數(shù)學(xué)知識(shí)點(diǎn)
上學(xué)的時(shí)候,看到知識(shí)點(diǎn),都是先收藏再說(shuō)吧!知識(shí)點(diǎn)就是掌握某個(gè)問(wèn)題/知識(shí)的學(xué)習(xí)要點(diǎn)。那么,都有哪些知識(shí)點(diǎn)呢?以下是小編收集整理的初中冀教版數(shù)學(xué)知識(shí)點(diǎn),僅供參考,大家一起來(lái)看看吧。
初中冀教版數(shù)學(xué)知識(shí)點(diǎn)1
1.一元一次方程:只含有一個(gè)未知數(shù),并且未知數(shù)的次數(shù)是1,并且含未知數(shù)項(xiàng)的系數(shù)不是零的整式方程是一元一次方程。
2.一元一次方程的標(biāo)準(zhǔn)形式:ax+b=0(x是未知數(shù),a、b是已知數(shù),且a≠0)。
3.一元一次方程解法的一般步驟:整理方程……去分母……去括號(hào)……移項(xiàng)……合并同類項(xiàng)……系數(shù)化為1……(檢驗(yàn)方程的解)。
4.列一元一次方程解應(yīng)用題:
。1)讀題分析法:多用于“和,差,倍,分問(wèn)題”
仔細(xì)讀題,找出表示相等關(guān)系的關(guān)鍵字,例如:“大,小,多,少,是,共,合,為,完成,增加,減少,配套—————”,利用這些關(guān)鍵字列出文字等式,并且據(jù)題意設(shè)出未知數(shù),最后利用題目中的量與量的關(guān)系填入代數(shù)式,得到方程。
。2)畫(huà)圖分析法:多用于“行程問(wèn)題”
利用圖形分析數(shù)學(xué)問(wèn)題是數(shù)形結(jié)合思想在數(shù)學(xué)中的體現(xiàn),仔細(xì)讀題,依照題意畫(huà)出有關(guān)圖形,使圖形各部分具有特定的含義,通過(guò)圖形找相等關(guān)系是解決問(wèn)題的關(guān)鍵,從而取得布列方程的依據(jù),最后利用量與量之間的關(guān)系(可把未知數(shù)看做已知量),填入有關(guān)的代數(shù)式是獲得方程的基礎(chǔ)。
11.列方程解應(yīng)用題的`常用公式:
。1)行程問(wèn)題:距離=速度·時(shí)間;
(2)工程問(wèn)題:工作量=工效·工時(shí);
。3)比率問(wèn)題:部分=全體·比率;
。4)順逆流問(wèn)題:順流速度=靜水速度+水流速度,逆流速度=靜水速度—水流速度;
。5)商品價(jià)格問(wèn)題:售價(jià)=定價(jià)·折·,利潤(rùn)=售價(jià)—成本,;
(6)周長(zhǎng)、面積、體積問(wèn)題:C圓=2πR,S圓=πR2,C長(zhǎng)方形=2(a+b),S長(zhǎng)方形=ab,C正方形=4a,
S正方形=a2,S環(huán)形=π(R2—r2),V長(zhǎng)方體=abc,V正方體=a3,V圓柱=πR2h,V圓錐=πR2h。
本章內(nèi)容是代數(shù)學(xué)的核心,也是所有代數(shù)方程的基礎(chǔ)。豐富多彩的問(wèn)題情境和解決問(wèn)題的快樂(lè)很容易激起學(xué)生對(duì)數(shù)學(xué)的樂(lè)趣,所以要注意引導(dǎo)學(xué)生從身邊的問(wèn)題研究起,進(jìn)行有效的數(shù)學(xué)活動(dòng)和合作交流,讓學(xué)生在主動(dòng)學(xué)習(xí)、探究學(xué)習(xí)的過(guò)程中獲得知識(shí),提升能力,體會(huì)數(shù)學(xué)思想方法。
初中冀教版數(shù)學(xué)知識(shí)點(diǎn)2
一、基本知識(shí)
一、數(shù)與代數(shù)
A、數(shù)與式:
1、有理數(shù):①整數(shù)→正整數(shù),0,負(fù)整數(shù);
、诜?jǐn)?shù)→正分?jǐn)?shù),負(fù)分?jǐn)?shù)
數(shù)軸:①畫(huà)一條水平直線,在直線上取一點(diǎn)表示0(原點(diǎn)),選取某一長(zhǎng)度作為單位長(zhǎng)度,規(guī)定直線上向右的方向?yàn)檎较,就得到?shù)軸。
、谌魏我粋(gè)有理數(shù)都可以用數(shù)軸上的一個(gè)點(diǎn)來(lái)表示。
、廴绻麅蓚(gè)數(shù)只有符號(hào)不同,那么我們稱其中一個(gè)數(shù)為另外一個(gè)數(shù)的相反數(shù),也稱這兩個(gè)數(shù)互為相反數(shù)。在數(shù)軸上,表示互為相反數(shù)的兩個(gè)點(diǎn),位于原點(diǎn)的兩側(cè),并且與原點(diǎn)距離相等。
④數(shù)軸上兩個(gè)點(diǎn)表示的數(shù),右邊的總比左邊的大。正數(shù)大于0,負(fù)數(shù)小于0,正數(shù)大于負(fù)數(shù)。
絕對(duì)值:①在數(shù)軸上,一個(gè)數(shù)所對(duì)應(yīng)的點(diǎn)與原點(diǎn)的距離叫做該數(shù)的絕對(duì)值。
、谡龜(shù)的絕對(duì)值是他的本身、負(fù)數(shù)的絕對(duì)值是他的相反數(shù)、0的絕對(duì)值是0。兩個(gè)負(fù)數(shù)比較大小,絕對(duì)值大的反而小。
有理數(shù)的運(yùn)算:帶上符號(hào)進(jìn)行正常運(yùn)算。
加法:
、偻(hào)相加,取相同的符號(hào),把絕對(duì)值相加。
、诋愄(hào)相加,絕對(duì)值相等時(shí)和為0;絕對(duì)值不等時(shí),取絕對(duì)值較大的數(shù)的符號(hào),并用較大的絕對(duì)值減去較小的絕對(duì)值。
、垡粋(gè)數(shù)與0相加不變。
減法:減去一個(gè)數(shù),等于加上這個(gè)數(shù)的相反數(shù)。
乘法:①兩數(shù)相乘,同號(hào)得正,異號(hào)得負(fù),絕對(duì)值相乘。
、谌魏螖(shù)與0相乘得0。
、鄢朔e為1的兩個(gè)有理數(shù)互為倒數(shù)。
除法:①除以一個(gè)數(shù)等于乘以一個(gè)數(shù)的倒數(shù)。
、0不能作除數(shù)。
乘方:求N個(gè)相同因數(shù)A的積的運(yùn)算叫做乘方,乘方的結(jié)果叫冪,A叫底數(shù),N叫次數(shù)或指數(shù)。
混合順序:先算乘法,再算乘除,最后算加減,有括號(hào)要先算括號(hào)里的。
2、實(shí)數(shù)
無(wú)理數(shù)
無(wú)理數(shù):無(wú)限不循環(huán)小數(shù)叫無(wú)理數(shù),例如:π=3.1415926…
平方根:①如果一個(gè)正數(shù)X的平方等于A,那么這個(gè)正數(shù)X就叫做A的算術(shù)平方根。
、谌绻粋(gè)數(shù)X的平方等于A,那么這個(gè)數(shù)X就叫做A的平方根。
、垡粋(gè)正數(shù)有2個(gè)平方根;0的平方根為0;負(fù)數(shù)沒(méi)有平方根。
、芮笠粋(gè)數(shù)A的平方根運(yùn)算,叫做開(kāi)平方,其中A叫做被開(kāi)方數(shù)。
立方根:①如果一個(gè)數(shù)X的立方等于A,那么這個(gè)數(shù)X就叫做A的立方根。
②正數(shù)的立方根是正數(shù)、0的立方根是0、負(fù)數(shù)的立方根是負(fù)數(shù)。
、矍笠粋(gè)數(shù)A的立方根的運(yùn)算叫開(kāi)立方,其中A叫做被開(kāi)方數(shù)。
實(shí)數(shù):①實(shí)數(shù)分有理數(shù)和無(wú)理數(shù)。
、谠趯(shí)數(shù)范圍內(nèi),相反數(shù),倒數(shù),絕對(duì)值的意義和有理數(shù)范圍內(nèi)的相反數(shù),倒數(shù),絕對(duì)值的意義完全一樣;
、勖恳粋(gè)實(shí)數(shù)都可以在數(shù)軸上的一個(gè)點(diǎn)來(lái)表示。
3、代數(shù)式
代數(shù)式:?jiǎn)为?dú)一個(gè)數(shù)或者一個(gè)字母也是代數(shù)式。
合并同類項(xiàng):
、偎帜赶嗤,并且相同字母的指數(shù)也相同的項(xiàng),叫做同類項(xiàng);
②把同類項(xiàng)合并成一項(xiàng)就叫做合并同類項(xiàng)。
③在合并同類項(xiàng)時(shí),我們把同類項(xiàng)的系數(shù)相加,字母和字母的指數(shù)不變。
4、整式與分式
整式:①數(shù)與字母的乘積的代數(shù)式叫單項(xiàng)式,幾個(gè)單項(xiàng)式的和叫多項(xiàng)式,單項(xiàng)式和多項(xiàng)式統(tǒng)稱整式。
②一個(gè)單項(xiàng)式中,所有字母的指數(shù)和叫做這個(gè)單項(xiàng)式的次數(shù)。
、垡粋(gè)多項(xiàng)式中,次數(shù)最高的項(xiàng)的次數(shù)叫做這個(gè)多項(xiàng)式的次數(shù)。
整式運(yùn)算:加減運(yùn)算時(shí),如果遇到括號(hào)先去括號(hào),再合并同類項(xiàng)。
冪的運(yùn)算:
A^M+A^N=A^(M+N)
。ˋ^M)^N=A^(MN)
。ˋ/B)^N=A^N/B^N
除法一樣。
整式的乘法:
、賳雾(xiàng)式與單項(xiàng)式相乘,把他們的系數(shù),相同字母的冪分別相乘,其余字母連同他的指數(shù)不變,作為積的因式。
②單項(xiàng)式與多項(xiàng)式相乘,就是根據(jù)分配律用單項(xiàng)式去乘多項(xiàng)式的每一項(xiàng),再把所得的積相加。
③多項(xiàng)式與多項(xiàng)式相乘,先用一個(gè)多項(xiàng)式的每一項(xiàng)乘另外一個(gè)多項(xiàng)式的每一項(xiàng),再把所得的積相加。
公式兩條:平方差公式:A^2-B^2=(A+B)(A-B);
完全平方公式:(A+B)^2=A^2+2AB+B^2;(A-B)^2=A^2-2AB+B^2。
整式的除法:①單項(xiàng)式相除,把系數(shù),同底數(shù)冪分別相除后,作為商的因式;對(duì)于只在被除式里含有的字母,則連同他的指數(shù)一起作為商的一個(gè)因式。
、诙囗(xiàng)式除以單項(xiàng)式,先把這個(gè)多項(xiàng)式的每一項(xiàng)分別除以單項(xiàng)式,再把所得的商相加。
分解因式:把一個(gè)多項(xiàng)式化成幾個(gè)整式的積的形式,這種變化叫做把這個(gè)多項(xiàng)式分解因式。
方法:提公因式法、運(yùn)用公式法、分組分解法、十字相乘法。
分式:①整式A除以整式B,如果除式B中含有分母,那么這個(gè)就是分式,對(duì)于任何一個(gè)分式,分母不為0。
、诜质降姆肿优c分母同乘以或除以同一個(gè)不等于0的整式,分式的值不變。
分式的運(yùn)算:
乘法:把分子相乘的積作為積的分子,把分母相乘的積作為積的分母。
除法:除以一個(gè)分式等于乘以這個(gè)分式的倒數(shù)。
加減法:①同分母分式相加減,分母不變,把分子相加減。
、诋惙帜傅姆质较韧ǚ,化為同分母的分式,再加減。
分式方程:①分母中含有未知數(shù)的方程叫分式方程。
、谑狗匠痰姆帜笧0的解稱為原方程的增根。
B、方程與不等式
1、方程與方程組
一元一次方程:①在一個(gè)方程中,只含有一個(gè)未知數(shù),并且未知數(shù)的指數(shù)是1,這樣的方程叫一元一次方程。
、诘仁絻蛇呁瑫r(shí)加上或減去或乘以或除以(不為0)一個(gè)代數(shù)式,所得結(jié)果仍是等式。
解一元一次方程的步驟:去分母,移項(xiàng),合并同類項(xiàng),未知數(shù)系數(shù)化為1。
二元一次方程:含有兩個(gè)未知數(shù),并且所含未知數(shù)的項(xiàng)的次數(shù)都是1的方程叫做二元一次方程。
二元一次方程組:兩個(gè)二元一次方程組成的方程組叫做二元一次方程組。
適合一個(gè)二元一次方程的一組未知數(shù)的值,叫做這個(gè)二元一次方程的一個(gè)解。
二元一次方程組中各個(gè)方程的公共解,叫做這個(gè)二元一次方程組的解。
解二元一次方程組的方法:代入消元法;加減消元法。
一元二次方程:只有一個(gè)未知數(shù),并且未知數(shù)的項(xiàng)的最高系數(shù)為2的方程:ax^2+bx+c=0;
1)一元二次方程的二次函數(shù)的關(guān)系
大家已經(jīng)學(xué)過(guò)二次函數(shù)(即拋物線)了,對(duì)他也有很深的了解,好像解法,在圖象中表示等等,其實(shí)一元二次方程也可以用二次函數(shù)來(lái)表示,其實(shí)一元二次方程也是二次函數(shù)的一個(gè)特殊情況,就是當(dāng)Y=0的時(shí)候就構(gòu)成了一元二次方程了。那如果在平面直角坐標(biāo)系中表示出來(lái),一元二次方程就是二次函數(shù)中,圖像與X軸的交點(diǎn)。也就是該方程的解了
2)一元二次方程的解法
大家知道,二次函數(shù)有頂點(diǎn)式(-b/2a,4ac-b^2/4a),這大家要記住,很重要,因?yàn)樵谏厦嬉呀?jīng)說(shuō)過(guò)了,一元二次方程也是二次函數(shù)的一部分,所以他也有自己的一個(gè)解法,利用他可以求出所有的一元一次方程的解
(1)配方法
利用配方,使方程變?yōu)橥耆椒焦,在用直接開(kāi)平方法去求出解
(2)分解因式法
提取公因式,套用公式法,和十字相乘法。在解一元二次方程的時(shí)候也一樣,利用這點(diǎn),把方程化為幾個(gè)乘積的形式去解
(3)公式法
這方法也可以是在解一元二次方程的萬(wàn)能方法了,方程的根X1={-b+√[b^2-4ac)]}/2a,X2={-b-√[b^2-4ac)]}/2a
3)解一元二次方程的步驟:
。1)配方法的步驟:
先把常數(shù)項(xiàng)移到方程的右邊,再把二次項(xiàng)的系數(shù)化為1,再同時(shí)加上1次項(xiàng)的系數(shù)的一半的平方,最后配成完全平方公式
(2)分解因式法的步驟:
把方程右邊化為0,然后看看是否能用提取公因式,公式法(這里指的是分解因式中的公式法)或十字相乘,如果可以,就可以化為乘積的形式
(3)公式法
就把一元二次方程的各系數(shù)分別代入,這里二次項(xiàng)的系數(shù)為a,一次項(xiàng)的系數(shù)為b,常數(shù)項(xiàng)的系數(shù)為c
4)韋達(dá)定理
利用韋達(dá)定理去了解,韋達(dá)定理就是在一元二次方程中,二根之和=-b/a,二根之積=c/a
也可以表示為x1+x2=-b/a,x1x2=c/a。利用韋達(dá)定理,可以求出一元二次方程中的各系數(shù),在題目中很常用
5)一元二次方程根的情況
利用根的判別式去了解,根的判別式可在書(shū)面上可以寫(xiě)為“△”,讀作“diao ta”,而△=b2-4ac,這里可以分為3種情況:
I當(dāng)△>0時(shí),一元二次方程有2個(gè)不相等的實(shí)數(shù)根;
II當(dāng)△=0時(shí),一元二次方程有2個(gè)相同的實(shí)數(shù)根;
III當(dāng)△B,則A+C>B+C;
在不等式中,如果減去同一個(gè)數(shù)(或加上一個(gè)負(fù)數(shù)),不等式符號(hào)不改向;
例如:如果A>B,則A-C>B-C;
在不等式中,如果乘以同一個(gè)正數(shù),不等式符號(hào)不改向;
例如:如果A>B,則A*C>B*C(C>0);
在不等式中,如果乘以同一個(gè)負(fù)數(shù),不等號(hào)改向;
例如:如果A>B,則A*C<b*c(c<0);< p="">
如果不等式乘以0,那么不等號(hào)改為等號(hào);
所以在題目中,要求出乘以的數(shù),那么就要看看題中是否出現(xiàn)一元一次不等式,如果出現(xiàn)了,那么不等式乘的數(shù)就不等于0,否則不等式不成立;
3、函數(shù)
變量:因變量Y,自變量X。
在用圖像表示變量之間的關(guān)系時(shí),通常用水平方向的數(shù)軸上的點(diǎn)自變量,用豎直方向的數(shù)軸上的點(diǎn)表示因變量。
一次函數(shù):①若兩個(gè)變量X,Y間的關(guān)系式可以表示成Y=KX+B(B為常數(shù),K不等于0)的形式,則稱Y是X的一次函數(shù)。
②當(dāng)B=0時(shí),稱Y是X的'正比例函數(shù)。
一次函數(shù)的圖像:
、侔岩粋(gè)函數(shù)的自變量X與對(duì)應(yīng)的因變量Y的值分別作為點(diǎn)的橫坐標(biāo)與縱坐標(biāo),在直角坐標(biāo)系內(nèi)描出它的對(duì)應(yīng)點(diǎn),所有這些點(diǎn)組成的圖形叫做該函數(shù)的圖像。
②正比例函數(shù)Y=KX的圖像是經(jīng)過(guò)原點(diǎn)的一條直線。
、墼谝淮魏瘮(shù)中,當(dāng)K〈0,B〈O時(shí),則經(jīng)234象限;
當(dāng)K〈0,B〉0時(shí),則經(jīng)124象限;
當(dāng)K〉0,B〈0時(shí),則經(jīng)134象限;
當(dāng)K〉0,B〉0時(shí),則經(jīng)123象限。
、墚(dāng)K〉0時(shí),Y的值隨X值的增大而增大,當(dāng)X〈0時(shí),Y的值隨X值的增大而減少。
二空間與圖形
A、圖形的認(rèn)識(shí)
1、點(diǎn),線,面
點(diǎn),線,面:①圖形是由點(diǎn),線,面構(gòu)成的。
、诿媾c面相交得線,線與線相交得點(diǎn)。
、埸c(diǎn)動(dòng)成線,線動(dòng)成面,面動(dòng)成體。
展開(kāi)與折疊:①在棱柱中,任何相鄰的兩個(gè)面的交線叫做棱,側(cè)棱是相鄰兩個(gè)側(cè)面的交線,棱柱的所有側(cè)棱長(zhǎng)相等,棱柱的上下底面的形狀相同,側(cè)面的形狀都是長(zhǎng)方體。
②N棱柱就是底面圖形有N條邊的棱柱,上下底面就是N邊形。
截一個(gè)幾何體:用一個(gè)平面去截一個(gè)圖形,截出的面叫做截面。
視圖:主視圖,左視圖,俯視圖。
多邊形:他們是由一些不在同一條直線上的線段依次首尾相連組成的封閉圖形。
弧、扇形:①由一條弧和經(jīng)過(guò)這條弧的端點(diǎn)的兩條半徑所組成的圖形叫扇形。
、趫A可以分割成若干個(gè)扇形。
2、角
線:①線段有兩個(gè)端點(diǎn)。
、趯⒕段向一個(gè)方向無(wú)限延長(zhǎng)就形成了射線。射線只有一個(gè)端點(diǎn)。
、蹖⒕段的兩端無(wú)限延長(zhǎng)就形成了直線。直線沒(méi)有端點(diǎn)。
④經(jīng)過(guò)兩點(diǎn)有且只有一條直線。
比較長(zhǎng)短:①兩點(diǎn)之間的所有連線中,線段最短。兩點(diǎn)之間直線最短。
、趦牲c(diǎn)之間線段的長(zhǎng)度,叫做這兩點(diǎn)之間的距離。
角的度量與表示:①角由兩條具有公共端點(diǎn)的射線組成,兩條射線的公共端點(diǎn)是這個(gè)角的頂點(diǎn)。
、谝欢鹊1/60是一分,一分的1/60是一秒。即:60分為1度,60秒為1分。
角的比較:①角也可以看成是由一條射線繞著他的端點(diǎn)旋轉(zhuǎn)而成的。
、谝粭l射線繞著他的端點(diǎn)旋轉(zhuǎn),當(dāng)終邊和始邊成一條直線時(shí),所成的角叫做平角,180。始邊繼續(xù)旋轉(zhuǎn),當(dāng)他又和始邊重合時(shí),所成的角叫做周角,360。
、蹚囊粋(gè)角的頂點(diǎn)引出的一條射線,把這個(gè)角分成兩個(gè)相等的角,這條射線叫做這個(gè)角的平分線。
平行:①同一平面內(nèi),不相交的兩條直線叫做平行線。
②經(jīng)過(guò)直線外一點(diǎn),有且只有一條直線與這條直線平行。
、廴绻麅蓷l直線都與第3條直線平行,那么這兩條直線互相平行。
垂直:①如果兩條直線相交成直角,那么這兩條直線互相垂直。
、诨ハ啻怪钡膬蓷l直線的交點(diǎn)叫做垂足。
、燮矫鎯(nèi),過(guò)一點(diǎn)有且只有一條直線與已知直線垂直。
垂直平分線:垂直和平分一條線段的直線叫垂直平分線。
垂直平分線垂直平分的一定是線段,不能是射線或直線,這根據(jù)射線和直線可以無(wú)限延長(zhǎng)有關(guān),再看后面的,垂直平分線是一條直線,所以在畫(huà)垂直平分線的時(shí)候,確定了2點(diǎn)后(關(guān)于畫(huà)法,后面會(huì)講)一定要把線段穿出2點(diǎn)。
垂直平分線定理:
性質(zhì)定理:在垂直平分線上的點(diǎn)到該線段兩端點(diǎn)的距離相等;
判定定理:到線段2端點(diǎn)距離相等的點(diǎn)在這線段的垂直平分線上;
角平分線:把一個(gè)角平分的射線叫該角的角平分線。
定義中有幾個(gè)要點(diǎn)要注意一下的:角的角平分線是一條射線,不是線段也不是直線,很多時(shí),在題目中會(huì)出現(xiàn)直線,這是角平分線的對(duì)稱軸才會(huì)用直線的,這也涉及到軌跡的問(wèn)題,一個(gè)角的角平分線就是到角兩邊距離相等的點(diǎn)的集合。
性質(zhì)定理:角平分線上的點(diǎn)到該角兩邊的距離相等;
判定定理:到角的兩邊距離相等的點(diǎn)在該角的角平分線上;
正方形:一組鄰邊相等的矩形是正方形
性質(zhì):正方形具有平行四邊形、菱形、矩形的一切性質(zhì)
判定:1、對(duì)角線相等的菱形
2、鄰邊相等的矩形
二、基本定理
1、過(guò)兩點(diǎn)有且只有一條直線
2、兩點(diǎn)之間線段最短
3、同角或等角的補(bǔ)角相等
——補(bǔ)角=180-角度。
4、同角或等角的余角相等——余角=90-角度。
5、過(guò)一點(diǎn)有且只有一條直線和已知直線垂直
6、直線外一點(diǎn)與直線上各點(diǎn)連接的所有線段中,垂線段最短
7、平行公理:經(jīng)過(guò)直線外一點(diǎn),有且只有一條直線與這條直線平行
8、如果兩條直線都和第三條直線平行,這兩條直線也互相平行
9、同位角相等,兩直線平行
10、內(nèi)錯(cuò)角相等,兩直線平行
11、同旁內(nèi)角互補(bǔ),兩直線平行
12、兩直線平行,同位角相等
13、兩直線平行,內(nèi)錯(cuò)角相等
14、兩直線平行,同旁內(nèi)角互補(bǔ)
15、定理
三角形兩邊的和大于第三邊
16、推論
三角形兩邊的差小于第三邊
17、三角形內(nèi)角和定理:
三角形三個(gè)內(nèi)角的和等于180°
18、推論1
直角三角形的兩個(gè)銳角互余
19、推論2
三角形的一個(gè)外角等于和它不相鄰的兩個(gè)內(nèi)角的和
20、推論3
三角形的一個(gè)外角大于任何一個(gè)和它不相鄰的內(nèi)角
21、全等三角形的對(duì)應(yīng)邊、對(duì)應(yīng)角相等
22、邊角邊公理(SAS):有兩邊和它們的夾角對(duì)應(yīng)相等的兩個(gè)三角形全等
23、角邊角公理(ASA):有兩角和它們的夾邊對(duì)應(yīng)相等的兩個(gè)三角形全等
24、推論(AAS):有兩角和其中一角的對(duì)邊對(duì)應(yīng)相等的兩個(gè)三角形全等
25、邊邊邊公理(SSS):有三邊對(duì)應(yīng)相等的兩個(gè)三角形全等
26、斜邊、直角邊公理(HL):有斜邊和一條直角邊對(duì)應(yīng)相等的兩個(gè)直角三角形全等
27、定理1
在角的平分線上的點(diǎn)到這個(gè)角的兩邊的距離相等
28、定理2
到一個(gè)角的兩邊的距離相同的點(diǎn),在這個(gè)角的平分線上
29、角的平分線是到角的兩邊距離相等的所有點(diǎn)的集合
30、推論1
等腰三角形頂角的平分線平分底邊并且垂直于底邊
31、推論2等腰三角形的頂角平分線、底邊上的中線和底邊上的高互相重合,即三線合一;
32、推論3
等邊三角形的各角都相等,并且每一個(gè)角都等于60°
33、等腰三角形的判定定理
如果一個(gè)三角形有兩個(gè)角相等,那么這兩個(gè)角所對(duì)的邊也相等(等角對(duì)等邊)
34、等腰三角形的性質(zhì)定理
等腰三角形的兩個(gè)底角相等
(即等邊對(duì)等角)
35、推論1
三個(gè)角都相等的三角形是等邊三角形
36、推論
有一個(gè)角等于60°的等腰三角形是等邊三角形
37、在直角三角形中,如果一個(gè)銳角等于30°那么它所對(duì)的直角邊等于斜邊的一半
38、直角三角形斜邊上的中線等于斜邊上的一半
39、定理
線段垂直平分線上的點(diǎn)和這條線段兩個(gè)端點(diǎn)的距離相等
40、逆定理
和一條線段兩個(gè)端點(diǎn)距離相等的點(diǎn),在這條線段的垂直平分線上
41、線段的垂直平分線可看作和線段兩端點(diǎn)距離相等的所有點(diǎn)的集合
42、定理1
關(guān)于某條直線對(duì)稱的兩個(gè)圖形是全等形
43、定理
如果兩個(gè)圖形關(guān)于某直線對(duì)稱,那么對(duì)稱軸是對(duì)應(yīng)點(diǎn)連線的垂直平分線
44、定理3
兩個(gè)圖形關(guān)于某直線對(duì)稱,如果它們的對(duì)應(yīng)線段或延長(zhǎng)線相交,那么交點(diǎn)在對(duì)稱軸上
45、逆定理
如果兩個(gè)圖形的對(duì)應(yīng)點(diǎn)連線被同一條直線垂直平分,那么這兩個(gè)圖形關(guān)于這條直線對(duì)稱
46、勾股定理
直角三角形兩直角邊a、b的平方和、等于斜邊c的平方,即a2+b2=c2
47、勾股定理的逆定理
如果三角形的三邊長(zhǎng)a、b、c有關(guān)系a2+b2=c2,那么這個(gè)三角形是直角三角形
48、定理
四邊形的內(nèi)角和等于360°
49、四邊形的外角和等于360°
50、多邊形內(nèi)角和定理
n邊形的內(nèi)角的和等于(n-2)×180°
51、推論
任意多邊的外角和等于360°
52、平行四邊形性質(zhì)定理1
平行四邊形的對(duì)角相等
53、平行四邊形性質(zhì)定理2
平行四邊形的對(duì)邊相等
54、推論
夾在兩條平行線間的平行線段相等
55、平行四邊形性質(zhì)定理3
平行四邊形的對(duì)角線互相平分
56、平行四邊形判定定理1
兩組對(duì)角分別相等的四邊形是平行四邊形
57、平行四邊形判定定理2
兩組對(duì)邊分別相等的四邊
形是平行四邊形
58、平行四邊形判定定理3
對(duì)角線互相平分的四邊形是平行四邊形
59、平行四邊形判定定理4
一組對(duì)邊平行相等的四邊形是平行四邊形
60、矩形性質(zhì)定理1
矩形的四個(gè)角都是直角
61、矩形性質(zhì)定理2
矩形的對(duì)角線相等
62、矩形判定定理1
有三個(gè)角是直角的四邊形是矩形
63、矩形判定定理2
對(duì)角線相等的平行四邊形是矩形
64、菱形性質(zhì)定理1
菱形的四條邊都相等
65、菱形性質(zhì)定理2
菱形的對(duì)角線互相垂直,并且每一條對(duì)角線平分一組對(duì)角
66、菱形面積=對(duì)角線乘積的一半,即S=(a×b)÷2
67、菱形判定定理1
四邊都相等的四邊形是菱形
68、菱形判定定理2
對(duì)角線互相垂直的平行四邊形是菱形
69、正方形性質(zhì)定理1
正方形的四個(gè)角都是直角,四條邊都相等
70、正方形性質(zhì)定理2正方形的兩條對(duì)角線相等,并且互相垂直平分,每條對(duì)角線平分一組對(duì)角
71、定理1
關(guān)于中心對(duì)稱的兩個(gè)圖形是全等的
72、定理2
關(guān)于中心對(duì)稱的兩個(gè)圖形,對(duì)稱點(diǎn)連線都經(jīng)過(guò)對(duì)稱中心,并且被對(duì)稱中心平分
73、逆定理
如果兩個(gè)圖形的對(duì)應(yīng)點(diǎn)連線都經(jīng)過(guò)某一點(diǎn),并且被這一點(diǎn)平分,那么這兩個(gè)圖形關(guān)于這一點(diǎn)對(duì)稱
74、等腰梯形性質(zhì)定理
等腰梯形在同一底上的兩個(gè)角相等
75、等腰梯形的兩條對(duì)角線相等
76、等腰梯形判定定理
在同一底上的兩個(gè)角相等的梯
形是等腰梯形
77、對(duì)角線相等的梯形是等腰梯形
78、平行線等分線段定理
如果一組平行線在一條直線上截得的線段相等,那么在其他直線上截得的線段也相等
79、推論1
經(jīng)過(guò)梯形一腰的中點(diǎn)與底平行的直線,必平分另一腰
80、推論2
經(jīng)過(guò)三角形一邊的中點(diǎn)與另一邊平行的直線,必平分第三邊
81、三角形中位線定理
三角形的中位線平行于第三邊,并且等于它的一半
82、梯形中位線定理
梯形的中位線平行于兩底,并且等于兩底和的一半
L=(a+b)÷2
S=L×h
83、(1)比例的基本性質(zhì):如果a:b=c:d,那么ad=bc
如果
ad=bc,那么a:b=c:d
84、(2)合比性質(zhì):如果a/b=c/d,那么(a±b)/b=(c±d)/d
85、(3)等比性質(zhì):如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b
86、平行線分線段成比例定理
三條平行線截兩條直線,所得的對(duì)應(yīng)線段成比例
87、推論
平行于三角形一邊的直線截其他兩邊(或兩邊的延長(zhǎng)線),所得的對(duì)應(yīng)線段成比例
88、定理
如果一條直線截三角形的兩邊(或兩邊的延長(zhǎng)線)所得的對(duì)應(yīng)線段成比例,那么這條直線平行于三角形的第三邊
89、平行于三角形的一邊,并且和其他兩邊相交的直線,
所截得的三角形的三邊與原三角形三邊對(duì)應(yīng)成比例
90、定理
平行于三角形一邊的直線和其他兩邊(或兩邊的延長(zhǎng)線)相交,所構(gòu)成的三角形與原三角形相似
91、相似三角形判定定理1
兩角對(duì)應(yīng)相等,兩三角形相似(ASA)
92、直角三角形被斜邊上的高分成的兩個(gè)直角三角形和原三角形相似
93、判定定理2
兩邊對(duì)應(yīng)成比例且?jiàn)A角相等,兩三角形相似(SAS)
94、判定定理3
三邊對(duì)應(yīng)成比例,兩三角形相似(SSS)
95、定理
如果一個(gè)直角三角形的斜邊和一條直角邊與另一個(gè)直角三角形的斜邊和一條直角邊對(duì)應(yīng)成比例,那么這兩個(gè)直角三角形相似(HL)
96、性質(zhì)定理1
相似三角形對(duì)應(yīng)高的比,對(duì)應(yīng)中線的比與對(duì)應(yīng)角平分線的比都等于相似比
97、性質(zhì)定理2
相似三角形周長(zhǎng)的比等于相似比
98、性質(zhì)定理3
相似三角形面積的比等于相似比的平方
99、任意銳角的正弦值等于它的余角的余弦值,任意銳角的余弦值等于它的余角的正弦值sin(a)=cos(90-a),cos(a)=sin(90-a)
(a<90)
100、任意銳角的正切值等于它的余角的余切值,任意銳角的余切值等于它的余角的正切值tan(a)=cot(90-a),cot(a)=tan(90-a)
101、圓是定點(diǎn)的距離等于定長(zhǎng)的點(diǎn)的集合
102、圓的內(nèi)部可以看作是圓心的距離小于半徑的點(diǎn)的集合
103、圓的外部可以看作是圓心的距離大于半徑的點(diǎn)的集合
104、同圓或等圓的半徑相等
105、到定點(diǎn)的距離等于定長(zhǎng)的點(diǎn)的軌跡,是以定點(diǎn)為圓心,定長(zhǎng)為半徑的圓
106、和已知線段兩個(gè)端點(diǎn)的距離相等的點(diǎn)的軌跡,是著條線段的垂直平分線
107、到已知角的兩邊距離相等的點(diǎn)的軌跡,是這個(gè)角的平分線
108、到兩條平行線距離相等的點(diǎn)的軌跡,是和這兩條平行線平行且距離相等的一條直線
109、定理
不在同一直線上的三點(diǎn)確定一個(gè)圓。
110、垂徑定理
垂直于弦的直徑平分這條弦并且平分弦所對(duì)的兩條弧
111、推論1
、倨椒窒遥ú皇侵睆剑┑闹睆酱怪庇谙遥⑶移椒窒宜鶎(duì)的兩條弧
、谙业拇怪逼椒志經(jīng)過(guò)圓心,并且平分弦所對(duì)的兩條弧(直徑)
、燮椒窒宜鶎(duì)的一條弧的直徑,垂直平分弦,并且平分弦所對(duì)的另一條弧
112、推論2
圓的兩條平行弦所夾的弧相等
113、圓是以圓心為對(duì)稱中心的中心對(duì)稱圖形
114、定理
在同圓或等圓中,相等的圓心角所對(duì)的弧相等,所對(duì)的弦相等,所對(duì)的弦的弦心距相等
115、推論
在同圓或等圓中,如果兩個(gè)圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相等那么它們所對(duì)應(yīng)的其余各組量都相等
116、定理
一條弧所對(duì)的圓周角等于它所對(duì)的圓心角的一半
117、推論1
同弧或等弧所對(duì)的圓周角相等;同圓或等圓中,相等的圓周角所對(duì)的弧也相等
118、推論2
半圓(或直徑)所對(duì)的圓周角是直角;90°的圓周角所對(duì)的弦是直徑
119、推論3
如果三角形一邊上的中線等于這邊的一半,那么這個(gè)三角形是直角三角形
120、定理
圓的內(nèi)接四邊形的對(duì)角互補(bǔ),并且任何一個(gè)外角都等于它的內(nèi)對(duì)角
121、①直線L和⊙O相交
0<=d<r
②直線L和⊙O相切
d=r
、壑本L和⊙O相離
d>r
122、切線的判定定理
經(jīng)過(guò)半徑的外端并且垂直于這條半徑的直線是圓的切線
123、切線的性質(zhì)定理
圓的切線垂直于經(jīng)過(guò)切點(diǎn)的半徑
124、推論1
經(jīng)過(guò)圓心且垂直于切線的直線必經(jīng)過(guò)切點(diǎn)
125、推論2
經(jīng)過(guò)切點(diǎn)且垂直于切線的直線必經(jīng)過(guò)圓心
126、切線長(zhǎng)定理
從圓外一點(diǎn)引圓的兩條切線相交與一點(diǎn),它們的切線長(zhǎng)相等
,圓心和這一點(diǎn)的連線平分兩條切線的夾角
127、圓的外切四邊形的兩組對(duì)邊的和相等
128、弦切角定理
弦切角等于它所夾的弧對(duì)的圓周角?
129、推論
如果兩個(gè)弦切角所夾的弧相等,那么這兩個(gè)弦切角也相等
130、相交弦定理
圓內(nèi)的兩條相交弦,被交點(diǎn)分成的兩條線段長(zhǎng)的積相等
131、推論
如果弦與直徑垂直相交,那么弦的一半是它分直徑所成的兩條線段的比例中項(xiàng)
132、切割線定理
從圓外一點(diǎn)引圓的切線和割線,切線長(zhǎng)是這點(diǎn)到割線與圓交點(diǎn)的兩條線段長(zhǎng)的比例中項(xiàng)?
133、推論
從圓外一點(diǎn)引圓的兩條割線,這一點(diǎn)到每條
割線與圓的交點(diǎn)的兩條線段長(zhǎng)的積相等
134、如果兩個(gè)圓相切,那么切點(diǎn)一定在連心線上
135、①兩圓外離
d>R+r
、趦蓤A外切
d=R+r
、蹆蓤A相交
R-r<d<R+r(R>r)
、軆蓤A內(nèi)切
d=R-r(R>r)
、輧蓤A內(nèi)含
d<R-r(R>r)
136、定理
相交兩圓的連心線垂直平分兩圓的公共弦
137、定理
把圓平均分成n(n≥3):
⑴依次連結(jié)各分點(diǎn)所得的多邊形是這個(gè)圓的內(nèi)接正n邊形
、平(jīng)過(guò)各分點(diǎn)作圓的切線,以相鄰切線的交點(diǎn)為頂點(diǎn)的多邊形是這個(gè)圓的外切正n邊形
138、定理
任何正多邊形都有一個(gè)外接圓和一個(gè)內(nèi)切圓,這兩個(gè)圓是同心圓
139、正n邊形的每個(gè)內(nèi)角都等于(n-2)×180°/n
140、定理
正n邊形的半徑和邊心距把正n邊形分成2n個(gè)全等的直角三角形
141、正n邊形的面積Sn=pn*rn/2
p表示正n邊形的周長(zhǎng)
142、正三角形面積√3a^2/4
a表示邊長(zhǎng)
143、如果在一個(gè)頂點(diǎn)周圍有k個(gè)正n邊形的角,由于這些角的和應(yīng)為360°,因此k×(n-2)180°/n=360°化為(n-2)(k-2)=4
144、弧長(zhǎng)計(jì)算公式:L=n兀R/180——》L=nR
145、扇形面積公式:S扇形=n兀R^2/360=LR/2
146、內(nèi)公切線長(zhǎng)=d-(R-r)
外公切線長(zhǎng)=d-(R+r)
初中冀教版數(shù)學(xué)知識(shí)點(diǎn)3
1.有理數(shù):
。1)凡能寫(xiě)成形式的數(shù),都是有理數(shù)。正整數(shù)、0、負(fù)整數(shù)統(tǒng)稱整數(shù);正分?jǐn)?shù)、負(fù)分?jǐn)?shù)統(tǒng)稱分?jǐn)?shù);整數(shù)和分?jǐn)?shù)統(tǒng)稱有理數(shù)。注意:0即不是正數(shù),也不是負(fù)數(shù);—a不一定是負(fù)數(shù),+a也不一定是正數(shù);p不是有理數(shù);
。2)有理數(shù)的分類:①②
2.數(shù)軸:數(shù)軸是規(guī)定了原點(diǎn)、正方向、單位長(zhǎng)度的一條直線。
3.相反數(shù):
。1)只有符號(hào)不同的兩個(gè)數(shù),我們說(shuō)其中一個(gè)是另一個(gè)的相反數(shù);0的相反數(shù)還是0;
。2)相反數(shù)的和為0?a+b=0?a、b互為相反數(shù)。
4.絕對(duì)值:
。1)正數(shù)的絕對(duì)值是其本身,0的絕對(duì)值是0,負(fù)數(shù)的絕對(duì)值是它的相反數(shù);注意:絕對(duì)值的意義是數(shù)軸上表示某數(shù)的點(diǎn)離開(kāi)原點(diǎn)的距離;
(2)絕對(duì)值可表示為:或;絕對(duì)值的問(wèn)題經(jīng)常分類討論;
5.有理數(shù)比大。海1)正數(shù)的`絕對(duì)值越大,這個(gè)數(shù)越大;
。2)正數(shù)永遠(yuǎn)比0大,負(fù)數(shù)永遠(yuǎn)比0。
。3)正數(shù)大于一切負(fù)數(shù);
。4)兩個(gè)負(fù)數(shù)比大小,絕對(duì)值大的反而;
(5)數(shù)軸上的兩個(gè)數(shù),右邊的數(shù)總比左邊的數(shù)大;
(6)大數(shù)—小數(shù)>0,小數(shù)—大數(shù)<0。
6.互為倒數(shù):乘積為1的兩個(gè)數(shù)互為倒數(shù);注意:0沒(méi)有倒數(shù);若a≠0,那么的倒數(shù)是;若ab=1?a、b互為倒數(shù);若ab=—1?a、b互為負(fù)倒數(shù)。
7.有理數(shù)加法法則:
(1)同號(hào)兩數(shù)相加,取相同的符號(hào),并把絕對(duì)值相加;
。2)異號(hào)兩數(shù)相加,取絕對(duì)值較大的符號(hào),并用較大的絕對(duì)值減去較小的絕對(duì)值;
。3)一個(gè)數(shù)與0相加,仍得這個(gè)數(shù)。
8.有理數(shù)加法的運(yùn)算律:
。1)加法的交換律:a+b=b+a;
。2)加法的結(jié)合律:(a+b)+c=a+(b+c)。
9.有理數(shù)減法法則:減去一個(gè)數(shù),等于加上這個(gè)數(shù)的相反數(shù);即a—b=a+(—b)。
10.有理數(shù)乘法法則:
。1)兩數(shù)相乘,同號(hào)為正,異號(hào)為負(fù),并把絕對(duì)值相乘;
。2)任何數(shù)同零相乘都得零;
。3)幾個(gè)數(shù)相乘,有一個(gè)因式為零,積為零;各個(gè)因式都不為零,積的符號(hào)由負(fù)因式的個(gè)數(shù)決定。
11.有理數(shù)乘法的運(yùn)算律:
。1)乘法的交換律:ab=ba;
。2)乘法的結(jié)合律:(ab)c=a(bc);
。3)乘法的分配律:a(b+c)=ab+ac。
12.有理數(shù)除法法則:除以一個(gè)數(shù)等于乘以這個(gè)數(shù)的倒數(shù);注意:零不能做除數(shù),。
13.有理數(shù)乘方的法則:
。1)正數(shù)的任何次冪都是正數(shù);
。2)負(fù)數(shù)的奇次冪是負(fù)數(shù);負(fù)數(shù)的偶次冪是正數(shù);注意:當(dāng)n為正奇數(shù)時(shí):(—a)n=—an或(a—b)n=—(b—a)n,當(dāng)n為正偶數(shù)時(shí):(—a)n=an或(a—b)n=(b—a)n。
14.乘方的定義:
。1)求相同因式積的運(yùn)算,叫做乘方;
(2)乘方中,相同的因式叫做底數(shù),相同因式的個(gè)數(shù)叫做指數(shù),乘方的結(jié)果叫做冪;
15.科學(xué)記數(shù)法:把一個(gè)大于10的數(shù)記成a×10n的形式,其中a是整數(shù)數(shù)位只有一位的數(shù),這種記數(shù)法叫科學(xué)記數(shù)法。
16.近似數(shù)的精確位:一個(gè)近似數(shù),四舍五入到那一位,就說(shuō)這個(gè)近似數(shù)的精確到那一位。
17.有效數(shù)字:從左邊第一個(gè)不為零的數(shù)字起,到精確的位數(shù)止,所有數(shù)字,都叫這個(gè)近似數(shù)的有效數(shù)字。
18.混合運(yùn)算法則:先乘方,后乘除,最后加減。
本章內(nèi)容要求學(xué)生正確認(rèn)識(shí)有理數(shù)的概念,在實(shí)際生活和學(xué)習(xí)數(shù)軸的基礎(chǔ)上,理解正負(fù)數(shù)、相反數(shù)、絕對(duì)值的意義所在。重點(diǎn)利用有理數(shù)的運(yùn)算法則解決實(shí)際問(wèn)題。
體驗(yàn)數(shù)學(xué)發(fā)展的一個(gè)重要原因是生活實(shí)際的需要。激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣,教師培養(yǎng)學(xué)生的觀察、歸納與概括的能力,使學(xué)生建立正確的數(shù)感和解決實(shí)際問(wèn)題的能力。教師在講授本章內(nèi)容時(shí),應(yīng)該多創(chuàng)設(shè)情境,充分體現(xiàn)學(xué)生學(xué)習(xí)的主體性地位。
初中冀教版數(shù)學(xué)知識(shí)點(diǎn)4
1、正數(shù)和負(fù)數(shù)的有關(guān)概念
(1)正數(shù):比0大的數(shù)叫做正數(shù);
負(fù)數(shù):比0小的數(shù)叫做負(fù)數(shù);
0既不是正數(shù),也不是負(fù)數(shù)。
(2)正數(shù)和負(fù)數(shù)表示相反意義的量。
2、有理數(shù)的概念及分類
3、有關(guān)數(shù)軸
(1)數(shù)軸的三要素:原點(diǎn)、正方向、單位長(zhǎng)度。數(shù)軸是一條直線。
(2)所有有理數(shù)都可以用數(shù)軸上的點(diǎn)來(lái)表示,但數(shù)軸上的點(diǎn)不一定都是有理數(shù)。
(3)數(shù)軸上,右邊的數(shù)總比左邊的數(shù)大;表示正數(shù)的點(diǎn)在原點(diǎn)的右側(cè),表示負(fù)數(shù)的點(diǎn)在原點(diǎn)的左側(cè)。
(2)相反數(shù):符號(hào)不同、絕對(duì)值相等的兩個(gè)數(shù)互為相反數(shù)。
若a、b互為相反數(shù),則a+b=0;
相反數(shù)是本身的`是0,正數(shù)的相反數(shù)是負(fù)數(shù),負(fù)數(shù)的相反數(shù)是正數(shù)。
(3)絕對(duì)值最小的數(shù)是0;絕對(duì)值是本身的數(shù)是非負(fù)數(shù)。
4、任何數(shù)的絕對(duì)值是非負(fù)數(shù)。
最小的正整數(shù)是1,最大的負(fù)整數(shù)是-1。
5、利用絕對(duì)值比較大小
兩個(gè)正數(shù)比較:絕對(duì)值大的那個(gè)數(shù)大;
兩個(gè)負(fù)數(shù)比較:先算出它們的絕對(duì)值,絕對(duì)值大的反而小。
6、有理數(shù)加法
(1)符號(hào)相同的兩數(shù)相加:和的符號(hào)與兩個(gè)加數(shù)的符號(hào)一致,和的絕對(duì)值等于兩個(gè)加數(shù)絕對(duì)值之和。
(2)符號(hào)相反的兩數(shù)相加:當(dāng)兩個(gè)加數(shù)絕對(duì)值不等時(shí),和的符號(hào)與絕對(duì)值較大的加數(shù)的符號(hào)相同,和的絕對(duì)值等于加數(shù)中較大的絕對(duì)值減去較小的絕對(duì)值;當(dāng)兩個(gè)加數(shù)絕對(duì)值相等時(shí),兩個(gè)加數(shù)互為相反數(shù),和為零。
(3)一個(gè)數(shù)同零相加,仍得這個(gè)數(shù)。
加法的交換律:a+b=b+a
加法的結(jié)合律:(a+b)+c=a+(b+c)
7、有理數(shù)減法:減去一個(gè)數(shù),等于加上這個(gè)數(shù)的相反數(shù)。
8、在把有理數(shù)加減混合運(yùn)算統(tǒng)一為最簡(jiǎn)的形式,負(fù)數(shù)前面的加號(hào)可以省略不寫(xiě).
例如:14+12+(-25)+(-17)可以寫(xiě)成省略括號(hào)的形式:14+12-25-17,可以讀作“正14加12減25減17”,也可以讀作“正14、正12、負(fù)25、負(fù)17的和.”
9、有理數(shù)的乘法
兩個(gè)數(shù)相乘,同號(hào)得正,異號(hào)得負(fù),再把絕對(duì)值相乘;任何數(shù)與0相乘都得0。
第一步:確定積的符號(hào)第二步:絕對(duì)值相乘
10、乘積的符號(hào)的確定
幾個(gè)有理數(shù)相乘,因數(shù)都不為0時(shí),積的符號(hào)由負(fù)因數(shù)的個(gè)數(shù)確定:當(dāng)負(fù)因數(shù)有奇數(shù)個(gè)時(shí),積為負(fù);
當(dāng)負(fù)因數(shù)有偶數(shù)個(gè)時(shí),積為正。幾個(gè)有理數(shù)相乘,有一個(gè)因數(shù)為零,積就為零。
11、倒數(shù):乘積為1的兩個(gè)數(shù)互為倒數(shù),0沒(méi)有倒數(shù)。
正數(shù)的倒數(shù)是正數(shù),負(fù)數(shù)的倒數(shù)是負(fù)數(shù)。(互為倒數(shù)的兩個(gè)數(shù)符號(hào)一定相同)
倒數(shù)是本身的只有1和-1。
初中冀教版數(shù)學(xué)知識(shí)點(diǎn)5
1、菱形的定義:有一組鄰邊相等的平行四邊形叫做菱形。
2、菱形的性質(zhì):
、啪匦尉哂衅叫兴倪呅蔚囊磺行再|(zhì);
⑵菱形的四條邊都相等;
⑶菱形的兩條對(duì)角線互相垂直,并且每一條對(duì)角線平分一組對(duì)角。
⑷菱形是軸對(duì)稱圖形。
提示:利用菱形的性質(zhì)可證得線段相等、角相等,它的對(duì)角線互相垂直且把菱形分成四個(gè)全等的直角三角形,由此又可與勾股定理聯(lián)系,可得對(duì)角線與邊之間的.關(guān)系,即邊長(zhǎng)的平方等于對(duì)角線一半的平方和。
3、因式分解定義:把一個(gè)多項(xiàng)式化成幾個(gè)整式的積的形式的變形叫把這個(gè)多項(xiàng)式因式分解。
4、因式分解要素:
、俳Y(jié)果必須是整式
、诮Y(jié)果必須是積的形式
、劢Y(jié)果是等式
④因式分解與整式乘法的關(guān)系:m(a+b+c)
5、公因式:一個(gè)多項(xiàng)式每項(xiàng)都含有的公共的因式,叫做這個(gè)多項(xiàng)式各項(xiàng)的公因式。
6、公因式確定方法:
、傧禂(shù)是整數(shù)時(shí)取各項(xiàng)最大公約數(shù)。
②相同字母取最低次冪
、巯禂(shù)最大公約數(shù)與相同字母取最低次冪的積就是這個(gè)多項(xiàng)式各項(xiàng)的公因式。
7、提取公因式步驟:
、俅_定公因式。
、诖_定商式
、酃蚴脚c商式寫(xiě)成積的形式。
8、平方根表示法:一個(gè)非負(fù)數(shù)a的平方根記作,讀作正負(fù)根號(hào)a。a叫被開(kāi)方數(shù)。
9、中被開(kāi)方數(shù)的取值范圍:被開(kāi)方數(shù)a≥0
10、平方根性質(zhì):
、僖粋(gè)正數(shù)的平方根有兩個(gè),它們互為相反數(shù)。
②0的平方根是它本身0。
、圬(fù)數(shù)沒(méi)有平方根開(kāi)平方;求一個(gè)數(shù)的平方根的運(yùn)算,叫做開(kāi)平方。
11、平方根與算術(shù)平方根區(qū)別:定義不同、表示方法不同、個(gè)數(shù)不同、取值范圍不同。
12、聯(lián)系:二者之間存在著從屬關(guān)系;存在條件相同;0的算術(shù)平方根與平方根都是0
13、含根號(hào)式子的意義:表示a的平方根,表示a的算術(shù)平方根,表示a的負(fù)的平方根。
14、求正數(shù)a的算術(shù)平方根的方法;
完全平方數(shù)類型:
①想誰(shuí)的平方是數(shù)a。
、谒詀的平方根是多少。
、塾檬阶颖硎。
求正數(shù)a的算術(shù)平方根,只需找出平方后等于a的正數(shù)。
初中冀教版數(shù)學(xué)知識(shí)點(diǎn)6
一、圓
1、圓的有關(guān)性質(zhì)
在一個(gè)平面內(nèi),線段OA繞它固定的一個(gè)端點(diǎn)O旋轉(zhuǎn)一周,另一個(gè)端點(diǎn)A隨之旋轉(zhuǎn)所形成的圖形叫圓,固定的端點(diǎn)O叫圓心,線段OA叫半徑。
由圓的意義可知:
圓上各點(diǎn)到定點(diǎn)(圓心O)的距離等于定長(zhǎng)的點(diǎn)都在圓上。
就是說(shuō):圓是到定點(diǎn)的距離等于定長(zhǎng)的點(diǎn)的集合,圓的內(nèi)部可以看作是到圓。心的距離小于半徑的點(diǎn)的集合。
圓的外部可以看作是到圓心的距離大于半徑的點(diǎn)的.集合。連結(jié)圓上任意兩點(diǎn)的線段叫做弦,經(jīng)過(guò)圓心的弦叫直徑。圓上任意兩點(diǎn)間的部分叫圓弧,簡(jiǎn)稱弧。
圓的任意一條直徑的兩個(gè)端點(diǎn)分圓成兩條弧,每一條弧都叫半圓,大于半圓的弧叫優(yōu);小于半圓的弧叫劣弧。由弦及其所對(duì)的弧組成的圓形叫弓形。
圓心相同,半徑不相等的兩個(gè)圓叫同心圓。
能夠重合的兩個(gè)圓叫等圓。
同圓或等圓的半徑相等。
在同圓或等圓中,能夠互相重合的弧叫等弧。
二、過(guò)三點(diǎn)的圓
1、過(guò)三點(diǎn)的圓
過(guò)三點(diǎn)的圓的作法:利用中垂線找圓心
定理不在同一直線上的三個(gè)點(diǎn)確定一個(gè)圓。
經(jīng)過(guò)三角形各頂點(diǎn)的圓叫三角形的外接圓,外接圓的圓心叫外心,這個(gè)三角形叫圓的內(nèi)接三角形。
2、反證法
反證法的三個(gè)步驟:
、偌僭O(shè)命題的結(jié)論不成立;
、趶倪@個(gè)假設(shè)出發(fā),經(jīng)過(guò)推理論證,得出矛盾;
③由矛盾得出假設(shè)不正確,從而肯定命題的結(jié)論正確。
例如:求證三角形中最多只有一個(gè)角是鈍角。
證明:設(shè)有兩個(gè)以上是鈍角
則兩個(gè)鈍角之和>180°
與三角形內(nèi)角和等于180°矛盾。
∴不可能有二個(gè)以上是鈍角。
即最多只能有一個(gè)是鈍角。
三、垂直于弦的直徑
圓是軸對(duì)稱圖形,經(jīng)過(guò)圓心的每一條直線都是它的對(duì)稱軸。
垂徑定理:垂直于弦的直徑平分這條弦,并且平分弦所對(duì)的兩條弧。
推理1:平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對(duì)兩條弧。
弦的垂直平分線經(jīng)過(guò)圓心,并且平分弦所對(duì)的兩條弧。
平分弦所對(duì)的一條弧的直徑,垂直平分弦,并且平分弦所對(duì)的另一個(gè)條弧。
推理2:圓兩條平行弦所夾的弧相等。
四、圓心角、弧、弦、弦心距之間的關(guān)系
圓是以圓心為對(duì)稱中心的中心對(duì)稱圖形。
實(shí)際上,圓繞圓心旋轉(zhuǎn)任意一個(gè)角度,都能夠與原來(lái)的圖形重合。
頂點(diǎn)是圓心的角叫圓心角,從圓心到弦的距離叫弦心距。
定理:在同圓或等圓中,相等的圓心角所對(duì)的弧相等,所對(duì)的弦相等,所對(duì)的弦心距相等。
推理:在同圓或等圓中,如果兩個(gè)圓心角、兩條弧、兩條弦或兩條弦的弦心距中,有一組量相等,那么它們所對(duì)應(yīng)的其余各組量都分別相等。
五、圓周角
頂點(diǎn)在圓上,并且兩邊都和圓相交的角叫圓周角。
推理1:同弧或等弧所對(duì)的圓周角相等;同圓或等圓中,相等的圓周角所對(duì)的弧也相等。
推理2:半圓(或直徑)所對(duì)的圓周角是直角;90°的圓周角所對(duì)的弦是直徑。
推理3:如果三角形一邊上的中線等于這邊的一半,那么這個(gè)三角形是直角三角形。
由于以上的定理、推理,所添加輔助線往往是添加能構(gòu)成直徑上的圓周角的輔助線。
初中冀教版數(shù)學(xué)知識(shí)點(diǎn)7
1、菱形的定義:有一組鄰邊相等的平行四邊形叫做菱形。
2、菱形的性質(zhì):⑴矩形具有平行四邊形的一切性質(zhì);
、屏庑蔚乃臈l邊都相等;
、橇庑蔚膬蓷l對(duì)角線互相垂直,并且每一條對(duì)角線平分一組對(duì)角。
、攘庑问禽S對(duì)稱圖形。
提示:利用菱形的性質(zhì)可證得線段相等、角相等,它的對(duì)角線互相垂直且把菱形分成四個(gè)全等的直角三角形,由此又可與勾股定理聯(lián)系,可得對(duì)角線與邊之間的關(guān)系,即邊長(zhǎng)的平方等于對(duì)角線一半的平方和。
3、因式分解定義:把一個(gè)多項(xiàng)式化成幾個(gè)整式的積的形式的變形叫把這個(gè)多項(xiàng)式因式分解。
4、因式分解要素:①結(jié)果必須是整式②結(jié)果必須是積的形式③結(jié)果是等式④因式分解與整式乘法的關(guān)系:m(a+b+c)
5、公因式:一個(gè)多項(xiàng)式每項(xiàng)都含有的公共的因式,叫做這個(gè)多項(xiàng)式各項(xiàng)的公因式。
6、公因式確定方法:①系數(shù)是整數(shù)時(shí)取各項(xiàng)最大公約數(shù)。②相同字母取最低次冪③系數(shù)最大公約數(shù)與相同字母取最低次冪的積就是這個(gè)多項(xiàng)式各項(xiàng)的公因式。
7、提取公因式步驟:①確定公因式。②確定商式③公因式與商式寫(xiě)成積的形式。
8、平方根表示法:一個(gè)非負(fù)數(shù)a的平方根記作,讀作正負(fù)根號(hào)a。a叫被開(kāi)方數(shù)。
9、中被開(kāi)方數(shù)的取值范圍:被開(kāi)方數(shù)a≥0
10、平方根性質(zhì):①一個(gè)正數(shù)的平方根有兩個(gè),它們互為相反數(shù)。②0的.平方根是它本身0。③負(fù)數(shù)沒(méi)有平方根開(kāi)平方;求一個(gè)數(shù)的平方根的運(yùn)算,叫做開(kāi)平方。
11、平方根與算術(shù)平方根區(qū)別:定義不同、表示方法不同、個(gè)數(shù)不同、取值范圍不同。
12、聯(lián)系:二者之間存在著從屬關(guān)系;存在條件相同;0的算術(shù)平方根與平方根都是0
13、含根號(hào)式子的意義:表示a的平方根,表示a的算術(shù)平方根,表示a的負(fù)的平方根。
14、求正數(shù)a的算術(shù)平方根的方法;
完全平方數(shù)類型:①想誰(shuí)的平方是數(shù)a。②所以a的平方根是多少。③用式子表示。
求正數(shù)a的算術(shù)平方根,只需找出平方后等于a的正數(shù)。
初中冀教版數(shù)學(xué)知識(shí)點(diǎn)8
一、一次函數(shù)圖象 y=kx+b
一次函數(shù)的圖象可以由k、b的正負(fù)來(lái)決定:
k大于零是一撇(由左下至右上,增函數(shù))
k小于零是一捺(由右上至左下,減函數(shù))
b等于零必過(guò)原點(diǎn);
b大于零交點(diǎn)(指圖象與y軸的交點(diǎn))在上方(指x軸上方)
b小于零交點(diǎn)(指圖象與y軸的交點(diǎn))在下方(指x軸下方)
其圖象經(jīng)過(guò)(0,b) 和 (-b/k , 0) 這兩點(diǎn)(兩點(diǎn)就可以決定一條直線),且(0,b) 在 y軸上, (-b/k , 0) 在x軸上。
b的數(shù)值就是一次函數(shù)在y軸上的截距(不是距離,有正、負(fù)、零之分)。
二、不等式組的解集
1、步驟:去分母(后分子應(yīng)加上括號(hào))、去括號(hào)、移項(xiàng)、合并同類項(xiàng)、系數(shù)化為1 。
2、解一元一次不等式組時(shí),先求出各個(gè)不等式的解集,然后按不等式組解集的四種類型所反映的規(guī)律,寫(xiě)出不等式組的解集:不等式組解集的確定方法,若a
A 的解集是 解集 小小的.取小
B 的解集是 解集 大大的取大
C 的解集是 解集 大小的 小大的取中間
D 的解集是空集 解集 大大的 小小的無(wú)解
另需注意等于的問(wèn)題。
初中冀教版數(shù)學(xué)知識(shí)點(diǎn)9
直線、射線、線段
。1)直線、射線、線段的表示方法
、僦本:用一個(gè)小寫(xiě)字母表示,如:直線l,或用兩個(gè)大寫(xiě)字母(直線上的)表示,如直線AB。
、谏渚:是直線的一部分,用一個(gè)小寫(xiě)字母表示,如:射線l;用兩個(gè)大寫(xiě)字母表示,端點(diǎn)在前,如:射線OA。注意:用兩個(gè)字母表示時(shí),端點(diǎn)的字母放在前邊。
、劬段:線段是直線的一部分,用一個(gè)小寫(xiě)字母表示,如線段a;用兩個(gè)表示端點(diǎn)的字母表示,如:線段AB(或線段BA)。
。2)點(diǎn)與直線的位置關(guān)系:
①點(diǎn)經(jīng)過(guò)直線,說(shuō)明點(diǎn)在直線上;
、邳c(diǎn)不經(jīng)過(guò)直線,說(shuō)明點(diǎn)在直線外。
兩點(diǎn)間的距離
。1)兩點(diǎn)間的距離:連接兩點(diǎn)間的線段的長(zhǎng)度叫兩點(diǎn)間的距離。
(2)平面上任意兩點(diǎn)間都有一定距離,它指的`是連接這兩點(diǎn)的線段的長(zhǎng)度,學(xué)習(xí)此概念時(shí),注意強(qiáng)調(diào)最后的兩個(gè)字“長(zhǎng)度”,也就是說(shuō),它是一個(gè)量,有大小,區(qū)別于線段,線段是圖形。線段的長(zhǎng)度才是兩點(diǎn)的距離?梢哉f(shuō)畫(huà)線段,但不能說(shuō)畫(huà)距離。
正方體
。1)對(duì)于此類問(wèn)題一般方法是用紙按圖的樣子折疊后可以解決,或是在對(duì)展開(kāi)圖理解的基礎(chǔ)上直接想象。
。2)從實(shí)物出發(fā),結(jié)合具體的問(wèn)題,辨析幾何體的展開(kāi)圖,通過(guò)結(jié)合立體圖形與平面圖形的轉(zhuǎn)化,建立空間觀念,是解決此類問(wèn)題的關(guān)鍵。
(3)正方體的展開(kāi)圖有11種情況,分析平面展開(kāi)圖的各種情況后再認(rèn)真確定哪兩個(gè)面的對(duì)面。
初中冀教版數(shù)學(xué)知識(shí)點(diǎn)10
定義:使一元一次方程左右兩邊相等的未知數(shù)的值叫做一元一次方程的解。
把方程的解代入原方程,等式左右兩邊相等。
解一元一次方程:
1、解一元一次方程的一般步驟
去分母、去括號(hào)、移項(xiàng)、合并同類項(xiàng)、系數(shù)化為1,這僅是解一元一次方程的一般步驟,針對(duì)方程的特點(diǎn),靈活應(yīng)用,各種步驟都是為使方程逐漸向x=a形式轉(zhuǎn)化。
2、解一元一次方程時(shí)先觀察方程的形式和特點(diǎn),若有分母一般先去分母;若既有分母又有括號(hào),且括號(hào)外的項(xiàng)在乘括號(hào)內(nèi)各項(xiàng)后能消去分母,就先去括號(hào)。
3、在解類似于“ax+bx=c”的方程時(shí),將方程左邊,按合并同類項(xiàng)的`方法并為一項(xiàng)即(a+b)x=c。
使方程逐漸轉(zhuǎn)化為ax=b的最簡(jiǎn)形式體現(xiàn)化歸思想。
將ax=b系數(shù)化為1時(shí),要準(zhǔn)確計(jì)算,一弄清求x時(shí),方程兩邊除以的是a還是b,尤其a為分?jǐn)?shù)時(shí);二要準(zhǔn)確判斷符號(hào),a、b同號(hào)x為正,a、b異號(hào)x為負(fù)。
一元一次方程的應(yīng)用
1、一元一次方程解應(yīng)用題的類型
(1)探索規(guī)律型問(wèn)題;
。2)數(shù)字問(wèn)題;
。3)銷售問(wèn)題(利潤(rùn)=售價(jià)﹣進(jìn)價(jià),利潤(rùn)率=利潤(rùn)進(jìn)價(jià)×100%);
。4)工程問(wèn)題(①工作量=人均效率×人數(shù)×?xí)r間;②如果一件工作分幾個(gè)階段完成,那么各階段的工作量的和=工作總量);
。5)行程問(wèn)題(路程=速度×?xí)r間);
。6)等值變換問(wèn)題;
。7)和,差,倍,分問(wèn)題;
。8)分配問(wèn)題;
。9)比賽積分問(wèn)題;
。10)水流航行問(wèn)題(順?biāo)俣?靜水速度+水流速度;逆水速度=靜水速度﹣水流速度)。
2、利用方程解決實(shí)際問(wèn)題的基本思路:
首先審題找出題中的未知量和所有的已知量,直接設(shè)要求的未知量或間接設(shè)一關(guān)鍵的未知量為x,然后用含x的式子表示相關(guān)的量,找出之間的相等關(guān)系列方程、求解、作答,即設(shè)、列、解、答。
列一元一次方程解應(yīng)用題的五個(gè)步驟
。1)審:仔細(xì)審題,確定已知量和未知量,找出它們之間的等量關(guān)系。
。2)設(shè):設(shè)未知數(shù)(x),根據(jù)實(shí)際情況,可設(shè)直接未知數(shù)(問(wèn)什么設(shè)什么),也可設(shè)間接未知數(shù)。
。3)列:根據(jù)等量關(guān)系列出方程。
。4)解:解方程,求得未知數(shù)的值。
。5)答:檢驗(yàn)未知數(shù)的值是否正確,是否符合題意,完整地寫(xiě)出答句。
【初中冀教版數(shù)學(xué)知識(shí)點(diǎn)】相關(guān)文章:
冀教版音樂(lè)教案03-13
冀教版初三數(shù)學(xué)教學(xué)計(jì)劃(通用8篇)08-17
初中數(shù)學(xué)人教知識(shí)點(diǎn)總結(jié)04-25
三年級(jí)下冊(cè)數(shù)學(xué)冀教版教案02-04
冀教版七年級(jí)數(shù)學(xué)說(shuō)課稿11-15
三年級(jí)下冊(cè)數(shù)學(xué)冀教版教案12-13