有理數(shù)的加法教案15篇
作為一名辛苦耕耘的教育工作者,時(shí)常需要編寫教案,教案是教學(xué)活動的依據(jù),有著重要的地位。教案應(yīng)該怎么寫才好呢?下面是小編精心整理的有理數(shù)的加法教案,歡迎大家借鑒與參考,希望對大家有所幫助。
有理數(shù)的加法教案1
一.教學(xué)目標(biāo)
1.知識與技能
。1)通過足球賽中的凈勝球數(shù),使學(xué)生掌握有理數(shù)加法法則,并能運(yùn)用法則進(jìn)行計(jì)算;
。2)在有理數(shù)加法法則的教學(xué)過程中,注意培養(yǎng)學(xué)生的運(yùn)算能力.
2.過程與方法
通過觀察,比較,歸納等得出有理數(shù)加法法則。能運(yùn)用有理數(shù)加法法則解決實(shí)際問題。
3.情感態(tài)度與價(jià)值觀
認(rèn)識到通過師生合作交流,學(xué)生主動叁與探索獲得數(shù)學(xué)知識,從而提高學(xué)生學(xué)習(xí)數(shù)學(xué)的積極性。
二、教學(xué)重難點(diǎn)及關(guān)鍵:
重點(diǎn):會用有理數(shù)加法法則進(jìn)行運(yùn)算.
難點(diǎn):異號兩數(shù)相加的法則.
關(guān)鍵:通過實(shí)例引入,循序漸進(jìn),加強(qiáng)法則的應(yīng)用.
三、教學(xué)方法
發(fā)現(xiàn)法、歸納法、與師生轟動緊密結(jié)合.
四、教材分析
“有理數(shù)的加法”是人教版七年級數(shù)學(xué)上冊第一章有理數(shù)的第三節(jié)內(nèi)容,本節(jié)內(nèi)容安排四個(gè)課時(shí),本課時(shí)是本節(jié)內(nèi)容的第一課時(shí),本課設(shè)計(jì)主要是通過球賽中凈勝球數(shù)的實(shí)例來明確有理數(shù)加法的意義,引入有理數(shù)加法的法則,為今后學(xué)習(xí)“有理數(shù)的'減法”做鋪墊。
五、教學(xué)過程
。ㄒ唬﹩栴}與情境
我們已經(jīng)熟悉正數(shù)的運(yùn)算,然而實(shí)際問題中做加法運(yùn)算的數(shù)有可能超出正數(shù)范圍。例如,足球循環(huán)賽中,通常把進(jìn)球數(shù)記為正數(shù),失球數(shù)記為負(fù)數(shù),它們的和叫作凈勝球數(shù)。章前言中,紅隊(duì)進(jìn)4個(gè)球,失2個(gè)球;藍(lán)隊(duì)進(jìn)1個(gè)球,失1個(gè)球。于是紅隊(duì)的凈勝球?yàn)?+(-2),黃隊(duì)的凈勝球?yàn)?+(-1),這里用到正數(shù)與負(fù)數(shù)的加法。
。ǘ⿴熒餐骄坑欣頂(shù)加法法則
前面我們學(xué)習(xí)了有關(guān)有理數(shù)的一些基礎(chǔ)知識,從今天起開始學(xué)習(xí)有理數(shù)的運(yùn)算.這節(jié)課我們來研究兩個(gè)有理數(shù)的加法.兩個(gè)有理數(shù)相加,有多少種不同的情形?為此,我們來看一個(gè)大家熟悉的實(shí)際問題:
足球比賽中贏球個(gè)數(shù)與輸球個(gè)數(shù)是相反意義的量.若我們規(guī)定贏球?yàn)椤罢,輸球(yàn)椤柏?fù)”,打平為“0”.比如,贏3球記為+3,輸1球記為-1.學(xué)校足球隊(duì)在一場比賽中的勝負(fù)可能有以下各種不同的情形:
(1)上半場贏了3球,下半場贏了1球,那么全場共贏了4球.也就是
(+3)+(+1)=+4.
(2)上半場輸了2球,下半場輸了1球,那么全場共輸了3球.也就是
(-2)+(-1)=-3.
現(xiàn)在,請同學(xué)們說出其他可能的情形.
答:上半場贏了3球,下半場輸了2球,全場贏了1球,也就是
(+3)+(-2)=+1;
上半場輸了3球,下半場贏了2球,全場輸了1球,也就是
(-3)+(+2)=-1;
上半場贏了3球下半場不輸不贏,全場仍贏3球,也就是
(+3)+0=+3;
上半場輸了2球,下半場兩隊(duì)都沒有進(jìn)球,全場仍輸2球,也就是
(-2)+0=-2;
上半場打平,下半場也打平,全場仍是平局,也就是
0+0=0.
上面我們列出了兩個(gè)有理數(shù)相加的7種不同情形,并根據(jù)它們的具體意義得出了它們相加的和.但是,要計(jì)算兩個(gè)有理數(shù)相加所得的和,我們總不能一直用這種方法.現(xiàn)在請同學(xué)們仔細(xì)觀察比較這7個(gè)算式,你能從中發(fā)現(xiàn)有理數(shù)加法的運(yùn)算法則嗎?也就是結(jié)果的符號怎么定?絕對值怎么算?
這里,先讓學(xué)生思考,師生交流,再由學(xué)生自己歸納出有理數(shù)加法法則:
1.同號兩數(shù)相加,取相同的符號,并把絕對值相加;
2.絕對值不相等的異號兩數(shù)相加,取絕對值較大的加數(shù)符號,并用較大的絕對值減去較小的絕對值,互為相反數(shù)的兩個(gè)數(shù)相加得0;
3.一個(gè)數(shù)同0相加,仍得這個(gè)數(shù).
。ㄈ⿷(yīng)用舉例 變式練習(xí)&&</p>
例1 口答下列算式的結(jié)果
(1)(+4)+(+3);(2)(-4)+(-3);(3)(+4)+(-3);(4)(+3)+(-4);
(5)(+4)+(-4);(6)(-3)+0;(7)0+(+2);(8)0+0.
學(xué)生逐題口答后,師生共同得出:進(jìn)行有理數(shù)加法,先要判斷兩個(gè)加數(shù)是同號還是異號,有一個(gè)加數(shù)是否為零;再根據(jù)兩個(gè)加數(shù)符號的具體情況,選用某一條加法法則.進(jìn)行計(jì)算時(shí),通常應(yīng)該先確定“和”的符號,再計(jì)算“和”的絕對值.
例2(教科書的例1)
解:(1)(-3)+(-9) (兩個(gè)加數(shù)同號,用加法法則的第1條計(jì)算)
=-(3+9) (和取負(fù)號,把絕對值相加)
=-12.
。2)(-4.7)+3.9 (兩個(gè)加數(shù)異號,用加法法則的第2條計(jì)算)
=-(4.7-3.9) (和取負(fù)號,把大的絕對值減去小的絕對值)
=-0.8
例3(教科書的例2)教師在算出紅隊(duì)的凈勝球數(shù)后,學(xué)生自己算黃隊(duì)和藍(lán)隊(duì)的凈勝球數(shù)
下面請同學(xué)們計(jì)算下列各題以及教科書第23頁練習(xí)第1與第2題
(1)(-0.9)+(+1.5); (2)(+2.7)+(-3); (3)(-1.1)+(-2.9);
學(xué)生書面練習(xí),四位學(xué)生板演,教師巡視指導(dǎo),學(xué)生交流,師生評價(jià)。
。ㄋ模┬〗Y(jié)
1.本節(jié)課你學(xué)到了什么?
2.本節(jié)課你有什么感受?(由學(xué)生自己小結(jié))
(五)作業(yè)設(shè)計(jì)
1.計(jì)算:
(1)(-10)+(+6);(2)(+12)+(-4);(3)(-5)+(-7);(4)(+6)+(+9);
(5)67+(-73);(6)(-84)+(-59);(7)-33+48;(8)(-56)+37.
2.計(jì)算:
(1)(-0.9)+(-2.7); (2)3.8+(-8.4);(3)(-0.5)+3;(4)3.29+1.78;
(5)7+(-3.04);(6)(-2.9)+(-0.31)(7)(-9.18)+6.18; (8)(-0.78)+0.
3.用“>”或“<”號填空:
(1)如果a>0,b>0,那么a+b ______0;
(2)如果a<0,b<0,那么a+b ______0;
(3)如果a>0,b<0,|a|>|b|,那么a+b ______0;
(4)如果a<0,b>0,|a|>|b|,那么a+b ______0
。┌鍟O(shè)計(jì)
1.3.1有理數(shù)加法
一、加法法則二、例1例2例3
有理數(shù)的加法教案2
教學(xué)目標(biāo):
1、使學(xué)生掌握有理數(shù)加法的運(yùn)算律,并能運(yùn)用加法運(yùn)算律簡化運(yùn)算。
2、培養(yǎng)學(xué)生觀察、比較、歸納及運(yùn)算能力。
重點(diǎn):有理數(shù)加法運(yùn)算律及其運(yùn)用。
重點(diǎn):靈活運(yùn)用運(yùn)算律
教學(xué)過程:
一、創(chuàng)設(shè)情境,引入新課
1、小學(xué)時(shí)已學(xué)過的加法運(yùn)算律有哪幾條?
2、猜一猜:在有理數(shù)的加法中,這兩條運(yùn)算律仍然適用嗎?
3、(1)計(jì)算30+(-20)=__________=______,-20+30=___________=_____;
(2)[8+(-5)]+(-4)=_______=______, 8+[(-5)+(-4)]=_______=______。
二、講授新課
教師:你會用文字表述加法的兩條運(yùn)算律嗎?你會用字母表示加法的這兩條運(yùn)算律嗎?
。▽W(xué)生回答省略)
師生共同歸納:加法交換律:兩個(gè)數(shù)相加,交換加數(shù)的位置,和不變。 即:a+b=b+a
加法結(jié)合律:三個(gè)數(shù)相加,先把前兩個(gè)數(shù)相加,或者先把后兩個(gè)數(shù)相加,和不變。即(a+b)+c=a+(b+c)
講解例3
教師:例3中是怎樣使計(jì)算簡化的'?這樣做的根據(jù)是什么?(請兩位同學(xué)起來回答)
三、鞏固知識
教師:例4中用了兩種方法,比較兩種解法,哪種方法比較好?解法2中使用了哪些運(yùn)算律?
師生共同得出:解法2比較好,因?yàn)樗倪\(yùn)算量比較小。解法2中使用了加法交換律和加法結(jié)合律。
四、總結(jié)
本節(jié)課主要學(xué)習(xí)有理數(shù)加法運(yùn)算律及其運(yùn)用,主要用到的思想方法是類比思想,需要注意的是:有理數(shù)的加法運(yùn)算律與小學(xué)學(xué)習(xí)的運(yùn)算律相同,運(yùn)用加法運(yùn)算律的目的為了簡化運(yùn)算。解題技巧是將正數(shù)分別相加,再把負(fù)數(shù)分別相加,然后再把它們的和相加。
五、布置作業(yè)
有理數(shù)的加法教案3
第一課時(shí)
三維目標(biāo)
一、知識與技能
理解有理數(shù)加法的意義,掌握有理數(shù)加法法則,并能準(zhǔn)確地進(jìn)行有理數(shù)的加法運(yùn)算。
二、過程與方法
引導(dǎo)學(xué)生觀察符號及絕對值與兩個(gè)加數(shù)的符號及其他絕對值的關(guān)系,培養(yǎng)學(xué)生的分類、歸納、概括能力。
三、情感態(tài)度與價(jià)值觀
培養(yǎng)學(xué)生主動探索的良好學(xué)習(xí)習(xí)慣。
教學(xué)重、難點(diǎn)與關(guān)鍵
1.重點(diǎn):掌握有理數(shù)加法法則,會進(jìn)行有理數(shù)的加法運(yùn)算。
2.難點(diǎn):異號兩數(shù)相加的法則。
3.關(guān)鍵:培養(yǎng)學(xué)生主動探索的良好學(xué)習(xí)習(xí)慣。
四、教學(xué)過程
一、復(fù)習(xí)提問,引入新課
1.有理數(shù)的絕對值是怎樣定義的?如何計(jì)算一個(gè)數(shù)的絕對值?
2.比較下列每對數(shù)的大小。
(1)-3和-2; (2)│-5│和│5│; (3)-2與│-1│;(4)-(-7)和-│-7│。
五、新授
在小學(xué)里,我們已學(xué)習(xí)了加、減、乘、除四則運(yùn)算,當(dāng)時(shí)學(xué)習(xí)的運(yùn)算是在正有理數(shù)和零的范圍內(nèi)。然而實(shí)際問題中做加法運(yùn)算的數(shù)有可能超出正數(shù)范圍,例如,足球循環(huán)賽中,可以把進(jìn)球數(shù)記為正數(shù),失球數(shù)記為負(fù)數(shù),它們的和叫做凈勝球數(shù)。本章前言中,紅隊(duì)進(jìn)4個(gè)球,失2個(gè)球;藍(lán)隊(duì)進(jìn)1個(gè)球,失1個(gè)球,那么哪個(gè)隊(duì)的`凈勝球多呢?
要解決這個(gè)問題,先要分別求出它們的凈勝球數(shù)。
紅隊(duì)的凈勝球數(shù)為:4+(-2);
藍(lán)隊(duì)的凈勝球數(shù)為:1+(-1)。
這里用到正數(shù)與負(fù)數(shù)的加法。
怎樣計(jì)算4+(-2)呢?
下面借助數(shù)軸來討論有理數(shù)的加法。
看下面的問題:
一個(gè)物體作左右方向的運(yùn)動,我們規(guī)定向左為負(fù)、向右為正。
(1)如果物體先向右運(yùn)動5m,再向右運(yùn)動3m,那么兩次運(yùn)動后總的結(jié)果是什么?
有理數(shù)的加法教案4
教學(xué)目標(biāo):
1通過學(xué)生身邊可以嘗試、探索的場景,經(jīng)歷有理數(shù)加法法則得出的過程,理解有理數(shù)加法法則的合理性。2能進(jìn)行簡單的有理數(shù)加法運(yùn)算。3發(fā)展觀察、歸納、猜測驗(yàn)證等能力。
重點(diǎn)難點(diǎn):
重點(diǎn):有理數(shù)加法法則的得出,和的符號的確定;難點(diǎn):異號兩數(shù)相加
教學(xué)過程
一激情引趣,導(dǎo)入新課
1我們早知道正有理數(shù)和零可以做加法運(yùn)算,所有的有理數(shù)是否都可以進(jìn)行加法運(yùn)算呢?這就是我們這節(jié)課要研究的問題,先來分析一下,所有的有理數(shù)相加的時(shí)候有哪些情況呢?請你想一想
2從前有一個(gè)文盲記錄家里的收入和支出的時(shí)候是這樣的,用一顆紅豆代表收入一文錢,用一顆黑豆代表支出一文錢,有一個(gè)月他發(fā)現(xiàn)記賬的盒子里有10顆紅豆6顆黑豆,他發(fā)現(xiàn)紅豆比黑豆多了4顆,于是他不僅知道了這個(gè)月結(jié)余了4文錢還知道了自己這個(gè)月的收入和支出情況。我們可以用一個(gè)圖形來表示他這種記賬方式!啊稹,“●”分別表紅豆和黑豆。
,這個(gè)圖形其實(shí)就是一個(gè)有理數(shù)的.加法算式:(+10)+(-6)=+4下面我們借助數(shù)軸來理解有理數(shù)的加法運(yùn)算。
二合作交流,探究新知
以原點(diǎn)為起點(diǎn),規(guī)定向東的方向?yàn)檎较,向西的方向(yàn)樨?fù)方向,一個(gè)單位代表1千米
1同號兩數(shù)相加
小亮從O點(diǎn)出發(fā),先向西移動2個(gè)千米休息一會兒,再向西移動3個(gè)千米,兩次走路的總效果等于從點(diǎn)O出發(fā)向_____走了_______千米,用式子表示為_______________.
從上,你發(fā)現(xiàn)了嗎,同號兩數(shù)相加結(jié)果的符號怎么確定?結(jié)果的絕對值怎么確定?請把你的發(fā)現(xiàn)填在下面的框里。
同號兩數(shù)相加,取__________的符號,并把它們的_____________相加。
2異號兩數(shù)相加
(1)小明先從點(diǎn)O出發(fā),先向東走4千米,發(fā)現(xiàn)口袋里的鑰匙丟了,急急忙忙掉頭向西走了1千米,找到了掉在路邊的鑰匙,小明這兩次走路的效果總等于從點(diǎn)O出發(fā)向___走了____千米,用式子表示為_________________________.
(2)小李先從點(diǎn)O出發(fā),先向東走了1米,突然想起今天家里有事,趕緊掉頭向西往家里走,走了3千米到達(dá)家中,小李兩次走路的總效果等于等于吃哦從點(diǎn)O出發(fā),向___走了
_____千米。用式子表達(dá)為_______________________.
從上面例子,你發(fā)現(xiàn)了異號兩數(shù)怎么做嗎?把你的結(jié)論填在下框中。
異號兩數(shù)相加,絕對值不相等時(shí),取__________________的符號,并用_________的絕對值
減去_______________的絕對值。
3一個(gè)數(shù)和零相加,以及互為相反數(shù)相加
(1)某個(gè)人第一批貨獲得利潤3萬元,第二批貨物保本,這兩批貨物總的利潤是多少萬元?
(2)某人第一批貨物的利潤是5萬元,第二批貨物虧損5萬元,這兩批貨物總的利潤是多少?
從上問題,你發(fā)現(xiàn)了什么?把你的結(jié)論寫在下框中,
互為相反數(shù)的兩個(gè)相加得_______,一個(gè)數(shù)和零相加,任得____________________.
三應(yīng)用遷移,拓展提高
例1計(jì)算(1)(-8)+(-12)(2)(-3.75)+(-0.25)
(3)(-5)+9(4)(–10)+7
例2計(jì)算(1)(-3)+(2)(-)+(-)
例3填空
(1)-7+____=0(2)(+)+______=-(3)____+(-)=(4)__+=
四課堂練習(xí),鞏固提高
P21
五反思小結(jié)鞏固提高
有理數(shù)的加法法則有哪些?請你把它們寫在下面:
1
2
3
4
六作業(yè)p24-25A組1-4B1
有理數(shù)的加法教案5
1.教學(xué)目標(biāo)
1.1地位、作用
在初中階段,要培養(yǎng)學(xué)生的運(yùn)算能力、邏輯思維能力和空間想象能力以及讓學(xué)生根據(jù)一些現(xiàn)實(shí)模型,把實(shí)際問題轉(zhuǎn)化成數(shù)學(xué)問題的數(shù)學(xué)意識,增強(qiáng)學(xué)生對數(shù)學(xué)的理解和解決實(shí)際問題的能力。運(yùn)算能力的培養(yǎng)主要是在初一階段完成。有理數(shù)的運(yùn)算是初等數(shù)學(xué)的基本運(yùn)算,掌握有理數(shù)的運(yùn)算,是學(xué)好后續(xù)內(nèi)容的重要前提。有理數(shù)的加法作為有理數(shù)的運(yùn)算的一種,它是有理數(shù)運(yùn)算的重要基礎(chǔ)之一,也是整個(gè)初中代數(shù)的一個(gè)基礎(chǔ),它直接關(guān)系到有理數(shù)運(yùn)算、實(shí)數(shù)運(yùn)算、代數(shù)式運(yùn)算、解方程、研究函數(shù)等內(nèi)容的學(xué)習(xí)。
1.2學(xué)情分析
在初中數(shù)學(xué)教學(xué)中,非智力因素在認(rèn)知過程中起十分重要的作用,而興趣在非智力因素中占有特殊的地位,它是學(xué)生學(xué)習(xí)自覺性和積極性的核心因素,是學(xué)習(xí)的強(qiáng)化劑。因此,從初一開始培養(yǎng)學(xué)生對數(shù)學(xué)的興趣,是其學(xué)好數(shù)學(xué)的重要保障。圍繞這一點(diǎn),在教學(xué)中要讓不同程度的學(xué)生都有體驗(yàn)成功的機(jī)會,教學(xué)中教師為導(dǎo)、學(xué)生為主,充分認(rèn)識初一學(xué)生這個(gè)年齡段的心理特征:好奇心強(qiáng);好勝心強(qiáng);抽象思維能力弱,過分依賴直觀;意志薄弱,缺乏毅力。
另一方面,課本知識的傳授是符合學(xué)生的認(rèn)知發(fā)展特點(diǎn)的。在前期段,學(xué)生已經(jīng)儲藏了兩個(gè)正數(shù)的加法,較大數(shù)減較小數(shù)的減法,引入了負(fù)數(shù),有必要再學(xué)習(xí)有理數(shù)的加法,然后過渡到有理數(shù)的其它運(yùn)算,再到式的運(yùn)算、方程、函數(shù)的運(yùn)算;同時(shí),負(fù)數(shù)、數(shù)軸、絕對值的學(xué)習(xí)又為這節(jié)課的學(xué)習(xí)方法奠定了基礎(chǔ)。
1.3教學(xué)目標(biāo)
根據(jù)本節(jié)所處的地位與作用,結(jié)合學(xué)生的具體學(xué)情,確定本節(jié)課的教學(xué)目標(biāo)如下:
知識目標(biāo):通過將生活中的問題轉(zhuǎn)化為有理數(shù)加法的全過程,使學(xué)生直觀形象地理解有理數(shù)加法的意義,掌握有理數(shù)的加法法則,并能正確運(yùn)用。
能力目標(biāo):通過情境的設(shè)計(jì),培養(yǎng)學(xué)生的探索創(chuàng)新精神。在學(xué)生學(xué)習(xí)的`過程中,滲透分類思想、數(shù)形結(jié)合思想與及綜合、歸納、概括的能力。
情感目標(biāo):通過教師引導(dǎo)下的探索,讓學(xué)生感受到數(shù)學(xué)學(xué)習(xí)的價(jià)值與樂趣。
1.4教材處理
根據(jù)本節(jié)教材的內(nèi)容,我把有理數(shù)的加法劃分為兩個(gè)課時(shí),第一課時(shí)學(xué)習(xí)有理數(shù)的加法法則并能準(zhǔn)確進(jìn)行兩個(gè)數(shù)的加法運(yùn)算;第二節(jié)課學(xué)習(xí)有理數(shù)的加法運(yùn)算律并能準(zhǔn)確進(jìn)行多個(gè)數(shù)的加法運(yùn)算。
2.重點(diǎn)、難點(diǎn)
2.1教學(xué)重點(diǎn):有理數(shù)加法法則的理解與運(yùn)用(而不是簡單地記憶法則)。
2.2教學(xué)難點(diǎn):異號兩數(shù)加法的實(shí)際意義及法則的歸納。
3.教學(xué)方法與教學(xué)手段
本課采用多媒體輔助教學(xué),從學(xué)生熟悉的人物出發(fā),激發(fā)學(xué)生探索欲;通過層層鋪墊,引導(dǎo)學(xué)生利用已學(xué)數(shù)學(xué)工具探索新知;在學(xué)生探索的基礎(chǔ)上,有意識地引導(dǎo)學(xué)生對多樣化的結(jié)果進(jìn)行分類整理;在法則的提煉過程中,培養(yǎng)學(xué)生類比、歸納和概括的學(xué)習(xí)能力。
在本節(jié)的設(shè)計(jì)過程中,利用了一道開放性習(xí)題引出課題,讓學(xué)生在研究中學(xué)習(xí),對學(xué)生進(jìn)行能力培養(yǎng),充分跨越學(xué)生的最近發(fā)展區(qū)。
4.教學(xué)過程:
4.1創(chuàng)設(shè)情境,讓學(xué)生的思維“動”起來
[生活情境]劉翔是世界男子青年錦標(biāo)賽110米欄的冠軍,是中國人的驕傲。從他的體育精神中我們應(yīng)該學(xué)習(xí)他堅(jiān)忍不拔的刻苦精神,激勵(lì)學(xué)生愛國、立志。將跑道抽象為數(shù)軸,起跑點(diǎn)為原點(diǎn),將生活問題數(shù)學(xué)化。
說明:這種從生活到數(shù)學(xué)的建模,從學(xué)生感興趣的題材出發(fā),為創(chuàng)設(shè)下文的探索情境作一個(gè)興奮點(diǎn)的刺激,讓每個(gè)學(xué)生都有信心并且能夠積極嘗試、探索。
4.2體驗(yàn)進(jìn)程,讓學(xué)生的思維“活”起來
“數(shù)學(xué)是問題的心臟”,是教學(xué)的出發(fā)點(diǎn),由問題引入課題能使學(xué)生產(chǎn)生較強(qiáng)的未知欲。
[開放式探索]劉翔在一條東西方向的跑道上往返跑步進(jìn)行訓(xùn)練,他連續(xù)跑了兩段路,共跑了80米。問劉翔兩次以后的位置可能在哪里?設(shè)計(jì)意圖:這是一道條件不唯一,結(jié)果也不唯一的開放性題型,對學(xué)生有一定的挑戰(zhàn)性。它的優(yōu)點(diǎn)在于:只要理解題意,任何一個(gè)學(xué)生都能答對至少一種正確答案;同時(shí)它的答案又分多種情況,學(xué)生由于思維的不完備性,很容易丟失答案,并且這種錯(cuò)誤在別人的提醒中能馬上恍然大悟。這是一道能鍛煉學(xué)生思維的靈活性、嚴(yán)謹(jǐn)性及答案適用分類討論、培養(yǎng)學(xué)生概括能力的好題。在本題中,包含學(xué)生對有理數(shù)加法的意義的理解及探索有理數(shù)加法加數(shù)的幾種類別(從正負(fù)性上區(qū)分),在求和的過程中,讓學(xué)生有機(jī)會經(jīng)歷從實(shí)物模擬到表象操作再到符號操作的轉(zhuǎn)化。
教學(xué)方法:用課件幫助學(xué)生思維從“實(shí)物操作”過渡到“表象操作”并優(yōu)化思路;給予學(xué)生充分的思考機(jī)會;善于抓住學(xué)生思維的弱勢因勢利導(dǎo)。
預(yù)計(jì)困難:①學(xué)生直觀思維理解“共跑了80米”就是在離出發(fā)點(diǎn)80米遠(yuǎn)的地方。這是一個(gè)距離與位移的概念混淆并且教學(xué)中不宜新增概念。 ②條件中的“兩段”和“80米”分別對應(yīng)加法中的什么量?有的學(xué)生不理解題意,可能放棄。
處理方法:①教學(xué)中學(xué)生思維上的弱點(diǎn)也可能會成為他這堂課思維的亮點(diǎn),讓學(xué)生在練習(xí)紙上嘗試“實(shí)物操作”思維方式,自己突破思維瓶頸。②在學(xué)生正確理解80米的條件使用方法后,再讓學(xué)生比較80與加數(shù)的絕對值、和的絕對值的關(guān)系,在理解能力上更上一層樓。③區(qū)別不同程度的學(xué)生,可以從“列式子”,“列等式”,問“為什么”逐步遞進(jìn),讓盡可能多的學(xué)生嘗試最近發(fā)展區(qū)。
教學(xué)注意點(diǎn):要明確本堂課的教學(xué)重點(diǎn)和目標(biāo),對開放題的探索淺嘗止,不深究問題的所有可能性,剪輯學(xué)生答案盡快引出課題。
4.3探究規(guī)律,讓學(xué)生的思維“跳”起來
用分類討論的方法進(jìn)行有理數(shù)的加法規(guī)律的歸納是本節(jié)課的重點(diǎn)和難點(diǎn),教師要依據(jù)學(xué)生現(xiàn)有得出的學(xué)習(xí)發(fā)現(xiàn)組織語言,減少指示或命令性語言,爭取把課堂靜止或?qū)W生不理解時(shí)間減至最少。
在答案的匯總過程中,要肯定學(xué)生的探索,愛護(hù)學(xué)生的學(xué)習(xí)興趣和探索欲。讓學(xué)生作課堂的主人,陳述自己的結(jié)果。對學(xué)生的不完整或不準(zhǔn)確回答,教師適當(dāng)延遲評價(jià);要鼓勵(lì)學(xué)生創(chuàng)造性思維,教師要及時(shí)抓住學(xué)生智慧的火花的閃現(xiàn),這一瞬間的心理激勵(lì),是培養(yǎng)學(xué)生創(chuàng)造力、充分挖掘潛能的有效途徑。
預(yù)先設(shè)想學(xué)生思路,可能從以下方面分類歸納,探索規(guī)律:
①從加數(shù)的不同符號情況(可遇見情況:正數(shù)+正數(shù);負(fù)數(shù)+負(fù)數(shù);正數(shù)+負(fù)數(shù);數(shù)+0)
、趶募訑(shù)的不同數(shù)值情況(加數(shù)為整數(shù);加數(shù)為小數(shù))
③從有理數(shù)加法法則的分類(同號兩數(shù)相加;異號兩數(shù)相加;同0相加)
、軓南蛄康牡有苑矫(加數(shù)的絕對值相加;加數(shù)的絕對值相減)
⑤從和的符號確定方面(同號兩數(shù)相加符號的確定;異號兩數(shù)相加符號的確定)
教學(xué)中要避免課堂熱熱鬧鬧,卻陷入數(shù)學(xué)教學(xué)的淺薄與貧乏。
有理數(shù)的加法教案6
今天我說課的題目是“有理數(shù)的加法(一)"。本節(jié)課選自華東師范大學(xué)出版社出版的〈義務(wù)教育課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書〉七年級(上),。這一節(jié)課是本冊書第二章第六節(jié)第一課時(shí)的內(nèi)容。下面我就從以下四個(gè)方面一一教材分析、教材處理、教學(xué)方法和教學(xué)手段、教學(xué)過程的設(shè)計(jì)向大家介紹一下我對本節(jié)課的理解與設(shè)計(jì)。
一、教材分析
分析本節(jié)課在教材中的地位和作用,以及在分析數(shù)學(xué)大綱的基礎(chǔ)上確定本節(jié)課的教學(xué)目標(biāo)、重點(diǎn)和難點(diǎn)。首先來看一下本節(jié)課在教材中的地位和作用。
1、 有理數(shù)的加法在整個(gè)知識系統(tǒng)中的地位和作用是很重要的。初中階段要培養(yǎng)學(xué)生的運(yùn)算能力、邏輯思維能力和空間想象能力以及讓學(xué)生根據(jù)一些現(xiàn)實(shí)模型,把它轉(zhuǎn)化成數(shù)學(xué)問題,從而培養(yǎng)學(xué)生的數(shù)學(xué)意識,增強(qiáng)學(xué)生對數(shù)學(xué)的理解和解決實(shí)際問題的能力。運(yùn)算能力的培養(yǎng)主要是在初一階段完成。有理數(shù)的加法作為有理數(shù)的運(yùn)算的一種,它是有理數(shù)運(yùn)算的重要基礎(chǔ)之一,它是整個(gè)初中代數(shù)的一個(gè)基礎(chǔ),它直接關(guān)系到有理數(shù)運(yùn)算、實(shí)數(shù)運(yùn)算、代數(shù)式運(yùn)算、解方程、、研究函數(shù)等內(nèi)容的學(xué)習(xí)。
2、 就第二章而言,有理數(shù)的加法是本章的一個(gè)重點(diǎn)。有理數(shù)這一章分為兩大部分一-有理數(shù)的意義和有理數(shù)的運(yùn)算,有理數(shù)的意義是有理數(shù)運(yùn)算的基礎(chǔ),有理數(shù)的混合運(yùn)算是這一章的難點(diǎn),但混合運(yùn)算是以各種基本運(yùn)算為基礎(chǔ)的。在有理數(shù)范圍內(nèi)進(jìn)行的各種運(yùn)算:加、減法可以統(tǒng)一成為加法,乘法、除法和乘方可以統(tǒng)一成乘法,因此加法和乘法的運(yùn)算是本章的關(guān)鍵,而加法又是學(xué)生接觸的第一種有理數(shù)運(yùn)算,學(xué)生能否接受和形成在有理數(shù)范圍內(nèi)進(jìn)行的各種運(yùn)算的思考方式(確定結(jié)果的符合和絕對值),關(guān)鍵是這一節(jié)的學(xué)習(xí)。
從以上兩點(diǎn)不難看出它的地位和作用都是很重要的。
接下來,介紹本節(jié)課的教學(xué)目標(biāo)、重點(diǎn)和難點(diǎn)。(結(jié)合微機(jī)顯示)
教學(xué)大綱是我們確定教學(xué)目標(biāo),重點(diǎn)和難點(diǎn)的依據(jù)。教學(xué)大鋼規(guī)定,在有理數(shù)的加法的第一節(jié)要使學(xué)生理解有理數(shù)加法的意義,理解有理數(shù)的加法法則,并運(yùn)用法則進(jìn)行準(zhǔn)確運(yùn)算。因此根據(jù)教學(xué)大綱的要求,確定了本節(jié)課的教學(xué)目標(biāo)。1、知識目標(biāo)是:“(1)理解有理數(shù)加法的意義;(2)理解并掌握有理數(shù)加法的法則;(3)應(yīng)用有理數(shù)加法法則進(jìn)行準(zhǔn)確運(yùn)算;(4)滲透數(shù)形結(jié)合的思想。2能力目標(biāo)是:(1)培養(yǎng)學(xué)生準(zhǔn)確運(yùn)算的能力;(2)培養(yǎng)學(xué)生歸納總結(jié)知識的能力;3、德育目標(biāo)是;(1)滲透由特殊到一般的辯證唯物主義思想:(2)培養(yǎng)學(xué)生嚴(yán)謹(jǐn)?shù)乃季S品質(zhì)。有理數(shù)加法的意義與小學(xué)學(xué)習(xí)的在正有理數(shù)和零的范圍內(nèi)進(jìn)行的加法運(yùn)算的意義相同,讓學(xué)生理解即可,有理數(shù)的加法法則的理解與運(yùn)用是本節(jié)的重點(diǎn)內(nèi)容。因此本節(jié)課的重點(diǎn)是:有理數(shù)加法法則的理解與運(yùn)用。由于本階段的學(xué)生很難把握住事物主要特征:如異號兩數(shù)、絕對值不相等的異號兩數(shù)和互為相反數(shù)之間的關(guān)系,這就對法則的理解造成困難。因此我確定本節(jié)課的難,是是;有理數(shù)加法法則的理解。
二、教材處理
本節(jié)課是在前面學(xué)習(xí)了有理數(shù)的意義的基礎(chǔ)上進(jìn)行的,學(xué)生已經(jīng)很牢固地掌握了正數(shù)、負(fù)數(shù)、數(shù)軸、相反數(shù)、絕對值等概念,因此我沒有把時(shí)間過多地放在復(fù)習(xí)這些舊知識上,而是利用學(xué)生的好奇心,采用生動形象的事例,讓學(xué)生充當(dāng)指揮官的角色,親身參加探索發(fā)現(xiàn),從而獲取知識。在法則的得出過程當(dāng)中,我引進(jìn)了現(xiàn)代化的教學(xué)工具微機(jī),讓學(xué)生在微機(jī)演示的一種動態(tài)變化中自己發(fā)現(xiàn)規(guī)律歸納總結(jié),這不但增加了課堂的趣味性提高了學(xué)生的能力。而且直接地向?qū)W生滲透了數(shù)形結(jié)合的思想。在法則的應(yīng)用這一環(huán)節(jié)我又選配了一些變式練習(xí),通過書上的基本練習(xí)達(dá)到訓(xùn)練雙基的目的,通過變式練習(xí)達(dá)到發(fā)展智力、提高能力的目的。這些我將在教學(xué)過程的設(shè)計(jì)簾具體體現(xiàn)。而且在做練習(xí)的過程當(dāng)中讓學(xué)生互相提問,使課堂在學(xué)生的參與下積極有序的進(jìn)行。
三、教學(xué)方法和數(shù)學(xué)孚段
在教學(xué)過程中,我注重體現(xiàn)教師的導(dǎo)向作用和學(xué)生的主體地位,。本節(jié)是新課內(nèi)容的學(xué)習(xí),。教學(xué)過程中盡力引導(dǎo)學(xué)生成為知識的發(fā)現(xiàn)者,把教師的點(diǎn)撥和學(xué)生解決問題結(jié)合起來,為學(xué)生創(chuàng)設(shè)情境,從而不斷激發(fā)學(xué)生的求知欲望和學(xué)習(xí)興趣,使學(xué)生輕松愉快地學(xué)習(xí)不斷克服學(xué)生學(xué)習(xí)中的被動情況,使其在教學(xué)過程中在掌握知識同時(shí)、發(fā)展智力、受到教育。
四、教學(xué)過程的設(shè)計(jì)
1, 引入:再課堂的引入上,開始我本打算選擇教材上的例子,但是它過于簡單。并且不宜于引起學(xué)生的注意,所以我選擇了學(xué)生們感興趣的軍事問題,讓學(xué)生在充當(dāng)指揮官的同時(shí),有一種解決問題的成就感,從而使學(xué)生積極主動的學(xué)習(xí),并且營造了良好的學(xué)習(xí)氛圍。
2, 探索規(guī)律:法則的得出重要體現(xiàn)知識的發(fā)生,發(fā)展,形成過程。我通過了一個(gè)小人在坐標(biāo)軸上來回的移動,使學(xué)生在小人的移動過程當(dāng)中體會兩個(gè)數(shù)相加的變化規(guī)律。由于采用了形式活潑的教學(xué)手段,學(xué)生能夠全副身心的投入到思考問題中去,讓學(xué)生親身參加了探索發(fā)現(xiàn),獲取知識和技能的全過程。最后由學(xué)生對規(guī)律進(jìn)行歸納總結(jié)補(bǔ)充,從而得出有理數(shù)的加法法則。
3, 鞏固練習(xí):再習(xí)題的配備上,我注意了學(xué)生的思維是一個(gè)循序漸進(jìn)的過程,所以習(xí)題的配備由難而易,使學(xué)生在練習(xí)的過程當(dāng)中能夠逐步的提高能力,得到發(fā)展。并且采用男生出題,女生回答;女生出題,男生回答,活躍課堂氣氛,充分調(diào)動學(xué)生的積極性。使學(xué)生在一種比較活躍的氛圍中,解決各種問題。
4, 歸納總結(jié):歸納總結(jié)由學(xué)生完成,并且做適當(dāng)?shù)难a(bǔ)充。最后教師對本節(jié)的課進(jìn)行說明。
以上是我對本節(jié)課的理解和設(shè)計(jì)。希望各位老師批評指正,以達(dá)到提高個(gè)人教學(xué)能力的目的。
要的。初中階段要培養(yǎng)學(xué)生的運(yùn)算能力、邏輯思維能力和空間想象能力以及讓學(xué)生根據(jù)一些現(xiàn)實(shí)模型,把它轉(zhuǎn)化成數(shù)學(xué)問題,從而培養(yǎng)學(xué)生的數(shù)學(xué)意識,增強(qiáng)學(xué)生對數(shù)學(xué)的理解和解決實(shí)際問題的能力。運(yùn)算能力的培養(yǎng)主要是在初一階段完成。有理數(shù)的加法作為有理數(shù)的運(yùn)算的'一種,它是有理數(shù)運(yùn)算的重要基礎(chǔ)之一,它是整個(gè)初中代數(shù)的一個(gè)基礎(chǔ),它直接關(guān)系到有理數(shù)運(yùn)算、實(shí)數(shù)運(yùn)算、代數(shù)式運(yùn)算、解方程、、研究函數(shù)等內(nèi)容的學(xué)習(xí)。
2、 就第一章而言,有理數(shù)的加法是本章的一個(gè)重點(diǎn)。有理數(shù)這一章分為兩大部分一-有理數(shù)的意義和有理數(shù)的運(yùn)算,有理數(shù)的意義是有理數(shù)運(yùn)算的基礎(chǔ),有理數(shù)的混合運(yùn)算是這一章的難點(diǎn),但混合運(yùn)算是以各種基本運(yùn)算為基礎(chǔ)的。在有理數(shù)范圍內(nèi)進(jìn)行的各種運(yùn)算:加、減法可以統(tǒng)一成為加法,乘法、除法和乘方可以統(tǒng)一成乘法,因此加法和乘法的運(yùn)算是本章的關(guān)鍵,而加法又是學(xué)生接觸的第一種有理數(shù)運(yùn)算,學(xué)生能否接受和形成在有理數(shù)范圍內(nèi)進(jìn)行的各種運(yùn)算的思考方式(確定結(jié)果的符合和絕對值),關(guān)鍵是這一節(jié)的學(xué)習(xí)。
從以上兩點(diǎn)不難看出它的地位和作用都是很重要的。
接下來,介紹本節(jié)課的教學(xué)目標(biāo)、重點(diǎn)和難點(diǎn)。
教學(xué)大綱是我們確定教學(xué)目標(biāo),重點(diǎn)和難點(diǎn)的依據(jù)。教學(xué)大綱規(guī)定,在有理數(shù)的加法的第一節(jié)要使學(xué)生理解有理數(shù)加法的意義,理解有理數(shù)的加法法則,并運(yùn)用法則進(jìn)行準(zhǔn)確運(yùn)算。因此根據(jù)教學(xué)大綱的要求,確定了本節(jié)課的教學(xué)目標(biāo)。1、知識目標(biāo)是:“(1)理解有理數(shù)加法的意義;(2)理解并掌握有理數(shù)加法的法則;(3)應(yīng)用有理數(shù)加法法則進(jìn)行準(zhǔn)確運(yùn)算;(4)滲透數(shù)形結(jié)合的思想。2能力目標(biāo)是:(1)培養(yǎng)學(xué)生準(zhǔn)確運(yùn)算的能力;(2)培養(yǎng)學(xué)生歸納總結(jié)知識的能力;3、德育目標(biāo)是;(1)滲透由特殊到一般的辯證唯物主義思想:(2)培養(yǎng)學(xué)生嚴(yán)謹(jǐn)?shù)乃季S品質(zhì)。有理數(shù)加法的意義與小學(xué)學(xué)習(xí)的在正有理數(shù)和零的范圍內(nèi)進(jìn)行的加法運(yùn)算的意義相同,讓學(xué)生理解即可,有理數(shù)的加法法則的理解與運(yùn)用是本節(jié)的重點(diǎn)內(nèi)容。因此本節(jié)課的重點(diǎn)是:有理數(shù)加法法則的理解與運(yùn)用。由于本階段的學(xué)生很難把握住事物主要特征:如異號兩數(shù)、絕對值不相等的異號兩數(shù)和互為相反數(shù)之間的關(guān)系,這就對法則的理解造成困難。因此我確定本節(jié)課的難,是有理數(shù)加法法則的理解。
以上是我對本節(jié)課的理解和設(shè)計(jì)。希望各位老師批評指正,以達(dá)到提高個(gè)人教學(xué)能力的目的。
有理數(shù)的加法教案7
【教學(xué)目標(biāo)】
1.理解有理數(shù)加法的實(shí)際意義;
2.會作簡單的加法計(jì)算;
3.感受到原來用減法算的問題現(xiàn)在也可以用加法算.
【對話探索設(shè)計(jì)】
〖探索1〗
(1)某倉庫第一天運(yùn)進(jìn)300噸化肥,第二天又運(yùn)進(jìn)200噸化肥,兩天一共運(yùn)進(jìn)多少噸?
(2)某倉庫第一天運(yùn)進(jìn)300噸化肥,第二天運(yùn)出200噸化肥,兩天總的結(jié)果一共運(yùn)進(jìn)多少噸?
(3)某倉庫第一天運(yùn)進(jìn)300噸化肥,第二天又運(yùn)進(jìn)-200噸化肥,兩天一共運(yùn)進(jìn)多少噸?
(4)把第(3)題的算式列為300+(-200),有道理嗎?
(5)某倉庫第一天運(yùn)進(jìn)a噸化肥,第二天又運(yùn)進(jìn)b噸化肥,兩天一共運(yùn)進(jìn)多少噸?
〖探索2〗
如果物體先向右運(yùn)動,再向右運(yùn)動,那么兩次運(yùn)動后總的結(jié)果是什么?
假設(shè)原點(diǎn)為運(yùn)動起點(diǎn),用下面的數(shù)軸檢驗(yàn)?zāi)愕?答案.
在足球比賽中,通常把進(jìn)球數(shù)記為正數(shù),失球數(shù)記為負(fù)數(shù),它們的和叫做凈勝球數(shù).若某場比賽紅隊(duì)勝黃隊(duì)5:2(即紅隊(duì)進(jìn)5個(gè)球,失2個(gè)球),紅隊(duì)凈勝幾個(gè)球?
〖小游戲〗
(請一位同學(xué)到黑板前)前進(jìn)5步,又前進(jìn)-3步,那么兩次運(yùn)動后總的結(jié)果是什么?若是后退-1步,又后退3步呢?
〖練習(xí)〗
1.登山隊(duì)員第一天向上攀登,第二天又向上攀登(天氣惡劣!),兩天一共向上攀登多少米?
2.第一天營業(yè)贏利90元,第二天虧本80元,兩天一共贏利多少元?
〖補(bǔ)充作業(yè)〗
1.分別用加法和減法的算式表示下面每小題的結(jié)果(能求出得數(shù)最好):
(1)溫度由下降;(2)倉庫原有化肥200t,又運(yùn)進(jìn)-120t;
(3)標(biāo)準(zhǔn)重量是,超過標(biāo)準(zhǔn)重量;(4)第一天盈利-300元,第二天盈利100元.
2.借助數(shù)軸用加法計(jì)算:
(1)前進(jìn),又前進(jìn),那么兩次運(yùn)動后總的結(jié)果是什么?
(2)上午8時(shí)的氣溫是,下午5時(shí)的氣溫比上午8時(shí)下降,下午5時(shí)的氣溫是多少?
3.某潛水員先潛入水下,他的位置記為.然后又上升,這時(shí)他處在什么位置?
有理數(shù)的加法教案8
學(xué)習(xí)過程:
一、自主學(xué)習(xí)不動筆墨不讀書!請拿出你的筆和你的激情,探究新知:
1.小學(xué)學(xué)過的加法運(yùn)算律有哪些?舉例說明運(yùn)用運(yùn)算律有何好處?
2.加法的交換律:
兩個(gè)數(shù)相加,交換xx的位置,和不變.用式子表示:a+b=。
3.加法的結(jié)合律:
《1.3.1有理數(shù)的加法》同步練習(xí)含答案
在進(jìn)行兩個(gè)異號有理數(shù)的加法運(yùn)算時(shí),其計(jì)算步驟如下:
、賹⒔^對值較大的有理數(shù)的符號作為結(jié)果的符號并記住;
、趯⒂涀〉姆柡徒^對值的差一起作為最終的計(jì)算結(jié)果;
、塾幂^大的絕對值減去較小的.絕對值;
、芮髢蓚(gè)有理數(shù)的絕對值;⑤比較兩個(gè)絕對值的大小.其中操作順序正確的是( )
A.①②③④⑤B.④⑤③②①C.①⑤③④②D.④⑤①③②
《1.3.1有理數(shù)的加法》同步練習(xí)題(含答案)
10.小蟲從某點(diǎn)A出發(fā)在一直線上來回爬行,假定向右爬行的路程記為正數(shù),向左爬行的路程記為負(fù)數(shù),爬行的各段路程依次為(單位:cm):+5,-3,+10,-8,-6,+12,-10。
(1)小蟲最后是否回到出發(fā)點(diǎn)A?
(2)在爬行過程中,如果每爬行1cm獎(jiǎng)勵(lì)一粒芝麻,那么小蟲一共得到多少粒芝麻?
解析(1)是.(+5)+(-3)+(+10)+(-8)+(-6)+(+12)+(-10)=[(+5)+(+10)+(+12)]+[(-3)+(-8)+(-6)+(-10)]=27-27=0,
所以小蟲最后回到出發(fā)點(diǎn)A。
(2)小蟲爬行的總路程為|+5|+|-3|+|+10|+|-8|+|-6|+|+12|+|-10|=5+3+10+8+6+12+10=54(cm)。
所以小蟲一共得到54粒芝麻。
有理數(shù)的加法教案9
【教學(xué)目標(biāo)】
1. 通過學(xué)習(xí),能感受到數(shù)學(xué)知識來源于生活又可應(yīng)用于實(shí)際生活,激發(fā)學(xué)習(xí)的興趣。
2.通過探索,能歸納總結(jié)出有理數(shù)加法法則,理解有理數(shù)加法的意義滲透分類思想。
3.掌握有理數(shù)加法法則,并能準(zhǔn)確地進(jìn)行有理數(shù)加法運(yùn)算。
【學(xué)習(xí)重點(diǎn)、難點(diǎn)】
重點(diǎn):了解有理數(shù)加法的意義,會根據(jù)有理數(shù)加法法則進(jìn)行有理數(shù)加法計(jì)算;
難點(diǎn):異號兩數(shù)如何相加的法則。
【學(xué)習(xí)過程】
一、 預(yù)習(xí)自學(xué):
1.蛋糕店上半年掙5萬,下半年掙3萬,請問一年共掙多少錢?
2.蛋糕店上半年賠5萬,下半年賠3萬,請問一年共掙多少錢?
3.蛋糕店上半年掙5萬,下半年賠3萬,請問一年共掙多少錢?
4.蛋糕店上半年賠5萬,下半年掙3萬,請問一年共掙多少錢?
5.蛋糕店上半年掙5萬,下半年賠5萬,請問一年共掙多少錢?
6.蛋糕店上半年賠5萬,下半年掙0萬,請問一年共掙多少錢?
請你列式計(jì)算,并引導(dǎo)學(xué)生對前面的七個(gè)加法運(yùn)算進(jìn)行合理的分類探討:和的符號怎樣確定?和的絕對值怎樣確定?(小組討論展示)
二、 教師點(diǎn)撥
知識點(diǎn)一:引導(dǎo)學(xué)生對前面的七個(gè)加法運(yùn)算進(jìn)行合理的分類
同號兩數(shù)相加: (+5)+(+3)= ______.(-5)+(-3)= ______
異號兩數(shù)相加:(+5)+(-3)= ______;(-5)+(+3)= ______;
。ǎ5)+(-5)=______
一數(shù)與零相加: (-5)+0=______;
知識點(diǎn)二:探討:和的符號怎樣確定?和的絕對值怎樣確定?
結(jié)論:有理數(shù)加法法則:
1.同號兩數(shù)相加,取相同的符號,并把絕對值相加。
2.絕對值不相等的異號兩數(shù)相加,取絕對值較大的加數(shù)的符號,并用較大的絕對值減去較小的絕對值;橄喾磾(shù)的兩個(gè)數(shù)相加得0。
3.一個(gè)數(shù)同0相加,仍得這個(gè)數(shù)。
三.例題精講;例1(學(xué)生自學(xué),教師示范。注意解題步驟)
四、課堂練習(xí);36頁隨堂練習(xí)與習(xí)題(小組展示交流)
五、當(dāng)堂檢測;
1.用生活中的事例說明下列算是的意義,并計(jì)算出結(jié)果:
(-2)+(-3);(-3)+2
2.有理數(shù)加法法則:
絕對值不相等的`兩數(shù)相加,取絕對值的加數(shù)的符號,并用較大的絕對值較小的絕對值. 互為相反數(shù)的兩個(gè)數(shù)相加得.
3.計(jì)算:(+15)+(-7);(-39)+(-21);
(-37)+22;(-3)+(+3)
有理數(shù)的加法教案10
(一)知識與技能目標(biāo)
1、經(jīng)歷探索有理數(shù)加法法則的過程,理解有理數(shù)的加法法則。
2、運(yùn)用有理數(shù)加法法則熟練進(jìn)行整數(shù)加法運(yùn)算。
(二)過程與方法目標(biāo)
1、在教師創(chuàng)設(shè)的熟悉情境與學(xué)生探索法則的過程中,通過觀察結(jié)果的符號及絕對值與兩個(gè)加數(shù)的符號及其絕對值的關(guān)系,培養(yǎng)學(xué)生的分類、歸納、概括的能力。
2、在探索過程中感受數(shù)形結(jié)合和分類討論的數(shù)學(xué)思想。
3、滲透由特殊到一般的唯物辯證法思想
(三)情感態(tài)度與價(jià)值觀目標(biāo)
(1)通過師生交流、探索,激發(fā)學(xué)生的學(xué)習(xí)興趣、求知欲望,養(yǎng)成良好的數(shù)學(xué)思維品質(zhì)。
。2)讓學(xué)生體會到數(shù)學(xué)知識于生活、服務(wù)于生活,培養(yǎng)學(xué)生對數(shù)學(xué)的熱愛,培養(yǎng)學(xué)生運(yùn)用數(shù)學(xué)的意識。
。3)培養(yǎng)學(xué)生合作意識,體驗(yàn)成功,樹立學(xué)習(xí)自信心。
二、教學(xué)重點(diǎn)、難點(diǎn):
重點(diǎn):
理解和運(yùn)用有理數(shù)的加法法則難點(diǎn):理解有理數(shù)加法法則,尤其是理解異號兩數(shù)相加的法則 三、教學(xué)組織與教材處理:
在教學(xué)過程中一如既往的開展“新、行、省、信”四字教育模式的教學(xué)。新:創(chuàng)設(shè)新的問題情境(足球凈勝球數(shù))、開展新的學(xué)習(xí)方式(自主、合作、交流)、進(jìn)行新的評價(jià)體系(個(gè)人評價(jià)、教師評價(jià)與小組評價(jià)相結(jié)合);行:在教師的啟發(fā)引導(dǎo)下自主、合作探究新知(有理數(shù)的加法法則),教師關(guān)注學(xué)生是否積極思考問題(幾組有理數(shù)加法的符號與絕對值特征)、是否主動參與討論(同號與異號的特征)、是否敢于發(fā)表自己的見解(有理數(shù)加法法則的概括);省:在特殊實(shí)例的基礎(chǔ)上觀察、歸納、概括有理數(shù)的加法法則,在實(shí)例講解和自主練習(xí)的基礎(chǔ)上總結(jié)心得、反省得失(如:解后思)。信:在本節(jié)課的探究法則與運(yùn)用法則中體驗(yàn)成功,增添學(xué)習(xí)興趣,樹立學(xué)習(xí)自信心(如在教師用數(shù)帶正號球的方法得出(+2)+(+3)= +5后,學(xué)生按照此思路可以很快得出(-2)+(-3)等其它情形。又如以口答形式判斷幾組有理數(shù)加法的和的符號和在最后以“挑戰(zhàn)老師”的形式判斷一句話的正誤等等)。同時(shí)本節(jié)課在運(yùn)用“正負(fù)抵消”和數(shù)軸探討有理數(shù)法則時(shí),教師只對第一個(gè)或前兩個(gè)進(jìn)行指導(dǎo)和示范,其它的留給學(xué)生獨(dú)立得出或合作完成。另外利用多媒體來輔助教學(xué),使教學(xué)內(nèi)容直觀形象化,使學(xué)生在比較真實(shí)的環(huán)境里面體驗(yàn)數(shù)學(xué)的生活性。
四、教學(xué)流程
。ㄒ唬┮胄轮---新師播放一段世界杯的音樂,讓學(xué)生感受激情,再問“大家知道今年世界杯的冠軍得主是誰?”學(xué)生回答后師給與評價(jià),然后出示“凈勝球”問題:凱旋足球隊(duì)第一場比賽贏了1個(gè)球,第二場比賽輸了1個(gè)球。該隊(duì)這兩場比賽的凈勝球數(shù)是多少?學(xué)生回答后教師引導(dǎo)學(xué)生用數(shù)學(xué)式子表示:把贏1個(gè)球記為“+1”,輸1個(gè)球記為“-1” ,凈勝球數(shù)應(yīng)是(+1)+(-1) =0。師再問:如果該隊(duì)第一場比賽輸1個(gè)球,第二場比賽贏1個(gè)球.那么該隊(duì)這兩場比賽的凈勝球數(shù)為多少?師引導(dǎo)學(xué)生用(-1) + (+1) =0的式子說明。 (二)探究新知---行
1、師:同學(xué)們今天我們借助這兩個(gè)式子來探討有理數(shù)的加法。為了更形象的說明問題,我們用 1個(gè) 表示 +1,用 1個(gè) 表示 -1,那么就表示0。
2、師:首先我們一起來計(jì)算(+2)+(+3)。教師演示:先出現(xiàn)兩個(gè)帶正號的球,再出現(xiàn)三個(gè)帶正號的球,用方框框住總共有五個(gè)帶正號的`球,也就是說(+2)+(+3)= +5。師問:聰明的同學(xué)們能告訴我(-2)+(-3)等于多少嗎?教師先讓學(xué)生思考再回答,教師演示過程,并給與積極評價(jià)。在前兩例的基礎(chǔ)上再啟發(fā)學(xué)生思考:(-3)+2,3+(-2),(-4) + 4三種情形。(注:此三例關(guān)鍵是“正負(fù)抵消”,教師教學(xué)時(shí)引導(dǎo)學(xué)生觀察并運(yùn)用這個(gè)思想)。
3、師:同學(xué)們,其實(shí)我們還可以用數(shù)軸來表示剛才這幾道題的運(yùn)算過程。出示數(shù)軸,并規(guī)定正負(fù)方向。師先舉例說明:先向西移動2個(gè)單位,再向西移動3個(gè)單位,則一共向西移動了5個(gè)單位。所以:(-2)+(-3)=-5。師然后讓學(xué)生用數(shù)軸的方法運(yùn)算(-3)+2,3+(-2),(-4) + 4三個(gè)式子。(注:學(xué)生在表示(-3)+2的移動過程時(shí)對于+2可能不能正確表示。師應(yīng)強(qiáng)調(diào)加法是“相繼”活動的合并,教學(xué)時(shí)可讓學(xué)生先想想再決定到底是從原點(diǎn)出發(fā)還是從-3這個(gè)點(diǎn)出發(fā)。對于非常正確的見解,師給與積極評價(jià)。)
(三)發(fā)現(xiàn)新知---省
1、教師引導(dǎo)學(xué)生觀察剛才的五個(gè)例子:
問:兩個(gè)有理數(shù)相加,和的符號怎樣確定?和的絕對值怎樣確定?師先讓學(xué)生獨(dú)立思考,再小組討論。在學(xué)生發(fā)表見解時(shí)應(yīng)肯定他們樸素的語言,同時(shí)教師引導(dǎo)學(xué)生先把他們分成三類:同號類、異號類、相反數(shù)類,再去觀察他們加數(shù)與和的符號和絕對值特征。
2、師生共同得出有理數(shù)加法法則
同號兩數(shù)相加,取相同的符號,并把絕對值相加;異號兩數(shù)相加,取絕對值較大的符號,并把較大的絕對值減去較小的絕對值;相反數(shù)相加,和為零。師問:一個(gè)數(shù)同0相加?師生得出仍得這個(gè)數(shù)。師引導(dǎo)學(xué)生記一記。
。ㄋ模┻\(yùn)用新知---信 1、范例講解:
例1 計(jì)算下列各題:
、180+(-10);
、冢ǎ10)+(-1);
③5+(-5);
、 0+(-2).
教師引導(dǎo)學(xué)生先觀察符號特征,再教師示范寫出過程。
解:(1)180+(-10)(異號型 ) =+(180-10)(取絕對值較大的數(shù)的符號, =170 并用較大的絕對值減去較小的絕對值)
②(-10)+(-1) (同號型) =-(10+1) (取相同的符號,并把絕對值相加)對于③④ 小題,可以讓學(xué)生口答。
2、解后思:
教師引導(dǎo)學(xué)生反思剛才做題時(shí)的基本思路。教師在學(xué)生回答的基礎(chǔ)上提煉為三句話: ①確定類型、②確定符號、③確定絕對值。
3、說一說
。ǹ诖穑┐_定下列各題中的符號,并說明理由:
(1) (+5)+(+ 7); (2) (- 10) +(- 3) (3) (+ 6)+(-5)
(4) (+ 3)+(-8)
注:此題意在強(qiáng)化對有理數(shù)加法的符號判斷,特別是異號的情形著重反饋矯正 4、練一練
1、計(jì)算下列各式:(1) (-25)+(-7); (2)(-13)+5;(3) (-23)+0; (4)45+(-45)。
2、土星表面的夜間平均溫度為-150度,白天比夜間高27度,那么白天的平均溫度是多少?注:此兩題意在對有理數(shù)加法法則的鞏固和引導(dǎo)學(xué)生運(yùn)用有理數(shù)的加法解決實(shí)際問題。第一題教師先讓學(xué)生獨(dú)立完成,并請四個(gè)學(xué)生演板。做完后小組之間開展互評,正誤怎樣?有什么值得改 進(jìn)的地方?對于第二題教師請男女兩個(gè)同學(xué)比賽進(jìn)行演板,師給與評價(jià)。
5、想一想
請根據(jù) 式子(-4)+3,舉出一個(gè)恰當(dāng)?shù)纳钋榫;(聰明的你能舉出多少種新情境?)注:此例意在引導(dǎo)學(xué)生關(guān)注“生活中的數(shù)學(xué)”。對于學(xué)生有創(chuàng)意的情境師應(yīng)給與積極評價(jià)。(符合此式子的情境有很多,如:溫度變化問題、足球凈勝球問題、方向行走問題、收入支出問題、水位漲落問題等等)
(五)反省新知---談一談 我學(xué)到了什么?
教師引導(dǎo)學(xué)生自我反省、自我評價(jià)。 師生共同總結(jié):1、有理數(shù)的加法法則,2、運(yùn)算時(shí)的基本思路。
(六)挑戰(zhàn)老師
師說:通過今天的學(xué)習(xí),老師認(rèn)為:“ 兩個(gè)有理數(shù)相加,和一定大于其中一個(gè)加數(shù)”。老師的說法正確嗎?請聰明的你舉例說明。
(七)超越自我
分別在右圖的圓圈內(nèi)填上彼此不相等的數(shù),使得 條線上的數(shù)之和為零,你有幾種填法?
(八)布置作業(yè)。
附:“新、行、省、信”
------------我的四字教育法
一、“新”
1、新的教學(xué)理念(“春風(fēng)不讓一木枯”);
2、新的學(xué)習(xí)方式(“自主、合作、交流、探究”);
3、新的評價(jià)體系(制定《成長檔案袋》內(nèi)設(shè)“單元知識總結(jié)”、“自己獨(dú)特的解法”、“提出挑戰(zhàn)性問題”、“探究性活動記錄”、“自我評價(jià)與小組評價(jià)”,從而動態(tài)、全方位評價(jià)學(xué)生)。
二、“行” 1、有品行(引導(dǎo)學(xué)生養(yǎng)成良好的數(shù)學(xué)學(xué)習(xí)習(xí)慣和培養(yǎng)良好的情感與價(jià)值觀); 2、有行動(培養(yǎng)學(xué)生主動探究、參與合作和交流的意識)。
有理數(shù)的加法教案11
教學(xué)目的:
經(jīng)歷探索有理數(shù)加法法則,理解有理數(shù)加法的意義。初步掌握有理數(shù)加法法則,并能準(zhǔn)確地進(jìn)行有理數(shù)加法運(yùn)算。
教學(xué)重點(diǎn):
有理數(shù)的加法法則
教學(xué)難點(diǎn):
異號兩數(shù)相加的法則
教學(xué)教程:
一、復(fù)習(xí)提問:
1、如果向東走5米記作+5米,那么向
西走3米記作__.
2、已知a=-5,b=+3,
︱a︳+︱b︱=_
已知a=-5,b=+3,
︱a︱-︱b︱=__
-1012345678
二、授新課
小明在一條東西向的跑道上,先走了5米,又走了3米,能否確定他現(xiàn)在位于原來位置的.哪個(gè)方向?與原來相距多少米?規(guī)定向東的方向?yàn)檎较?/p>
提問:這題有幾種情況?
小結(jié):有以下四種情況
。1)兩次都向東走,
。2)兩次都向西走
。3)先向東走,再向西走
。4)先向西走,再向東走
根據(jù)小結(jié),我們再分析每一種情況:
。1)向東走5米,再向東走3米,一共向東走了多少米?
+5+3(+5)+(+3)=+8
(2)向西走-5米,再向西走-3米,一共向東走了多少米?
-5-3(-3)+(-5)=-8
(3)先向東走5米,再向西走3米,兩次一共向東走了多少米?
+3+5(+5)+(-3)=2
。ǎ矗┫认蛭髯5米,再向東走3米,兩次一共向東走了多少米?
。担常ǎ担ǎ常剑
下面再看兩種特殊情況:
。ǎ担┫驏|走5米,再向西走5米,兩次一共向東走了多少米
。担担ǎ担ǎ担剑
(6)向西走5米,再向東走0米,兩次一共向東走了多少米?
-5(-5)+0=-5
小結(jié):總結(jié)前的六種情況:
同號兩數(shù)相加:(+5)+(+3)=+8
(-5)+(-3)=-8
異號兩數(shù)相加:(+5)+(-3)=2
。ǎ担ǎ常剑
。ǎ担ǎ担剑
一數(shù)與零相加:(-5)+0=-5
得出結(jié)論:有理數(shù)加法法則
1、同號兩數(shù)相加,取相同的符號,并把絕對值相加
2、絕對值不等的異號兩數(shù)相加,取絕對值較大的加數(shù)的符號,并用較大的絕對值減去較小的絕對值;橄喾磾(shù)的兩個(gè)數(shù)相加得零
3、一個(gè)數(shù)與零相加,仍得這個(gè)數(shù)
例如:
(-4)+(-5)(同號兩數(shù)相加)
解:=-()(取相同的符號)
。剑梗ú呀^對值相加)
(-2)+(+6)(絕對值不等的異號兩數(shù)相加)
解:=+()(取絕對值較大的符號)
。剑矗ㄓ幂^大的絕對值減去較小的絕對值)
練習(xí):
口答:
1、(-15)+(-32)=
。、(+10)+(-4)=
3、7+(-4)=
。础ⅲ矗ǎ矗
。、9+(-2)=
。、(-0.5)+4.4=
7、(-9)+0=
。浮ⅲ埃ǎ常
計(jì)算:
。1)(-3)+(-9)(2)(-1/2)+(+1/3)
解略
練習(xí):
(1)15+(-22)=
。2)(-13)+(-8)=
(3)(-0·9)+1·5=
。4)2·7+(-3·5)=
(5)1/2+(-2/3)=
。6)(-1/4)+(-1/3)=
練習(xí)三:
1、填空:
(1)+11=27(2)7+=4
。3)(-9)+=9(4)12+=0
。5)(-8)+=-15(6)+(-13)=-6
2、用“<”或“>”號填空:
(1)如果a>0,b>0,那么a+b0;
(2)如果a<0,b<0,那么a+b0;
(3)如果a>0,b<0,|a|>|b|,那么a+b0;
(4)如果a<0,b>0,|a|>|b|,那么a+b0
小結(jié):
1、掌握有理數(shù)的加法法則,正確地進(jìn)
行加法運(yùn)算。
2、兩個(gè)有理數(shù)相加,首先判斷加法類
型,再確定和的符號,最后確定和的絕對值。
作業(yè):課本第38頁2、3
第40頁1、2
有理數(shù)的加法教案12
一、學(xué)情及學(xué)習(xí)內(nèi)容分析
“有理數(shù)的加法與減法”是基于規(guī)則為主的新授課型
有理數(shù)的加法與減法是在引入“負(fù)數(shù)”的基礎(chǔ)上,將數(shù)的范圍擴(kuò)展到“有理數(shù)”范圍內(nèi)的加、減法運(yùn)算。本節(jié)課從學(xué)生的生活經(jīng)歷和經(jīng)驗(yàn)出發(fā),創(chuàng)設(shè)情境,通過分析生活情境中的事理和觀察溫度計(jì)刻度的操作,得到了一些有理數(shù)減法的算式,用“化歸”的思想方法歸納出有理數(shù)減法法則,并應(yīng)用所學(xué)的有理數(shù)減法解決實(shí)際問題,整節(jié)課的設(shè)計(jì)流程和總體思路可以用下圖表示: 生活情境,動手操作------有理數(shù)減法算式-------有理數(shù)減法法則-------有理數(shù)減法的應(yīng)用
二、教學(xué)目標(biāo)及教學(xué)重(難)點(diǎn)
教學(xué)目標(biāo):
1.知識與技能:會根據(jù)減法的法則進(jìn)行有理數(shù)減法的運(yùn)算。
2.過程與方法:經(jīng)歷分析生活情境中的數(shù)學(xué)事例,提煉其中的數(shù)學(xué)算式,并從中歸納有理數(shù)減
法法則;經(jīng)歷將法則應(yīng)用于解題的這一由一般到特殊的過程。
3.情感態(tài)度與價(jià)值觀:在由實(shí)際情境提煉數(shù)學(xué)算式的過程中,感受數(shù)學(xué)在我們的生活中;在這
一過程中,滲透轉(zhuǎn)化的思想方法,感受數(shù)學(xué)思想方法的導(dǎo)航作用。
教學(xué)重點(diǎn):有理數(shù)減法法則與運(yùn)用
教學(xué)難點(diǎn):從實(shí)際情境到數(shù)學(xué)算式,從數(shù)學(xué)算式到法則的提煉,在法則的總結(jié)中體現(xiàn)化歸
的思想方法的滲透。
教學(xué)方法:觀察探究、合作交流。
三、教學(xué)過程設(shè)計(jì):
在課前讓學(xué)生玩有理數(shù)加法中的撲克牌游戲。
1.情境引入:
師:同學(xué)們,大家都看過天氣預(yù)報(bào),有沒有注意到里面有“溫差”之說呢?
有效性分析:通過設(shè)計(jì)“溫差”這一問題情境,進(jìn)而順利的進(jìn)入課題,并從列算式角度加以認(rèn)識,得到一些有理數(shù)減法算式,為后面的化歸思想方法歸納出有理數(shù)減法法則做好素材和算式上的準(zhǔn)備。
2.建構(gòu)活動
活動1:計(jì)算溫差
師:有理數(shù)加減3_百度文庫
生1:利用溫度計(jì)的刻度直觀得到算式 5 + 3 = 8
生2:利用日溫差的定義可得到算式:5 -(-3)= 8
師: 比較兩式,我們有什么發(fā)現(xiàn)嗎?
生:“-”變“+”,( -3)變3。
活動2:通過舉例子驗(yàn)證剛才的變化過程,加深對有理數(shù)減法算式的理解。
有理數(shù)加減3_百度文庫
有效性分析:從生活情境中,學(xué)生獲取了豐富的素材和有理數(shù)減法運(yùn)算的算式,為下面觀察算式特點(diǎn),總結(jié)運(yùn)算方法做好準(zhǔn)備。這種由算式到法則的過程,使學(xué)生從心理上更易接受,令算式更有實(shí)際背景和說服力,為有理數(shù)減法運(yùn)算法則的提煉和數(shù)學(xué)化打下了良好的基礎(chǔ)。
3. 數(shù)學(xué)化認(rèn)識
5 -(-3)=5 + 3( -3)-(-5)=(-3)+ 5
3-(-5) =3 +5(-3)-5=(-3)+ (-5)
師:綜合上面算式的共同特點(diǎn)即被減數(shù)不變,減號變加號,減數(shù)變成它的相反數(shù),我們就得到了有理數(shù)減法法則:減去一個(gè)數(shù),等于加上這個(gè)數(shù)的相反數(shù)。有理數(shù)減法概念_百度知道
有效性分析:“化歸”的思想和方法是初中數(shù)學(xué)中最重要的方法之一,本節(jié)課的數(shù)學(xué)化過程正是通過觀察已有的`算式來發(fā)現(xiàn)和總結(jié)“有理數(shù)的減法法則”的,在教學(xué)中滲透了“化歸”思想。此外,在化歸為加法運(yùn)算時(shí),進(jìn)一步復(fù)習(xí)加法法則,強(qiáng)化了有理數(shù)的減法與小學(xué)學(xué)的減法之間的聯(lián)系和區(qū)別:即小學(xué)的減法是有理數(shù)減法中的一種特例,即減數(shù)比被減數(shù)小,;當(dāng)減數(shù)比被減數(shù)大時(shí),小學(xué)無法解決的問題現(xiàn)在可以解決了。
4. 基礎(chǔ)性訓(xùn)練
例1計(jì)算下列各題
、0-(-22)②8.5-(-1.5)③(+4)-16
④(?1
2)?1
4⑤15-(-7)⑥(+2)-(+8)
基礎(chǔ)練 :1.課本p 322、3、4
2. 求出數(shù)軸上兩點(diǎn)之間的距離:
。1)表示數(shù)10的點(diǎn)與表示數(shù)4的點(diǎn);
。2)表示數(shù)2的點(diǎn)與表示數(shù)-4的點(diǎn);
(3)表示數(shù)-1的點(diǎn)與表示數(shù)-6的點(diǎn)。
有效性分析:基礎(chǔ)性訓(xùn)練中安排了典型例題,著重訓(xùn)練學(xué)生利用剛學(xué)過的“有理數(shù)的減法法則”進(jìn)行計(jì)算的正確性和熟練度,并規(guī)范了計(jì)算題目的格式,在格式中進(jìn)一步熟悉法則,正確運(yùn)用法則,讓學(xué)生明確有理數(shù)的減法的一般步驟是(1)變符號;(2)用加法法則進(jìn)行計(jì)算
5. 拓展延伸
[原創(chuàng)] 巧用撲克牌進(jìn)行有理數(shù)簡單運(yùn)算練習(xí)
有效性分析:通過撲克牌的兩個(gè)活動,進(jìn)一步調(diào)動學(xué)生學(xué)習(xí)有理數(shù)減法運(yùn)算法則的積極性和主動性,寓教于樂,在活動中通過小組帶動班上所有學(xué)生學(xué)習(xí)的熱情,同時(shí)在活動中更加明確運(yùn)算法則,做到熟練而準(zhǔn)確地運(yùn)用法則,感受并思考:“兩個(gè)有理數(shù)相減,差一定比兩個(gè)減數(shù)小嗎?”的問題,以區(qū)別于學(xué)生在小學(xué)中熟知的減法運(yùn)算,更好的完成本節(jié)課的教學(xué)目標(biāo)。
四、教學(xué)反思
“有理數(shù)的加法與減法”的教學(xué),可以有多種不同的設(shè)計(jì)方案,但大體上可以分為兩類:一類是由老師較快的給出法(本站 推薦)則,用較多的時(shí)間組織學(xué)生練習(xí),以求熟練的掌握法則;另一類是適當(dāng)?shù)募訌?qiáng)法則的形成過程,從而在此過程中著力培養(yǎng)學(xué)生的觀察、比較、歸納能力,相應(yīng)的適當(dāng)壓縮法則的練,如本教學(xué)設(shè)計(jì)。本節(jié)課注重學(xué)生自我學(xué)習(xí)的能力,學(xué)生在學(xué)習(xí)了有理數(shù)加法后,再學(xué)習(xí)有理數(shù)的減法,教師把學(xué)習(xí)的主動權(quán)歸還學(xué)生,不再是教師講,學(xué)生聽,現(xiàn)在變?yōu)閷W(xué)生講,教師聽,由學(xué)生自己發(fā)現(xiàn)問題,分析問題,解決問題。學(xué)生與教師分享彼此的思考,經(jīng)驗(yàn)和知識,交流彼此的情感,體驗(yàn)與感悟,豐富教學(xué)內(nèi)容,求的新的發(fā)展,從而達(dá)到共識,共享,共進(jìn)。
有理數(shù)的加法教案13
教學(xué)目標(biāo)
1,在現(xiàn)實(shí)背景中理解有理數(shù)加法的意義。
2,經(jīng)歷探索有理數(shù)加法法則的過程,理解有理數(shù)的加法法則。
3,能積極地參與探究有理數(shù)加法法則的活動,并學(xué)會與他人交流合作。
4,能較為熟練地進(jìn)行有理數(shù)的加法運(yùn)算,并能解決簡單的實(shí)際間題。
5,在教學(xué)中適當(dāng)滲透分類討論思想
教學(xué)難點(diǎn)
異號兩數(shù)相加
知識重點(diǎn)
和的符號的確定
教學(xué)過程
。◣熒顒樱┰O(shè)計(jì)理念
設(shè)置情境
引入課題回顧用正負(fù)數(shù)表示數(shù)量的實(shí)際例子;
在足球比賽中,如果把進(jìn)球數(shù)記為正數(shù),失球數(shù)記為負(fù)數(shù),它們的和叫做凈勝球數(shù)。若紅隊(duì)進(jìn)4個(gè)球,失2個(gè)球,則紅隊(duì)的勝球數(shù),可以怎樣表示?藍(lán)隊(duì)的勝球數(shù)呢?
師:如何進(jìn)行類似的有理數(shù)的加法運(yùn)算呢?這就是我們這節(jié)課一起與大家探討的問題。
。ǔ鍪菊n題)讓學(xué)生感受到在實(shí)際問題中做加法運(yùn)算的數(shù)可能超出正數(shù)的范圍,體會學(xué)習(xí)有理數(shù)加法的必要性,激發(fā)學(xué)生探究新知的興趣。
分析問題
探究新知如果是球隊(duì)在某場比賽中上半場失了兩個(gè)球,下
半場失了3個(gè)球,那么它的得勝球是幾個(gè)呢?算式應(yīng)該
怎么列?若這支球隊(duì)上半場進(jìn)了2個(gè)球,下半場失了3個(gè)球,又如何列出算式,求它的得勝球呢?
。▽W(xué)生思考回答)
思考:請同學(xué)們想想,這支球隊(duì)在這場比賽中還可
能出現(xiàn)其他的什么情況?你能列出算式嗎?與同伴交流。
學(xué)生相互交流后,教師進(jìn)一步引導(dǎo)學(xué)生可以把兩個(gè)有理數(shù)相加歸納為同號兩數(shù)相加、異號兩數(shù)相加、一個(gè)數(shù)同零相加這三種情況。
2,借助數(shù)軸來討論有理數(shù)的加法。I
一個(gè)物體向左右方向運(yùn)動,我們規(guī)定向左運(yùn)動為負(fù),向右為正,向右運(yùn)動5m,記作5m,向左運(yùn)動5m,記作—5m。
。1)(小組合作)把我們已經(jīng)得出的幾種有理數(shù)相加的情況在數(shù)軸上用運(yùn)動的方向表示出來,并求出結(jié)果,解釋它的意義。
。2)交流匯報(bào)。(對學(xué)習(xí)小組的匯報(bào)結(jié)果,數(shù)軸用實(shí)物投影儀展示,算式由教師寫在黑板上)
。3)說一說有理數(shù)相加應(yīng)注意什么?(符號,絕對值)能用自己的語言歸納如何相加嗎?
。4)在學(xué)生歸納的基礎(chǔ)上,教師出示有理數(shù)加法法則。
有理數(shù)加法法則:
1,同號兩數(shù)相加,取相同的符號,并把絕對值相加。
2,絕對值不相等的異號兩數(shù)相加,取絕對值較大的加數(shù)的符號,并用較大的絕對值減去較小的絕對值,互為相反數(shù)的兩個(gè)數(shù)相加得0。
3,一個(gè)數(shù)同。相加,仍得這個(gè)數(shù)。再次創(chuàng)設(shè)足球比賽情境,一方面與引題相呼應(yīng),聯(lián)系密切,另一方面讓學(xué)生在此情境中感受到有理數(shù)相加的幾種不同情形,并能將它分類,滲透分類討論思想。
估計(jì)學(xué)生能順利地得到(+)+(+),(+)+(一),(一)+(+),(一)十(—),0+(+),0+(一)。
但不能把它歸的為同號異號等三類,所以此處需教師。點(diǎn)拔、指扎,體現(xiàn)教師的引導(dǎo)者作用。
、偌僭O(shè)原點(diǎn)0為第一次運(yùn)動起點(diǎn),第二次運(yùn)動的起點(diǎn)是第一次運(yùn)動的終點(diǎn)。②若學(xué)生在學(xué)習(xí)小組內(nèi)不能很好地參與探究,也可以讓其參照教科書第21頁的.“探究”自主進(jìn)行。③讓學(xué)生感受“數(shù)學(xué)模型”的思想。④學(xué)會與同伴交流,并在交流中獲益。培養(yǎng)學(xué)生的語言表達(dá)能力和歸納能力,也許學(xué)生說得不夠嚴(yán)謹(jǐn),但這并不重要,重要的足能用自己的語言表達(dá)自己所發(fā)現(xiàn)的規(guī)律
解決問題解決問題
例1計(jì)算:
。1)(—3)+(—9);(2)(—5)+13;
。3)0十(—7);(4)(—4。7)+3。9。
教師板演,讓學(xué)生說出每一步運(yùn)算所依據(jù)的法則。
請同學(xué)們比較,有理數(shù)的加法運(yùn)算與小學(xué)時(shí)候?qū)W的加法有什么異同?(如:有理數(shù)加法計(jì)算中要注意符號,和不一定大于加數(shù)等等)
例2足球循環(huán)賽中,紅隊(duì)4:1勝黃隊(duì),黃隊(duì)1:0勝藍(lán)隊(duì)藍(lán)隊(duì)1:0勝紅隊(duì),計(jì)算各隊(duì)的凈勝球數(shù)。
。ㄗ寣W(xué)生讀數(shù),理解題意,思考解決方案,然后由學(xué)生口述,教師板書)
學(xué)生活動:請學(xué)生說一說在生活中用到有理數(shù)加法的例子。注意點(diǎn):(1)下先確定是哪種類型的加法再定符號,最后算絕對位。(2)教教師板演的例通要完整體現(xiàn)過程,并要求學(xué)生在剛開始學(xué)的時(shí)候要把中間的過
程寫完整。(3)體現(xiàn)化歸思想。(4)這里增加了兩道題目,要是讓學(xué)生能較為熟練地運(yùn)用法則進(jìn)行計(jì)算。
拓寬學(xué)生視野,讓學(xué)
生體會到數(shù)學(xué)與生活的密切聯(lián)系。
課堂練習(xí)教科書第23頁練習(xí)
小結(jié)與作業(yè)
課堂小結(jié)通過這節(jié)課的學(xué)習(xí),你有哪些收獲,學(xué)生自己總結(jié)。
本課作業(yè)必做題:閱讀教科書第20~22頁,教科書第31習(xí)題1。3第1、12、第13題。
本課教育評注(課堂設(shè)計(jì)理念,實(shí)際教學(xué)效果及改進(jìn)設(shè)想)
1,在本節(jié)課的設(shè)計(jì)中,注重引導(dǎo)學(xué)生參與探究、歸納(用自己的語言敘迷)有理數(shù)加法法則的過程。
2,注意滲透數(shù)學(xué)思想方法。數(shù)學(xué)思想方法的滲透不可能立即見效,也不可能靠一朝一夕讓學(xué)生理解、掌握,所以,本節(jié)課在這一方面主要是讓學(xué)生感知研究數(shù)學(xué)問題的一般方法(分類、辯析、歸納、化歸等)。如在探究加法法則時(shí),有意識地把各種情況先分為三類(同號、異號,一個(gè)數(shù)同0相加);在運(yùn)用法則時(shí),當(dāng)和的符號確定以后,有理數(shù)的加法就轉(zhuǎn)化為算術(shù)的加減法。
3,注意學(xué)生合作學(xué)習(xí)的學(xué)習(xí)方式,讓學(xué)生在與他人合作中受益,學(xué)會交流,學(xué)會傾聽
別人的意見和建議。
附板書:1。3。1有理數(shù)的加法(一)
有理數(shù)的加法教案14
【目標(biāo)預(yù)覽】
知識技能:1、通過實(shí)例,了解有理數(shù)加法的意義,掌握有理數(shù)加法法則,并能運(yùn)用法則進(jìn)行計(jì)算;
2、在有理數(shù)加法法則的教學(xué)過程中,培養(yǎng)觀察、比較、歸納及運(yùn)算能力。 數(shù)學(xué)思考:1、正確地進(jìn)行有理數(shù)的加法運(yùn)算;
2、用數(shù)形結(jié)合的思想方法得出有理數(shù)加法法則。
解決問題:能運(yùn)用有理數(shù)加法解決實(shí)際問題。
情感態(tài)度:通過師生活動、學(xué)生自我探究,讓學(xué)生充分參與到數(shù)學(xué)學(xué)習(xí)的過程中來。
【教學(xué)重點(diǎn)和難點(diǎn)】
重點(diǎn):了解有理數(shù)加法的意義,會根據(jù)有理數(shù)加法法則進(jìn)行有理數(shù)加法計(jì)算; 難點(diǎn):異號兩數(shù)如何相加的法則。
【情景設(shè)計(jì)】
我們來看一個(gè)大家熟悉的實(shí)際問題:
足球比賽中進(jìn)球個(gè)數(shù)與失球個(gè)數(shù)是相反意義的量.若我們規(guī)定進(jìn)球?yàn)椤罢,失球(yàn)椤柏?fù)”。比如,進(jìn)3個(gè)球記為正數(shù):+3,失2個(gè)球記為負(fù)數(shù):-2。它們的和為凈勝球數(shù):(+3)+(-2)學(xué)校足球隊(duì)在一場比賽中的勝負(fù)情況如下:
(1)紅隊(duì)進(jìn)了3個(gè)球,失了2個(gè)球,那么凈勝球數(shù)是:(+3)+(-2)
(2)藍(lán)隊(duì)進(jìn)了1個(gè)球,失了1個(gè)球,那么凈勝球數(shù)是:(+1)+(-1)
這里,就需要用到正數(shù)與負(fù)數(shù)的加法。
下面,我們利用數(shù)軸一起來討論有理數(shù)的加法規(guī)律。
【探求新知】
一個(gè)物體作左右運(yùn)動,我們規(guī)定向左為負(fù),向右為正。向右運(yùn)動5m,可以記作多少?向左運(yùn)動5m呢?
。1)如果物體先向右運(yùn)動5m,再向右運(yùn)動3m,那么兩次運(yùn)動后總的`結(jié)果是多少呢? 利用數(shù)軸演示(如圖1),把原點(diǎn)假設(shè)為運(yùn)動起點(diǎn)。
兩次運(yùn)動后物體從起點(diǎn)向右運(yùn)動了8m。寫成算式是:5+3=8①
利用數(shù)軸依次討論如下問題,引導(dǎo)學(xué)生自己尋找算式的答案:
。2)如果物體先向左運(yùn)動5m,再向左運(yùn)動3m,那么兩次運(yùn)動后總的結(jié)果是多少呢?
。3)如果物體先向右運(yùn)動5m,再向左運(yùn)動3m,那么兩次運(yùn)動后總的結(jié)果是多少呢?
。4)如果物體先向左運(yùn)動5m,再向右運(yùn)動3m,那么兩次運(yùn)動后總的結(jié)果是多少呢?
。5)如果物體先向左運(yùn)動5m,再向右運(yùn)動5m,那么兩次運(yùn)動后總的結(jié)果是多少呢?
。6)如果物體先向右運(yùn)動5m,再向左運(yùn)動5m,那么兩次運(yùn)動后總的結(jié)果是多少呢?
。7)如果物體第一分鐘向右(或向左)運(yùn)動5m,第二分鐘原地不動,那么兩次運(yùn)動后總的結(jié)果是多少呢?
總結(jié):依次可得
(2)(-5)+(-3)=-8②
。3)5+(-3)=2③
。4)3+(-5)=-2④
。5)5+(-5)=0⑤
(6)(-5)+5=0⑥
。7)5+0=5或(-5)+0=-5⑦
觀察上述7個(gè)算式,自己歸納出有理數(shù)加法法則:
1.同號兩數(shù)相加,取相同的符號,并把絕對值相加;
2.絕對值不相等的異號兩數(shù)相加,取絕對值較大的加數(shù)符號,并用較大的絕對值減去較小的絕對值,互為相反數(shù)的兩個(gè)數(shù)相加得0;
3.一個(gè)數(shù)同0相加,仍得這個(gè)數(shù)。
【范例精析】
例1計(jì)算下列算式的結(jié)果,并說明理由:
(1)(+4)+(+7);(2)(-4)+(-7);
(3)(+4)+(-7);(4)(+9)+(-4);
(5)(+4)+(-4);(6)(+9)+(-2);
(7)(-9)+(+2);(8)(-9)+0;
(9)0+(+2);(10)0+0.
學(xué)生逐題口答后,教師小結(jié):
進(jìn)行有理數(shù)加法,先要判斷兩個(gè)加數(shù)是同號還是異號,有一個(gè)加數(shù)是否為零;再根據(jù)兩個(gè)加數(shù)符號的具體情況,選用某一條加法法則.進(jìn)行計(jì)算時(shí),通常應(yīng)該先確定“和”的符號,再計(jì)算“和”的絕對值.
解:(1)(-3)+(-9) (兩個(gè)加數(shù)同號,用加法法則的第2條計(jì)算)
=-(3+9)(和取負(fù)號,把絕對值相加)
=-12.
例3 足球循環(huán)比賽中,紅隊(duì)勝黃隊(duì)4﹕1,黃隊(duì)勝藍(lán)隊(duì)1﹕0,藍(lán)隊(duì)勝紅隊(duì)1﹕0,計(jì)算各隊(duì)的凈勝球數(shù)。
解:我們規(guī)定進(jìn)球?yàn)椤罢,失球(yàn)椤柏?fù)”。它們的和為凈勝球數(shù)。
三場比賽中,紅隊(duì)共進(jìn)4球,失2球,凈勝球數(shù)為(+4)+(-2)=2;
黃隊(duì)共進(jìn)2球,失4球,凈勝球數(shù)為(+2)+(-4)= -2;
藍(lán)隊(duì)共進(jìn)1球,失1球,凈勝球數(shù)為(+1)+(-1)=0;
【一試身手】
下面請同學(xué)們計(jì)算下列各題:
(1)(-0.9)+(+1.5);(2)(+2.7)+(-3); (3)(-1.1)+(-2.9);
全班學(xué)生書面練,四位學(xué)生板演,教師對學(xué)生板演進(jìn)行講評.
【總結(jié)陳詞】
1、這節(jié)課我們從實(shí)例出發(fā),經(jīng)過比較、歸納,得出了有理數(shù)加法的法則.今后我們經(jīng)常要用類似的思想方法研究其他問題。
2、應(yīng)用有理數(shù)加法法則進(jìn)行計(jì)算時(shí),要同時(shí)注意確定“和”的符號,計(jì)算“和”的絕對值兩件事。
【實(shí)戰(zhàn)操練】
1.計(jì)算:
(1)(-10)+(+6);(2)(+12)+(-4);(3)(-5)+(-7);
(4)(+6)+(+9);(5)67+(-73);(6)(-84)+(-59);
(7)33+48;(8)(-56)+37.
2.計(jì)算:
(1)(-0.9)+(-2.7);(2)3.8+(-8.4);
(3)(-0.5)+3;(4)3.29+1.78;
(5)7+(-3.04);(6)(-2.9)+(-0.31);
(7)(-9.18)+6.18;(8)4.23+(-6.77);(9)(-0.78)+0.
3.計(jì)算:
4*.用“>”或“<”號填空:
(1)如果a>0,b>0,那么a+b ______0;
(2)如果a<0,b<0,那么a+b ______0;
(3)如果a>0,b<0,|a|>|b|,那么a+b ______0;
(4)如果a<0,b>0,|a|>|b|,那么a+b ______0.
5*.分別根據(jù)下列條件,利用|a|與|b|表示a與b的和:
(1)a>0,b>0;(2) a<0,b<0;
(3)a>0,b<0,|a|>|b|;(4)a>0,b<0,|a|<|b|.
有理數(shù)的加法教案15
學(xué)習(xí)目標(biāo)
1. 理解有理數(shù)的加法法則.
2. 能夠應(yīng)用有理數(shù)的加法法則,將有理數(shù)的加法轉(zhuǎn)化為非負(fù)數(shù)的加減運(yùn)算.
3. 掌握異號兩數(shù)的加法運(yùn)算的規(guī)律.
[知識講解]
正有理數(shù)及0的加法運(yùn)算,小學(xué)已經(jīng)學(xué)過,然而實(shí)際問題中做加法運(yùn)算的數(shù)有可能超出正數(shù)范圍。例如,足球循環(huán)賽中,可以把進(jìn)球數(shù)記為正數(shù),失球數(shù)記為負(fù)數(shù),它們的和叫做凈勝球數(shù)。如果,紅隊(duì)進(jìn)4個(gè)球,失2個(gè)球;藍(lán)隊(duì)進(jìn)1個(gè)球,失1個(gè)球.于是紅隊(duì)的凈勝球數(shù)為
4+(-2),
藍(lán)隊(duì)的凈勝球數(shù)為
1+(-1)。
這里用到正數(shù)和負(fù)數(shù)的加法。
下面借助數(shù)軸來討論有理數(shù)的加法。
一、負(fù)數(shù)+負(fù)數(shù)
如果規(guī)定向東為正,向西為負(fù),那么一個(gè)人向西走2米,再向西走3米,兩次共向西走多少米?很明顯,兩次共向西走了6米.
這個(gè)問題用算式表示就是:(-2)+(-4)=-6.
這個(gè)問題用數(shù)軸表示就是如圖1所示:
二、負(fù)數(shù)+正數(shù)
如果向西走2米,再向東走4米, 那么兩次運(yùn)動后 這個(gè)人從起點(diǎn)向東走2米,寫成算式就是
。ā2)+4=2。
這個(gè)問題用數(shù)軸表示就是如圖2所示:
探究
利用數(shù)軸,求以下情況時(shí)這個(gè)人兩次運(yùn)動的結(jié)果:
。ㄒ唬┫认驏|走3米,再向西走5米,物體從起點(diǎn)向()運(yùn)動了()米;
(二)先向東走5米,再向西走5米,物體從起點(diǎn)向()運(yùn)動了()米;
。ㄈ┫认蛭髯5米,再向東走5米,物體從起點(diǎn)向()運(yùn)動了()米。 這三種情況運(yùn)動結(jié)果的算式如下:
3+(—5)= —2;
5+(—5)= 0;
。ā5)+5= 0。
如果這個(gè)人第一秒向東(或向西)走5米,第二秒原地不動,兩秒后這個(gè)人
從起點(diǎn)向東(或向西)運(yùn)動了5米。寫成算式就是
5+0=5或(—5)+0= —5。
你能從以上7個(gè)算式中發(fā)現(xiàn)有理數(shù)加法的運(yùn)算法則嗎?
三、有理數(shù)加法法則
1. 同號的兩數(shù)相加,取相同的符號,并把絕對值相加.
2.絕對值不相等的異號兩數(shù)相加,取絕對值較大的加數(shù)的符號,并用較大的絕對值減去較小的絕對值. 互為相反數(shù)的兩個(gè)數(shù)相加得零.
3一個(gè)數(shù)同0相加,仍得這個(gè)數(shù)。
四、例題
例1 計(jì)算(-3)+(-9);(2)(-4·7)+3·
分析:解此題要利用有理數(shù)的加法法則. 解:(1) (-3)+(-9)= -(3+9)= -12:
(2) (-4·7)+3·9=-(4·7-3·9)= -0·8.
例2足球循環(huán)賽中,
紅隊(duì)勝黃隊(duì)4: 1,黃隊(duì)勝藍(lán)隊(duì)1 :0,藍(lán)隊(duì)勝紅隊(duì)1: 0,計(jì)算各隊(duì)的凈勝球數(shù)。 解:每個(gè)隊(duì)的進(jìn)球總數(shù)記為正數(shù),失球總數(shù)記為負(fù)數(shù),這兩數(shù)的和為這隊(duì)的凈勝球數(shù)。 三場比賽中,紅隊(duì)共進(jìn)4球,失2球,凈勝球數(shù)為
。+4)+(—2)=+(4—2)=2;
黃隊(duì)共進(jìn)2球,失4球,凈勝球數(shù)為
。+2)+(—4)= —(4—2)= ();藍(lán)隊(duì)共進(jìn)()球,失()球,凈勝球數(shù)為
。ǎ=()。
五、課堂練習(xí)1.填空:
。1)(-3)+(-5)=;(2)3+(-5)=;
(3)5+(-3)=;(4)7+(-7)=;
。5)8+(-1)=;(6)(-8)+1 =;
。7)(-6)+0 =;(8)0+(-2) =;
2.計(jì)算:
。1)(-13)+(-18);(2)20+(-14);
。3)1.7 + 2.8 ;(4)2.3 + (-3.1);
121)+(-);(6)1+(-1.5); 332
12(7)(-3.04)+ 6 ;(8)+(-). 23(5)(-
3.想一想,兩個(gè)數(shù)的和一定大于每個(gè)加數(shù)嗎?請你舉例說明.
4. 第23頁練習(xí) 1、2。
課堂練習(xí)答案
1.(1)-8; (2)-2; (3)2; (4)0; (5)7; (6)-7;
(7)-6; (8)-2.
2.(1)-31; (2)7; (3)4.5; (4)-0.7; (5)-1 ;
。6)0 ; (7)2.96; (8)-1. 6
3.不一定,例如兩個(gè)負(fù)數(shù)的和小于這兩個(gè)加數(shù).
課外作業(yè):第31頁1題.
課外選做題
1.判斷題:
(1)兩個(gè)負(fù)數(shù)的.和一定是負(fù)數(shù);
。2)絕對值相等的兩個(gè)數(shù)的和等于零;
(3)若兩個(gè)有理數(shù)相加時(shí)的和為負(fù)數(shù),這兩個(gè)有理數(shù)一定都是負(fù)數(shù);
。4)若兩個(gè)有理數(shù)相加時(shí)的和為正數(shù),這兩個(gè)有理數(shù)一定都是正數(shù).
2.當(dāng)a = -1.6,b = 2.4時(shí),求a+b和a+(-b)的值.
3.已知│a│= 8,│b│= 2.
(1)當(dāng)a、b同號時(shí),求a+b的值;
。2)當(dāng)a、b異號時(shí),求a+b的值.
課外選做題答案
1.(1)對;(2)錯(cuò);(3)錯(cuò);(4)錯(cuò).
2.a(chǎn)+b和a+(-b)的值分別為0.8、-4.
3.(1)當(dāng)a、b同號時(shí),a+b的值為10或-10;
【有理數(shù)的加法教案】相關(guān)文章:
有理數(shù)的加法教案11-26
《有理數(shù)加法》教案08-29
《有理數(shù)的加法》教案02-25
《有理數(shù)的加法》教案04-01
有理數(shù)的加法教案范文04-25
有理數(shù)的加法教案(15篇)03-02
有理數(shù)加法說課稿07-12
《有理數(shù)的加法》說課稿07-19
《有理數(shù)加法》說課稿07-06