當(dāng)前位置:育文網(wǎng)>教學(xué)文檔>教案> 《圓柱的體積》教案

《圓柱的體積》教案

時(shí)間:2022-02-09 16:32:17 教案 我要投稿

《圓柱的體積》教案4篇

  作為一名優(yōu)秀的教育工作者,總不可避免地需要編寫(xiě)教案,教案是備課向課堂教學(xué)轉(zhuǎn)化的關(guān)節(jié)點(diǎn)。寫(xiě)教案需要注意哪些格式呢?以下是小編收集整理的《圓柱的體積》教案4篇,歡迎閱讀,希望大家能夠喜歡。

《圓柱的體積》教案4篇

《圓柱的體積》教案 篇1

  教學(xué)內(nèi)容:

  P19-20頁(yè)例5、例6及補(bǔ)充例題,完成做一做及練習(xí)三第1~4題。

  教學(xué)目標(biāo):

  1、通過(guò)用切割拼合的方法借助長(zhǎng)方體的體積公式推導(dǎo)出圓柱的體積公式,能夠運(yùn)用公式正確地計(jì)算圓柱的體積和容積。

  2、初步學(xué)會(huì)用轉(zhuǎn)化的數(shù)學(xué)思想和方法,解決實(shí)際問(wèn)題的能力

  3、滲透轉(zhuǎn)化思想,培養(yǎng)學(xué)生的自主探索意識(shí)。

  教學(xué)重點(diǎn):

  掌握?qǐng)A柱體積的計(jì)算公式。

  教學(xué)難點(diǎn):

  圓柱體積的計(jì)算公式的推導(dǎo)。

  教學(xué)過(guò)程:

  一、復(fù)習(xí)

  1、長(zhǎng)方體的體積公式是什么?正方體呢?(長(zhǎng)方體的體積=長(zhǎng)寬高,長(zhǎng)方體和正方體體積的統(tǒng)一公式底面積高,即長(zhǎng)方體的體積=底面積高)

  2、拿出一個(gè)圓柱形物體,指名學(xué)生指出圓柱的底面、高、側(cè)面、表面各是什么,怎么求。(刪掉)

  3、復(fù)習(xí)圓面積計(jì)算公式的推導(dǎo)過(guò)程:把圓等分切割,拼成一個(gè)近似的長(zhǎng)方形,找出圓和所拼成的長(zhǎng)方形之間的關(guān)系,再利用求長(zhǎng)方形面積的計(jì)算公式導(dǎo)出求圓面積的計(jì)算公式。

  師小結(jié):圓的面積公式的.推導(dǎo)是利用轉(zhuǎn)化的思想把一個(gè)曲面圖形轉(zhuǎn)化成以前學(xué)的長(zhǎng)方形,今天我們學(xué)習(xí)圓柱體體積公式的推導(dǎo)也要運(yùn)用轉(zhuǎn)化的思想同學(xué)們猜猜會(huì)轉(zhuǎn)化成什么圖形?

  二、新課

  1、圓柱體積計(jì)算公式的推導(dǎo)。

 。1)用將圓轉(zhuǎn)化成長(zhǎng)方形來(lái)求出圓的面積的方法來(lái)推導(dǎo)圓柱的體積。(沿著圓柱底面的扇形和圓柱的高把圓柱切開(kāi),可以得到大小相等的16塊,把它們拼成一個(gè)近似長(zhǎng)方體的立體圖形課件演示)

 。2)由于我們分的不夠細(xì),所以看起來(lái)還不太像長(zhǎng)方體;如果分成的扇形越多,拼成的立體圖形就越接近于長(zhǎng)方體了。(課件演示將圓柱細(xì)分,拼成一個(gè)長(zhǎng)方體)

  反復(fù)播放這個(gè)過(guò)程,引導(dǎo)學(xué)生觀察思考,討論:在變化的過(guò)程中,什么變了什么沒(méi)變?

  長(zhǎng)方體和圓柱體的底面積和體積有怎樣的關(guān)系?

  學(xué)生說(shuō)演示過(guò)程,總結(jié)推倒公式。

  (3)通過(guò)觀察,使學(xué)生明確:長(zhǎng)方體的底面積等于圓柱的底面積,長(zhǎng)方體的高就是圓柱的高。(長(zhǎng)方體的體積=底面積高,所以圓柱的體積=底面積高,V=Sh)

《圓柱的體積》教案 篇2

  教學(xué)內(nèi)容:

  人教版小學(xué)數(shù)學(xué)六年級(jí)下冊(cè)《圓柱的體積》P25-26。

  教學(xué)目標(biāo):

  1.經(jīng)歷探究和推導(dǎo)圓柱的體積公式的過(guò)程。

  2.知道并能記住圓柱的體積公式,并能運(yùn)用公式進(jìn)行計(jì)算。

  3.在自主探究圓柱的體積公式的過(guò)程中,體驗(yàn)、感悟數(shù)學(xué)規(guī)律的來(lái)龍去脈,知道長(zhǎng)方體與圓柱體底面和高各部分間的對(duì)應(yīng)關(guān)系。發(fā)展學(xué)生的觀察能力和分析、綜合、歸納推理能力。

  4.激發(fā)學(xué)生的學(xué)習(xí)興趣,讓學(xué)生體驗(yàn)成功的快樂(lè)。

  5.培養(yǎng)學(xué)生的轉(zhuǎn)化思想,滲透辯證法和極限的思想。

  教學(xué)重點(diǎn):掌握和運(yùn)用圓柱體積計(jì)算公式

  教學(xué)難點(diǎn):圓柱體積公式的推導(dǎo)過(guò)程

  教具學(xué)具準(zhǔn)備:教學(xué)課件、圓柱體。

  教學(xué)過(guò)程:

  一、復(fù)習(xí)導(dǎo)入

  1.同學(xué)們想一想,我們已經(jīng)學(xué)習(xí)了哪些立體圖形的體積?怎樣計(jì)算長(zhǎng)方體和正方體的體積?長(zhǎng)方體的體積和正方體的體積的通用公式是什么呢?用字母怎樣表示?

  2.回憶一下圓面積的計(jì)算公式是如何推導(dǎo)出來(lái)的?

  (結(jié)合課件演示)這是一個(gè)圓,我們把它平均分割,再拼合就變成了一個(gè)近似的平行四邊形。我們還可以往下繼續(xù)分割,無(wú)限分割就變成了一個(gè)長(zhǎng)方形。長(zhǎng)方形的長(zhǎng)相當(dāng)于圓周長(zhǎng)的一半,可以用πR表示,長(zhǎng)方形的寬就當(dāng)于圓的半徑,用R表示。所以用周長(zhǎng)的一半×半徑就可以求出圓的面積,所以推導(dǎo)出圓的面積公式是S=πR。

  3.課件出示一個(gè)圓柱體

  我們把圓轉(zhuǎn)化成了近似的長(zhǎng)方形,同學(xué)們猜想一下圓柱可以轉(zhuǎn)化成什么圖形呢?

  二、探索體驗(yàn)

  1.學(xué)生猜想可以把圓柱轉(zhuǎn)化成什么圖形?

  2.課件演示:把圓柱體轉(zhuǎn)化成長(zhǎng)方體

 、偈窃鯓悠闯傻?

 、谟^察是不是標(biāo)準(zhǔn)的長(zhǎng)方體?

  ③演示32等份、64等份拼成的長(zhǎng)方體,比較一下發(fā)現(xiàn)了什么?引出課題并板書(shū)。

  3.借鑒圓的面積公式的推導(dǎo)過(guò)程試著推導(dǎo)圓柱的體積公式。

  課件出示要求:

 、倨闯傻拈L(zhǎng)方體與原來(lái)的圓柱體比較什么變了?什么沒(méi)變?

 、谕茖(dǎo)出圓柱體的體積公式。

  學(xué)生結(jié)合老師提出的問(wèn)題自己試著推導(dǎo)。

  4.交流展示

  小組討論,交流匯報(bào)。

  生匯報(bào)師結(jié)合講解板書(shū)。

  圓柱體積=底面積×高

  ‖ ‖ ‖

  長(zhǎng)方體體積=底面積×高

  用字母公式怎樣表示呢? v、s、h各表示什么?

  5.知道哪些條件可以求出圓柱的體積?

  6.計(jì)算下面圓柱的'體積。

  ①底面積24平方厘米,高12厘米

  ②底面半徑2厘米,高5厘米

 、壑睆10厘米,高4厘米

 、苤荛L(zhǎng)18.84厘米,高12厘米

  三、課堂檢測(cè)

  1.判斷

 、賵A柱體、長(zhǎng)方體和正方體的體積都可以用底面積乘高的方法來(lái)計(jì)算。( )

 、趫A柱的底面積擴(kuò)大3倍,體積也擴(kuò)大3倍。( )

 、垡粋(gè)長(zhǎng)方體與一個(gè)圓柱體底面積相等,高也相等,那么它們的體積也相等。( )

 、軋A柱體的底面直徑和高可以相等。( )

 、輧蓚(gè)圓柱體的底面積相等,體積也一定相等。( )

 、抟粋(gè)圓柱形的水桶能裝水15升,我們就說(shuō)水桶的體積是15立方分米。( )

  2.聯(lián)系生活實(shí)際解決實(shí)際問(wèn)題。

  下面的這個(gè)杯子能不能裝下這袋奶?

  (杯子的數(shù)據(jù)從里面量得到直徑8cm,高10cm;牛奶498ml)

  學(xué)生獨(dú)立思考回答后自己做在練習(xí)本上。

  3.一個(gè)壓路機(jī)的前輪是圓柱形,輪寬2米,半徑1米,它的體積是多少立方米?

  4.生活中的數(shù)學(xué)

  一個(gè)用塑料薄膜蓋的蔬菜大棚,長(zhǎng)15米,橫截面是一個(gè)半徑2米的半圓。

  ①覆蓋在這個(gè)大棚上的塑料薄膜約有多少平方米?

 、诖笈飪(nèi)的空間大約有多大?

  獨(dú)立思考后小組討論,兩生板演。

  四、全課總結(jié)

  這節(jié)課你有什么收獲?

  五、課后延伸

  如果要測(cè)量圓柱形柱子的體積,測(cè)量哪些數(shù)據(jù)比較方便?試一試吧?

  六、板書(shū)設(shè)計(jì)

  圓柱體積= 底面積×高

  長(zhǎng)方體體積=底面積×高

《圓柱的體積》教案 篇3

  教學(xué)目標(biāo):

  1、滲透轉(zhuǎn)化思想,培養(yǎng)學(xué)生的自主探索意識(shí)。

  2、初步學(xué)會(huì)用轉(zhuǎn)化的數(shù)學(xué)思想和方法,解決實(shí)際問(wèn)題的能力

  3、通過(guò)用切割拼合的方法借助長(zhǎng)方體的體積公式推導(dǎo)出圓柱的體積公式,能夠運(yùn)用公式正確地計(jì)算圓柱的體積和容積。

  教學(xué)重點(diǎn):

  掌握?qǐng)A柱體積的計(jì)算公式。

  教學(xué)難點(diǎn):

  圓柱體積的計(jì)算公式的推導(dǎo)。

  教學(xué)準(zhǔn)備:主題圖、圓柱形物體

  教學(xué)過(guò)程:

  一、復(fù)習(xí):

  1、長(zhǎng)方體的體積公式是什么?

 。ㄩL(zhǎng)方體的體積=長(zhǎng)×寬×高,長(zhǎng)方體和正方體體積的統(tǒng)一公式“底面積×高”,即長(zhǎng)方體的體積=底面積×高)

  2、拿出一個(gè)圓柱形物體,指名學(xué)生指出圓柱的底面、高、側(cè)面、表面各是什么,怎么求。

  3、復(fù)習(xí)圓面積計(jì)算公式的推導(dǎo)過(guò)程:把圓等分切割,拼成一個(gè)近似的長(zhǎng)方形,找出圓和所拼成的.長(zhǎng)方形之間的關(guān)系,再利用求長(zhǎng)方形面積的計(jì)算公式導(dǎo)出求圓面積的計(jì)算公式。

  二、新課:

  1、圓柱體積計(jì)算公式的推導(dǎo):

 。1)用將圓轉(zhuǎn)化成長(zhǎng)方形來(lái)求出圓的面積的方法來(lái)推導(dǎo)圓柱的體積。(沿著圓柱底面的扇形和圓柱的高把圓柱切開(kāi),可以得到大小相等的16塊,把它們拼成一個(gè)近似長(zhǎng)方體的立體圖形——課件演示)

 。2)由于我們分的不夠細(xì),所以看起來(lái)還不太像長(zhǎng)方體;如果分成的扇形越多,拼成的立體圖形就越接近于長(zhǎng)方體了。

 。ㄕn件演示將圓柱細(xì)分,拼成一個(gè)長(zhǎng)方體)

 。3)通過(guò)觀察,使學(xué)生明確:長(zhǎng)方體的底面積等于圓柱的底面積,長(zhǎng)方體的高就是圓柱的高。

 。ㄩL(zhǎng)方體的體積=底面積×高,所以圓柱的體積=底面積×高,V=Sh)

  2、教學(xué)補(bǔ)充例題:

 。1)出示補(bǔ)充例題:一根圓柱形鋼材,底面積是50平方厘米,高是2.1米。它的體積是多少?

 。2)指名學(xué)生分別回答下面的問(wèn)題:

  ① 這道題已知什么?求什么?

  ② 能不能根據(jù)公式直接計(jì)算?

 、 計(jì)算之前要注意什么?

 。ㄓ(jì)算時(shí)既要分析已知條件和問(wèn)題,還要注意要先統(tǒng)一計(jì)量單位)

 。3)出示下面幾種解答方案,讓學(xué)生判斷哪個(gè)是正確的.

  ①V=Sh

  50×2.1=105(立方厘米)

  答:它的體積是105立方厘米。

 、2.1米=210厘米

  V=Sh

  50×210=10500(立方厘米)

  答:它的體積是10500立方厘米。

 、50平方厘米=0.5平方米

  V=Sh

  0.5×2.1=1.05(立方米)

  答:它的體積是1.05立方米。

 、50平方厘米=0.005平方米

  V=Sh

  0.005×2.1=0.0105(立方米)

  答:它的體積是0.0105立方米。

  先讓學(xué)生思考,然后指名學(xué)生回答哪個(gè)是正確的解答,并比較一下哪一種解答更簡(jiǎn)單.對(duì)不正確的第①、③種解答要說(shuō)說(shuō)錯(cuò)在什么地方.

  (4)做第20頁(yè)的“做一做”。

  學(xué)生獨(dú)立做在練習(xí)本上,做完后集體訂正。

  3、引導(dǎo)思考:如果已知圓柱底面半徑r和高h(yuǎn),圓柱體積的計(jì)算公式是怎樣的?(V=πr2h)

  4、教學(xué)例6:

  (1)出示例6,并讓學(xué)生思考:要知道杯子能不能裝下這袋牛奶,得先知道什么?(應(yīng)先知道杯子的容積)

 。2)學(xué)生嘗試完成例6。

 、 杯子的底面積:3.14×(8÷2)2=3.14×42=3.14×16=50.24(cm2)

 、 杯子的容積:50.24×10=502.4(cm3)=502.4(ml)

  5、比較一下補(bǔ)充例題、例6有哪些相同的地方和不同的地方?

 。ㄏ嗤氖嵌家脠A柱的體積計(jì)算公式進(jìn)行計(jì)算;不同的是補(bǔ)充例題已給出底面積,可直接應(yīng)用公式計(jì)算;例6只知道底面直徑,要先求底面積,再求體積。)

  三、鞏固練習(xí):

  1、做第26頁(yè)的第1題:

  2、練習(xí)五的第2題:

  這兩道題分別是已知底面半徑(或直徑)和高,求圓柱體積的習(xí)題.要求學(xué)生審題后,知道要先求出底面積,再求圓柱的體積。

  四、全課總結(jié):

《圓柱的體積》教案 篇4

  教學(xué)目標(biāo):

  1、知識(shí)與技能:通過(guò)用切割拼合的方法借助長(zhǎng)方體的體積公式推導(dǎo)出圓柱的體積公式,使學(xué)生理解圓柱的體積公式的推導(dǎo)過(guò)程能夠運(yùn)用公式正確地計(jì)算圓柱的體積。

  2、過(guò)程與方法:讓學(xué)生經(jīng)歷觀察、實(shí)驗(yàn)、猜想、證明等數(shù)學(xué)活動(dòng)過(guò)程,發(fā)展合情推理能力和初步的演繹推理能力,滲透數(shù)學(xué)思想,體驗(yàn)數(shù)學(xué)研究法。

  3、情感態(tài)度與價(jià)值觀:通過(guò)圓柱體積計(jì)算公式的推導(dǎo)、運(yùn)用的過(guò)程,體驗(yàn)數(shù)學(xué)問(wèn)題的探索性和挑戰(zhàn)性,感受數(shù)學(xué)思考過(guò)程的條理性和數(shù)學(xué)結(jié)論的確定性,獲得成功的喜悅。

  教學(xué)重點(diǎn):掌握和運(yùn)用圓柱體積計(jì)算公式進(jìn)行正確計(jì)算。

  教學(xué)難點(diǎn):理解圓柱體積計(jì)算公式的推導(dǎo)過(guò)程,體會(huì)“轉(zhuǎn)化”方法的價(jià)值。

  教學(xué)過(guò)程:

  一、情景導(dǎo)入:

  1、教師:(出示)多么溫馨的場(chǎng)面,今天是亮亮和爺爺?shù)纳眨腋5囊患胰藝陲堊狼跋碛弥谰萍央,你能觀察到今天的飯菜比平時(shí)多了什么嗎?

  學(xué)生:1、比平日多了兩個(gè)蛋糕。

  2、兩個(gè)蛋糕一個(gè)大一個(gè)小。

  3、蛋糕都是圓柱形的。

  2、教師:同學(xué)們觀察的很仔細(xì),那你能根據(jù)剛學(xué)過(guò)的知識(shí)說(shuō)一說(shuō)爺爺?shù)案廨^大意味著什么嗎?

  學(xué)生:蛋糕大,意味著圓柱的體積大。

  3、教師:那你還知道什么是圓柱的體積嗎?

  學(xué)生:圓柱的體積就是圓柱體占空間的大小。

  4、教師:兩個(gè)蛋糕的體積相差較多,我們?nèi)菀妆容^出那個(gè)體積大,如果體積相差較小我們?cè)趺幢容^呢?

  學(xué)生:拿出準(zhǔn)備的圓柱體進(jìn)行比較,討論,各小組分別說(shuō)明比較的方法并展示。

  教師:板書(shū):圓柱的體積

  二、課上探究

  1、教師:同學(xué)們回憶一下我們還學(xué)過(guò)那些立體圖形?

  學(xué)生:還學(xué)過(guò)正方體和長(zhǎng)方體。

  教師:它們的體積怎樣計(jì)算?(多媒體出示長(zhǎng)方體)有什么共同點(diǎn)?

  學(xué)生:長(zhǎng)方體的體積=長(zhǎng)×寬×高,長(zhǎng)×寬=底面積,V=sh;正方體的體積=棱長(zhǎng)×棱長(zhǎng)×棱長(zhǎng),棱長(zhǎng)×棱長(zhǎng)=底面積,V=sh;共同點(diǎn)都是底面積乘高。

  2、猜測(cè)圓柱的體積與什么有關(guān)

  師:拿出圓柱體,讓學(xué)生猜想圓柱體積與什么有關(guān)。

  生1、圓柱的體積與圓柱的高有關(guān)。

  生2、圓柱的體積與圓柱的底面積有關(guān)。

  生3、圓柱的體積與圓柱的底面周長(zhǎng)有關(guān)。

  生4、圓柱的體積與圓柱的底面半徑有關(guān)。

  3、推導(dǎo)圓柱體積公式

 、賻: 同學(xué)們觀察圓柱的底面是一個(gè)圓,學(xué)習(xí)圓面積時(shí),我們是把圓轉(zhuǎn)化成哪種圖形來(lái)求面積的?

  生: 把圓轉(zhuǎn)化成近似長(zhǎng)方形來(lái)求面積的。

  ②師:我們一起來(lái)回憶把圓轉(zhuǎn)化成近似長(zhǎng)方形的過(guò)程,()

  師: 你發(fā)現(xiàn)了什么?

  生:我發(fā)現(xiàn)把圓平均分成的份數(shù)越多,拼成的圖形越接近長(zhǎng)方形。

 、蹘煟簣A柱可以看成多個(gè)圓片摞在一起,把圓剪拼成的每個(gè)近似長(zhǎng)方形也摞在一起。我們就把圓柱轉(zhuǎn)化成我們以前學(xué)過(guò)的哪種立體圖形呢?

  生:把圓柱轉(zhuǎn)化成近似的`長(zhǎng)方體。

  ④師用圓柱體演示轉(zhuǎn)換過(guò)程,讓學(xué)生說(shuō)怎樣轉(zhuǎn)換的。

  生:把圓柱平均分成16份拼成一個(gè)近似的長(zhǎng)方體。

  ⑤師: 為了讓大家看的更清楚,我們?cè)傺菔疽幌逻@個(gè)轉(zhuǎn)化過(guò)程。

  再次演示把圓柱等分16等份,拼成近似的長(zhǎng)方體。

  再出示32等份的圓柱體拼成的近似的長(zhǎng)方體,讓學(xué)生觀察,發(fā)現(xiàn)了什么?

  生:分成的份數(shù)越多,拼成的圖形越接近長(zhǎng)方體。

 、迬煟撼鍪緢A柱體和拼成的長(zhǎng)方體,讓學(xué)生觀察,拼好的長(zhǎng)方體與原來(lái)的圓柱比較,發(fā)現(xiàn)了什么?

  學(xué)生分組討論,匯報(bào):

  生:長(zhǎng)方體的高和圓柱的高相等。

  生:長(zhǎng)方體的底面積和圓柱的底面積相等。

 、邘煟耗闶窃趺聪氲?

  生:剛才我們復(fù)習(xí)了把圓轉(zhuǎn)化成長(zhǎng)方形,所以圓柱的底面積和長(zhǎng)方體的底面積相等。

 、鄮煟涸俅斡脠A柱拼成近似長(zhǎng)方體的過(guò)程,讓學(xué)生仔細(xì)觀察圓轉(zhuǎn)化成長(zhǎng)方形后,面積相等。

  生:長(zhǎng)方體的長(zhǎng)是圓柱底面周長(zhǎng)的一半,寬是圓柱底面半徑

  師:演示 長(zhǎng)方體的體積=底面積×高

 、釒煟耗敲磮A柱的體積等于什么呢?

  生:圓柱的體積=底面積×高

 、庀旅嫖覀?cè)僖黄鸹貞浺幌罗D(zhuǎn)化的過(guò)程,()

  讓學(xué)生獨(dú)立填答案,匯報(bào):

  三、我們知道了圓柱的體積公式,下面我們就來(lái)解決一些實(shí)際問(wèn)題。

【《圓柱的體積》教案】相關(guān)文章:

圓柱的體積教案11-18

《圓柱的體積》教案09-01

圓柱的體積教案及反思03-09

《圓柱的體積》教案三篇02-03

《圓柱的體積》教案8篇01-20

精選《圓柱的體積》教案四篇02-17

《圓柱的體積》教案(15篇)03-13

圓柱的體積教案15篇03-19

《圓柱的體積》數(shù)學(xué)教案12-15

《圓柱的體積》教案7篇01-27