當(dāng)前位置:育文網(wǎng)>初中>初中數(shù)學(xué)> 初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)

初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)

時(shí)間:2022-04-27 08:24:47 初中數(shù)學(xué) 我要投稿

初中數(shù)學(xué)人教版知識(shí)點(diǎn)總結(jié)

  上學(xué)期間,相信大家一定都接觸過(guò)知識(shí)點(diǎn)吧!知識(shí)點(diǎn)在教育實(shí)踐中,是指對(duì)某一個(gè)知識(shí)的泛稱(chēng)。你知道哪些知識(shí)點(diǎn)是真正對(duì)我們有幫助的嗎?以下是小編收集整理的初中數(shù)學(xué)人教版知識(shí)點(diǎn)總結(jié),供大家參考借鑒,希望可以幫助到有需要的朋友。

初中數(shù)學(xué)人教版知識(shí)點(diǎn)總結(jié)

  初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)1

  一、函數(shù)及其相關(guān)概念

  1、變量與常量

  在某一變化過(guò)程中,可以取不同數(shù)值的量叫做變量,數(shù)值保持不變的量叫做常量。

  一般地,在某一變化過(guò)程中有兩個(gè)變量x與y,如果對(duì)于x的每一個(gè)值,y都有確定的值與它對(duì)應(yīng),那么就說(shuō)x是自變量,y是x的函數(shù)。

  2、函數(shù)解析式

  用來(lái)表示函數(shù)關(guān)系的數(shù)學(xué)式子叫做函數(shù)解析式或函數(shù)關(guān)系式。

  使函數(shù)有意義的自變量的取值的全體,叫做自變量的取值范圍。

  3、函數(shù)的三種表示法及其優(yōu)缺點(diǎn)

  (1)解析法

  兩個(gè)變量間的函數(shù)關(guān)系,有時(shí)可以用一個(gè)含有這兩個(gè)變量及數(shù)字運(yùn)算符號(hào)的等式表示,這種表示法叫做解析法。

  (2)列表法

  把自變量x的一系列值和函數(shù)y的對(duì)應(yīng)值列成一個(gè)表來(lái)表示函數(shù)關(guān)系,這種表示法叫做列表法。

  (3)圖像法

  用圖像表示函數(shù)關(guān)系的方法叫做圖像法。

  4、由函數(shù)解析式畫(huà)其圖像的一般步驟

  (1)列表:列表給出自變量與函數(shù)的一些對(duì)應(yīng)值

  (2)描點(diǎn):以表中每對(duì)對(duì)應(yīng)值為坐標(biāo),在坐標(biāo)平面內(nèi)描出相應(yīng)的點(diǎn)

  (3)連線(xiàn):按照自變量由小到大的順序,把所描各點(diǎn)用平滑的曲線(xiàn)連接起來(lái)。

  二、相交線(xiàn)與平行線(xiàn)

  1、知識(shí)網(wǎng)絡(luò)結(jié)構(gòu)

  2、知識(shí)要點(diǎn)

  (1)在同一平面內(nèi),兩條直線(xiàn)的位置關(guān)系有兩種:相交和平行,垂直是相交的一種特殊情況。

 。2)在同一平面內(nèi),不相交的兩條直線(xiàn)叫平行線(xiàn)。如果兩條直線(xiàn)只有一個(gè)公共點(diǎn),稱(chēng)這兩條直線(xiàn)相交;如果兩條直線(xiàn)沒(méi)有公共點(diǎn),稱(chēng)這兩條直線(xiàn)平行。

 。3)兩條直線(xiàn)相交所構(gòu)成的四個(gè)角中,有公共頂點(diǎn)且有一條公共邊的兩個(gè)角是

  鄰補(bǔ)角。鄰補(bǔ)角的性質(zhì):鄰補(bǔ)角互補(bǔ)。如圖1所示,與互為鄰補(bǔ)角,

  與互為鄰補(bǔ)角。+=180°;+=180°;+=180°;+=180°。

  3、兩條直線(xiàn)相交所構(gòu)成的四個(gè)角中,一個(gè)角的兩邊分別是另一個(gè)角的兩邊的反向延長(zhǎng)線(xiàn),這樣的兩個(gè)角互為對(duì)頂角。對(duì)頂角的性質(zhì):對(duì)頂角相等。如圖1所示,與互為對(duì)頂角。=; =。

  4、兩條直線(xiàn)相交所成的角中,如果有一個(gè)是直角或90°時(shí),稱(chēng)這兩條直線(xiàn)互相垂直,

  其中一條叫做另一條的垂線(xiàn)。如圖2所示,當(dāng)=90°時(shí),⊥。

  垂線(xiàn)的性質(zhì):

  性質(zhì)1:過(guò)一點(diǎn)有且只有一條直線(xiàn)與已知直線(xiàn)垂直。

  性質(zhì)2:連接直線(xiàn)外一點(diǎn)與直線(xiàn)上各點(diǎn)的所有線(xiàn)段中,垂線(xiàn)段最短。

  性質(zhì)3:如圖2所示,當(dāng)a⊥b時(shí),====90°。

  點(diǎn)到直線(xiàn)的距離:直線(xiàn)外一點(diǎn)到這條直線(xiàn)的垂線(xiàn)段的長(zhǎng)度叫點(diǎn)到直線(xiàn)的距離。

  5、同位角、內(nèi)錯(cuò)角、同旁?xún)?nèi)角基本特征:

  在兩條直線(xiàn)(被截線(xiàn))的同一方,都在第三條直線(xiàn)(截線(xiàn))的同一側(cè),這樣的兩個(gè)角叫同位角。圖3中,共有對(duì)同位角:與是同位角;與是同位角;與是同位角;與是同位角。

  在兩條直線(xiàn)(被截線(xiàn))之間,并且在第三條直線(xiàn)(截線(xiàn))的兩側(cè),這樣的兩個(gè)角叫內(nèi)錯(cuò)角。圖3中,共有對(duì)內(nèi)錯(cuò)角:與是內(nèi)錯(cuò)角;與是內(nèi)錯(cuò)角。

  在兩條直線(xiàn)(被截線(xiàn))的之間,都在第三條直線(xiàn)(截線(xiàn))的同一旁,這樣的兩個(gè)角叫同旁?xún)?nèi)角。圖3中,共有對(duì)同旁?xún)?nèi)角:與是同旁?xún)?nèi)角;與是同旁?xún)?nèi)角。

  三、實(shí)數(shù)

  1、實(shí)數(shù)的分類(lèi)

  (1)按定義分類(lèi):

 。2)按性質(zhì)符號(hào)分類(lèi):

  注:0既不是正數(shù)也不是負(fù)數(shù).

  2、實(shí)數(shù)的相關(guān)概念

 。1)相反數(shù)

  ①代數(shù)意義:只有符號(hào)不同的兩個(gè)數(shù),我們說(shuō)其中一個(gè)是另一個(gè)的相反數(shù).0的相反數(shù)是0.

 、趲缀我饬x:在數(shù)軸上原點(diǎn)的兩側(cè),與原點(diǎn)距離相等的兩個(gè)點(diǎn)表示的兩個(gè)數(shù)互為相反數(shù),或數(shù)軸上,互為相反數(shù)的兩個(gè)數(shù)所對(duì)應(yīng)的'點(diǎn)關(guān)于原點(diǎn)對(duì)稱(chēng).

 、刍橄喾磾(shù)的兩個(gè)數(shù)之和等于0.a、b互為相反數(shù)a+b=0.

 。2)絕對(duì)值|a|≥0.

 。3)倒數(shù)(1)0沒(méi)有倒數(shù)(2)乘積是1的兩個(gè)數(shù)互為倒數(shù).a、b互為倒數(shù).

 。4)平方根

 、偃绻粋(gè)數(shù)的平方等于a,這個(gè)數(shù)就叫做a的平方根.一個(gè)正數(shù)有兩個(gè)平方根,它們互為相反數(shù);0有一個(gè)平方根,它是0本身;負(fù)數(shù)沒(méi)有平方根.a(a≥0)的平方根記作.

 、谝粋(gè)正數(shù)a的正的平方根,叫做a的算術(shù)平方根.a(a≥0)的算術(shù)平方根記作.

  (5)立方根

  如果x3=a,那么x叫做a的立方根.一個(gè)正數(shù)有一個(gè)正的立方根;一個(gè)負(fù)數(shù)有一個(gè)負(fù)的立方根;零的立方根是零.

  3、實(shí)數(shù)與數(shù)軸

  數(shù)軸定義:規(guī)定了原點(diǎn),正方向和單位長(zhǎng)度的直線(xiàn)叫做數(shù)軸,數(shù)軸的三要素缺一不可.

  4、實(shí)數(shù)大小的比較

 。1)對(duì)于數(shù)軸上的任意兩個(gè)點(diǎn),靠右邊的點(diǎn)所表示的數(shù)較大.

 。2)正數(shù)都大于0,負(fù)數(shù)都小于0,兩個(gè)正數(shù),絕對(duì)值較大的那個(gè)正數(shù)大;兩個(gè)負(fù)數(shù);絕對(duì)值大的反而小.

 。3)無(wú)理數(shù)的比較大。

  初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)2

  1.有理數(shù):

 。1)凡能寫(xiě)成形式的數(shù),都是有理數(shù)。正整數(shù)、0、負(fù)整數(shù)統(tǒng)稱(chēng)整數(shù);正分?jǐn)?shù)、負(fù)分?jǐn)?shù)統(tǒng)稱(chēng)分?jǐn)?shù);整數(shù)和分?jǐn)?shù)統(tǒng)稱(chēng)有理數(shù)。注意:0即不是正數(shù),也不是負(fù)數(shù);—a不一定是負(fù)數(shù),+a也不一定是正數(shù);p不是有理數(shù);

  (2)有理數(shù)的分類(lèi):①

  2.數(shù)軸:數(shù)軸是規(guī)定了原點(diǎn)、正方向、單位長(zhǎng)度的一條直線(xiàn)。

  3.相反數(shù):

 。1)只有符號(hào)不同的兩個(gè)數(shù),我們說(shuō)其中一個(gè)是另一個(gè)的相反數(shù);0的相反數(shù)還是0;

  (2)相反數(shù)的和為0?a+b=0?a、b互為相反數(shù)。

  4.絕對(duì)值:

  (1)正數(shù)的絕對(duì)值是其本身,0的絕對(duì)值是0,負(fù)數(shù)的絕對(duì)值是它的相反數(shù);注意:絕對(duì)值的意義是數(shù)軸上表示某數(shù)的點(diǎn)離開(kāi)原點(diǎn)的距離;

 。2)絕對(duì)值可表示為:或;絕對(duì)值的問(wèn)題經(jīng)常分類(lèi)討論;

  5.有理數(shù)比大小:(1)正數(shù)的絕對(duì)值越大,這個(gè)數(shù)越大;(2)正數(shù)永遠(yuǎn)比0大,負(fù)數(shù)永遠(yuǎn)比0小;(3)正數(shù)大于一切負(fù)數(shù);(4)兩個(gè)負(fù)數(shù)比大小,絕對(duì)值大的反而。唬5)數(shù)軸上的兩個(gè)數(shù),右邊的數(shù)總比左邊的數(shù)大;(6)大數(shù)—小數(shù)> 0,小數(shù)—大數(shù)< 0。

  6.互為倒數(shù):乘積為1的兩個(gè)數(shù)互為倒數(shù);注意:0沒(méi)有倒數(shù);若a≠0,那么的倒數(shù)是;若ab=1?a、b互為倒數(shù);若ab=—1?a、b互為負(fù)倒數(shù)。

  7.有理數(shù)加法法則:

 。1)同號(hào)兩數(shù)相加,取相同的符號(hào),并把絕對(duì)值相加;

  (2)異號(hào)兩數(shù)相加,取絕對(duì)值較大的符號(hào),并用較大的絕對(duì)值減去較小的絕對(duì)值;

 。3)一個(gè)數(shù)與0相加,仍得這個(gè)數(shù)。

  8.有理數(shù)加法的運(yùn)算律:

 。1)加法的交換律:a+b=b+a;(2)加法的結(jié)合律:(a+b)+c=a+(b+c)。

  9.有理數(shù)減法法則:減去一個(gè)數(shù),等于加上這個(gè)數(shù)的相反數(shù);即a—b=a+(—b)。

  10.有理數(shù)乘法法則:

  (1)兩數(shù)相乘,同號(hào)為正,異號(hào)為負(fù),并把絕對(duì)值相乘;

 。2)任何數(shù)同零相乘都得零;

  (3)幾個(gè)數(shù)相乘,有一個(gè)因式為零,積為零;各個(gè)因式都不為零,積的符號(hào)由負(fù)因式的個(gè)數(shù)決定。

  11.有理數(shù)乘法的運(yùn)算律:

 。1)乘法的交換律:ab=ba;(2)乘法的結(jié)合律:(ab)c=a(bc);

 。3)乘法的分配律:a(b+c)=ab+ac 。

  12.有理數(shù)除法法則:除以一個(gè)數(shù)等于乘以這個(gè)數(shù)的倒數(shù);注意:零不能做除數(shù),。

  13.有理數(shù)乘方的法則:

 。1)正數(shù)的任何次冪都是正數(shù);

 。2)負(fù)數(shù)的.奇次冪是負(fù)數(shù);負(fù)數(shù)的偶次冪是正數(shù);注意:當(dāng)n為正奇數(shù)時(shí):(—a)n=—an或(a —b)n=—(b—a)n,當(dāng)n為正偶數(shù)時(shí):(—a)n =an或(a—b)n=(b—a)n 。

  14.乘方的定義:

  (1)求相同因式積的運(yùn)算,叫做乘方;

 。2)乘方中,相同的因式叫做底數(shù),相同因式的個(gè)數(shù)叫做指數(shù),乘方的結(jié)果叫做冪;

  15.科學(xué)記數(shù)法:把一個(gè)大于10的數(shù)記成a×10n的形式,其中a是整數(shù)數(shù)位只有一位的數(shù),這種記數(shù)法叫科學(xué)記數(shù)法。

  16.近似數(shù)的精確位:一個(gè)近似數(shù),四舍五入到那一位,就說(shuō)這個(gè)近似數(shù)的精確到那一位。

  17.有效數(shù)字:從左邊第一個(gè)不為零的數(shù)字起,到精確的位數(shù)止,所有數(shù)字,都叫這個(gè)近似數(shù)的有效數(shù)字。

  18.混合運(yùn)算法則:先乘方,后乘除,最后加減。

  本章內(nèi)容要求學(xué)生正確認(rèn)識(shí)有理數(shù)的概念,在實(shí)際生活和學(xué)習(xí)數(shù)軸的基礎(chǔ)上,理解正負(fù)數(shù)、相反數(shù)、絕對(duì)值的意義所在。重點(diǎn)利用有理數(shù)的運(yùn)算法則解決實(shí)際問(wèn)題。

  體驗(yàn)數(shù)學(xué)發(fā)展的一個(gè)重要原因是生活實(shí)際的需要。激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣,教師培養(yǎng)學(xué)生的觀察、歸納與概括的能力,使學(xué)生建立正確的數(shù)感和解決實(shí)際問(wèn)題的能力。教師在講授本章內(nèi)容時(shí),應(yīng)該多創(chuàng)設(shè)情境,充分體現(xiàn)學(xué)生學(xué)習(xí)的主體性地位。

  初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)3

  1.一元一次方程:只含有一個(gè)未知數(shù),并且未知數(shù)的次數(shù)是1,并且含未知數(shù)項(xiàng)的系數(shù)不是零的整式方程是一元一次方程。

  2.一元一次方程的標(biāo)準(zhǔn)形式:ax+b=0(x是未知數(shù),a、b是已知數(shù),且a≠0)。

  3.一元一次方程解法的一般步驟:整理方程……去分母……去括號(hào)……移項(xiàng)……合并同類(lèi)項(xiàng)……系數(shù)化為1 ……(檢驗(yàn)方程的解)。

  4.列一元一次方程解應(yīng)用題:

 。1)讀題分析法:多用于“和,差,倍,分問(wèn)題”

  仔細(xì)讀題,找出表示相等關(guān)系的關(guān)鍵字,例如:“大,小,多,少,是,共,合,為,完成,增加,減少,配套—————”,利用這些關(guān)鍵字列出文字等式,并且據(jù)題意設(shè)出未知數(shù),最后利用題目中的量與量的關(guān)系填入代數(shù)式,得到方程。

 。2)畫(huà)圖分析法:多用于“行程問(wèn)題”

  利用圖形分析數(shù)學(xué)問(wèn)題是數(shù)形結(jié)合思想在數(shù)學(xué)中的體現(xiàn),仔細(xì)讀題,依照題意畫(huà)出有關(guān)圖形,使圖形各部分具有特定的含義,通過(guò)圖形找相等關(guān)系是解決問(wèn)題的關(guān)鍵,從而取得布列方程的依據(jù),最后利用量與量之間的.關(guān)系(可把未知數(shù)看做已知量),填入有關(guān)的代數(shù)式是獲得方程的基礎(chǔ)。

  5.列方程解應(yīng)用題的常用公式:

 。1)行程問(wèn)題:距離=速度·時(shí)間;

 。2)工程問(wèn)題:工作量=工效·工時(shí);

 。3)比率問(wèn)題:部分=全體·比率;

 。4)順逆流問(wèn)題:順流速度=靜水速度+水流速度,逆流速度=靜水速度—水流速度;

 。5)商品價(jià)格問(wèn)題:售價(jià)=定價(jià)·折·,利潤(rùn)=售價(jià)—成本,;

 。6)周長(zhǎng)、面積、體積問(wèn)題:C圓=2πR,S圓=πR2,C長(zhǎng)方形=2(a+b),S長(zhǎng)方形=ab,C正方形=4a,S正方形=a2,S環(huán)形=π(R2—r2),V長(zhǎng)方體=abc,V正方體=a3,V圓柱=πR2h,V圓錐= πR2h。

  本章內(nèi)容是代數(shù)學(xué)的核心,也是所有代數(shù)方程的基礎(chǔ)。豐富多彩的問(wèn)題情境和解決問(wèn)題的快樂(lè)很容易激起學(xué)生對(duì)數(shù)學(xué)的樂(lè)趣,所以要注意引導(dǎo)學(xué)生從身邊的問(wèn)題研究起,進(jìn)行有效的數(shù)學(xué)活動(dòng)和合作交流,讓學(xué)生在主動(dòng)學(xué)習(xí)、探究學(xué)習(xí)的過(guò)程中獲得知識(shí),提升能力,體會(huì)數(shù)學(xué)思想方法。

  初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)4

  三角形的知識(shí)點(diǎn)

  1、三角形:由不在同一直線(xiàn)上的三條線(xiàn)段首尾順次相接所組成的圖形叫做三角形。

  2、三角形的分類(lèi)

  3、三角形的三邊關(guān)系:三角形任意兩邊的和大于第三邊,任意兩邊的差小于第三邊。

  4、高:從三角形的一個(gè)頂點(diǎn)向它的對(duì)邊所在直線(xiàn)作垂線(xiàn),頂點(diǎn)和垂足間的線(xiàn)段叫做三角形的高。

  5、中線(xiàn):在三角形中,連接一個(gè)頂點(diǎn)和它的對(duì)邊中點(diǎn)的線(xiàn)段叫做三角形的中線(xiàn)。

  6、角平分線(xiàn):三角形的一個(gè)內(nèi)角的平分線(xiàn)與這個(gè)角的對(duì)邊相交,這個(gè)角的頂點(diǎn)和交點(diǎn)之間的線(xiàn)段叫做三角形的角平分線(xiàn)。

  7、高線(xiàn)、中線(xiàn)、角平分線(xiàn)的意義和做法

  8、三角形的穩(wěn)定性:三角形的形狀是固定的,三角形的這個(gè)性質(zhì)叫三角形的穩(wěn)定性。

  9、三角形內(nèi)角和定理:三角形三個(gè)內(nèi)角的和等于180°

  推論1直角三角形的兩個(gè)銳角互余

  推論2三角形的一個(gè)外角等于和它不相鄰的兩個(gè)內(nèi)角和

  推論3三角形的一個(gè)外角大于任何一個(gè)和它不相鄰的內(nèi)角;三角形的內(nèi)角和是外角和的一半

  10、三角形的外角:三角形的一條邊與另一條邊延長(zhǎng)線(xiàn)的夾角,叫做三角形的外角。

  11、三角形外角的性質(zhì)

  (1)頂點(diǎn)是三角形的一個(gè)頂點(diǎn),一邊是三角形的一邊,另一邊是三角形的一邊的延長(zhǎng)線(xiàn);

  (2)三角形的一個(gè)外角等于與它不相鄰的兩個(gè)內(nèi)角和;

  (3)三角形的一個(gè)外角大于與它不相鄰的任一內(nèi)角;

  (4)三角形的外角和是360°。

  四邊形(含多邊形)知識(shí)點(diǎn)、概念總結(jié)

  一、平行四邊形的定義、性質(zhì)及判定

  1、兩組對(duì)邊平行的四邊形是平行四邊形。

  2、性質(zhì):

  (1)平行四邊形的對(duì)邊相等且平行

  (2)平行四邊形的對(duì)角相等,鄰角互補(bǔ)

  (3)平行四邊形的對(duì)角線(xiàn)互相平分

  3、判定:

  (1)兩組對(duì)邊分別平行的四邊形是平行四邊形

  (2)兩組對(duì)邊分別相等的四邊形是平行四邊形

  (3)一組對(duì)邊平行且相等的四邊形是平行四邊形

  (4)兩組對(duì)角分別相等的四邊形是平行四邊形

  (5)對(duì)角線(xiàn)互相平分的四邊形是平行四邊形

  4、對(duì)稱(chēng)性:平行四邊形是中心對(duì)稱(chēng)圖形

  二、矩形的定義、性質(zhì)及判定

  1、定義:有一個(gè)角是直角的平行四邊形叫做矩形

  2、性質(zhì):矩形的四個(gè)角都是直角,矩形的對(duì)角線(xiàn)相等

  3、判定:

  (1)有一個(gè)角是直角的平行四邊形叫做矩形

  (2)有三個(gè)角是直角的四邊形是矩形

  (3)兩條對(duì)角線(xiàn)相等的平行四邊形是矩形

  4、對(duì)稱(chēng)性:矩形是軸對(duì)稱(chēng)圖形也是中心對(duì)稱(chēng)圖形。

  三、菱形的定義、性質(zhì)及判定

  1、定義:有一組鄰邊相等的平行四邊形叫做菱形

  (1)菱形的四條邊都相等

  (2)菱形的對(duì)角線(xiàn)互相垂直,并且每一條對(duì)角線(xiàn)平分一組對(duì)角

  (3)菱形被兩條對(duì)角線(xiàn)分成四個(gè)全等的直角三角形

  (4)菱形的面積等于兩條對(duì)角線(xiàn)長(zhǎng)的積的一半

  2、s菱=爭(zhēng)6(n、6分別為對(duì)角線(xiàn)長(zhǎng))

  3、判定:

  (1)有一組鄰邊相等的平行四邊形叫做菱形

  (2)四條邊都相等的四邊形是菱形

  (3)對(duì)角線(xiàn)互相垂直的平行四邊形是菱形

  4、對(duì)稱(chēng)性:菱形是軸對(duì)稱(chēng)圖形也是中心對(duì)稱(chēng)圖形

  四、正方形定義、性質(zhì)及判定

  1、定義:有一組鄰邊相等并且有一個(gè)角是直角的平行四邊形叫做正方形

  2、性質(zhì):

  (1)正方形四個(gè)角都是直角,四條邊都相等

  (2)正方形的兩條對(duì)角線(xiàn)相等,并且互相垂直平分,每條對(duì)角線(xiàn)平分一組對(duì)角

  (3)正方形的一條對(duì)角線(xiàn)把正方形分成兩個(gè)全等的等腰直角三角形

  (4)正方形的對(duì)角線(xiàn)與邊的夾角是45°

  (5)正方形的兩條對(duì)角線(xiàn)把這個(gè)正方形分成四個(gè)全等的等腰直角三角形

  3、判定:

  (1)先判定一個(gè)四邊形是矩形,再判定出有一組鄰邊相等

  (2)先判定一個(gè)四邊形是菱形,再判定出有一個(gè)角是直角

  4、對(duì)稱(chēng)性:正方形是軸對(duì)稱(chēng)圖形也是中心對(duì)稱(chēng)圖形

  五、梯形的定義、等腰梯形的性質(zhì)及判定

  1、定義:一組對(duì)邊平行,另一組對(duì)邊不平行的四邊形是梯形。兩腰相等的梯形是等腰梯形。一腰垂直于底的梯形是直角梯形

  2、等腰梯形的性質(zhì):等腰梯形的兩腰相等;同一底上的兩個(gè)角相等;兩條對(duì)角線(xiàn)相等

  3、等腰梯形的判定:兩腰相等的梯形是等腰梯形;同一底上的兩個(gè)角相等的梯形是等腰梯形;兩條對(duì)角線(xiàn)相等的梯形是等腰梯形

  4、對(duì)稱(chēng)性:等腰梯形是軸對(duì)稱(chēng)圖形

  六、三角形的中位線(xiàn)平行于三角形的第三邊并等于第三邊的一半;梯形的中位線(xiàn)平行于梯形的兩底并等于兩底和的一半。

  七、線(xiàn)段的重心是線(xiàn)段的.中點(diǎn);平行四邊形的重心是兩對(duì)角線(xiàn)的交點(diǎn);三角形的重心是三條中線(xiàn)的交點(diǎn)。

  八、依次連接任意一個(gè)四邊形各邊中點(diǎn)所得的四邊形叫中點(diǎn)四邊形。

  九、多邊形

  1、多邊形:在平面內(nèi),由一些線(xiàn)段首尾順次相接組成的圖形叫做多邊形。

  2、多邊形的內(nèi)角:多邊形相鄰兩邊組成的角叫做它的內(nèi)角。

  3、多邊形的外角:多邊形的一邊與它的鄰邊的延長(zhǎng)線(xiàn)組成的角叫做多邊形的外角。

  4、多邊形的對(duì)角線(xiàn):連接多邊形不相鄰的兩個(gè)頂點(diǎn)的線(xiàn)段,叫做多邊形的對(duì)角線(xiàn)。

  5、多邊形的分類(lèi):分為凸多邊形及凹多邊形,凸多邊形又可稱(chēng)為平面多邊形,凹多邊形又稱(chēng)空間多邊形。多邊形還可以分為正多邊形和非正多邊形。正多邊形各邊相等且各內(nèi)角相等。

  6、正多邊形:在平面內(nèi),各個(gè)角都相等,各條邊都相等的多邊形叫做正多邊形。

  7、平面鑲嵌:用一些不重疊擺放的多邊形把平面的一部分完全覆蓋,叫做用多邊形覆蓋平面。

  8、公式與性質(zhì)

  多邊形內(nèi)角和公式:n邊形的內(nèi)角和等于(n-2)·180°

  9、多邊形外角和定理:

  (1)n邊形外角和等于n·180°-(n-2)·180°=360°

  (2)邊形的每個(gè)內(nèi)角與它相鄰的外角是鄰補(bǔ)角,所以n邊形內(nèi)角和加外角和等于n·180°

  10、多邊形對(duì)角線(xiàn)的條數(shù):

  (1)從n邊形的一個(gè)頂點(diǎn)出發(fā)可以引(n-3)條對(duì)角線(xiàn),把多邊形分詞(n-2)個(gè)三角形

  (2)n邊形共有n(n-3)/2條對(duì)角線(xiàn)

  圓知識(shí)點(diǎn)、概念總結(jié)

  1、不在同一直線(xiàn)上的三點(diǎn)確定一個(gè)圓。

  2、垂徑定理:垂直于弦的直徑平分這條弦并且平分弦所對(duì)的兩條弧

  推論1①(不是直徑)的直徑垂直于弦,并且平分弦所對(duì)的兩條弧

 、谙业拇怪逼椒志(xiàn)經(jīng)過(guò)圓心,并且平分弦所對(duì)的兩條弧

 、燮椒窒宜鶎(duì)的一條弧的直徑,垂直平分弦,并且平分弦所對(duì)的另一條弧

  推論2圓的兩條平行弦所夾的弧相等

  3、圓是以圓心為對(duì)稱(chēng)中心的中心對(duì)稱(chēng)圖形

  4、圓是定點(diǎn)的距離等于定長(zhǎng)的點(diǎn)的集合

  5、圓的內(nèi)部可以看作是圓心的距離小于半徑的點(diǎn)的集合

  6、圓的外部可以看作是圓心的距離大于半徑的點(diǎn)的集合

  7、同圓或等圓的半徑相等

  8、到定點(diǎn)的距離等于定長(zhǎng)的點(diǎn)的軌跡,是以定點(diǎn)為圓心,定長(zhǎng)為半徑的圓

  9、定理在同圓或等圓中,相等的圓心角所對(duì)的弧相等,所對(duì)的弦相等,所對(duì)的弦的弦心距相等

  10、推論在同圓或等圓中,如果兩個(gè)圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相等那么它們所對(duì)應(yīng)的其余各組量都相等。

  11、定理:圓的內(nèi)接四邊形的對(duì)角互補(bǔ),并且任何一個(gè)外角都等于它的內(nèi)對(duì)角

  12、①直線(xiàn)L和⊙O相交d

 、谥本(xiàn)L和⊙O相切d=r

  ③直線(xiàn)L和⊙O相離d>r

  13、切線(xiàn)的判定定理:經(jīng)過(guò)半徑的外端并且垂直于這條半徑的直線(xiàn)是圓的切線(xiàn)

  14、切線(xiàn)的性質(zhì)定理:圓的切線(xiàn)垂直于經(jīng)過(guò)切點(diǎn)的半徑

  15、推論1經(jīng)過(guò)圓心且垂直于切線(xiàn)的直線(xiàn)必經(jīng)過(guò)切點(diǎn)

  16、推論2經(jīng)過(guò)切點(diǎn)且垂直于切線(xiàn)的直線(xiàn)必經(jīng)過(guò)圓心

  17、切線(xiàn)長(zhǎng)定理:從圓外一點(diǎn)引圓的兩條切線(xiàn),它們的切線(xiàn)長(zhǎng)相等,圓心和這一點(diǎn)的連線(xiàn)平分兩條切線(xiàn)的夾角

  18、圓的外切四邊形的兩組對(duì)邊的和相等,外角等于內(nèi)對(duì)角

  19、如果兩個(gè)圓相切,那么切點(diǎn)一定在連心線(xiàn)上

  20、①兩圓外離d>R+r

 、趦蓤A外切d=R+r

 、蹆蓤A相交R-rr)

  ④兩圓內(nèi)切d=R-r(R>r)⑤兩圓內(nèi)含dr)

  21、定理:相交兩圓的連心線(xiàn)垂直平分兩圓的公共弦

  22、定理:把圓分成n(n≥3):

  (1)依次連結(jié)各分點(diǎn)所得的多邊形是這個(gè)圓的內(nèi)接正n邊形

  (2)經(jīng)過(guò)各分點(diǎn)作圓的切線(xiàn),以相鄰切線(xiàn)的交點(diǎn)為頂點(diǎn)的多邊形是這個(gè)圓的外切正n邊形

  23、定理:任何正多邊形都有一個(gè)外接圓和一個(gè)內(nèi)切圓,這兩個(gè)圓是同心圓

  24、正n邊形的每個(gè)內(nèi)角都等于(n-2)×180°/n

  25、定理:正n邊形的半徑和邊心距把正n邊形分成2n個(gè)全等的直角三角形

  26、正n邊形的面積Sn=pnrn/2p表示正n邊形的周長(zhǎng)

  27、正三角形面積√3a/4a表示邊長(zhǎng)

  28、如果在一個(gè)頂點(diǎn)周?chē)衚個(gè)正n邊形的角,由于這些角的和應(yīng)為360°,因此k×(n-2)180°/n=360°化為(n-2)(k-2)=4

  29、弧長(zhǎng)計(jì)算公式:L=n兀R/180

  30、扇形面積公式:S扇形=n兀R^2/360=LR/2

  31、內(nèi)公切線(xiàn)長(zhǎng)=d-(R-r)外公切線(xiàn)長(zhǎng)=d-(R+r)

  32、定理:一條弧所對(duì)的圓周角等于它所對(duì)的圓心角的一半

  33、推論1同弧或等弧所對(duì)的圓周角相等;同圓或等圓中,相等的圓周角所對(duì)的弧也相等

  34、推論2半圓(或直徑)所對(duì)的圓周角是直角;90°的圓周角所對(duì)的弦是直徑

  35、弧長(zhǎng)公式l=a*ra是圓心角的弧度數(shù)r>0扇形面積公式s=1/2*l*r

  初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)5

  1、正數(shù)和負(fù)數(shù)的有關(guān)概念

  (1)正數(shù):比0大的數(shù)叫做正數(shù);

  負(fù)數(shù):比0小的數(shù)叫做負(fù)數(shù);

  0既不是正數(shù),也不是負(fù)數(shù)。

  (2)正數(shù)和負(fù)數(shù)表示相反意義的量。

  2、有理數(shù)的概念及分類(lèi)

  3、有關(guān)數(shù)軸

  (1)數(shù)軸的三要素:原點(diǎn)、正方向、單位長(zhǎng)度。數(shù)軸是一條直線(xiàn)。

  (2)所有有理數(shù)都可以用數(shù)軸上的點(diǎn)來(lái)表示,但數(shù)軸上的點(diǎn)不一定都是有理數(shù)。

  (3)數(shù)軸上,右邊的數(shù)總比左邊的數(shù)大;表示正數(shù)的點(diǎn)在原點(diǎn)的右側(cè),表示負(fù)數(shù)的點(diǎn)在原點(diǎn)的左側(cè)。

  (2)相反數(shù):符號(hào)不同、絕對(duì)值相等的兩個(gè)數(shù)互為相反數(shù)。

  若a、b互為相反數(shù),則a+b=0;

  相反數(shù)是本身的是0,正數(shù)的相反數(shù)是負(fù)數(shù),負(fù)數(shù)的相反數(shù)是正數(shù)。

  (3)絕對(duì)值最小的數(shù)是0;絕對(duì)值是本身的數(shù)是非負(fù)數(shù)。

  4、任何數(shù)的絕對(duì)值是非負(fù)數(shù)。

  最小的正整數(shù)是1,最大的`負(fù)整數(shù)是-1。

  5、利用絕對(duì)值比較大小

  兩個(gè)正數(shù)比較:絕對(duì)值大的那個(gè)數(shù)大;

  兩個(gè)負(fù)數(shù)比較:先算出它們的絕對(duì)值,絕對(duì)值大的反而小。

  6、有理數(shù)加法

  (1)符號(hào)相同的兩數(shù)相加:和的符號(hào)與兩個(gè)加數(shù)的符號(hào)一致,和的絕對(duì)值等于兩個(gè)加數(shù)絕對(duì)值之和.

  (2)符號(hào)相反的兩數(shù)相加:當(dāng)兩個(gè)加數(shù)絕對(duì)值不等時(shí),和的符號(hào)與絕對(duì)值較大的加數(shù)的符號(hào)相同,和的絕對(duì)值等于加數(shù)中較大的絕對(duì)值減去較小的絕對(duì)值;當(dāng)兩個(gè)加數(shù)絕對(duì)值相等時(shí),兩個(gè)加數(shù)互為相反數(shù),和為零.

  (3)一個(gè)數(shù)同零相加,仍得這個(gè)數(shù).

  加法的交換律:a+b=b+a

  加法的結(jié)合律:(a+b)+c=a+(b+c)

  7、有理數(shù)減法:減去一個(gè)數(shù),等于加上這個(gè)數(shù)的相反數(shù)。

  8、在把有理數(shù)加減混合運(yùn)算統(tǒng)一為最簡(jiǎn)的形式,負(fù)數(shù)前面的加號(hào)可以省略不寫(xiě).

  例如:14+12+(-25)+(-17)可以寫(xiě)成省略括號(hào)的形式:14+12 -25-17,可以讀作“正14加12減25減17”,也可以讀作“正14、正12、負(fù)25、負(fù)17的和.”

  9、有理數(shù)的乘法

  兩個(gè)數(shù)相乘,同號(hào)得正,異號(hào)得負(fù),再把絕對(duì)值相乘;任何數(shù)與0相乘都得0。

  第一步:確定積的符號(hào) 第二步:絕對(duì)值相乘

  10、乘積的符號(hào)的確定

  幾個(gè)有理數(shù)相乘,因數(shù)都不為 0 時(shí),積的符號(hào)由負(fù)因數(shù)的個(gè)數(shù)確定:當(dāng)負(fù)因數(shù)有奇數(shù)個(gè)時(shí),積為負(fù);

  當(dāng)負(fù)因數(shù)有偶數(shù)個(gè)時(shí),積為正。幾個(gè)有理數(shù)相乘,有一個(gè)因數(shù)為零,積就為零。

  11、倒數(shù):乘積為1的兩個(gè)數(shù)互為倒數(shù),0沒(méi)有倒數(shù)。

  正數(shù)的倒數(shù)是正數(shù),負(fù)數(shù)的倒數(shù)是負(fù)數(shù)。(互為倒數(shù)的兩個(gè)數(shù)符號(hào)一定相同)

  倒數(shù)是本身的只有1和-1。

  初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)6

  1、菱形的定義:有一組鄰邊相等的平行四邊形叫做菱形。

  2、菱形的性質(zhì):

 、啪匦尉哂衅叫兴倪呅蔚囊磺行再|(zhì);

 、屏庑蔚乃臈l邊都相等;

  ⑶菱形的兩條對(duì)角線(xiàn)互相垂直,并且每一條對(duì)角線(xiàn)平分一組對(duì)角。

  ⑷菱形是軸對(duì)稱(chēng)圖形。

  提示:利用菱形的性質(zhì)可證得線(xiàn)段相等、角相等,它的對(duì)角線(xiàn)互相垂直且把菱形分成四個(gè)全等的直角三角形,由此又可與勾股定理聯(lián)系,可得對(duì)角線(xiàn)與邊之間的關(guān)系,即邊長(zhǎng)的平方等于對(duì)角線(xiàn)一半的平方和。

  3、因式分解定義:把一個(gè)多項(xiàng)式化成幾個(gè)整式的積的`形式的變形叫把這個(gè)多項(xiàng)式因式分解。

  4、因式分解要素:①結(jié)果必須是整式

 、诮Y(jié)果必須是積的形式

  ③結(jié)果是等式

 、芤蚴椒纸馀c整式乘法的關(guān)系:m(a+b+c)

  5、公因式:一個(gè)多項(xiàng)式每項(xiàng)都含有的公共的因式,叫做這個(gè)多項(xiàng)式各項(xiàng)的公因式。

  6、公因式確定方法:

 、傧禂(shù)是整數(shù)時(shí)取各項(xiàng)最大公約數(shù)。

  ②相同字母取最低次冪

 、巯禂(shù)最大公約數(shù)與相同字母取最低次冪的積就是這個(gè)多項(xiàng)式各項(xiàng)的公因式。

  7、提取公因式步驟:

  ①確定公因式。

 、诖_定商式

 、酃蚴脚c商式寫(xiě)成積的形式。

  8、平方根表示法:一個(gè)非負(fù)數(shù)a的平方根記作,讀作正負(fù)根號(hào)a。a叫被開(kāi)方數(shù)。

  9、中被開(kāi)方數(shù)的取值范圍:被開(kāi)方數(shù)a≥0

  10、平方根性質(zhì):

 、僖粋(gè)正數(shù)的平方根有兩個(gè),它們互為相反數(shù)。

 、0的平方根是它本身0。

 、圬(fù)數(shù)沒(méi)有平方根開(kāi)平方;求一個(gè)數(shù)的平方根的運(yùn)算,叫做開(kāi)平方。

  11、平方根與算術(shù)平方根區(qū)別:定義不同、表示方法不同、個(gè)數(shù)不同、取值范圍不同。

  12、聯(lián)系:二者之間存在著從屬關(guān)系;存在條件相同;0的算術(shù)平方根與平方根都是0

  13、含根號(hào)式子的意義:表示a的平方根,表示a的算術(shù)平方根,表示a的負(fù)的平方根。

  14、求正數(shù)a的算術(shù)平方根的方法;

  完全平方數(shù)類(lèi)型:

 、傧胝l(shuí)的平方是數(shù)a。

  ②所以a的平方根是多少。

 、塾檬阶颖硎尽

  求正數(shù)a的算術(shù)平方根,只需找出平方后等于a的正數(shù)。

【初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)】相關(guān)文章:

初中數(shù)學(xué)圓知識(shí)點(diǎn)總結(jié)04-06

初中數(shù)學(xué)必考知識(shí)點(diǎn)總結(jié)04-25

初中數(shù)學(xué)蘇教版知識(shí)點(diǎn)總結(jié)04-25

初中數(shù)學(xué)代數(shù)知識(shí)點(diǎn)總結(jié)04-25

數(shù)學(xué)初中全部知識(shí)點(diǎn)總結(jié)04-25

初中數(shù)學(xué)必備知識(shí)點(diǎn)總結(jié)03-01

數(shù)學(xué)初中函數(shù)知識(shí)點(diǎn)總結(jié)04-29

初中數(shù)學(xué)函數(shù)知識(shí)點(diǎn)總結(jié)11-24

初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)07-14

初中數(shù)學(xué)幾何知識(shí)點(diǎn)總結(jié)11-05