高中數(shù)學(xué)知識點(diǎn)總結(jié)15篇(優(yōu))
總結(jié)是把一定階段內(nèi)的有關(guān)情況分析研究,做出有指導(dǎo)性結(jié)論的書面材料,通過它可以全面地、系統(tǒng)地了解以往的學(xué)習(xí)和工作情況,為此要我們寫一份總結(jié)。我們該怎么寫總結(jié)呢?以下是小編為大家整理的高中數(shù)學(xué)知識點(diǎn)總結(jié),希望能夠幫助到大家。
高中數(shù)學(xué)知識點(diǎn)總結(jié)1
1、必修課程由5個(gè)模塊組成:
必修1:集合,函數(shù)概念與基本初等函數(shù)(指數(shù)函數(shù),冪函數(shù),對數(shù)函數(shù))
必修2:立體幾何初步、平面解析幾何初步。
必修3:算法初步、統(tǒng)計(jì)、概率。
必修4:基本初等函數(shù)(三角函數(shù))、平面向量、三角恒等變換。
必修5:解三角形、數(shù)列、不等式。
以上所有的知識點(diǎn)是所有高中生必須掌握的,而且要懂得運(yùn)用。
選修課程分為4個(gè)系列:
系列1:2個(gè)模塊
選修1—1:常用邏輯用語、圓錐曲線與方程、空間向量與立體幾何。
選修1—2:統(tǒng)計(jì)案例、推理與證明、數(shù)系的擴(kuò)充與復(fù)數(shù)、框圖
系列2:3個(gè)模塊
選修2—1:常用邏輯用語、圓錐曲線與方程、空間向量與立體幾何
選修2—2:導(dǎo)數(shù)及其應(yīng)用、推理與證明、數(shù)系的擴(kuò)充與復(fù)數(shù)
選修2—3:計(jì)數(shù)原理、隨機(jī)變量及其分布列、統(tǒng)計(jì)案例
選修4—1:幾何證明選講
選修4—4:坐標(biāo)系與參數(shù)方程
選修4—5:不等式選講
2、重難點(diǎn)及其考點(diǎn):
重點(diǎn):函數(shù),數(shù)列,三角函數(shù),平面向量,圓錐曲線,立體幾何,導(dǎo)數(shù)
難點(diǎn):函數(shù),圓錐曲線
高考相關(guān)考點(diǎn):
1、集合與邏輯:集合的邏輯與運(yùn)算(一般出現(xiàn)在高考卷的第一道選擇題)、簡易邏輯、充要條件
2、函數(shù):映射與函數(shù)、函數(shù)解析式與定義域、值域與最值、反函數(shù)、三大性質(zhì)、函數(shù)圖象、指數(shù)函數(shù)、對數(shù)函數(shù)、函數(shù)的應(yīng)用
3、數(shù)列:數(shù)列的有關(guān)概念、等差數(shù)列、等比數(shù)列、數(shù)列求通項(xiàng)、求和
4、三角函數(shù):有關(guān)概念、同角關(guān)系與誘導(dǎo)公式、和差倍半公式、求值、化簡、證明、三角函數(shù)的圖像及其性質(zhì)、應(yīng)用
5、平面向量:初等運(yùn)算、坐標(biāo)運(yùn)算、數(shù)量積及其應(yīng)用
6、不等式:概念與性質(zhì)、均值不等式、不等式的證明、不等式的解法、絕對值不等式(經(jīng)常出現(xiàn)在大題的選做題里)、不等式的應(yīng)用
7、直線與圓的方程:直線的方程、兩直線的位置關(guān)系、線性規(guī)劃、圓、直線與圓的位置關(guān)系
8、圓錐曲線方程:橢圓、雙曲線、拋物線、直線與圓錐曲線的位置關(guān)系、軌跡問題、圓錐曲線的應(yīng)用
9、直線、平面、簡單幾何體:空間直線、直線與平面、平面與平面、棱柱、棱錐、球、空間向量
10、排列、組合和概率:排列、組合應(yīng)用題、二項(xiàng)式定理及其應(yīng)用
11、概率與統(tǒng)計(jì):概率、分布列、期望、方差、抽樣、正態(tài)分布
12、導(dǎo)數(shù):導(dǎo)數(shù)的概念、求導(dǎo)、導(dǎo)數(shù)的應(yīng)用
13、復(fù)數(shù):復(fù)數(shù)的概念與運(yùn)算
高中數(shù)學(xué)學(xué)習(xí)要注意的方法
1、用心感受數(shù)學(xué),欣賞數(shù)學(xué),掌握數(shù)學(xué)思想。有位數(shù)學(xué)家曾說過:數(shù)學(xué)是用最小的空間集中了的理想。
2、要重視數(shù)學(xué)概念的理解。高一數(shù)學(xué)與初中數(shù)學(xué)的區(qū)別是概念多并且較抽象,學(xué)起來“味道”同以往很不一樣,解題方法通常就來自概念本身。學(xué)習(xí)概念時(shí),僅僅知道概念在字面上的含義是不夠的,還須理解其隱含著的深層次的含義并掌握各種等價(jià)的表達(dá)方式。例如,為什么函數(shù)y=f(x)與y=f—1(x)的圖象關(guān)于直線y=x對稱,而y=f(x)與x=f—1(y)卻有相同的圖象;又如,為什么當(dāng)f(x—1)=f(1—x)時(shí),函數(shù)y=f(x)的圖象關(guān)于y軸對稱,而y=f(x—1)與y=f(1—x)的圖象卻關(guān)于直線x=1對稱,不透徹理解一個(gè)圖象的對稱性與兩個(gè)圖象的對稱關(guān)系的區(qū)別,兩者很容易混淆。
3、對數(shù)學(xué)學(xué)習(xí)應(yīng)抱著二個(gè)詞――“嚴(yán)謹(jǐn),創(chuàng)新”,所謂嚴(yán)謹(jǐn),就是在平時(shí)訓(xùn)練的時(shí)候,不能一絲馬虎,是對就是對,錯(cuò)了就一定要承認(rèn),要找原因,要改正,萬不可以抱著“好像是對的”的心態(tài),蒙混過關(guān)。至于創(chuàng)新呢,要求就高一點(diǎn)了,要求在你會(huì)解決此問題的情況下,你還會(huì)不會(huì)用另一種更簡單,更有效的方法,這就需要扎實(shí)的基本功。平時(shí),我們看到一些人,做題時(shí)從不用常規(guī)方法,總愛自己創(chuàng)造一些方法以“偏方”解題,雖然有時(shí)候也能讓他撞上一些好的方法,但我認(rèn)為是不可取的。因?yàn)槟闶紫缺仨殞W(xué)會(huì)用常規(guī)的方法,在此基礎(chǔ)上你才能創(chuàng)新,你的創(chuàng)新才有意義,而那些總是片面“追求”新方法的人,他們的思維有如空中樓閣,必然是曇花一現(xiàn)。當(dāng)然我們要有創(chuàng)新意識,但是,創(chuàng)新是有條件的,必須有扎實(shí)的基礎(chǔ),因此我想勸一下那些基礎(chǔ)不牢,而平時(shí)總愛用“偏方”的同學(xué)們,該是清醒一下的時(shí)候了,千萬不要繼續(xù)鉆那可憐的牛角尖啊!
4、建立良好的學(xué)習(xí)數(shù)學(xué)習(xí)慣,習(xí)慣是經(jīng)過重復(fù)練習(xí)而鞏固下來的穩(wěn)重持久的條件反射和自然需要。建立良好的學(xué)習(xí)數(shù)學(xué)習(xí)慣,會(huì)使自己學(xué)習(xí)感到有序而輕松。高中數(shù)學(xué)的良好習(xí)慣應(yīng)是:多質(zhì)疑、勤思考、好動(dòng)手、重歸納、注意應(yīng)用。學(xué)生在學(xué)習(xí)數(shù)學(xué)的過程中,要把教師所傳授的知識翻譯成為自己的特殊語言,并永久記憶在自己的腦海中。另外還要保證每天有一定的自學(xué)時(shí)間,以便加寬知識面和培養(yǎng)自己再學(xué)習(xí)能力。
5、多聽、多作、多想、多問:此“四多”乃培養(yǎng)數(shù)學(xué)能力的要訣,“聽”就是在“學(xué)”,作是“練習(xí)”(作課本上的習(xí)題或其它問題),也就是把您所學(xué)的,應(yīng)用到解決問題上!奥牎迸c“作”難免會(huì)碰到疑難,那就要靠“想”的功夫去打通它,假如還想不通,解不來就要“問”――問同學(xué)、問老師或參考書,務(wù)必將疑難解決為止。這就是所謂的學(xué)問:既學(xué)又問。
6、要有毅力、要有恒心:基本上要有一個(gè)認(rèn)識:數(shù)學(xué)能力乃是長期努力累積的結(jié)果,而不是一朝一夕之功所能達(dá)到的。您可能花一天或一個(gè)晚上的功夫把某課文背得滾瓜爛熟,第二天考背誦時(shí)對答如流而獲高分,也有可能花了一兩個(gè)禮拜的時(shí)間拼命學(xué)數(shù)學(xué),但到頭來數(shù)學(xué)可能還考不好,這時(shí)候您可不能氣餒,也不必為花掉的時(shí)間惋惜。
高中數(shù)學(xué)復(fù)習(xí)的五大要點(diǎn)分析
一、端正態(tài)度,切忌浮躁,忌急于求成
在第一輪復(fù)習(xí)的過程中,心浮氣躁是一個(gè)非常普遍的現(xiàn)象。主要表現(xiàn)為平時(shí)復(fù)習(xí)覺得沒有問題,題目也能做,但是到了考試時(shí)就是拿不了高分!這主要是因?yàn)椋?/p>
。1)對復(fù)習(xí)的知識點(diǎn)缺乏系統(tǒng)的理解,解題時(shí)缺乏思維層次結(jié)構(gòu)。第一輪復(fù)習(xí)著重對基礎(chǔ)知識點(diǎn)的挖掘,數(shù)學(xué)老師一定都會(huì)反復(fù)強(qiáng)調(diào)基礎(chǔ)的重要性。如果不重視對知識點(diǎn)的系統(tǒng)化分析,不能構(gòu)成一個(gè)整體的知識網(wǎng)絡(luò)構(gòu)架,自然在解題時(shí)就不能擁有整體的構(gòu)思,也不能深入理解高考典型例題的思維方法。
。2)復(fù)習(xí)的時(shí)候心不靜。心不靜就會(huì)導(dǎo)致思維不清晰,而思維不清晰就會(huì)促使復(fù)習(xí)沒有效率。建議大家在開始一個(gè)學(xué)科的復(fù)習(xí)之前,先靜下心來認(rèn)真想一想接下來需要復(fù)習(xí)哪一塊兒,需要做多少事情,然后認(rèn)真去做,同時(shí)需要很高的注意力,只有這樣才會(huì)有很好的效果。
(3)在第一輪復(fù)習(xí)階段,學(xué)習(xí)的重心應(yīng)該轉(zhuǎn)移到基礎(chǔ)復(fù)習(xí)上來。
因此,建議廣大同學(xué)在一輪復(fù)習(xí)的時(shí)候千萬不要急于求成,一定要靜下心來,認(rèn)真的.揣摩每個(gè)知識點(diǎn),弄清每一個(gè)原理。只有這樣,一輪復(fù)習(xí)才能顯出成效。
二、注重教材、注重基礎(chǔ),忌盲目做題
要把書本中的常規(guī)題型做好,所謂做好就是要用最少的時(shí)間把題目做對。部分同學(xué)在第一輪復(fù)習(xí)時(shí)對基礎(chǔ)題不予以足夠的重視,認(rèn)為題目看上去會(huì)做就可以不加訓(xùn)練,結(jié)果常在一些“不該錯(cuò)的地方錯(cuò)了”,最終把原因簡單的歸結(jié)為粗心,從而忽視了對基本概念的掌握,對基本結(jié)論和公式的記憶及基本計(jì)算的訓(xùn)練和常規(guī)方法的積累,造成了實(shí)際成績與心理感覺的偏差。
可見,數(shù)學(xué)的基本概念、定義、公式,數(shù)學(xué)知識點(diǎn)的聯(lián)系,基本的數(shù)學(xué)解題思路與方法,是第一輪復(fù)習(xí)的重中之重。不妨以既是重點(diǎn)也是難點(diǎn)的函數(shù)部分為例,就必須掌握函數(shù)的概念,建立函數(shù)關(guān)系式,掌握定義域、值域與最值、奇偶性、單調(diào)性、周期性、對稱性等性質(zhì),學(xué)會(huì)利用圖像即數(shù)形結(jié)合。
每個(gè)同學(xué)在數(shù)學(xué)學(xué)習(xí)上遇到的問題有共同點(diǎn),更有不同點(diǎn)。在復(fù)習(xí)課上,老師只能針對性去解決共同點(diǎn),而同學(xué)們自己的個(gè)別問題則需要通過自己的思考,與同學(xué)們的討論,并向老師提問來解決問題,我們提倡同學(xué)多問老師,要敢于問。每個(gè)同學(xué)必須了解自己掌握了什么,還有哪些問題沒有解決,要明確只有把漏洞一一補(bǔ)上才能提高。復(fù)習(xí)的過程,實(shí)質(zhì)就是解決問題的過程,問題解決了,復(fù)習(xí)的效果就實(shí)現(xiàn)了。同時(shí),也請同學(xué)們注意:在你問問題之前先經(jīng)過自己思考,不要把不經(jīng)過思考的問題就直接去問,因?yàn)檫@并不能起到更大作用。
高三的復(fù)習(xí)一定是有計(jì)劃、有目標(biāo)的,所以千萬不要盲目做題。第一輪復(fù)習(xí)非常具有針對性,對于所有知識點(diǎn)的地毯式轟炸,一定要做到不缺不漏。因此,僅靠簡單做題是達(dá)不到一輪復(fù)習(xí)應(yīng)該具有的效果。而且盲目做題沒有針對性,更不會(huì)有全面性。在概念模糊的情況下一定要回歸課本,注意教材上最清晰的概念與原理,注重對知識點(diǎn)運(yùn)用方法的總結(jié)。
三、在平時(shí)做題中要養(yǎng)成良好的解題習(xí)慣,忌不思
1、樹立信心,養(yǎng)成良好的運(yùn)算習(xí)慣。部分同學(xué)平時(shí)學(xué)習(xí)過程中自信心不足,做作業(yè)時(shí)免不了互相對答案,也不認(rèn)真找出錯(cuò)誤原因并加以改正。“會(huì)而不對”是高三數(shù)學(xué)學(xué)習(xí)的大忌,常見的有審題失誤、計(jì)算錯(cuò)誤等,平時(shí)都以為是粗心,其實(shí)這就是一種非常不好的習(xí)慣,必須在第一輪復(fù)習(xí)中逐步克服,否則,后患無窮?山Y(jié)合平時(shí)解題中存在的具體問題,逐題找出原因,看其是行為習(xí)慣方面的原因,還是知識方面的缺陷,再有針對性加以解決。必要時(shí)作些記錄,也就是錯(cuò)題本,每位同學(xué)必備的,以便以后查詢。
2、做好解題后的開拓引申,培養(yǎng)一題多解和舉一反三的能力。解題能力的培養(yǎng)可以從一題多解和舉一反三中得到提高,因而解完題后,需要再回味和引申,它包括對解題方法的開拓引申,即一道數(shù)學(xué)題從不同的角度去考慮去分析,可以有不同的思路,不同的解法。
考慮的愈廣泛愈深刻,獲得的思路愈廣闊,解法愈多樣;及對題目做開拓引申,引申出新題和新解法,有利于培養(yǎng)同學(xué)們的發(fā)散思維,激發(fā)創(chuàng)造精神,提高解題能力:
。1)把題目條件開拓引申。
、侔烟厥鈼l件一般化;
、诎岩话銞l件特殊化;
、郯烟厥鈼l件和一般條件交替變化。
(2)把題目結(jié)論開拓引申。
(3)把題型開拓引申,同一個(gè)題目,給出不同的提法,可以變成不同的題型。俗稱為“一題多變”但其解法仍類似,按其解法而言,這些題又可稱為“多題一解”或“一法多用”。
3、提高解題速度,掌握解題技巧。提高解題速度的主要因素有二:一是解題方法的巧妙與簡捷;二是對常規(guī)解法的掌握是否達(dá)到高度的熟練程度。
四、學(xué)會(huì)總結(jié)、歸納,訓(xùn)練到位,忌題量不足
我在暑期上課的時(shí)候發(fā)現(xiàn),很多同學(xué)都是一看到題目就開始做題,這也是一輪復(fù)習(xí)應(yīng)該避免的地方。做題如果不注重思路的分析,知識點(diǎn)的運(yùn)用,效果可想而知。因此建議同學(xué)們在做題前要把老師上課時(shí)復(fù)習(xí)的知識再回顧一下,梳理知識體系,回顧各個(gè)知識點(diǎn),對所學(xué)的知識結(jié)構(gòu)要有一個(gè)完整清楚的認(rèn)識,認(rèn)真分析題目考查的知識,思想,以及方法,還要學(xué)會(huì)總結(jié)歸納不留下任何知識的盲點(diǎn),在一輪復(fù)習(xí)中要注意對各個(gè)知識點(diǎn)的細(xì)化。這個(gè)過程不需要很長的時(shí)間,而且到了后續(xù)階段會(huì)越來越熟練。因此,養(yǎng)成良好的做題習(xí)慣,有助于訓(xùn)練自己的解題思維,提高自己的解題能力。
實(shí)踐出真知,充足的題量是把理論轉(zhuǎn)化為能力的一種保障,在足夠的題目的練習(xí)下不僅可以更扎實(shí)的掌握知識點(diǎn),還可以更深入的了解知識點(diǎn),避免出現(xiàn)“會(huì)而不對、對而不全”的現(xiàn)象。由于高考依然是以做題為主,所以解題能力是高考分?jǐn)?shù)的一個(gè)直接反映,尤其是數(shù)學(xué)試題。而解題能力不是三兩道題就能提升的,而是要大量的反復(fù)的訓(xùn)練、認(rèn)真細(xì)致的推敲才會(huì)有較大的提升。有句話說的好,“量變導(dǎo)致質(zhì)變”,因此,同學(xué)們在每章復(fù)習(xí)的時(shí)候,一定要做足夠的題,才能夠充分的理解這一章的內(nèi)容,才能夠做到對這一章知識點(diǎn)的熟練運(yùn)用。
但是,大量訓(xùn)練絕對不是題海戰(zhàn)術(shù)。因?yàn)獒槍γ空鹿?jié)做題都有目標(biāo),同時(shí)做題訓(xùn)練都需要不斷的總結(jié),既要橫向總結(jié),也要縱向深入。只要在每章節(jié)做題做到一定程度的時(shí)候都能感覺到這一章的知識點(diǎn)有哪些,典型題型有哪些,方法和技巧有哪些,換句話說,如果隨機(jī)抽取一些近幾年關(guān)于這一章的高考題都會(huì)做,那我認(rèn)為就可以了。
五、解析幾何
這部分內(nèi)容說起來容易做起來難,需要掌握幾類問題,第一類直線和曲線的位置關(guān)系,要掌握它的通法;第二類動(dòng)點(diǎn)問題;第三類是弦長問題;第四類是對稱問題;第五類重點(diǎn)問題,這類題往往覺得有思路卻沒有一個(gè)清晰的答案,但需要要掌握比較好的算法,來提高做題的準(zhǔn)確度。
六、壓軸題
同學(xué)們在最后的備考復(fù)習(xí)中,還應(yīng)該把重點(diǎn)放在不等式計(jì)算的方法中,難度雖然很大,但是也切忌在試卷中留空白,平時(shí)多做些壓軸題真題,爭取能解題就解題,能思考就思考。
高考數(shù)學(xué)直線方程知識點(diǎn):什么是直線方程
從平面解析幾何的角度來看,平面上的直線就是由平面直角坐標(biāo)系中的一個(gè)二元一次方程所表示的圖形。求兩條直線的交點(diǎn),只需把這兩個(gè)二元一次方程聯(lián)立求解,當(dāng)這個(gè)聯(lián)立方程組無解時(shí),兩直線平行;有無窮多解時(shí),兩直線重合;只有一解時(shí),兩直線相交于一點(diǎn)。常用直線向上方向與X軸正向的夾角(叫直線的傾斜角)或該角的正切(稱直線的斜率)來表示平面上直線(對于X軸)的傾斜程度?梢酝ㄟ^斜率來判斷兩條直線是否互相平行或互相垂直,也可計(jì)算它們的交角。直線與某個(gè)坐標(biāo)軸的交點(diǎn)在該坐標(biāo)軸上的坐標(biāo),稱為直線在該坐標(biāo)軸上的截距。直線在平面上的位置,由它的斜率和一個(gè)截距完全確定。在空間,兩個(gè)平面相交時(shí),交線為一條直線。因此,在空間直角坐標(biāo)系中,用兩個(gè)表示平面的三元一次方程聯(lián)立,作為它們相交所得直線的方程。
高中數(shù)學(xué)知識點(diǎn)總結(jié)2
1、集合的含義與表示
集合的三大特性:確定性、互異性、無序性。集合的表示有列舉法、描述法。
描述法格式為:{元素|元素的特征},例如{x|x5,且xN}2、常用數(shù)集及其表示方法
(1)自然數(shù)集N(又稱非負(fù)整數(shù)集):0、1、2、3、
。2)正整數(shù)集N
或N+:1、2、3、
。3)整數(shù)集Z:
。4)有理數(shù)集Q:包含分?jǐn)?shù)、整數(shù)、有限小數(shù)等
。5)實(shí)數(shù)集R:全體實(shí)數(shù)的集合
。6)空集Ф:不含任何元素的集合
3、元素與集合的關(guān)系:屬于∈,不屬于
4、集合與集合的關(guān)系:子集、真子集、相等
5、重要結(jié)論
(1)傳遞性:若AB,BC,則AC
。2)Ф是任何集合的子集,是任意非空集合的真子集。
6、含有n個(gè)元素的集合,它的子集個(gè)數(shù)共有2n個(gè);真子集有2n1個(gè);非空子集有2n1個(gè)(即不計(jì)空集);非空的真子集有2n2個(gè)。
7、集合的運(yùn)算:交集、并集、補(bǔ)集.
。1)A∩B={x|x∈A,且x∈B}.
。2)A∪B={x|x∈A,或x∈B}.
。3)CUAx|xU,且xA注:討論集合的情況時(shí),不要發(fā)遺忘了A的情況。
8、函數(shù)概念
9、分段函數(shù):在定義域的不同部分,有不同的對應(yīng)法則的函數(shù)。如y2x1x0x23x010、求函數(shù)的定義域的原則:(解決任何函數(shù)問題,必須要考慮其定義域)
、俜质降姆帜覆粸榱;如:y1x1,則x10
②偶次方根的被開方數(shù)大于或等于零;如:y5x,則5x0
、蹖(shù)的底數(shù)大于0且不等于1;如:yloga(x2),則a0且a1
、軐(shù)的真數(shù)大于0;如:yloga(x2),則x20
⑤指數(shù)為0的底不能為零;如:y(m1)x,則m1011、函數(shù)的奇偶性(在整個(gè)定義域內(nèi)考慮)
(1)奇函數(shù)滿足f(x)f(x),奇函數(shù)的圖象關(guān)于原點(diǎn)對稱;
。2)偶函數(shù)滿足f(x)f(x),偶函數(shù)的圖象關(guān)于y軸對稱;
注:
、倬哂衅媾夹缘暮瘮(shù),其定義域關(guān)于原點(diǎn)對稱;
、谌羝婧瘮(shù)在原點(diǎn)有定義,則f(0)0
、鄹鶕(jù)奇偶性可將函數(shù)分為四類:奇函數(shù)、偶函數(shù)、既是奇函數(shù)又是偶函數(shù)、非奇非偶函數(shù)。
12、函數(shù)的單調(diào)性(在定義域的某個(gè)區(qū)間內(nèi)考慮)
當(dāng)x1x2時(shí),都有f(x1)f(x2),則f(x)在該區(qū)間上是增函數(shù),圖象從左到右上升;當(dāng)x1x2時(shí),都有f(x1)f(x2),則f(x)在該區(qū)間上是減函數(shù),圖象從左到右下降。
函數(shù)f(x)在某區(qū)間上是增函數(shù)或減函數(shù),那么說f(x)在該區(qū)間具有單調(diào)性,該區(qū)間叫做單調(diào)(增/減)區(qū)間
13、一元二次方程ax2bxc0(a0)
。1)求根公式:xbb24ac21,22a
。2)判別式:b4ac
。3)0時(shí)方程有兩個(gè)不等實(shí)根;0時(shí)方程有一個(gè)實(shí)根;0時(shí)方程無實(shí)根。
。4)根與系數(shù)的關(guān)系韋達(dá)定理:xxbc12a,x1x2a
14、二次函數(shù):一般式y(tǒng)ax2bxc(a0);兩根式y(tǒng)a(xx1)(xx2)(a0)
(1)頂點(diǎn)坐標(biāo)為(b4acb2by2a,4a);
(2)對稱軸方程為:x=2a;x0
。3)當(dāng)a0時(shí),圖象是開口向上的拋物線,在x=b4acb22a處取得最小值4a
當(dāng)a0時(shí),圖象是開口向下的拋物線,在x=b4acb22a處取得最大值4a
。4)二次函數(shù)圖象與x軸的交點(diǎn)個(gè)數(shù)和判別式的關(guān)系:
0時(shí),有兩個(gè)交點(diǎn);0時(shí),有一個(gè)交點(diǎn)(即頂點(diǎn));0時(shí),無交點(diǎn)。
15、函數(shù)的零點(diǎn)
使f(x)0的實(shí)數(shù)x20叫做函數(shù)的零點(diǎn)。例如x01是函數(shù)f(x)x1的一個(gè)零點(diǎn)。注:函數(shù)yfx有零點(diǎn)函數(shù)yfx的圖象與x軸有交點(diǎn)方程fx0有實(shí)根
16、函數(shù)零點(diǎn)的判定:
如果函數(shù)yfx在區(qū)間a,b上的圖象是連續(xù)不斷的一條曲線,并且有f(a)f(b)0。那么,函數(shù)yfx在區(qū)間a,b內(nèi)有零點(diǎn),即存在ca,b,使得fc0。
17、分?jǐn)?shù)指數(shù)冪(a0,m,nN,且n1)m3
(1)annam。如x3x2;
。2)amn1132mn。如1;
。3)(na)na;anamx3x
。4)當(dāng)n為奇數(shù)時(shí),nana;當(dāng)n為偶數(shù)時(shí),nan|a|a,a0a,a0.1
18、有理指數(shù)冪的運(yùn)算性質(zhì)(a0,r,sQ)
。1)arasars;
。2)(ar)sars;
。3)(ab)rarbr
19、指數(shù)函數(shù)yax(a0且a1),其中x是自變量,a叫做底數(shù),定義域是Ra10a1yy圖象1x10x
(1)定義域:R0性
。2)值域:(0,+∞)質(zhì)
。3)過定點(diǎn)(0,1),即x=0時(shí),y=1
。4)在R上是增函數(shù)(4)在R上是減函數(shù)20、若abN,則叫做以為底N的對數(shù)。記作:logaNb(a0,a1,N0)其中,a叫做對數(shù)的底數(shù),N叫做對數(shù)的真數(shù)。
注:指數(shù)式與對數(shù)式的互化公式:logaNbabN(a0,a1,N0)
21、對數(shù)的性質(zhì)
。1)零和負(fù)數(shù)沒有對數(shù),即logaN中N0;
。2)1的對數(shù)等于0,即loga10;底數(shù)的對數(shù)等于1,即logaa122、常用對數(shù)lgN:以10為底的對數(shù)叫做常用對數(shù),記為:log10NlgN
自然對數(shù)lnN:以e(e=2。71828)為底的對數(shù)叫做自然對數(shù),記為:logeNlnN23、對數(shù)恒等式:alogaNN
24、對數(shù)的運(yùn)算性質(zhì)(a>0,a≠1,M>0,N>0)
(1)loga(MN)logMaMlogaN;
。2)logaNlogaMlogaN;
(3)lognaMnlogaM(nR)(注意公式的逆用)
25、對數(shù)的換底公式logmNaNloglog(a0,且a1,m0,且m1,N0)。
ma推論
①或log1nnablog;
、趌ogamblogab。
bam
26、對數(shù)函數(shù)ylogax(a0,且a1):其中,x是自變量,a叫做底數(shù),定義域是(0,)
a10a1y圖像x01x01定義域:(0,∞)性質(zhì)值域:R過定點(diǎn)(1,0)增函數(shù)減函數(shù)取值范圍0
③如果兩個(gè)不重合的平面有一個(gè)公共點(diǎn),那么它們有且僅有一條過該點(diǎn)的公共直線。
、芷叫杏谕恢本的兩條直線平行(平行的傳遞性)。
33、等角定理:
空間中如果兩個(gè)角的兩邊對應(yīng)平行,那么這兩個(gè)角相等或互補(bǔ)(如圖)12334、兩條直線的位置關(guān)系:平行:(在同一平面內(nèi),沒有公共點(diǎn))共面直線(在同一平面內(nèi),有一個(gè)公共點(diǎn))異面直線
相交:(不同在任何一個(gè)平面內(nèi)的兩條直線,沒有公共點(diǎn))直線與平面的位置關(guān)系:
(1)直線在平面上;
。2)直線在平面外(包括直線與平面平行,直線與平面相交)
兩個(gè)平面的位置關(guān)系:
。1)兩個(gè)平面平行;
。2)兩個(gè)平面相交35、直線與平面平行:
定義一條直線與一個(gè)平面沒有公共點(diǎn),則這條直線與這個(gè)平面平行。判定平面外一條直線與此平面內(nèi)的一直線平行,則該直線與此平面平行。
性質(zhì)一條直線與一個(gè)平面平行,則過這條直線的任一平面與此平面的交線與該直線平行。
36、平面與平面平行:
定義兩個(gè)平面沒有公共點(diǎn),則這兩平面平行。
判定若一個(gè)平面內(nèi)有兩條相交直線與另一個(gè)平面平行,則這兩個(gè)平面平行。
性質(zhì)
①如果兩個(gè)平面平行,則其中一個(gè)面內(nèi)的任一直線與另一個(gè)平面平行。
②如果兩個(gè)平行平面同時(shí)與第三個(gè)平面相交,那么它們交線平行。
37、直線與平面垂直:
定義如果一條直線與一個(gè)平面內(nèi)的任一直線都垂直,則這條直線與這個(gè)平面垂直。
判定一條直線與一個(gè)平面內(nèi)的兩相交直線垂直,則這條直線與這個(gè)平面垂直。
性質(zhì)
、俅怪庇谕黄矫娴膬蓷l直線平行。
、趦善叫兄本中的一條與一個(gè)平面垂直,則另一條也與這個(gè)平面垂直。
38、平面與平面垂直:
定義兩個(gè)平行相交,如果它們所成的二面角是直二面角,則這兩個(gè)平面垂直。判定一個(gè)平面過另一個(gè)平面的垂線,則這兩個(gè)平面垂直。
性質(zhì)兩個(gè)平面垂直,則一個(gè)平面內(nèi)垂直于交線的直線與另一個(gè)平面垂直。
39、三角形的五“心”
。1)O為ABC的外心(各邊垂直平分線的交點(diǎn))。外心到三個(gè)頂點(diǎn)的距離相等
。2)O為ABC的重心(各邊中線的交點(diǎn))。重心將中線分成2:1的兩段
。3)O為ABC的垂心(各邊高的交點(diǎn))。
(4)O為ABC的內(nèi)心(各內(nèi)角平分線的交點(diǎn))。內(nèi)心到三邊的距離相等
40、直線的斜率:
。1)過Ax1,y1,Bx2,y2y12兩點(diǎn)的直線,斜率kyx,(x1x2)2x1
。2)已知傾斜角為的直線,斜率ktan(900)
41、直線位置關(guān)系:已知兩直線l1:yk1xb1,l2:yk2xb2,則l1//l2k1k2且b1b2 l1l2k1k21
特殊情況:
。1)當(dāng)k1,k2都不存在時(shí),l1//l2;
(2)當(dāng)k1不存在而k20時(shí),l1l24
2、直線的五種方程:
、冱c(diǎn)斜式y(tǒng)y1k(xx1)(直線l過點(diǎn)(x1,y1),斜率為k).
、谛苯厥統(tǒng)kxb(直線l在y軸上的截距為b,斜率為k)。
、蹆牲c(diǎn)式y(tǒng)y1xx1yx(直線過兩點(diǎn)(x1,y1)與(x2,y2))。2y12x1
、芙鼐嗍絰ayb1(a,b分別是直線在x軸和y軸上的截距,均不為0)
、菀话闶紸xByC0(其中A、B不同時(shí)為0);可化為斜截式:yABxCB4
3、(1)平面上兩點(diǎn)A(x,y221,y1),B(x22)間的距離公式:|AB|=(x1x2)(y1y2)
(2)空間兩點(diǎn)A(x(x2221,y1,z1),B2,y2,z2)距離公式|AB|=(x1x2)(y1y2)(z1z2)
。3)點(diǎn)到直線的距離d|Ax0By0C|A2B2(點(diǎn)P(x0,y0),直線l:AxByC0)。
44、兩條平行直線AxByC10與AxByC20間的距離公式:dC1C2A2B2
注:求直線AxByC0的`平行線,可設(shè)平行線為AxBym0,求出m即得。
45、求兩相交直線A1xB1yC10與A2xB2yC20的交點(diǎn):解方程組AxB1yC10A12xB2yC20
46、圓的方程:
、賵A的標(biāo)準(zhǔn)方程(xa)2(yb)2r2。其中圓心為(a,b),半徑為r
、趫A的一般方程x2y2DxEyF0。
其中圓心為(D2,ED2E24F222),半徑為r2,其中DE4F>0
47、直線AxByC0與圓的(xa)2(yb)2r2位置關(guān)系
(1)dr相離0;
(2)dr相切0;其中d是圓心到直線的距離,且dAaBbC(3)dr相交0。
A2B23
48、直線與圓相交于A(x1,y1),B(x2,y2)兩點(diǎn),求弦AB長度的公式:
。1)|AB|2r2d2
。2)|AB|1k2(x21x2)4x1x2(結(jié)合韋達(dá)定理使用),其中k是直線的斜率
49、兩個(gè)圓的位置關(guān)系:設(shè)兩圓的圓心分別為O1,O2,半徑分別為r1,r2,O1O2d
1)dr1r2外離4條公切線;
2)dr1r2外切3條公切線;
3)r1r2dr1r2相交2條公切線;
4)dr1r2內(nèi)切1條公切線;
5)0dr1r2內(nèi)含無公切線
必修③公式表
50、三種抽樣方法的區(qū)別與聯(lián)系類別共同點(diǎn)各自特點(diǎn)相互聯(lián)系適用范圍簡單隨機(jī)抽樣從總體中逐個(gè)抽取總體中個(gè)體數(shù)較少分層抽取過程將總體分成幾層各層抽樣可采用總體有差異明顯的幾部抽樣中每個(gè)個(gè)體進(jìn)行抽取簡單隨機(jī)抽樣或分組成被抽取的概系統(tǒng)抽樣率相等將總體平均分成系統(tǒng)抽樣幾部分,按事先確在起始部分抽樣定的規(guī)則分別在各時(shí)采用簡單隨機(jī)總體中的個(gè)體較多部分抽取抽樣
51、
。1)頻率分布直方圖(注意其縱坐標(biāo)是“頻率/組距)
組數(shù)極差,頻率頻數(shù),小矩形面積組距頻率頻率。組距樣本容量組距
。2)數(shù)字特征
眾數(shù):一組數(shù)據(jù)中,出現(xiàn)次數(shù)最多的數(shù)。
中位數(shù):一組數(shù)從小到大排列,最中間的那個(gè)數(shù)(若最中間有兩個(gè)數(shù),則取其平均數(shù))。平均數(shù):x1nx1x2xn方差:s2=1n[(x22221x)(x2x)(x3x)(xnx)]
標(biāo)準(zhǔn)差:s1nxx2x2212xxnx
注:通過標(biāo)準(zhǔn)差或方差可以判斷一組數(shù)據(jù)的分散程度;其值越小,數(shù)據(jù)越集中;其值越大,數(shù)據(jù)越分散。ninxyxiy回歸直線方程:ybxa,其中bi1n,aybx,
x2inx2i1
注:回歸直線一定過樣本點(diǎn)中心(x,y)
52、事件的分類:
基本事件:一個(gè)事件如果不能再被分解為兩個(gè)或兩個(gè)以上事件,稱作基本事件。
。1)必然事件:必然事件是每次試驗(yàn)都一定出現(xiàn)的事件。P(必然事件)=1
。2)不可能事件:任何一次試驗(yàn)都不可能出現(xiàn)的事件稱為不可能事件。P(不可能事件)=0
(3)隨機(jī)事件:隨機(jī)試驗(yàn)的每一種結(jié)果或隨機(jī)現(xiàn)象的每一種表現(xiàn)稱作隨機(jī)事件,簡稱為事件
53、在n次重復(fù)實(shí)驗(yàn)中,事件A發(fā)生的次數(shù)為m,則事件A發(fā)生的頻率為m/n,當(dāng)n很大時(shí),m總是在某個(gè)常數(shù)值附近擺動(dòng),就把這個(gè)常數(shù)叫做事件A的概率。(概率范圍:0PA1)
54、互斥事件概念:在一次隨機(jī)事件中,不可能同時(shí)發(fā)生的兩個(gè)事件,叫做互斥事件(如圖1)。如果事件A、B是互斥事件,則P(A+B)=P(A)+P(B)
55、對立事件(如圖2):指兩個(gè)事件不可能同時(shí)發(fā)生,但必有一個(gè)發(fā)生。AB圖1對立事件性質(zhì):P(A)+P(A)=1,其中A表示事件A的對立事件。
56、古典概型是最簡單的隨機(jī)試驗(yàn)?zāi)P,古典概型有兩個(gè)特征:AB
(1)基本事件個(gè)數(shù)是有限的;
(2)各基本事件的出現(xiàn)是等可能的,即它們發(fā)生的概率相同.
57、設(shè)一試驗(yàn)有n個(gè)等可能的基本事件,而事件A恰包含其中的m個(gè)基本事件,則事件A的概率P(A)公式為PAA包含的基本事件的個(gè)數(shù)基本事件的總數(shù)=mn
運(yùn)用互斥事件的概率加法公式時(shí),首先要判斷它們是否互斥,再由隨機(jī)事件的概率公式分別求它們的概率,然后計(jì)算。在計(jì)算某些事件的概率較復(fù)雜時(shí),可轉(zhuǎn)而先示對立事件的概率。58、幾何概型的概率公式:PA構(gòu)成事件A的區(qū)域長度(面積或體積)試驗(yàn)的全部結(jié)果構(gòu)成的區(qū)域長度(面積或體積)
必修④公式表
r59、終邊相同角構(gòu)成的集合:|2k,kZ
l)l
60、弧度計(jì)算公式:r
61、扇形面積公式:S12lr12r2(為弧度)62、三角函數(shù)的定義:已知Px,y是的終邊上除原點(diǎn)外的任一點(diǎn)P(x,y)r則siny,cosx,tany,其中r2x2)yrrxy2x63、三角函數(shù)值的符號++++
++sincostan
4
64、特殊角的三角函數(shù)值:0235643234632sin012332122212220—1cos132112220—2—232—2—10tan03313不存—1—3在—330不存在65、同角三角函數(shù)的關(guān)系:sin2cos21,tansincos
66、和角與差角公式:二倍角公式:
sin()sincoscossin;sin22sincos
cos()coscossinsin;cos2cos2sin212sin2
tan()tantan2cos211tantan。tan22tan1tan267、誘導(dǎo)公式記憶口訣:奇變偶不變,符號看象限;其中,奇偶是指2的個(gè)數(shù)
sin2ksinsinsinsinsinsinsincos2kcoscoscoscoscoscoscos
tan2ktantantantantantantansin(2)coscos(2)sinsin(2)coscos(2)sin
68、輔助角公式:asinbcos=a2b2sin()(輔助角所在象限與點(diǎn)(a,b)的象限相同,且
tanba)。主要在求周期、單調(diào)性、最值時(shí)運(yùn)用。如y3sinxcosx2sin(x6)
69、半角公式(降冪公式):sin21cos1cos22,cos22270、三角函數(shù)yAsin(x)的性質(zhì)(A0,0)
(1)最小正周期T2;振幅為A;頻率f1T;相位:x;初相:;值域:[A,A];
對稱軸:由x2k解得x;對稱中心:由xk解得x組成的點(diǎn)(x,0)
(2)圖象平移:x左加右減、y上加下減。
例如:向左平移1個(gè)單位,解析式變?yōu)閥Asin[(x1)]向下平移3個(gè)單位,解析式變?yōu)閥Asin(x)3
。3)函數(shù)ytan(x)的最小正周期T。71、正弦定理:在一個(gè)三角形中,各邊與對應(yīng)角正弦的比相等。
asinAbsinBcsinC2R(R是三角形外接圓半徑)cosAb2c2a2a2b2c22bccosA,2bc,ca2cacosB,推論cosc2a272、余弦定理:bBb2222,c2a2b22abcosC。2caosCa2b2c2c2ab。73、三角形的面積公式:S11ABC2absinC2acsinB12bcsinA。74、三角函數(shù)的圖象與性質(zhì)和性質(zhì)三角函數(shù)ysinxycosxytanxyyy11圖象xx—0x3—122—20—122—0222定義域(,)(,)(k2,k2)值域[—1,1][—1,1](,)最大值x22k,ymax1x2k,ymax1最小值x22k,ymin1x2k,ymin1周期22奇偶性奇函數(shù)偶函數(shù)奇函數(shù)在[22k,22k]在[2k,2k]在(2k,22k)單調(diào)性上是增函數(shù)上是增函數(shù)上都是增函數(shù)kZ在[22k,322k]在[2k,2k]上是減函數(shù)上是減函數(shù)76、向量的三角形法則:79、向量的平行平行四邊形法則:
a+bbabab—aba+ba—177、平面向量的坐標(biāo)運(yùn)算:設(shè)向量a=(x1,y1),向量b=(x2,y2)
。1)加法a+b=(x1x2,y1y2)。(2)減法a—b=(x1x2,y1y2)。(3)數(shù)乘a=(x1,y1)(x1,y1)
。4)數(shù)量積ab=|a||b|cosθ=x1x2y1y2,其中是這兩個(gè)向量的夾角
(5)已知兩點(diǎn)A(x1,y1),B(x2,y2),則向量ABOBOA(x2x1,y2y1)。
78、向量a=(x,y)的模:|a|=(a)22222aaxy,即|a|a
79、兩向量的夾角公式cosabx1x2y1y2abx2y22y2
11x2280、向量的平行與垂直(b0)
a||bb=λax1y2x2y10。記法:a=(x1,y1),b=(x2,y2)
abab=0x1x2y1y20。記法:a=(x1,y1),b=(x2,y2)
必修⑤公式表
81、數(shù)列前n項(xiàng)和與通項(xiàng)公式的關(guān)系:
aS1,n1;n(數(shù)列{an}的前n項(xiàng)的和為sna1a2aSn)。nSn1,n2。82、等差、等比數(shù)列公式對比nN等差數(shù)列等比數(shù)列定義式aanan1danq(q0)n1通項(xiàng)公式及a1推廣公式anaa1n1mddana1qnnmnanamqnm中項(xiàng)公式若a,A,b成等差,則Aab若a,G,b成等比,則G22ab運(yùn)算性質(zhì)若mnpq2r,則若mnpq2r,則anamapaq2aranamapaqa2r前n項(xiàng)和公Sna1annna21q1,式Snnann112da11-qna11qanq1q,q1。一個(gè)性質(zhì)Sm,S2mSm,S3mS2m成等差數(shù)列Sm,S2mSm,S3mS2m成等比數(shù)列83、解不等式(1)、含有絕對值的不等式
當(dāng)a>0時(shí),有xax2a2axa。[小于取中間]
xax2a2xa或xa。[大于取兩邊]
(2)、解一元二次不等式ax2bxc0,(a0)的步驟:
①求判別式b24ac000②求一元二次方程的解:兩相異實(shí)根一個(gè)實(shí)根沒有實(shí)根③畫二次函數(shù)yax2bxc的圖象
、芙Y(jié)合圖象寫出解集
ax2bxc0解集xxxb2或xx1xx2aR
ax2bxc0解集xx1xx2
注:ax2bxc0(a0)解集為Rax2bxc0對xR恒成立0(3)分式不等式:先移項(xiàng)通分,化一邊為0,再將除變乘,化為整式不等式,求解。如解分式不等式
x1x1:先移項(xiàng)x1x10;通分(x1)xx0;再除變乘(2x1)x0,解出。
84、線性規(guī)劃:
直線AxByC0
。1)一條直線將平面分為三部分(如圖):
AxByC0(2)不等式AxByC0表示直線AxByC0
AxByC0
某一側(cè)的平面區(qū)域,驗(yàn)證方法:取原點(diǎn)(0,0)代入不
等式,若不等式成立,則平面區(qū)域在原點(diǎn)所在的一側(cè)。假如直線恰好經(jīng)過原點(diǎn),則取其它點(diǎn)來驗(yàn)證,例如取點(diǎn)(1,0)。
。3)線性規(guī)劃求最值問題:一般情況可以求出平面區(qū)域各個(gè)頂點(diǎn)的坐標(biāo),代入目標(biāo)函數(shù)z,最大的為最大值。
高中數(shù)學(xué)知識點(diǎn)總結(jié)3
選修4-4數(shù)學(xué)知識點(diǎn)
一、選考內(nèi)容《坐標(biāo)系與參數(shù)方程》高考考試大綱要求:
1.坐標(biāo)系:
、倮斫庾鴺(biāo)系的作用.
②了解在平面直角坐標(biāo)系伸縮變換作用下平面圖形的變化情況.
、勰茉跇O坐標(biāo)系中用極坐標(biāo)表示點(diǎn)的位置,理解在極坐標(biāo)系和平面直角坐標(biāo)系中表示點(diǎn)的位置的區(qū)別,能進(jìn)行極坐標(biāo)和直角坐標(biāo)的互化.
、苣茉跇O坐標(biāo)系中給出簡單圖形(如過極點(diǎn)的直線、過極點(diǎn)或圓心在極點(diǎn)的圓)的方程.通過比較這些圖形在極坐標(biāo)系和平面直角坐標(biāo)系中的方程,理解用方程表示平面圖形時(shí)選擇適當(dāng)坐標(biāo)系的意義.
2.參數(shù)方程:①了解參數(shù)方程,了解參數(shù)的意義.
、谀苓x擇適當(dāng)?shù)膮?shù)寫出直線、圓和圓錐曲線的參數(shù)方程.
二、知識歸納總結(jié):
1.伸縮變換:設(shè)點(diǎn)P(x,y)是平面直角坐標(biāo)系中的任意一點(diǎn),在變換:yy,(0).的作用下,點(diǎn)P(x,y)對應(yīng)到點(diǎn)P(x,y),稱為平面直角坐標(biāo)系中的坐標(biāo)伸縮變換,簡稱伸縮變換。
2.極坐標(biāo)系的概念:在平面內(nèi)取一個(gè)定點(diǎn)O,叫做極點(diǎn);自極點(diǎn)O引一條射線Ox叫做極軸;再選定一個(gè)長度單位、一個(gè)角度單位(通常取弧度)及其正方向(通常取逆時(shí)針方向),這樣就建立了一個(gè)極坐標(biāo)系。
3.點(diǎn)M的極坐標(biāo):設(shè)M是平面內(nèi)一點(diǎn),極點(diǎn)O與點(diǎn)M的距離|OM|叫做點(diǎn)M的極徑,記為;以極軸Ox為始邊,射線OM為終邊的xOM叫做點(diǎn)M的極角,記為。有序數(shù)對(,)叫做點(diǎn)M的極坐標(biāo),記為M(,).極坐標(biāo)(,)與(,2k)(kZ)表示同一個(gè)點(diǎn)。極點(diǎn)O的坐標(biāo)為(0,)(R).
4.若0,則0,規(guī)定點(diǎn)(,)與點(diǎn)(,)關(guān)于極點(diǎn)對稱,即(,)與(,)表示同一點(diǎn)。如果規(guī)定0,02,那么除極點(diǎn)外,平面內(nèi)的點(diǎn)可用唯一的極坐標(biāo)(,)表示;同時(shí),極坐標(biāo)(,)表示的點(diǎn)也是唯一確定的。
5.極坐標(biāo)與直角坐標(biāo)的互化:2x2y2,xcos,yysin,tan(x0)x
6.圓的極坐標(biāo)方程:在極坐標(biāo)系中,以極點(diǎn)為圓心,r為半徑的圓的極坐標(biāo)方程是r;在極坐標(biāo)系中,以C(a,0)(a0)為圓心,a為半徑的圓的極坐標(biāo)方程是2acos;在極坐標(biāo)系中,以C(a,2)(a0)為圓心,a為半徑的圓的極坐標(biāo)方程是2asin;
7.在極坐標(biāo)系中,(0)表示以極點(diǎn)為起點(diǎn)的一條射線;(R)表示過極點(diǎn)的一條直線.在極坐標(biāo)系中,過點(diǎn)A(a,0)(a0),且垂直于極軸的直線l的'極坐標(biāo)方程是cosa.
8.參數(shù)方程的概念:在平面直角坐標(biāo)系中,如果曲線上任意一點(diǎn)的坐標(biāo)x,y都是某個(gè)變數(shù)txf(t),并且對于t的每一個(gè)允許值,由這個(gè)方程所確定的點(diǎn)M(x,y)都在這條yg(t),曲線上,那么這個(gè)方程就叫做這條曲線的參數(shù)方程,聯(lián)系變數(shù)x,y的變數(shù)t叫做參變數(shù),的函數(shù)簡稱參數(shù)。相對于參數(shù)方程而言,直接給出點(diǎn)的坐標(biāo)間關(guān)系的方程叫做普通方程。xarcos,(為參數(shù)).
9.圓(xa)(yb)r的參數(shù)方程可表示為ybrsin.xacos,x2y2(為參數(shù)).橢圓221(ab0)的參數(shù)方程可表示為abybsin.x2px2,2(t為參數(shù)).拋物線y2px的參數(shù)方程可表示為y2pt.xxotcos,經(jīng)過點(diǎn)MO(xo,yo),傾斜角為的直線l的參數(shù)方程可表示為(t為yyotsin.222參數(shù)).
10.在建立曲線的參數(shù)方程時(shí),要注明參數(shù)及參數(shù)的取值范圍。在參數(shù)方程與普通方程的互化中,必須使x,y的取值范圍保持一致.
高中數(shù)學(xué)知識點(diǎn)總結(jié)4
集合的分類:
。1)按元素屬性分類,如點(diǎn)集,數(shù)集。
。2)按元素的個(gè)數(shù)多少,分為有/無限集
關(guān)于集合的概念:
。1)確定性:作為一個(gè)集合的元素,必須是確定的,這就是說,不能確定的對象就不能構(gòu)成集合,也就是說,給定一個(gè)集合,任何一個(gè)對象是不是這個(gè)集合的元素也就確定了。
。2)互異性:對于一個(gè)給定的集合,集合中的元素一定是不同的(或說是互異的),這就是說,集合中的任何兩個(gè)元素都是不同的對象,相同的對象歸入同一個(gè)集合時(shí)只能算作集合的一個(gè)元素。
(3)無序性:判斷一些對象時(shí)候構(gòu)成集合,關(guān)鍵在于看這些對象是否有明確的.標(biāo)準(zhǔn)。
集合可以根據(jù)它含有的元素的個(gè)數(shù)分為兩類:
含有有限個(gè)元素的集合叫做有限集,含有無限個(gè)元素的集合叫做無限集。
非負(fù)整數(shù)全體構(gòu)成的集合,叫做自然數(shù)集,記作N。
在自然數(shù)集內(nèi)排除0的集合叫做正整數(shù)集,記作N+或N_。
整數(shù)全體構(gòu)成的集合,叫做整數(shù)集,記作Z。
有理數(shù)全體構(gòu)成的集合,叫做有理數(shù)集,記作Q。(有理數(shù)是整數(shù)和分?jǐn)?shù)的統(tǒng)稱,一切有理數(shù)都可以化成分?jǐn)?shù)的形式。)
實(shí)數(shù)全體構(gòu)成的集合,叫做實(shí)數(shù)集,記作R。(包括有理數(shù)和無理數(shù)。其中無理數(shù)就是無限不循環(huán)小數(shù),有理數(shù)就包括整數(shù)和分?jǐn)?shù)。數(shù)學(xué)上,實(shí)數(shù)直觀地定義為和數(shù)軸上的'點(diǎn)一一對應(yīng)的數(shù)。)
1、列舉法:如果一個(gè)集合是有限集,元素又不太多,常常把集合的所有元素都列舉出來,寫在花括號“{}”內(nèi)表示這個(gè)集合,例如,由兩個(gè)元素0,1構(gòu)成的集合可表示為{0,1}。
有些集合的元素較多,元素的排列又呈現(xiàn)一定的規(guī)律,在不致于發(fā)生誤解的情況下,也可以列出幾個(gè)元素作為代表,其他元素用省略號表示。
例如:不大于100的自然數(shù)的全體構(gòu)成的集合,可表示為{0,1,2,3,…,100}。
無限集有時(shí)也用上述的列舉法表示,例如,自然數(shù)集N可表示為{1,2,3,…,n,…}。
2、描述法:一種更有效地描述集合的方法,是用集合中元素的特征性質(zhì)來描述。
例如:正偶數(shù)構(gòu)成的集合,它的每一個(gè)元素都具有性質(zhì):“能被2整除,且大于0”
而這個(gè)集合外的其他元素都不具有這種性質(zhì),因此,我們可以用上述性質(zhì)把正偶數(shù)集合表示為{x∈R│x能被2整除,且大于0}或{x∈R│x=2n,n∈N+},大括號內(nèi)豎線左邊的X表示這個(gè)集合的任意一個(gè)元素,元素X從實(shí)數(shù)集合中取值,在豎線右邊寫出只有集合內(nèi)的元素x才具有的性質(zhì)。
一般地,如果在集合I中,屬于集合A的任意一個(gè)元素x都具有性質(zhì)p(x),而不屬于集合A的元素都不具有的性質(zhì)p(x),則性質(zhì)p(x)叫做集合A的一個(gè)特征性質(zhì)。于是,集合A可以用它的性質(zhì)p(x)描述為{x∈I│p(x)}它表示集合A是由集合I中具有性質(zhì)p(x)的所有元素構(gòu)成的,這種表示集合的方法,叫做特征性質(zhì)描述法,簡稱描述法。
例如:集合A={x∈R│x2—1=0}的特征是X2—1=0
高中數(shù)學(xué)知識點(diǎn)總結(jié)5
總體和樣本
①在統(tǒng)計(jì)學(xué)中,把研究對象的全體叫做總體。
②把每個(gè)研究對象叫做個(gè)體。
、郯芽傮w中個(gè)體的總數(shù)叫做總體容量。
④為了研究總體的有關(guān)性質(zhì),一般從總體中隨機(jī)抽取一部分:x1,x2,....,x-x研究,我們稱它為樣本.其中個(gè)體的個(gè)數(shù)稱為樣本容量。
簡單隨機(jī)抽樣
也叫純隨機(jī)抽樣。就是從總體中不加任何分組、劃類、排隊(duì)等,完全隨。
機(jī)地抽取調(diào)查單位。特點(diǎn)是:每個(gè)樣本單位被抽中的可能性相同(概率相等),樣本的每個(gè)單位完全獨(dú)立,彼此間無一定的關(guān)聯(lián)性和排斥性。簡單隨機(jī)抽樣是其它各種抽樣形式的基礎(chǔ),高三。通常只是在總體單位之間差異程度較小和數(shù)目較少時(shí),才采用這種方法。
簡單隨機(jī)抽樣常用的方法
①抽簽法
②隨機(jī)數(shù)表法
、塾(jì)算機(jī)模擬法
、苁褂媒y(tǒng)計(jì)軟件直接抽取。
在簡單隨機(jī)抽樣的樣本容量設(shè)計(jì)中,主要考慮:
、倏傮w變異情況;
②允許誤差范圍;
、鄹怕时WC程度。
抽簽法
、俳o調(diào)查對象群體中的每一個(gè)對象編號;
②準(zhǔn)備抽簽的工具,實(shí)施抽簽;
、蹖颖局械拿恳粋(gè)個(gè)體進(jìn)行測量或調(diào)查。
拓展閱讀:高二數(shù)學(xué)學(xué)習(xí)方法
一、提高聽課的效率是關(guān)鍵
課前預(yù)習(xí)能提高聽課的針對性。預(yù)習(xí)中發(fā)現(xiàn)的難點(diǎn),就是聽課的重點(diǎn);對預(yù)習(xí)中遇到的沒有掌握好的有關(guān)的舊知識,可進(jìn)行補(bǔ)缺,以減少聽課過程中的困難;有助于提高思維能力,預(yù)習(xí)后把自己理解了的東西與老師的講解進(jìn)行比較、分析即可提高自己思維水平;預(yù)習(xí)還可以培養(yǎng)自己的自學(xué)能力。其次就是聽課要全神貫注。
二、做好復(fù)習(xí)和總結(jié)工作
做好及時(shí)的復(fù)習(xí)。課完課的當(dāng)天,必須做好當(dāng)天的復(fù)習(xí)。復(fù)習(xí)的有效方法不是一遍遍地看書或筆記,而是采取回憶式的`復(fù)習(xí),然后打開筆記與書本,對照一下還有哪些沒記清的,把它補(bǔ)起來,就使得當(dāng)天上課內(nèi)容鞏固下來,同時(shí)也就檢查了當(dāng)天課堂聽課的效果如何,也為改進(jìn)聽課方法及提高聽課效果提出必要的改進(jìn)措施。
三、指導(dǎo)做一定量的練習(xí)題
做題的目的在于檢查你學(xué)的知識,方法是否掌握得很好。如果你掌握得不準(zhǔn),甚至有偏差,那么多做題的結(jié)果,反而鞏固了你的缺欠,因此,要在準(zhǔn)確地把握住基本知識和方法的基礎(chǔ)上做一定量的練習(xí)是必要的。而對于中檔題,尢其要講究做題的效益,這就需要在做題后進(jìn)行一定的“反思”,思考一下本題所用的基礎(chǔ)知識,把它們聯(lián)系起來,你就會(huì)得到更多的經(jīng)驗(yàn)和教訓(xùn),更重要的是養(yǎng)成善于思考的好習(xí)慣,這將大大有利于你今后的學(xué)習(xí)。
高中數(shù)學(xué)知識點(diǎn)總結(jié)6
考點(diǎn)一、映射的概念
1.了解對應(yīng)大千世界的對應(yīng)共分四類,分別是:一對一多對一一對多多對多
2.映射:設(shè)A和B是兩個(gè)非空集合,如果按照某種對應(yīng)關(guān)系f,對于集合A中的任意一個(gè)元素x,在集合B中都存在的一個(gè)元素y與之對應(yīng),那么,就稱對應(yīng)f:A→B為集合A到集合B的一個(gè)映射(mapping).映射是特殊的對應(yīng),簡稱“對一”的對應(yīng).包括:一對一多對一
考點(diǎn)二、函數(shù)的概念
1.函數(shù):設(shè)A和B是兩個(gè)非空的數(shù)集,如果按照某種確定的對應(yīng)關(guān)系f,對于集合A中的任意一個(gè)數(shù)x,在集合B中都存在確定的數(shù)y與之對應(yīng),那么,就稱對應(yīng)f:A→B為集合A到集合B的一個(gè)函數(shù).記作y=f(x),xA.其中x叫自變量,x的取值范圍A叫函數(shù)的定義域;與x的值相對應(yīng)的y的值函數(shù)值,函數(shù)值的集合叫做函數(shù)的值域.函數(shù)是特殊的映射,是非空數(shù)集A到非空數(shù)集B的映射.
2.函數(shù)的三要素:定義域、值域、對應(yīng)關(guān)系.這是判斷兩個(gè)函數(shù)是否為同一函數(shù)的依據(jù).
3.區(qū)間的概念:設(shè)a,bR,且a
、伲╝,b)={xa
、荩╝,+∞)={>a}⑥[a,+∞)={≥a}⑦(—∞,b)={
考點(diǎn)三、函數(shù)的表示方法
1.函數(shù)的三種表示方法列表法圖象法解析法
2.分段函數(shù):定義域的不同部分,有不同的對應(yīng)法則的函數(shù).注意兩點(diǎn):①分段函數(shù)是一個(gè)函數(shù),不要誤認(rèn)為是幾個(gè)函數(shù).②分段函數(shù)的定義域是各段定義域的并集,值域是各段值域的并集.
考點(diǎn)四、求定義域的`幾種情況
、偃鬴(x)是整式,則函數(shù)的定義域是實(shí)數(shù)集R;
、谌鬴(x)是分式,則函數(shù)的定義域是使分母不等于0的實(shí)數(shù)集;
③若f(x)是二次根式,則函數(shù)的定義域是使根號內(nèi)的式子大于或等于0的實(shí)數(shù)集合;
④若f(x)是對數(shù)函數(shù),真數(shù)應(yīng)大于零.
⑤.因?yàn)榱愕牧愦蝺鐩]有意義,所以底數(shù)和指數(shù)不能同時(shí)為零.
⑥若f(x)是由幾個(gè)部分的數(shù)學(xué)式子構(gòu)成的,則函數(shù)的定義域是使各部分式子都有意義的實(shí)數(shù)集合;
、呷鬴(x)是由實(shí)際問題抽象出來的函數(shù),則函數(shù)的定義域應(yīng)符合實(shí)際問題
高中數(shù)學(xué)知識點(diǎn)總結(jié)7
函數(shù)與導(dǎo)數(shù)。主要考查集合運(yùn)算、函數(shù)的有關(guān)概念定義域、值域、解析式、函數(shù)的極限、連續(xù)、導(dǎo)數(shù)。
平面向量與三角函數(shù)、三角變換及其應(yīng)用。這一部分是高考的重點(diǎn)但不是難點(diǎn),主要出一些基礎(chǔ)題或中檔題。
數(shù)列及其應(yīng)用。這部分是高考的重點(diǎn)而且是難點(diǎn),主要出一些綜合題。
不等式。主要考查不等式的求解和證明,而且很少單獨(dú)考查,主要是在解答題中比較大小。是高考的重點(diǎn)和難點(diǎn)。
概率和統(tǒng)計(jì)。這部分和我們的生活聯(lián)系比較大,屬應(yīng)用題。
空間位置關(guān)系的定性與定量分析。主要是證明平行或垂直,求角和距離。主要考察對定理的熟悉程度、運(yùn)用程度。
解析幾何。高考的難點(diǎn),運(yùn)算量大,一般含參數(shù)。
高考對數(shù)學(xué)基礎(chǔ)知識的考查,既全面又突出重點(diǎn),扎實(shí)的數(shù)學(xué)基礎(chǔ)是成功解題的關(guān)鍵。
掌握分類計(jì)數(shù)原理與分步計(jì)數(shù)原理,并能用它們分析和解決一些簡單的應(yīng)用問題。
理解排列的意義,掌握排列數(shù)計(jì)算公式,并能用它解決一些簡單的應(yīng)用問題。
理解組合的意義,掌握組合數(shù)計(jì)算公式和組合數(shù)的性質(zhì),并能用它們解決一些簡單的應(yīng)用問題。
掌握二項(xiàng)式定理和二項(xiàng)展開式的性質(zhì),并能用它們計(jì)算和證明一些簡單的問題。
了解隨機(jī)事件的發(fā)生存在著規(guī)律性和隨機(jī)事件概率的意義。
了解等可能性事件的概率的意義,會(huì)用排列組合的.基本公式計(jì)算一些等可能性事件的概率。
了解互斥事件、相互獨(dú)立事件的意義,會(huì)用互斥事件的概率加法公式與相互獨(dú)立事件的概率乘法公式計(jì)算一些事件的概率。
會(huì)計(jì)算事件在n次獨(dú)立重復(fù)試驗(yàn)中恰好發(fā)生k次的概率。
高中數(shù)學(xué)知識點(diǎn)總結(jié)8
高考數(shù)學(xué)導(dǎo)數(shù)知識點(diǎn)
(一)導(dǎo)數(shù)第一定義
設(shè)函數(shù)y = f(x)在點(diǎn)x0的某個(gè)領(lǐng)域內(nèi)有定義,當(dāng)自變量x在x0處有增量△x(x0 + △x也在該鄰域內(nèi))時(shí),相應(yīng)地函數(shù)取得增量△y = f(x0 + △x)— f(x0);如果△y與△x之比當(dāng)△x→0時(shí)極限存在,則稱函數(shù)y = f(x)在點(diǎn)x0處可導(dǎo),并稱這個(gè)極限值為函數(shù)y = f(x)在點(diǎn)x0處的導(dǎo)數(shù)記為f'(x0),即導(dǎo)數(shù)第一定義
。ǘ⿲(dǎo)數(shù)第二定義
設(shè)函數(shù)y = f(x)在點(diǎn)x0的某個(gè)領(lǐng)域內(nèi)有定義,當(dāng)自變量x在x0處有變化△x(x — x0也在該鄰域內(nèi))時(shí),相應(yīng)地函數(shù)變化△y = f(x)— f(x0);如果△y與△x之比當(dāng)△x→0時(shí)極限存在,則稱函數(shù)y = f(x)在點(diǎn)x0處可導(dǎo),并稱這個(gè)極限值為函數(shù)y = f(x)在點(diǎn)x0處的導(dǎo)數(shù)記為f'(x0),即導(dǎo)數(shù)第二定義
。ㄈ⿲(dǎo)函數(shù)與導(dǎo)數(shù)
如果函數(shù)y = f(x)在開區(qū)間I內(nèi)每一點(diǎn)都可導(dǎo),就稱函數(shù)f(x)在區(qū)間I內(nèi)可導(dǎo)。這時(shí)函數(shù)y = f(x)對于區(qū)間I內(nèi)的每一個(gè)確定的x值,都對應(yīng)著一個(gè)確定的導(dǎo)數(shù),這就構(gòu)成一個(gè)新的函數(shù),稱這個(gè)函數(shù)為原來函數(shù)y = f(x)的導(dǎo)函數(shù),記作y',f'(x),dy/dx,df(x)/dx。導(dǎo)函數(shù)簡稱導(dǎo)數(shù)。
。ㄋ模﹩握{(diào)性及其應(yīng)用
1。利用導(dǎo)數(shù)研究多項(xiàng)式函數(shù)單調(diào)性的一般步驟
。1)求f¢(x)
(2)確定f¢(x)在(a,b)內(nèi)符號(3)若f¢(x)>0在(a,b)上恒成立,則f(x)在(a,b)上是增函數(shù);若f¢(x)<0在(a,b)上恒成立,則f(x)在(a,b)上是減函數(shù)
2。用導(dǎo)數(shù)求多項(xiàng)式函數(shù)單調(diào)區(qū)間的一般步驟
。1)求f¢(x)
(2)f¢(x)>0的解集與定義域的交集的對應(yīng)區(qū)間為增區(qū)間;f¢(x)<0的解集與定義域的交集的對應(yīng)區(qū)間為減區(qū)間
高中數(shù)學(xué)重難點(diǎn)知識點(diǎn)
高中數(shù)學(xué)包含5本必修、2本選修,(理)包含5本必修、3本選修,每學(xué)期學(xué)習(xí)兩本書。
必修一:1、集合與函數(shù)的概念(這部分知識抽象,較難理解)2、基本的初等函數(shù)(指數(shù)函數(shù)、對數(shù)函數(shù))3、函數(shù)的性質(zhì)及應(yīng)用(比較抽象,較難理解)
必修二:1、立體幾何(1)、證明:垂直(多考查面面垂直)、平行(2)、求解:主要是夾角問題,包括線面角和面面角
這部分知識是高一學(xué)生的難點(diǎn),比如:一個(gè)角實(shí)際上是一個(gè)銳角,但是在圖中顯示的鈍角等等一些問題,需要學(xué)生的立體意識較強(qiáng)。這部分知識高考占22———27分
2、直線方程:高考時(shí)不單獨(dú)命題,易和圓錐曲線結(jié)合命題
3、圓方程:
必修三:1、算法初步:高考必考內(nèi)容,5分(選擇或填空)2、統(tǒng)計(jì):3、概率:高考必考內(nèi)容,09年理科占到15分,文科數(shù)學(xué)占到5分
必修四:1、三角函數(shù):(圖像、性質(zhì)、高中重難點(diǎn),)必考大題:15———20分,并且經(jīng)常和其他函數(shù)混合起來考查
2、平面向量:高考不單獨(dú)命題,易和三角函數(shù)、圓錐曲線結(jié)合命題。09年理科占到5分,文科占到13分
必修五:1、解三角形:(正、余弦定理、三角恒等變換)高考中理科占到22分左右,文科數(shù)學(xué)占到13分左右2、數(shù)列:高考必考,17———22分3、不等式:(線性規(guī)劃,聽課時(shí)易理解,但做題較復(fù)雜,應(yīng)掌握技巧。高考必考5分)不等式不單獨(dú)命題,一般和函數(shù)結(jié)合求最值、解集。
高中數(shù)學(xué)知識點(diǎn)大全
一、集合與簡易邏輯
1、集合的元素具有確定性、無序性和互異性。
2、對集合,時(shí),必須注意到“極端”情況:或;求集合的子集時(shí)是否注意到是任何集合的子集、是任何非空集合的真子集。
3、判斷命題的真假關(guān)鍵是“抓住關(guān)聯(lián)字詞”;注意:“不‘或’即‘且’,不‘且’即‘或’”。
4、“或命題”的真假特點(diǎn)是“一真即真,要假全假”;“且命題”的真假特點(diǎn)是“一假即假,要真全真”;“非命題”的真假特點(diǎn)是“一真一假”。
5、四種命題中“‘逆’者‘交換’也”、“‘否’者‘否定’也”。
原命題等價(jià)于逆否命題,但原命題與逆命題、否命題都不等價(jià)。反證法分為三步:假設(shè)、推矛、得果。
6、充要條件
二、函數(shù)
1、指數(shù)式、對數(shù)式,
2、(1)映射是“‘全部射出’加‘一箭一雕’”;映射中第一個(gè)集合中的元素必有像,但第二個(gè)集合中的元素不一定有原像(中元素的像有且僅有下一個(gè),但中元素的原像可能沒有,也可任意個(gè));函數(shù)是“非空數(shù)集上的映射”,其中“值域是映射中像集的子集”。
。2)函數(shù)圖像與軸垂線至多一個(gè)公共點(diǎn),但與軸垂線的公共點(diǎn)可能沒有,也可任意個(gè)。
。3)函數(shù)圖像一定是坐標(biāo)系中的曲線,但坐標(biāo)系中的曲線不一定能成為函數(shù)圖像。
3、單調(diào)性和奇偶性
(1)奇函數(shù)在關(guān)于原點(diǎn)對稱的區(qū)間上若有單調(diào)性,則其單調(diào)性完全相同。
偶函數(shù)在關(guān)于原點(diǎn)對稱的區(qū)間上若有單調(diào)性,則其單調(diào)性恰恰相反。
。2)復(fù)合函數(shù)的單調(diào)性特點(diǎn)是:“同性得增,增必同性;異性得減,減必異性”。
復(fù)合函數(shù)的奇偶性特點(diǎn)是:“內(nèi)偶則偶,內(nèi)奇同外”。復(fù)合函數(shù)要考慮定義域的變化。(即復(fù)合有意義)
4、對稱性與周期性(以下結(jié)論要消化吸收,不可強(qiáng)記)
。1)函數(shù)與函數(shù)的圖像關(guān)于直線(軸)對稱。
推廣一:如果函數(shù)對于一切,都有成立,那么的圖像關(guān)于直線(由“和的一半確定”)對稱。
推廣二:函數(shù),的圖像關(guān)于直線對稱。
(2)函數(shù)與函數(shù)的圖像關(guān)于直線(軸)對稱。
。3)函數(shù)與函數(shù)的圖像關(guān)于坐標(biāo)原點(diǎn)中心對稱。
三、數(shù)列
1、數(shù)列的通項(xiàng)、數(shù)列項(xiàng)的項(xiàng)數(shù),遞推公式與遞推數(shù)列,數(shù)列的通項(xiàng)與數(shù)列的前項(xiàng)和公式的關(guān)系
2、等差數(shù)列中
。1)等差數(shù)列公差的取值與等差數(shù)列的單調(diào)性。
(2)也成等差數(shù)列。
。3)兩等差數(shù)列對應(yīng)項(xiàng)和(差)組成的新數(shù)列仍成等差數(shù)列。
。4)仍成等差數(shù)列。
。5)“首正”的遞等差數(shù)列中,前項(xiàng)和的最大值是所有非負(fù)項(xiàng)之和;“首負(fù)”的遞增等差數(shù)列中,前項(xiàng)和的最小值是所有非正項(xiàng)之和;
。6)有限等差數(shù)列中,奇數(shù)項(xiàng)和與偶數(shù)項(xiàng)和的存在必然聯(lián)系,由數(shù)列的總項(xiàng)數(shù)是偶數(shù)還是奇數(shù)決定。若總項(xiàng)數(shù)為偶數(shù),則“偶數(shù)項(xiàng)和“奇數(shù)項(xiàng)和=總項(xiàng)數(shù)的一半與其公差的積;若總項(xiàng)數(shù)為奇數(shù),則“奇數(shù)項(xiàng)和—偶數(shù)項(xiàng)和”=此數(shù)列的中項(xiàng)。
。7)兩數(shù)的等差中項(xiàng)惟一存在。在遇到三數(shù)或四數(shù)成等差數(shù)列時(shí),?紤]選用“中項(xiàng)關(guān)系”轉(zhuǎn)化求解。
。8)判定數(shù)列是否是等差數(shù)列的主要方法有:定義法、中項(xiàng)法、通項(xiàng)法、和式法、圖像法(也就是說數(shù)列是等差數(shù)列的充要條件主要有這五種形式)。
3、等比數(shù)列中:
。1)等比數(shù)列的符號特征(全正或全負(fù)或一正一負(fù)),等比數(shù)列的首項(xiàng)、公比與等比數(shù)列的單調(diào)性。
(2)兩等比數(shù)列對應(yīng)項(xiàng)積(商)組成的新數(shù)列仍成等比數(shù)列。
。3)“首大于1”的正值遞減等比數(shù)列中,前項(xiàng)積的最大值是所有大于或等于1的項(xiàng)的積;“首小于1”的正值遞增等比數(shù)列中,前項(xiàng)積的最小值是所有小于或等于1的項(xiàng)的積;
。4)有限等比數(shù)列中,奇數(shù)項(xiàng)和與偶數(shù)項(xiàng)和的存在必然聯(lián)系,由數(shù)列的總項(xiàng)數(shù)是偶數(shù)還是奇數(shù)決定。若總項(xiàng)數(shù)為偶數(shù),則“偶數(shù)項(xiàng)和”=“奇數(shù)項(xiàng)和”與“公比”的積;若總項(xiàng)數(shù)為奇數(shù),則“奇數(shù)項(xiàng)和“首項(xiàng)”加上“公比”與“偶數(shù)項(xiàng)和”積的和。
。5)并非任何兩數(shù)總有等比中項(xiàng)。僅當(dāng)實(shí)數(shù)同號時(shí),實(shí)數(shù)存在等比中項(xiàng)。對同號兩實(shí)數(shù)的等比中項(xiàng)不僅存在,而且有一對。也就是說,兩實(shí)數(shù)要么沒有等比中項(xiàng)(非同號時(shí)),如果有,必有一對(同號時(shí))。在遇到三數(shù)或四數(shù)成等差數(shù)列時(shí),常優(yōu)先考慮選用“中項(xiàng)關(guān)系”轉(zhuǎn)化求解。
(6)判定數(shù)列是否是等比數(shù)列的方法主要有:定義法、中項(xiàng)法、通項(xiàng)法、和式法(也就是說數(shù)列是等比數(shù)列的充要條件主要有這四種形式)。
4、等差數(shù)列與等比數(shù)列的聯(lián)系
。1)如果數(shù)列成等差數(shù)列,那么數(shù)列(總有意義)必成等比數(shù)列。
。2)如果數(shù)列成等比數(shù)列,那么數(shù)列必成等差數(shù)列。
。3)如果數(shù)列既成等差數(shù)列又成等比數(shù)列,那么數(shù)列是非零常數(shù)數(shù)列;但數(shù)列是常數(shù)數(shù)列僅是數(shù)列既成等差數(shù)列又成等比數(shù)列的必要非充分條件。
(4)如果兩等差數(shù)列有公共項(xiàng),那么由他們的公共項(xiàng)順次組成的新數(shù)列也是等差數(shù)列,且新等差數(shù)列的公差是原兩等差數(shù)列公差的最小公倍數(shù)。
如果一個(gè)等差數(shù)列與一個(gè)等比數(shù)列有公共項(xiàng)順次組成新數(shù)列,那么常選用“由特殊到一般的方法”進(jìn)行研討,且以其等比數(shù)列的項(xiàng)為主,探求等比數(shù)列中那些項(xiàng)是他們的公共項(xiàng),并構(gòu)成新的.數(shù)列。
5、數(shù)列求和的常用方法:
(1)公式法:①等差數(shù)列求和公式(三種形式),
②等比數(shù)列求和公式(三種形式),
(2)分組求和法:在直接運(yùn)用公式法求和有困難時(shí),常將“和式”中“同類項(xiàng)”先合并在一起,再運(yùn)用公式法求和。
。3)倒序相加法:在數(shù)列求和中,若和式中到首尾距離相等的兩項(xiàng)和有其共性或數(shù)列的通項(xiàng)與組合數(shù)相關(guān)聯(lián),則?煽紤]選用倒序相加法,發(fā)揮其共性的作用求和(這也是等差數(shù)列前和公式的推導(dǎo)方法)。
(4)錯(cuò)位相減法:如果數(shù)列的通項(xiàng)是由一個(gè)等差數(shù)列的通項(xiàng)與一個(gè)等比數(shù)列的通項(xiàng)相乘構(gòu)成,那么常選用錯(cuò)位相減法,將其和轉(zhuǎn)化為“一個(gè)新的的等比數(shù)列的和”求解(注意:一般錯(cuò)位相減后,其中“新等比數(shù)列的項(xiàng)數(shù)是原數(shù)列的項(xiàng)數(shù)減一的差”。ㄟ@也是等比數(shù)列前和公式的推導(dǎo)方法之一)。
(5)裂項(xiàng)相消法:如果數(shù)列的通項(xiàng)可“分裂成兩項(xiàng)差”的形式,且相鄰項(xiàng)分裂后相關(guān)聯(lián),那么常選用裂項(xiàng)相消法求和
。6)通項(xiàng)轉(zhuǎn)換法。
四、三角函數(shù)
1、終邊與終邊相同(的終邊在終邊所在射線上)。
終邊與終邊共線(的終邊在終邊所在直線上)。
終邊與終邊關(guān)于軸對稱
終邊與終邊關(guān)于軸對稱
終邊與終邊關(guān)于原點(diǎn)對稱
一般地:終邊與終邊關(guān)于角的終邊對稱。
與的終邊關(guān)系由“兩等分各象限、一二三四”確定。
2、弧長公式:,扇形面積公式:1弧度(1rad)。
3、三角函數(shù)符號特征是:一是全正、二正弦正、三是切正、四余弦正。
4、三角函數(shù)線的特征是:正弦線“站在軸上(起點(diǎn)在軸上)”、余弦線“躺在軸上(起點(diǎn)是原點(diǎn))”、正切線“站在點(diǎn)處(起點(diǎn)是)”。務(wù)必重視“三角函數(shù)值的大小與單位圓上相應(yīng)點(diǎn)的坐標(biāo)之間的關(guān)系,‘正弦’‘縱坐標(biāo)’、‘余弦’‘橫坐標(biāo)’、‘正切’‘縱坐標(biāo)除以橫坐標(biāo)之商’”;務(wù)必記。簡挝粓A中角終邊的變化與值的大小變化的關(guān)系為銳角
5、三角函數(shù)同角關(guān)系中,平方關(guān)系的運(yùn)用中,務(wù)必重視“根據(jù)已知角的范圍和三角函數(shù)的取值,精確確定角的范圍,并進(jìn)行定號”;
6、三角函數(shù)誘導(dǎo)公式的本質(zhì)是:奇變偶不變,符號看象限。
7、三角函數(shù)變換主要是:角、函數(shù)名、次數(shù)、系數(shù)(常值)的變換,其核心是“角的變換”!
角的變換主要有:已知角與特殊角的變換、已知角與目標(biāo)角的變換、角與其倍角的變換、兩角與其和差角的變換。
8、三角函數(shù)性質(zhì)、圖像及其變換:
。1)三角函數(shù)的定義域、值域、單調(diào)性、奇偶性、有界性和周期性
注意:正切函數(shù)、余切函數(shù)的定義域;絕對值對三角函數(shù)周期性的影響:一般說來,某一周期函數(shù)解析式加絕對值或平方,其周期性是:弦減半、切不變。既為周期函數(shù)又是偶函數(shù)的函數(shù)自變量加絕對值,其周期性不變;其他不定。如的周期都是,但的周期為,y=|tanx|的周期不變,問函數(shù)y=cos|x|,,y=cos|x|是周期函數(shù)嗎?
(2)三角函數(shù)圖像及其幾何性質(zhì):
。3)三角函數(shù)圖像的變換:兩軸方向的平移、伸縮及其向量的平移變換。
。4)三角函數(shù)圖像的作法:三角函數(shù)線法、五點(diǎn)法(五點(diǎn)橫坐標(biāo)成等差數(shù)列)和變換法。
9、三角形中的三角函數(shù):
。1)內(nèi)角和定理:三角形三角和為,任意兩角和與第三個(gè)角總互補(bǔ),任意兩半角和與第三個(gè)角的半角總互余。銳角三角形三內(nèi)角都是銳角三內(nèi)角的余弦值為正值任兩角和都是鈍角任意兩邊的平方和大于第三邊的平方。
。2)正弦定理:(R為三角形外接圓的半徑)。
。3)余弦定理:常選用余弦定理鑒定三角形的類型。
五、向量
1、向量運(yùn)算的幾何形式和坐標(biāo)形式,請注意:向量運(yùn)算中向量起點(diǎn)、終點(diǎn)及其坐標(biāo)的特征。
2、幾個(gè)概念:零向量、單位向量(與共線的單位向量是,平行(共線)向量(無傳遞性,是因?yàn)橛校、相等向量(有傳遞性)、相反向量、向量垂直、以及一個(gè)向量在另一向量方向上的投影(在上的投影是)。
3、兩非零向量平行(共線)的充要條件
4、平面向量的基本定理:如果e1和e2是同一平面內(nèi)的兩個(gè)不共線向量,那么對該平面內(nèi)的任一向量a,有且只有一對實(shí)數(shù),使a= e1+ e2。
5、三點(diǎn)共線;
6、向量的數(shù)量積:
六、不等式
1、(1)解不等式是求不等式的解集,最后務(wù)必有集合的形式表示;不等式解集的端點(diǎn)值往往是不等式對應(yīng)方程的根或不等式有意義范圍的端點(diǎn)值。
。2)解分式不等式的一般解題思路是什么?(移項(xiàng)通分,分子分母分解因式,x的系數(shù)變?yōu)檎,?biāo)根及奇穿過偶彈回);
(3)含有兩個(gè)絕對值的不等式如何去絕對值?(一般是根據(jù)定義分類討論、平方轉(zhuǎn)化或換元轉(zhuǎn)化);
。4)解含參不等式常分類等價(jià)轉(zhuǎn)化,必要時(shí)需分類討論。注意:按參數(shù)討論,最后按參數(shù)取值分別說明其解集,但若按未知數(shù)討論,最后應(yīng)求并集。
2、利用重要不等式以及變式等求函數(shù)的最值時(shí),務(wù)必注意a,b(或a,b非負(fù)),且“等號成立”時(shí)的條件是積ab或和a+b其中之一應(yīng)是定值(一正二定三等四同時(shí))。
3、常用不等式有:(根據(jù)目標(biāo)不等式左右的運(yùn)算結(jié)構(gòu)選用)
a、b、c R,(當(dāng)且僅當(dāng)時(shí),取等號)
4、比較大小的方法和證明不等式的方法主要有:差比較法、商比較法、函數(shù)性質(zhì)法、綜合法、分析法
5、含絕對值不等式的性質(zhì):
6、不等式的恒成立,能成立,恰成立等問題
。1)恒成立問題
若不等式在區(qū)間上恒成立,則等價(jià)于在區(qū)間上
若不等式在區(qū)間上恒成立,則等價(jià)于在區(qū)間上
。2)能成立問題
。3)恰成立問題
若不等式在區(qū)間上恰成立,則等價(jià)于不等式的解集為。
若不等式在區(qū)間上恰成立,則等價(jià)于不等式的解集為,
七、直線和圓
1、直線傾斜角與斜率的存在性及其取值范圍;直線方向向量的意義(或)及其直線方程的向量式((為直線的方向向量))。應(yīng)用直線方程的點(diǎn)斜式、斜截式設(shè)直線方程時(shí),一般可設(shè)直線的斜率為k,但你是否注意到直線垂直于x軸時(shí),即斜率k不存在的情況?
2、知直線縱截距,常設(shè)其方程為或;知直線橫截距,常設(shè)其方程為(直線斜率k存在時(shí),為k的倒數(shù))或知直線過點(diǎn),常設(shè)其方程為。
。2)直線在坐標(biāo)軸上的截距可正、可負(fù)、也可為0。直線兩截距相等直線的斜率為—1或直線過原點(diǎn);直線兩截距互為相反數(shù)直線的斜率為1或直線過原點(diǎn);直線兩截距絕對值相等直線的斜率為或直線過原點(diǎn)。
。3)在解析幾何中,研究兩條直線的位置關(guān)系時(shí),有可能這兩條直線重合,而在立體幾何中一般提到的兩條直線可以理解為它們不重合。
3、相交兩直線的夾角和兩直線間的到角是兩個(gè)不同的概念:夾角特指相交兩直線所成的較小角,范圍是。而其到角是帶有方向的角,范圍是
4、線性規(guī)劃中幾個(gè)概念:約束條件、可行解、可行域、目標(biāo)函數(shù)、最優(yōu)解。
5、圓的方程:最簡方程;標(biāo)準(zhǔn)方程;
6、解決直線與圓的關(guān)系問題有“函數(shù)方程思想”和“數(shù)形結(jié)合思想”兩種思路,等價(jià)轉(zhuǎn)化求解,重要的是發(fā)揮“圓的平面幾何性質(zhì)(如半徑、半弦長、弦心距構(gòu)成直角三角形,切線長定理、割線定理、弦切角定理等等)的作用!”
(1)過圓上一點(diǎn)圓的切線方程
過圓上一點(diǎn)圓的切線方程
過圓上一點(diǎn)圓的切線方程
如果點(diǎn)在圓外,那么上述直線方程表示過點(diǎn)兩切線上兩切點(diǎn)的“切點(diǎn)弦”方程。
如果點(diǎn)在圓內(nèi),那么上述直線方程表示與圓相離且垂直于(為圓心)的直線方程,(為圓心到直線的距離)。
7、曲線與的交點(diǎn)坐標(biāo)方程組的解;
過兩圓交點(diǎn)的圓(公共弦)系為,當(dāng)且僅當(dāng)無平方項(xiàng)時(shí),為兩圓公共弦所在直線方程。
八、圓錐曲線
1、圓錐曲線的兩個(gè)定義,及其“括號”內(nèi)的限制條件,在圓錐曲線問題中,如果涉及到其兩焦點(diǎn)(兩相異定點(diǎn)),那么將優(yōu)先選用圓錐曲線第一定義;如果涉及到其焦點(diǎn)、準(zhǔn)線(一定點(diǎn)和不過該點(diǎn)的一定直線)或離心率,那么將優(yōu)先選用圓錐曲線第二定義;涉及到焦點(diǎn)三角形的問題,也要重視焦半徑和三角形中正余弦定理等幾何性質(zhì)的應(yīng)用。
。1)注意:①圓錐曲線第一定義與配方法的綜合運(yùn)用;
②圓錐曲線第二定義是:“點(diǎn)點(diǎn)距為分子、點(diǎn)線距為分母”,橢圓點(diǎn)點(diǎn)距除以點(diǎn)線距商是小于1的正數(shù),雙曲線點(diǎn)點(diǎn)距除以點(diǎn)線距商是大于1的正數(shù),拋物線點(diǎn)點(diǎn)距除以點(diǎn)線距商是等于1。
2、圓錐曲線的幾何性質(zhì):圓錐曲線的對稱性、圓錐曲線的范圍、圓錐曲線的特殊點(diǎn)線、圓錐曲線的變化趨勢。其中,橢圓中、雙曲線中。
重視“特征直角三角形、焦半徑的最值、焦點(diǎn)弦的最值及其‘頂點(diǎn)、焦點(diǎn)、準(zhǔn)線等相互之間與坐標(biāo)系無關(guān)的幾何性質(zhì)’”,尤其是雙曲線中焦半徑最值、焦點(diǎn)弦最值的特點(diǎn)。
3、在直線與圓錐曲線的位置關(guān)系問題中,有“函數(shù)方程思想”和“數(shù)形結(jié)合思想”兩種思路,等價(jià)轉(zhuǎn)化求解。特別是:
①直線與圓錐曲線相交的必要條件是他們構(gòu)成的方程組有實(shí)數(shù)解,當(dāng)出現(xiàn)一元二次方程時(shí),務(wù)必“判別式≥0”,尤其是在應(yīng)用韋達(dá)定理解決問題時(shí),必須先有“判別式≥0”。
、谥本與拋物線(相交不一定交于兩點(diǎn))、雙曲線位置關(guān)系(相交的四種情況)的特殊性,應(yīng)謹(jǐn)慎處理。
、墼谥本與圓錐曲線的位置關(guān)系問題中,常與“弦”相關(guān),“平行弦”問題的關(guān)鍵是“斜率”、“中點(diǎn)弦”問題關(guān)鍵是“韋達(dá)定理”或“小小直角三角形”或“點(diǎn)差法”、“長度(弦長)”問題關(guān)鍵是長度(弦長)公式
、苋绻谝粭l直線上出現(xiàn)“三個(gè)或三個(gè)以上的點(diǎn)”,那么可選擇應(yīng)用“斜率”為橋梁轉(zhuǎn)化。
4、要重視常見的尋求曲線方程的方法(待定系數(shù)法、定義法、直譯法、代點(diǎn)法、參數(shù)法、交軌法、向量法等),以及如何利用曲線的方程討論曲線的幾何性質(zhì)(定義法、幾何法、代數(shù)法、方程函數(shù)思想、數(shù)形結(jié)合思想、分類討論思想和等價(jià)轉(zhuǎn)化思想等),這是解析幾何的兩類基本問題,也是解析幾何的基本出發(fā)點(diǎn)。
注意:①如果問題中涉及到平面向量知識,那么應(yīng)從已知向量的特點(diǎn)出發(fā),考慮選擇向量的幾何形式進(jìn)行“摘帽子或脫靴子”轉(zhuǎn)化,還是選擇向量的代數(shù)形式進(jìn)行“摘帽子或脫靴子”轉(zhuǎn)化。
、谇與曲線方程、軌跡與軌跡方程是兩個(gè)不同的概念,尋求軌跡或軌跡方程時(shí)應(yīng)注意軌跡上特殊點(diǎn)對軌跡的“完備性與純粹性”的影響。
③在與圓錐曲線相關(guān)的綜合題中,常借助于“平面幾何性質(zhì)”數(shù)形結(jié)合(如角平分線的雙重身份)、“方程與函數(shù)性質(zhì)”化解析幾何問題為代數(shù)問題、“分類討論思想”化整為零分化處理、“求值構(gòu)造等式、求變量范圍構(gòu)造不等關(guān)系”等等。
九、直線、平面、簡單多面體
1、計(jì)算異面直線所成角的關(guān)鍵是平移(補(bǔ)形)轉(zhuǎn)化為兩直線的夾角計(jì)算
2、計(jì)算直線與平面所成的角關(guān)鍵是作面的垂線找射影,或向量法(直線上向量與平面法向量夾角的余角),三余弦公式(最小角定理),或先運(yùn)用等積法求點(diǎn)到直線的距離,后虛擬直角三角形求解。注:一斜線與平面上以斜足為頂點(diǎn)的角的兩邊所成角相等斜線在平面上射影為角的平分線。
3、空間平行垂直關(guān)系的證明,主要依據(jù)相關(guān)定義、公理、定理和空間向量進(jìn)行,請重視線面平行關(guān)系、線面垂直關(guān)系(三垂線定理及其逆定理)的橋梁作用。注意:書寫證明過程需規(guī)范。
4、直棱柱、正棱柱、平行六面體、長方體、正方體、正四面體、棱錐、正棱錐關(guān)于側(cè)棱、側(cè)面、對角面、平行于底的截面的幾何體性質(zhì)。
如長方體中:對角線長,棱長總和為,全(表)面積為,(結(jié)合可得關(guān)于他們的等量關(guān)系,結(jié)合基本不等式還可建立關(guān)于他們的不等關(guān)系式),
如三棱錐中:側(cè)棱長相等(側(cè)棱與底面所成角相等)頂點(diǎn)在底上射影為底面外心,側(cè)棱兩兩垂直(兩對對棱垂直)頂點(diǎn)在底上射影為底面垂心,斜高長相等(側(cè)面與底面所成相等)且頂點(diǎn)在底上在底面內(nèi)頂點(diǎn)在底上射影為底面內(nèi)心。
5、求幾何體體積的常規(guī)方法是:公式法、割補(bǔ)法、等積(轉(zhuǎn)換)法、比例(性質(zhì)轉(zhuǎn)換)法等。注意:補(bǔ)形:三棱錐三棱柱平行六面體
6、多面體是由若干個(gè)多邊形圍成的幾何體。棱柱和棱錐是特殊的多面體。
正多面體的每個(gè)面都是相同邊數(shù)的正多邊形,以每個(gè)頂點(diǎn)為其一端都有相同數(shù)目的棱,這樣的多面體只有五種,即正四面體、正六面體、正八面體、正十二面體、正二十面體。
7、球體積公式。球表面積公式,是兩個(gè)關(guān)于球的幾何度量公式。它們都是球半徑及的函數(shù)。
十、導(dǎo)數(shù)
1、導(dǎo)數(shù)的意義:曲線在該點(diǎn)處的切線的斜率(幾何意義)、瞬時(shí)速度、邊際成本(成本為因變量、產(chǎn)量為自變量的函數(shù)的導(dǎo)數(shù),C為常數(shù))
2、多項(xiàng)式函數(shù)的導(dǎo)數(shù)與函數(shù)的單調(diào)性
在一個(gè)區(qū)間上(個(gè)別點(diǎn)取等號)在此區(qū)間上為增函數(shù)。
在一個(gè)區(qū)間上(個(gè)別點(diǎn)取等號)在此區(qū)間上為減函數(shù)。
3、導(dǎo)數(shù)與極值、導(dǎo)數(shù)與最值:
。1)函數(shù)處有且“左正右負(fù)”在處取極大值;
函數(shù)在處有且左負(fù)右正”在處取極小值。
注意:①在處有是函數(shù)在處取極值的必要非充分條件。
、谇蠛瘮(shù)極值的方法:先找定義域,再求導(dǎo),找出定義域的分界點(diǎn),列表求出極值。特別是給出函數(shù)極大(。┲档臈l件,一定要既考慮,又要考慮驗(yàn)“左正右負(fù)”(“左負(fù)右正”)的轉(zhuǎn)化,否則條件沒有用完,這一點(diǎn)一定要切記。
③單調(diào)性與最值(極值)的研究要注意列表!
。2)函數(shù)在一閉區(qū)間上的最大值是此函數(shù)在此區(qū)間上的極大值與其端點(diǎn)值中的“最大值”
函數(shù)在一閉區(qū)間上的最小值是此函數(shù)在此區(qū)間上的極小值與其端點(diǎn)值中的“最小值”;
注意:利用導(dǎo)數(shù)求最值的步驟:先找定義域再求出導(dǎo)數(shù)為0及導(dǎo)數(shù)不存在的的點(diǎn),然后比較定義域的端點(diǎn)值和導(dǎo)數(shù)為0的點(diǎn)對應(yīng)函數(shù)值的大小,其中最大的就是最大值,最小就為最小。
高中數(shù)學(xué)知識點(diǎn)總結(jié)9
1、平面的基本性質(zhì):
掌握三個(gè)公理及推論,會(huì)說明共點(diǎn)、共線、共面問題。
能夠用斜二測法作圖。
2、空間兩條直線的位置關(guān)系:
平行、相交、異面的概念;
會(huì)求異面直線所成的角和異面直線間的距離;證明兩條直線是異面直線一般用反證法。
3、直線與平面
、傥恢藐P(guān)系:平行、直線在平面內(nèi)、直線與平面相交。
、谥本與平面平行的判斷方法及性質(zhì),判定定理是證明平行問題的依據(jù)。
、壑本與平面垂直的證明方法有哪些?
、苤本與平面所成的角:關(guān)鍵是找它在平面內(nèi)的射影,范圍是
、萑咕定理及其逆定理:每年高考試題都要考查這個(gè)定理。 三垂線定理及其逆定理主要用于證明垂直關(guān)系與空間圖形的度量。如:證明異面直線垂直,確定二面角的平面角,確定點(diǎn)到直線的垂線。
4、平面與平面
(1)位置關(guān)系:平行、相交,(垂直是相交的一種特殊情況)
(2)掌握平面與平面平行的`證明方法和性質(zhì)。
(3)掌握平面與平面垂直的證明方法和性質(zhì)定理。尤其是已知兩平面垂直,一般是依據(jù)性質(zhì)定理,可以證明線面垂直。
(4)兩平面間的距離問題→點(diǎn)到面的距離問題→
(5)二面角。二面角的平面交的作法及求法:
、俣x法,一般要利用圖形的對稱性;一般在計(jì)算時(shí)要解斜三角形;
、诖咕、斜線、射影法,一般要求平面的垂線好找,一般在計(jì)算時(shí)要解一個(gè)直角三角形。
、凵溆懊娣e法,一般是二面交的兩個(gè)面只有一個(gè)公共點(diǎn),兩個(gè)面的交線不容易找到時(shí)用此法。
高中數(shù)學(xué)知識點(diǎn)總結(jié)10
1.利用導(dǎo)數(shù)求函數(shù)單調(diào)性的基本方法:設(shè)函數(shù)yf(x)在區(qū)間(a,b)內(nèi)可導(dǎo),(1)如果恒f(x)0,則函數(shù)yf(x)在區(qū)間(a,b)上為增函數(shù);(2)如果恒f(x)0,則函數(shù)yf(x)在區(qū)間(a,b)上為減函數(shù);(3)如果恒f(x)0,則函數(shù)yf(x)在區(qū)間(a,b)上為常數(shù)函數(shù).
2.利用導(dǎo)數(shù)求函數(shù)單調(diào)性的基本步驟:①求函數(shù)yf(x)的定義域;②求導(dǎo)數(shù)f(x);③解不等式f(x)0,解集在定義域內(nèi)的不間斷區(qū)間為增區(qū)間;④解不等式f(x)0,解集在定義域內(nèi)的不間斷區(qū)間為減區(qū)間.
3.反過來,也可以利用導(dǎo)數(shù)由函數(shù)的單調(diào)性解決相關(guān)問題(如確定參數(shù)的取值范圍):設(shè)函數(shù)yf(x)在區(qū)間(a,b)內(nèi)可導(dǎo),(1)如果函數(shù)yf(x)在區(qū)間(a,b)上為增函數(shù),則f(x)0(其中使f(x)0的x值不構(gòu)成區(qū)間);
(2)如果函數(shù)yf(x)在區(qū)間(a,b)上為減函數(shù),則f(x)0(其中使f(x)0的"x值不構(gòu)成區(qū)間);
(3)如果函數(shù)yf(x)在區(qū)間(a,b)上為常數(shù)函數(shù),則f(x)0恒成立.
4.進(jìn)行集合的交、并、補(bǔ)運(yùn)算時(shí),不要忘了全集和空集的特殊情況,不要忘記了借助數(shù)軸和文氏圖進(jìn)行求解。
5.在應(yīng)用條件時(shí),易A忽略是空集的情況
6.你會(huì)用補(bǔ)集的思想解決有關(guān)問題嗎?
7.簡單命題與復(fù)合命題有什么區(qū)別?四種命題之間的相互關(guān)系是什么?如何判斷充分與必要條件?
8.你知道“否命題”與“命題的否定形式”的區(qū)別。
9.求解與函數(shù)有關(guān)的問題易忽略定義域優(yōu)先的原則。
10.判斷函數(shù)奇偶性時(shí),易忽略檢驗(yàn)函數(shù)定義域是否關(guān)于原點(diǎn)對稱。
11.求一個(gè)函數(shù)的解析式和一個(gè)函數(shù)的反函數(shù)時(shí),易忽略標(biāo)注該函數(shù)的定義域。
12.原函數(shù)在區(qū)間[-a,a]上單調(diào)遞增,則一定存在反函數(shù),且反函數(shù)也單調(diào)遞增;但一個(gè)函數(shù)存在反函數(shù),此函數(shù)不一定單調(diào)。例如:。
13.你熟練地掌握了函數(shù)單調(diào)性的證明方法嗎?定義法(取值, 作差, 判正負(fù))和導(dǎo)數(shù)法
14. 求函數(shù)單調(diào)性時(shí),易錯(cuò)誤地在多個(gè)單調(diào)區(qū)間之間添加符號“∪”和“或”;單調(diào)區(qū)間不能用集合或不等式表示。
15.求函數(shù)的值域必須先求函數(shù)的定義域。
16.如何應(yīng)用函數(shù)的單調(diào)性與奇偶性解題?
、俦容^函數(shù)值的大小;
、诮獬橄蠛瘮(shù)不等式;
、矍髤(shù)的范圍(恒成立問題).這幾種基本應(yīng)用你掌握了嗎?
17.解對數(shù)函數(shù)問題時(shí),你注意到真數(shù)與底數(shù)的`限制條件了嗎?
(真數(shù)大于零,底數(shù)大于零且不等于1)字母底數(shù)還需討論
18.三個(gè)二次(哪三個(gè)二次?)的關(guān)系及應(yīng)用掌握了嗎?如何利用二次函數(shù)求最值?
19.用換元法解題時(shí)易忽略換元前后的等價(jià)性,易忽略參數(shù)的范圍。
20.“實(shí)系數(shù)一元二次方程有實(shí)數(shù)解”轉(zhuǎn)化時(shí),你是否注意到:當(dāng)時(shí),“方程有解”不能轉(zhuǎn)化為。若原題中沒有指出是二次方程,二次函數(shù)或二次不等式,你是否考慮到二次項(xiàng)系數(shù)可能為的零的情形?
利用導(dǎo)數(shù)求函數(shù)單調(diào)性的基本方法:設(shè)函數(shù)yf(x)在區(qū)間(a,b)內(nèi)可導(dǎo),(1)如果恒f(x)0,則函數(shù)yf(x)在區(qū)間(a,b)上為增函數(shù);(2)如果恒f(x)0,則函數(shù)yf(x)在區(qū)間(a,b)上為減函數(shù);(3)如果恒f(x)0,則函數(shù)yf(x)在區(qū)間(a,b)上為常數(shù)函數(shù).
利用導(dǎo)數(shù)求函數(shù)單調(diào)性的基本步驟:①求函數(shù)yf(x)的定義域;②求導(dǎo)數(shù)f(x);③解不等式f(x)0,解集在定義域內(nèi)的不間斷區(qū)間為增區(qū)間;④解不等式f(x)0,解集在定義域內(nèi)的不間斷區(qū)間為減區(qū)間.
反過來,也可以利用導(dǎo)數(shù)由函數(shù)的單調(diào)性解決相關(guān)問題(如確定參數(shù)的取值范圍):設(shè)函數(shù)yf(x)在區(qū)間(a,b)內(nèi)可導(dǎo),(1)如果函數(shù)yf(x)在區(qū)間(a,b)上為增函數(shù),則f(x)0(其中使f(x)0的x值不構(gòu)成區(qū)間);
(2)如果函數(shù)yf(x)在區(qū)間(a,b)上為減函數(shù),則f(x)0(其中使f(x)0的"x值不構(gòu)成區(qū)間);
(3)如果函數(shù)yf(x)在區(qū)間(a,b)上為常數(shù)函數(shù),則f(x)0恒成立.
高中數(shù)學(xué)知識點(diǎn)總結(jié)11
簡單隨機(jī)抽樣
(1)總體和樣本
、僭诮y(tǒng)計(jì)學(xué)中 , 把研究對象的全體叫做總體。②把每個(gè)研究對象叫做個(gè)體。③把總體中個(gè)體的總數(shù)叫做總體容量。④為了研究總體 的有關(guān)性質(zhì),一般從總體中隨機(jī)抽取一部分: x1,x2 , …,xx 研究,我們稱它為樣本。其中個(gè)體的個(gè)數(shù)稱為樣本容量。
(2)簡單隨機(jī)抽樣,也叫純隨機(jī)抽樣。就是從總體中不加任何分組、劃類、排隊(duì)等,完全隨
機(jī)地抽取調(diào)查單位。特點(diǎn)是:每個(gè)樣本單位被抽中的可能性相同(概率相等),樣本的'每個(gè)單位完全獨(dú)立,彼此間無一定的關(guān)聯(lián)性和排斥性。簡單隨機(jī)抽樣是其它各種抽樣形式的基礎(chǔ)。通常只是在總體單位之間差異程度較小和數(shù)目較少時(shí),才采用這種方法。
(3)簡單隨機(jī)抽樣常用的方法:
、俪楹灧;②隨機(jī)數(shù)表法;③計(jì)算機(jī)模擬法;③使用統(tǒng)計(jì)軟件直接抽取。
在簡單隨機(jī)抽樣的樣本容量設(shè)計(jì)中,主要考慮:①總體變異情況;②允許誤差范圍;③概率保證程度。
(4)抽簽法:
①給調(diào)查對象群體中的每一個(gè)對象編號;②準(zhǔn)備抽簽的工具,實(shí)施抽簽;③對樣本中的每一個(gè)個(gè)體進(jìn)行測量或調(diào)查
(5)隨機(jī)數(shù)表法
高中數(shù)學(xué)知識點(diǎn)總結(jié)12
★高中數(shù)學(xué)導(dǎo)數(shù)知識點(diǎn)
一、早期導(dǎo)數(shù)概念————特殊的形式大約在1629年法國數(shù)學(xué)家費(fèi)馬研究了作曲線的切線和求函數(shù)極值的方法1637年左右他寫一篇手稿《求最大值與最小值的方法》。在作切線時(shí)他構(gòu)造了差分f(A+E)—f(A),發(fā)現(xiàn)的因子E就是我們所說的導(dǎo)數(shù)f(A)。
二、17世紀(jì)————廣泛使用的“流數(shù)術(shù)”17世紀(jì)生產(chǎn)力的發(fā)展推動(dòng)了自然科學(xué)和技術(shù)的發(fā)展在前人創(chuàng)造性研究的基礎(chǔ)上大數(shù)學(xué)家牛頓、萊布尼茨等從不同的角度開始系統(tǒng)地研究微積分。牛頓的微積分理論被稱為“流數(shù)術(shù)”他稱變量為流量稱變量的變化率為流數(shù)相當(dāng)于我們所說的導(dǎo)數(shù)。牛頓的有關(guān)“流數(shù)術(shù)”的主要著作是《求曲邊形面積》、《運(yùn)用無窮多項(xiàng)方程的計(jì)算法》和《流數(shù)術(shù)和無窮級數(shù)》流數(shù)理論的實(shí)質(zhì)概括為他的重點(diǎn)在于一個(gè)變量的函數(shù)而不在于多變量的方程在于自變量的變化與函數(shù)的變化的比的構(gòu)成最在于決定這個(gè)比當(dāng)變化趨于零時(shí)的極限。
三、19世紀(jì)導(dǎo)數(shù)————逐漸成熟的理論1750年達(dá)朗貝爾在為法國科學(xué)家院出版的《百科全書》第五版寫的“微分”條目中提出了關(guān)于導(dǎo)數(shù)的一種觀點(diǎn)可以用現(xiàn)代符號簡單表示{dy/dx)=lim(oy/ox)。1823年柯西在他的《無窮小分析概論》中定義導(dǎo)數(shù)如果函數(shù)y=f(x)在變量x的兩個(gè)給定的界限之間保持連續(xù)并且我們?yōu)檫@樣的變量指定一個(gè)包含在這兩個(gè)不同界限之間的值那么是使變量得到一個(gè)無窮小增量。19世紀(jì)60年代以后魏爾斯特拉斯創(chuàng)造了ε—δ語言對微積分中出現(xiàn)的各種類型的極限重加表達(dá)導(dǎo)數(shù)的定義也就獲得了今天常見的形式。
四、實(shí)無限將異軍突起微積分第二輪初等化或成為可能微積分學(xué)理論基礎(chǔ)大體可以分為兩個(gè)部分。一個(gè)是實(shí)無限理論即無限是一個(gè)具體的東西一種真實(shí)的存在另一種是潛無限指一種意識形態(tài)上的過程比如無限接近。就歷史來看兩種理論都有一定的道理。其中實(shí)無限用了150年后來極限論就是現(xiàn)在所使用的。光是電磁波還是粒子是一個(gè)物理學(xué)長期爭論的問題后來由波粒二象性來統(tǒng)一。微積分無論是用現(xiàn)代極限論還是150年前的理論都不是最好的手段。
★高中數(shù)學(xué)導(dǎo)數(shù)要點(diǎn)
1、求函數(shù)的單調(diào)性:
利用導(dǎo)數(shù)求函數(shù)單調(diào)性的基本方法:設(shè)函數(shù)yf(x)在區(qū)間(a,b)內(nèi)可導(dǎo),(1)如果恒f(x)0,則函數(shù)yf(x)在區(qū)間(a,b)上為增函數(shù);(2)如果恒f(x)0,則函數(shù)yf(x)在區(qū)間(a,b)上為減函數(shù);(3)如果恒f(x)0,則函數(shù)yf(x)在區(qū)間(a,b)上為常數(shù)函數(shù)。
利用導(dǎo)數(shù)求函數(shù)單調(diào)性的基本步驟:①求函數(shù)yf(x)的定義域;②求導(dǎo)數(shù)f(x);③解不等式f(x)0,解集在定義域內(nèi)的.不間斷區(qū)間為增區(qū)間;④解不等式f(x)0,解集在定義域內(nèi)的不間斷區(qū)間為減區(qū)間。
反過來,也可以利用導(dǎo)數(shù)由函數(shù)的單調(diào)性解決相關(guān)問題(如確定參數(shù)的取值范圍):設(shè)函數(shù)yf(x)在區(qū)間(a,b)內(nèi)可導(dǎo),
。1)如果函數(shù)yf(x)在區(qū)間(a,b)上為增函數(shù),則f(x)0(其中使f(x)0的x值不構(gòu)成區(qū)間);
。2)如果函數(shù)yf(x)在區(qū)間(a,b)上為減函數(shù),則f(x)0(其中使f(x)0的x值不構(gòu)成區(qū)間);
(3)如果函數(shù)yf(x)在區(qū)間(a,b)上為常數(shù)函數(shù),則f(x)0恒成立。
2、求函數(shù)的極值:
設(shè)函數(shù)yf(x)在x0及其附近有定義,如果對x0附近的所有的點(diǎn)都有f(x)f(x0)(或f(x)f(x0)),則稱f(x0)是函數(shù)f(x)的極小值(或極大值)。
可導(dǎo)函數(shù)的極值,可通過研究函數(shù)的單調(diào)性求得,基本步驟是:
(1)確定函數(shù)f(x)的定義域;(2)求導(dǎo)數(shù)f(x);(3)求方程f(x)0的全部實(shí)根,x1x2xn,順次將定義域分成若干個(gè)小區(qū)間,并列表:x變化時(shí),f(x)和f(x)值的
變化情況:
(4)檢查f(x)的符號并由表格判斷極值。
3、求函數(shù)的最大值與最小值:
如果函數(shù)f(x)在定義域I內(nèi)存在x0,使得對任意的xI,總有f(x)f(x0),則稱f(x0)為函數(shù)在定義域上的最大值。函數(shù)在定義域內(nèi)的極值不一定唯一,但在定義域內(nèi)的最值是唯一的。
求函數(shù)f(x)在區(qū)間[a,b]上的最大值和最小值的步驟:(1)求f(x)在區(qū)間(a,b)上的極值;
。2)將第一步中求得的極值與f(a),f(b)比較,得到f(x)在區(qū)間[a,b]上的最大值與最小值。
4、解決不等式的有關(guān)問題:
。1)不等式恒成立問題(絕對不等式問題)可考慮值域。
f(x)(xA)的值域是[a,b]時(shí),
不等式f(x)0恒成立的充要條件是f(x)max0,即b0;
不等式f(x)0恒成立的充要條件是f(x)min0,即a0。
f(x)(xA)的值域是(a,b)時(shí),
不等式f(x)0恒成立的充要條件是b0;不等式f(x)0恒成立的充要條件是a0。
(2)證明不等式f(x)0可轉(zhuǎn)化為證明f(x)max0,或利用函數(shù)f(x)的單調(diào)性,轉(zhuǎn)化為證明f(x)f(x0)0。
5、導(dǎo)數(shù)在實(shí)際生活中的應(yīng)用:
實(shí)際生活求解最大(小)值問題,通常都可轉(zhuǎn)化為函數(shù)的最值。在利用導(dǎo)數(shù)來求函數(shù)最值時(shí),一定要注意,極值點(diǎn)唯一的單峰函數(shù),極值點(diǎn)就是最值點(diǎn),在解題時(shí)要加以說明。
高中數(shù)學(xué)知識點(diǎn)總結(jié)13
數(shù)學(xué)知識點(diǎn)1
柱、錐、臺、球的結(jié)構(gòu)特征
(1)棱柱:
幾何特征:兩底面是對應(yīng)邊平行的全等多邊形;側(cè)面、對角面都是平行四邊形;側(cè)棱平行且相等;平行于底面的截面是與底面全等的多邊形。
(2)棱錐
幾何特征:側(cè)面、對角面都是三角形;平行于底面的截面與底面相似,其相似比等于頂點(diǎn)到
截面距離與高的比的平方。
(3)棱臺:
幾何特征:
①上下底面是相似的平行多邊形
、趥(cè)面是梯形
、蹅(cè)棱交于原棱錐的頂點(diǎn)
(4)圓柱:定義:以矩形的一邊所在的直線為軸旋轉(zhuǎn),其余三邊旋轉(zhuǎn)所成
幾何特征:
、俚酌媸侨鹊膱A;
、谀妇與軸平行;
、圯S與底面圓的半徑垂直;
、軅(cè)面展開圖
是一個(gè)矩形。
(5)圓錐:定義:以直角三角形的.一條直角邊為旋轉(zhuǎn)軸,旋轉(zhuǎn)一周所成
幾何特征:
①底面是一個(gè)圓;
、谀妇交于圓錐的頂點(diǎn);
、蹅(cè)面展開圖是一個(gè)扇形。
(6)圓臺:定義:以直角梯形的垂直與底邊的腰為旋轉(zhuǎn)軸,旋轉(zhuǎn)一周所成
幾何特征:
、偕舷碌酌媸莾蓚(gè)圓;
②側(cè)面母線交于原圓錐的頂點(diǎn);
、蹅(cè)面展開圖是一個(gè)弓形。
(7)球體:定義:以半圓的直徑所在直線為旋轉(zhuǎn)軸,半圓面旋轉(zhuǎn)一周形成的幾何體
幾何特征:
、偾虻慕孛媸菆A;
、谇蛎嫔先我庖稽c(diǎn)到球心的距離等于半徑。
數(shù)學(xué)知識點(diǎn)2
空間幾何體的三視圖
定義三視圖:正視圖(光線從幾何體的前面向后面正投影);側(cè)視圖(從左向右)、 俯視圖(從上向下)
注:正視圖反映了物體的高度和長度;俯視圖反映了物體的長度和寬度;側(cè)視圖反映了物體的高度和寬度。
數(shù)學(xué)知識點(diǎn)3
空間幾何體的直觀圖——斜二測畫法
斜二測畫法特點(diǎn):
、僭瓉砼cx軸平行的線段仍然與x平行且長度不變;
②原來與y軸平行的線段仍然與y平行,長度為原來的一半。
高中數(shù)學(xué)知識點(diǎn)總結(jié)14
數(shù)學(xué)選修2-2導(dǎo)數(shù)及其應(yīng)用知識點(diǎn)必記
1.函數(shù)的平均變化率是什么?答:平均變化率為
f(x2)f(x1)f(x1x)f(x1)yfx2x1xxx注1:其中x是自變量的改變量,可正,可負(fù),可零。
注2:函數(shù)的平均變化率可以看作是物體運(yùn)動(dòng)的平均速度。
2、導(dǎo)函數(shù)的概念是什么?
答:函數(shù)yf(x)在xx0處的瞬時(shí)變化率是limf(x0x)f(x0)y,則稱limx0xx0x函數(shù)yf(x)在點(diǎn)x0處可導(dǎo),并把這個(gè)極限叫做yf(x)在x0處的導(dǎo)數(shù),記作f"(x0)或y"|xx0,即f"(x0)=limf(x0x)f(x0)y.limx0xx0x
3.平均變化率和導(dǎo)數(shù)的幾何意義是什么?
答:函數(shù)的平均變化率的幾何意義是割線的斜率;函數(shù)的導(dǎo)數(shù)的幾何意義是切線的斜率。
4導(dǎo)數(shù)的背景是什么?
答:(1)切線的斜率;(2)瞬時(shí)速度;(3)邊際成本。
5、常見的函數(shù)導(dǎo)數(shù)和積分公式有哪些?函數(shù)導(dǎo)函數(shù)不定積分ycy"0xn1xdxn1nyxnnN*y"nxn1yaxa0,a1y"alnay"exxaxadxlnaxyexedxexxylogaxa0,a1,x0ylnxy"1xlna1x1xdxlnxy"ysinxy"cosxcosxdxsinxsinxdxcosxycosxy"sinx
6、常見的導(dǎo)數(shù)和定積分運(yùn)算公式有哪些?答:若fx,gx均可導(dǎo)(可積),則有:和差的導(dǎo)數(shù)運(yùn)算f(x)g(x)f(x)g(x)""f"(x)g"(x)f"(x)g(x)f(x)g"(x)積的導(dǎo)數(shù)運(yùn)算特別地:Cfx"Cf"x商的導(dǎo)數(shù)運(yùn)算f(x)f"(x)g(x)f(x)g"(x)(g(x)0)g(x)2g(x)"1g"(x)特別地:"2gxgx復(fù)合函數(shù)的導(dǎo)數(shù)yxyuux微積分基本定理fxdxab(其中F"xfx)和差的積分運(yùn)算ba[f1(x)f2(x)]dxf1(x)dxf2(x)dxaabb特別地:積分的區(qū)間可加性bakf(x)dxkf(x)dx(k為常數(shù))abbaf(x)dxf(x)dxf(x)dx(其中acb)accb
7.用導(dǎo)數(shù)求函數(shù)單調(diào)區(qū)間的步驟是什么?答:①求函數(shù)f(x)的導(dǎo)數(shù)f"(x)
②令f"(x)>0,解不等式,得x的范圍就是遞增區(qū)間.③令f"(x)
8.利用導(dǎo)數(shù)求函數(shù)的最值的步驟是什么?
答:求f(x)在a,b上的最大值與最小值的步驟如下:⑴求f(x)在a,b上的極值;
、茖(x)的各極值與f(a),f(b)比較,其中最大的一個(gè)是最大值,最小的一個(gè)是最小值。
注:實(shí)際問題的開區(qū)間唯一極值點(diǎn)就是所求的最值點(diǎn);
9.求曲邊梯形的思想和步驟是什么?
答:分割近似代替求和取極限(“以直代曲”的思想)
10.定積分的性質(zhì)有哪些?
根據(jù)定積分的定義,不難得出定積分的如下性質(zhì):
11.
ababbbbb性質(zhì)5若f(x)0,xa,b,則f(x)dx0
、偻茝V:[f1(x)f2(x)fm(x)]dxf1(x)dxf2(x)dxfm(x)
aaaa②推廣:f(x)dxf(x)dxf(x)dxf(x)dx
aac1ckbc1c2b11定積分的取值情況有哪幾種?
答:定積分的值可能取正值,也可能取負(fù)值,還可能是0.
(l)當(dāng)對應(yīng)的曲邊梯形位于x軸上方時(shí),定積分的值取正值,且等于x軸上方的圖形面積;
(2)當(dāng)對應(yīng)的曲邊梯形位于x軸下方時(shí),定積分的值取負(fù)值,且等于x軸上方圖形面積的相反數(shù);
。3)當(dāng)位于x軸上方的曲邊梯形面積等于位于x軸下方的曲邊梯形面積時(shí),定積分的值為0,且等于x軸上方圖形的面積減去下方的圖形的面積.
12.物理中常用的微積分知識有哪些?答:(1)位移的導(dǎo)數(shù)為速度,速度的導(dǎo)數(shù)為加速度。(2)力的積分為功。
數(shù)學(xué)選修2-2推理與證明知識點(diǎn)必記
13.歸納推理的定義是什么?答:從個(gè)別事實(shí)中推演出一般性的結(jié)論,像這樣的推理通常稱為歸納推理。歸納推理是由部分到整體,由個(gè)別到一般的推理。
14.歸納推理的思維過程是什么?答:大致如圖:
實(shí)驗(yàn)、觀察概括、推廣猜測一般性結(jié)論
15.歸納推理的特點(diǎn)有哪些?
答:①歸納推理的前提是幾個(gè)已知的特殊現(xiàn)象,歸納所得的結(jié)論是尚屬未知的一般現(xiàn)象。
、谟蓺w納推理得到的結(jié)論具有猜測的性質(zhì),結(jié)論是否真實(shí),還需經(jīng)過邏輯證明和實(shí)驗(yàn)檢驗(yàn),因此,它不能作為數(shù)學(xué)證明的`工具。③歸納推理是一種具有創(chuàng)造性的推理,通過歸納推理的猜想,可以作為進(jìn)一步研究的起點(diǎn),幫助人們發(fā)現(xiàn)問題和提出問題。
16.類比推理的定義是什么?
答:根據(jù)兩個(gè)(或兩類)對象之間在某些方面的相似或相同,推演出它們在其他方面也相似或相同,這樣的推理稱為類比推理。類比推理是由特殊到特殊的推理。
17.類比推理的思維過程是什么?答:
觀察、比較聯(lián)想、類推推測新的結(jié)論
18.演繹推理的定義是什么?
答:演繹推理是根據(jù)已有的事實(shí)和正確的結(jié)論(包括定義、公理、定理等)按照嚴(yán)格的邏輯法則得到新結(jié)論的推理過程。演繹推理是由一般到特殊的推理。
19.演繹推理的主要形式是什么?答:三段論
20.“三段論”可以表示為什么?
答:①大前題:M是P②小前提:S是M③結(jié)論:S是P。
其中①是大前提,它提供了一個(gè)一般性的原理;②是小前提,它指出了一個(gè)特殊對象;③是結(jié)論,它是根據(jù)一般性原理,對特殊情況做出的判斷。
21.什么是直接證明?它包括哪幾種證明方法?
答:直接證明是從命題的條件或結(jié)論出發(fā),根據(jù)已知的定義、公理、定理,直接推證結(jié)論的真實(shí)性。直接證明包括綜合法和分析法。
22.什么是綜合法?
答:綜合法就是“由因?qū)Ч,從已知條件出發(fā),不斷用必要條件代替前面的條件,直至推出要證的結(jié)論。
23.什么是分析法?答:分析法就是從所要證明的結(jié)論出發(fā),不斷地用充分條件替換前面的條件或者一定成立的式子,可稱為“由果索因”。
要注意敘述的形式:要證A,只要證B,B應(yīng)是A成立的充分條件.分析法和綜合法常結(jié)合使用,不要將它們割裂開。
24什么是間接證明?
答:即反證法:是指從否定的結(jié)論出發(fā),經(jīng)過邏輯推理,導(dǎo)出矛盾,證實(shí)結(jié)論的否定是錯(cuò)誤的,從而肯定原結(jié)論是正確的證明方法。
25.反證法的一般步驟是什么?
答:(1)假設(shè)命題結(jié)論不成立,即假設(shè)結(jié)論的反面成立;
。2)從假設(shè)出發(fā),經(jīng)過推理論證,得出矛盾;
。3)從矛盾判定假設(shè)不正確,即所求證命題正確。
26常見的“結(jié)論詞”與“反義詞”有哪些?原結(jié)論詞反義詞原結(jié)論詞至少有一個(gè)至多有一個(gè)至少有n個(gè)至多有n個(gè)一個(gè)也沒有至少有兩個(gè)至多有n-1個(gè)至少有n+1個(gè)對任意x不成立p或qp且q反義詞存在x使成立p且qp或q對所有的x都成立存在x使不成立
27.反證法的思維方法是什么?答:正難則反....
28.如何歸繆矛盾?
答:(1)與已知條件矛盾;(2)與已有公理、定理、定義矛盾;
。3)自相矛盾.
29.?dāng)?shù)學(xué)歸納法(只能證明與正整數(shù)有關(guān)的數(shù)學(xué)命題)的步驟是什么?nnN答:(1)證明:當(dāng)n取第一個(gè)值時(shí)命題成立;00
(2)假設(shè)當(dāng)n=k(k∈N*,且k≥n0)時(shí)命題成立,證明當(dāng)n=k+1時(shí)命題也成立由(1),(2)可知,命題對于從n0開始的所有正整數(shù)n都正確注:常用于證明不完全歸納法推測所得命題的正確性的證明。
數(shù)學(xué)選修2-2數(shù)系的擴(kuò)充和復(fù)數(shù)的概念知識點(diǎn)必記
30.復(fù)數(shù)的概念是什么?答:形如a+bi的數(shù)叫做復(fù)數(shù),其中i叫虛數(shù)單位,a叫實(shí)部,b叫虛部,數(shù)集
Cabi|a,bR叫做復(fù)數(shù)集。
規(guī)定:abicdia=c且,強(qiáng)調(diào):兩復(fù)數(shù)不能比較大小,只有相等或不相b=d等。實(shí)數(shù)(b0)
31.?dāng)?shù)集的關(guān)系有哪些?答:復(fù)數(shù)Z一般虛數(shù)(a0)
虛數(shù)(b0)純虛數(shù)(a0)
32.復(fù)數(shù)的幾何意義是什么?答:復(fù)數(shù)與平面內(nèi)的點(diǎn)或有序?qū)崝?shù)對一一對應(yīng)。
33.什么是復(fù)平面?
答:根據(jù)復(fù)數(shù)相等的定義,任何一個(gè)復(fù)數(shù)zabi,都可以由一個(gè)有序?qū)崝?shù)對
(a,b)唯一確定。由于有序?qū)崝?shù)對(a,b)與平面直角坐標(biāo)系中的點(diǎn)一一對應(yīng),因此
復(fù)數(shù)集與平面直角坐標(biāo)系中的點(diǎn)集之間可以建立一一對應(yīng)。這個(gè)建立了直角坐標(biāo)系來表示復(fù)數(shù)的平面叫做復(fù)平面,x軸叫做實(shí)軸,y軸叫做虛軸。實(shí)軸上的點(diǎn)都表示實(shí)數(shù),除了原點(diǎn)外,虛軸上的點(diǎn)都表示純虛數(shù)。
34.如何求復(fù)數(shù)的模(絕對值)?答:與復(fù)數(shù)z對應(yīng)的向量OZ的模r叫做復(fù)數(shù)zabi的模(也叫絕對值)記作z或abi。由模的定義可知:zabia2b2
35.復(fù)數(shù)的加、減法運(yùn)算及幾何意義是什么?
答:①復(fù)數(shù)的加、減法法則:z1abi與z2cdi,則z1z2ac(bd)i。
注:復(fù)數(shù)的加、減法運(yùn)算也可以按向量的加、減法來進(jìn)行。
、趶(fù)數(shù)的乘法法則:(abi)(cdi)acbdadbci。
③復(fù)數(shù)的除法法則:
abi(abi)(cdi)acbdbcadicdi(cdi)(cdi)c2d2c2d2其中cdi叫做實(shí)數(shù)化因子
36.什么是共軛復(fù)數(shù)?
答:兩復(fù)數(shù)abi與abi互為共軛復(fù)數(shù),當(dāng)b0時(shí),它們叫做共軛虛數(shù)。
高中數(shù)學(xué)知識點(diǎn)總結(jié)15
高中數(shù)學(xué)(文)包含5本必修、2本選修,(理)包含5本必修、3本選修,每學(xué)期學(xué)**兩本書。
必修一:1、集合與函數(shù)的概念 (這部分知識抽象,較難理解)2、基本的初等函數(shù)(指數(shù)函數(shù)、對數(shù)函數(shù))3、函數(shù)的性質(zhì)及應(yīng)用 (比較抽象,較難理解)
必修二:1、立體幾何(1)、證明:垂直(多考查面面垂直)、平行(2)、求解:主要是夾角問題,包括線面角和面面角
這部分知識是高一學(xué)生的難點(diǎn),比如:一個(gè)角實(shí)際上是一個(gè)銳角,但是在圖中顯示的鈍角等等一些問題,需要學(xué)生的立體意識較強(qiáng)。這部分知識高考占22---27分
2、直線方程:高考時(shí)不單獨(dú)命題,易和圓錐曲線結(jié)合命題
3、圓方程:
必修三:1、算法初步:高考必考內(nèi)容,5分(選擇或填空)2、統(tǒng)計(jì):3、概率:高考必考內(nèi)容,09年理科占到15分,文科數(shù)學(xué)占到5分
必修四:1、三角函數(shù):(圖像、性質(zhì)、高中重難點(diǎn),)必考大題:15---20分,并且經(jīng)常和其他函數(shù)混合起來考查
2、平面向量:高考不單獨(dú)命題,易和三角函數(shù)、圓錐曲線結(jié)合命題。09年理科占到5分,文科占到13分
必修五:1、解三角形:(正、余弦定理、三角恒等變換)高考中理科占到22分左右,文科數(shù)學(xué)占到13分左右2、數(shù)列:高考必考,17---22分3、不等式:(線性規(guī)劃,聽課時(shí)易理解,但做題較復(fù)雜,應(yīng)掌握技巧。高考必考5分)不等式不單獨(dú)命題,一般和函數(shù)結(jié)合求最值、解集。
文科:選修1—1、1—2
選修1--1:重點(diǎn):高考占30分
1、邏輯用語:一般不考,若考也是和集合放一塊考2、圓錐曲線:3、導(dǎo)數(shù)、導(dǎo)數(shù)的應(yīng)用(高考必考)
選修1--2:1、統(tǒng)計(jì):2、推理證明:一般不考,若考會(huì)是填空題3、復(fù)數(shù):(新課標(biāo)比老課本難的多,高考必考內(nèi)容)
理科:選修2—1、2—2、2—3
選修2--1:1、邏輯用語2、圓錐曲線3、空間向量:(利用空間向量可以把立體幾何做題簡便化)
選修2--2:1、導(dǎo)數(shù)與微積分2、推理證明:一般不考3、復(fù)數(shù)
選修2--3:1、計(jì)數(shù)原理:(排列組合、二項(xiàng)式定理)掌握這部分知識點(diǎn)需要大量做題找規(guī)律,無技巧。高考必考,10分2、隨機(jī)變量及其分布:不單獨(dú)命題3、統(tǒng)計(jì):
高考的知識板塊
集合與簡單邏輯:5分或不考
函數(shù):高考60分:①、指數(shù)函數(shù) ②對數(shù)函數(shù) ③二次函數(shù) ④三次函數(shù) ⑤三角函數(shù) ⑥抽象函數(shù)(無函數(shù)表達(dá)式,不易理解,難點(diǎn))
平面向量與解三角形
立體幾何:22分左右
不等式:(線性規(guī)則)5分必考
數(shù)列:17分 (一道大題+一道選擇或填空)易和函數(shù)結(jié)合命題
平面解析幾何:(30分左右)
計(jì)算原理:10分左右
概率統(tǒng)計(jì):12分----17分
復(fù)數(shù):5分
推理證明
一般高考大題分布
1、17題:三角函數(shù)
2、18、19、20 三題:立體幾何 、概率 、數(shù)列
3、21、22 題:函數(shù)、圓錐曲線
成績不理想一般是以下幾種情況:
做題不細(xì)心,(會(huì)做,做不對)
基礎(chǔ)知識沒有掌握
解決問題不全面,知識的運(yùn)用沒有系統(tǒng)化(如:一道題綜合了多個(gè)知識點(diǎn))
心理素質(zhì)不好
總之學(xué)**數(shù)學(xué)一定要掌握科學(xué)的學(xué)**方法:1、筆記:記老師講的課本上沒有的知識點(diǎn),尤其是數(shù)列性質(zhì),課本上沒有,但做題經(jīng)常用到 2、錯(cuò)題收集、歸納總結(jié)
高一年級
必修一
第一章 集合與函數(shù)概念
第二章 基本初等函數(shù)(Ⅰ)
第三章 函數(shù)的應(yīng)用
必修二
第一章 空間幾何體
第二章 點(diǎn)、直線、平面之間的位置關(guān)系
第三章 直線與方程
必修三
第一章 算法初步
第二章 統(tǒng)計(jì)
第三章 概率
必修四
第一章 三角函數(shù)
第二章 平面向量
第三章 三角恒等變換
(二)教學(xué)要求
在教學(xué)中,由于集合、函數(shù)等內(nèi)容比較抽象,三角函數(shù)在高考中占據(jù)重要地位,平面向量又是高考中數(shù)學(xué)必考內(nèi)容,教師在備課組協(xié)作的基礎(chǔ)上應(yīng)注意對各章知識的重難點(diǎn)的講解和釋疑,減輕學(xué)生自學(xué)的壓力,增強(qiáng)學(xué)生學(xué)好數(shù)學(xué)的信心。
首先,在高中數(shù)學(xué)中,集合的初步知識以及與其它內(nèi)容的密切聯(lián)系。它們是學(xué)**、掌握和使用數(shù)學(xué)語言的基礎(chǔ),是高中數(shù)學(xué)學(xué)**的出發(fā)點(diǎn)。在教學(xué)中,應(yīng)注重引導(dǎo)學(xué)生更好的理解數(shù)學(xué)中出現(xiàn)的集合語言,使學(xué)生更好的使用集合語言表述數(shù)學(xué)問題,并且可以使學(xué)生運(yùn)用集合的觀點(diǎn),研究、處理數(shù)學(xué)問題。因此集合的基本概念、函數(shù)等有關(guān)內(nèi)容是教師重點(diǎn)講解的內(nèi)容。
其次,函數(shù)作為中學(xué)數(shù)學(xué)中最重要的基本概念之一,教師應(yīng)注意運(yùn)用有關(guān)的'概念和函數(shù)的性質(zhì),培養(yǎng)學(xué)生的思維能力;通過指數(shù)與對數(shù),指數(shù)函數(shù)與對數(shù)函數(shù)之間的內(nèi)在聯(lián)系,對學(xué)生進(jìn)行辯證唯物主義觀點(diǎn)的教育;通過聯(lián)系實(shí)際的引入問題和解決帶有實(shí)際意義的某些問題,培養(yǎng)學(xué)生的實(shí)踐能力和創(chuàng)新意識。
第三,通過對三角函數(shù)的學(xué)**,學(xué)生將進(jìn)一步了解符號與變元、集合與對應(yīng)、數(shù)形結(jié)合等基本的數(shù)學(xué)思想在研究三角函數(shù)時(shí)所起的重要作用,在式子與圖形的變化中,教師應(yīng)引導(dǎo)學(xué)生通過分析、探索、劃歸、類比、平行移動(dòng)、伸長和縮短等常用的基本方法的學(xué)**,使學(xué)生在學(xué)**數(shù)學(xué)和應(yīng)用數(shù)學(xué)方面達(dá)到一個(gè)新的層次。
第四,學(xué)**平面向量,不但應(yīng)注意平面向量基本知識的講解,更要充分挖掘平面向量的工具作用,提高學(xué)生應(yīng)用數(shù)學(xué)知識解決實(shí)際問題的能力和實(shí)際操作的能力,使學(xué)生學(xué)會(huì)提出問題,明確研究方向,使學(xué)生學(xué)會(huì)交流,體驗(yàn)數(shù)學(xué)活動(dòng)的過程,培養(yǎng)創(chuàng)新精神和應(yīng)用能力。
第五、在學(xué)**空間幾何體、點(diǎn)、直線、平面之間的位置關(guān)系時(shí),重點(diǎn)要幫助學(xué)生逐步形成空間想象能力,嚴(yán)格遵循從整體到局部,從具體到抽象的原則,逐步掌握解決空間幾何體的相關(guān)問題。
第六、要在平面解析幾何初步教學(xué)中,幫助學(xué)生經(jīng)歷如下的過程:首先將幾何問題代數(shù)化,用代數(shù)的語言描述幾何要素及其關(guān)系,進(jìn)而將幾何問題轉(zhuǎn)化為代數(shù)問題;處理代數(shù)問題;分析代數(shù)結(jié)果的幾何含義,最終解決幾何問題。這種思想應(yīng)貫穿平面解析幾何教學(xué)的始終,幫助學(xué)生不斷地體會(huì)“數(shù)形結(jié)合”的思想方法。
第七、在學(xué)**算法初步、統(tǒng)計(jì)等內(nèi)容的時(shí)候,要注意順序漸進(jìn),不可追求一步到位,特別要注意其思想的重要性。
高二年級
必修五
第一章 解三角形
第二章 數(shù)列
第三章 不等式
選修1-1
第一章 常用邏輯用語
第二章 圓錐曲線與方程
第三章 導(dǎo)數(shù)及其應(yīng)用
選修1-2
第一章 統(tǒng)計(jì)案例
第二章 推理與證明
第三章 數(shù)系的擴(kuò)充與復(fù)數(shù)的引入
第四章 框圖
選修2-1
第一章 常用邏輯用語
第二章 圓錐曲線與方程
第三章 空間向量與立體幾何
選修2-2
第一章 導(dǎo)數(shù)及其應(yīng)用
第二章 推理與證明
第三章 數(shù)系的擴(kuò)充與復(fù)數(shù)的引入
選修2-3
第一章 計(jì)數(shù)原理
第二章 隨機(jī)變量及其分布
第三章 統(tǒng)計(jì)案例
(二)教學(xué)要求
高二上
必修5
學(xué)生將在已有知識的基礎(chǔ)上,通過對任意三角形邊角關(guān)系的探究,發(fā)現(xiàn)并掌握三角形中的邊長與角度之間的數(shù)量關(guān)系,并認(rèn)識到運(yùn)用它們可以解決一些與測量和幾何計(jì)算有關(guān)的實(shí)際問題。
數(shù)列作為一種特殊的函數(shù),是反映自然規(guī)律的基本數(shù)學(xué)模型。在本模塊中,學(xué)生將通過對日常生活中大量實(shí)際問題的分析,建立等差數(shù)列和等比數(shù)列這兩種數(shù)列模型,探索并掌握它們的一些基本數(shù)量關(guān)系,感受這兩種數(shù)列模型的廣泛應(yīng)用,并利用它們解決一些實(shí)際問題。
不等關(guān)系與相等關(guān)系都是客觀事物的基本數(shù)量關(guān)系,是數(shù)學(xué)研究的重要內(nèi)容。建立不等觀念、處理不等關(guān)系與處理等量問題是同樣重要的。在本模塊中,學(xué)生將通過具體情境,感受在現(xiàn)實(shí)世界和日常生活中存在著大量的不等關(guān)系,理解不等式(組)對于刻畫不等關(guān)系的意義和價(jià)值;掌握求解一元二次不等式的基本方法,并能解決一些實(shí)際問題;能用二元一次不等式組表示平面區(qū)域,并嘗試解決一些簡單的二元線性規(guī)劃問題;認(rèn)識基本不等式及其簡單應(yīng)用;體會(huì)不等式、方程及函數(shù)之間的聯(lián)系。
選修1—1(文科)
在本模塊中,學(xué)生將在義務(wù)教育階段的基礎(chǔ)上,學(xué)**常用邏輯用語,體會(huì)邏輯用語在表述和論證中的作用,利用這些邏輯用語準(zhǔn)確地表達(dá)數(shù)學(xué)內(nèi)容,更好地進(jìn)行交流。
在必修課程學(xué)**平面解析幾何初步的基礎(chǔ)上,在本模塊中,學(xué)生將學(xué)**圓錐曲線與方程,了解圓錐曲線與二次方程的關(guān)系,掌握圓錐曲線的基本幾何性質(zhì),感受圓錐曲線在刻畫現(xiàn)實(shí)世界和解決實(shí)際問題中的作用,進(jìn)一步體會(huì)數(shù)形結(jié)合的思想。
在本模塊中,學(xué)生將通過大量實(shí)例,經(jīng)歷由平均變化率到瞬時(shí)變化率的過程,刻畫現(xiàn)實(shí)問題,理解導(dǎo)數(shù)的含義,體會(huì)導(dǎo)數(shù)的思想及其內(nèi)涵;應(yīng)用導(dǎo)數(shù)探索函數(shù)的單調(diào)、極值等性質(zhì)及其在實(shí)際中的應(yīng)用,感受導(dǎo)數(shù)在解決數(shù)學(xué)問題和實(shí)際問題中的作用,體會(huì)微積分的產(chǎn)生對人類文化發(fā)展的價(jià)值。
選修2-1(理科)
在本模塊中,學(xué)生將學(xué)**常用邏輯用語、圓錐曲線與方程、空間中的向量(簡稱空間向量)與立體幾何。
在本模塊中,學(xué)生將在義務(wù)教育階段的基礎(chǔ)上,學(xué)**常用邏輯用語,體會(huì)邏輯用語在表述和論證中的作用,利用這些邏輯用語準(zhǔn)確地表達(dá)數(shù)學(xué)內(nèi)容,從而更好地進(jìn)行交流。
在必修階段學(xué)**平面解析幾何初步的基礎(chǔ)上,在本模塊中,學(xué)生將學(xué)**圓錐曲線與方程,了解圓錐曲線與二次方程的關(guān)系,掌握圓錐曲線的基本幾何性質(zhì),感受圓錐曲線在刻畫現(xiàn)實(shí)世界和解決實(shí)際問題中的作用。結(jié)合已學(xué)過的曲線及其方程的實(shí)例,了解曲線與方程的對應(yīng)關(guān)系,進(jìn)一步體會(huì)數(shù)形結(jié)合的思想。
在本模塊中,學(xué)生將在學(xué)**平面向量的基礎(chǔ)上,把平面向量及其運(yùn)算推廣到空間,運(yùn)用空間向量解決有關(guān)直線、平面位置關(guān)系的問題,體會(huì)向量方法在研究幾何圖形中的作用,進(jìn)一步發(fā)展空間想像能力和幾何直觀能力。
【高中數(shù)學(xué)知識點(diǎn)總結(jié)】相關(guān)文章:
高中數(shù)學(xué)知識點(diǎn)的總結(jié)03-07
高中數(shù)學(xué)統(tǒng)計(jì)知識點(diǎn)總結(jié)10-21
高中數(shù)學(xué)知識點(diǎn)總結(jié)05-15
高中數(shù)學(xué)基本的知識點(diǎn)總結(jié)05-17
高中數(shù)學(xué)復(fù)數(shù)知識點(diǎn)總結(jié)05-10
高中數(shù)學(xué)導(dǎo)數(shù)知識點(diǎn)總結(jié)04-10
高中數(shù)學(xué)必修2知識點(diǎn)總結(jié)11-22
高中數(shù)學(xué)重點(diǎn)知識點(diǎn)總結(jié)11-18