- 相關(guān)推薦
《解方程》小學(xué)數(shù)學(xué)教案
作為一位杰出的教職工,常常要寫(xiě)一份優(yōu)秀的教案,編寫(xiě)教案有利于我們準(zhǔn)確把握教材的重點(diǎn)與難點(diǎn),進(jìn)而選擇恰當(dāng)?shù)慕虒W(xué)方法。教案應(yīng)該怎么寫(xiě)才好呢?以下是小編為大家收集的《解方程》小學(xué)數(shù)學(xué)教案,希望能夠幫助到大家。
《解方程》小學(xué)數(shù)學(xué)教案1
一、設(shè)計(jì)理念:
隨著學(xué)生學(xué)習(xí)知識(shí)的遷移,讓學(xué)生在利用等式性質(zhì)解方程的基礎(chǔ)上學(xué)會(huì)運(yùn)用移項(xiàng)的方法解方程,既鞏固了小學(xué)基礎(chǔ)知識(shí),又為初中教學(xué)打下堅(jiān)實(shí)的基礎(chǔ)。
二、教學(xué)目標(biāo):
知識(shí)與技能:讓學(xué)生在利用等式性質(zhì)解方程的基礎(chǔ)上學(xué)會(huì)運(yùn)用移項(xiàng)的方法解方程,運(yùn)用相關(guān)規(guī)律,熟練的進(jìn)行解方程計(jì)算。
過(guò)程與方法:讓學(xué)生通過(guò)體驗(yàn)移項(xiàng)解方程的歷程,觀察、比較,進(jìn)而歸納出解各類(lèi)方程的快捷方法,得出一些相關(guān)規(guī)律,培養(yǎng)學(xué)生觀察,思考,對(duì)比,歸納的方法。
情感態(tài)度與價(jià)值觀:運(yùn)用“勾漏”雙向四步教學(xué)法,適當(dāng)創(chuàng)設(shè)教學(xué)情境,激發(fā)學(xué)生的學(xué)習(xí)興趣。
三、教學(xué)重、難點(diǎn):
教學(xué)重點(diǎn):讓學(xué)生在讓學(xué)生在利用等式性質(zhì)解方程的基礎(chǔ)上學(xué)會(huì)運(yùn)用移項(xiàng)的方法解方程,掌握各類(lèi)解方程的一些規(guī)律,運(yùn)用相關(guān)規(guī)律,熟練的進(jìn)行解方程計(jì)算。
教學(xué)難點(diǎn):讓學(xué)生體驗(yàn)移項(xiàng)解方程的歷程,觀察、比較,進(jìn)而歸納出解各類(lèi)方程的快捷方法,得出一些相關(guān)規(guī)律,培養(yǎng)學(xué)生觀察,思考,對(duì)比,歸納的方法。
四、教學(xué)方法:“勾漏”雙向四步教學(xué)法;觀察法、比較法、歸納法。
五、教學(xué)準(zhǔn)備:教學(xué)課件
六、教學(xué)過(guò)程
。ㄒ唬、勾人入境:
同學(xué)們,利用等式的性質(zhì)我們學(xué)會(huì)了解方程,其實(shí)上,熟練后,我們可以不用寫(xiě)得那么麻煩,三言兩語(yǔ)就可以輕松地解方程了啊!想學(xué)嗎?
(二)、漏知互學(xué):
我們先按運(yùn)算符號(hào)把方程分成四大塊:一、加法方程,二、乘法方程;三、減法方程;四、除法方程
先來(lái)看第一大塊的加法方程
186+x=200
用等式的性質(zhì)這樣解:
186+x=200
解:x+186—186=200—186
X=14
熟練后可以這樣解:
186+x=200
解:x=200—186
X=14
有什么規(guī)律呢?先看符號(hào)(+——--符號(hào)相反)再看數(shù)字(數(shù)字順序也相反),那合起來(lái)說(shuō)就是:加法方程,數(shù)符相反。有趣嗎?
現(xiàn)在我們?cè)倏吹诙髩K的乘法方程
36×x=108
用等式的性質(zhì)這樣解:
36×x=108
解:X×36÷36=108÷36
X=3
熟練后可以這樣解:
36×x=108
解:X=108÷36
X=3
師:他們又有什么規(guī)律呢?(課件展示)哦真聰明!乘法方程與加法方程的規(guī)律一樣,數(shù)字順序和運(yùn)算符號(hào)都相反了,所以我們把乘法方程與加法方程合在一起稱為:乘加方程,數(shù)符相反。明白了嗎?記住了嗎?
現(xiàn)在我們?cè)賮?lái)看第三大塊,減法方程:
X—36=12
用等式的性質(zhì)這樣解:
X—36=12
解:X—36+36=12+36
X=48
熟練后可以這樣解:
X—36=12
解:X=12+36
X=48
那么它們又有什么規(guī)律呢?先看未知數(shù)x都在減號(hào)前,接下來(lái)的運(yùn)算符號(hào)都用加法,那么是不是所有的減法方程都是用加法呢?別急,請(qǐng)看:
108—X=60
用等式的性質(zhì)可以這樣解:
108—X=60
解:108—X+X=60+X
108 =60+X
60+X =108
X+60-60 =108-60
X=48
熟練后可以這樣解:
108—X=60
解:X=108—60
X=48
同學(xué)們,比較一下,這兩題減法方程與上面兩題有什么不同呢?對(duì),未知數(shù)x都在減號(hào)后面,運(yùn)算符號(hào)都是用減法,那么我們就可以把這兩張種減法方程合并起來(lái)說(shuō):減法方程,前加后減。未知數(shù)x在減號(hào)前用加法,未知數(shù)x在減號(hào)后,用減法。
接下來(lái)我們?cè)賮?lái)學(xué)習(xí)第四塊,除法方程:
X÷12=5
用等式的性質(zhì)可以這樣解:
X÷12=5
解:X÷12×12=5×12
X=60
熟練后可以這樣解:
X÷12=5
解:X=5×12
X=60
同學(xué)們,你發(fā)現(xiàn)了什么?對(duì),眼睛真厲害!未知數(shù)x在除號(hào)前,解完這道題,誰(shuí)發(fā)現(xiàn),有沒(méi)有似曾相識(shí)的.感覺(jué):與減法一樣,1、未知數(shù)X在除號(hào)前面,2、都用乘法,3、數(shù)字沒(méi)有相反。怎么辦,對(duì),先算完另外一種情況(X在除號(hào)后的)再說(shuō),那么請(qǐng)開(kāi)始吧。
48÷X=3
用等式的性質(zhì)可以這樣解:熟練后可以這樣解:
48÷X=3 48÷X=3
解:48÷X×X=3×X解:X=48÷3
48=3×X X=16
3×X=48
X=48÷3
X=16
仔細(xì)觀察比較,你發(fā)現(xiàn)了什么?解除法方程的規(guī)律你找到了嗎?1、未知數(shù)X在除號(hào)后面,2、都用除法,3、數(shù)字沒(méi)有相反。以上說(shuō)明在除號(hào)前后的計(jì)算方法不一樣,那么它的規(guī)律要根據(jù)X在除號(hào)前后來(lái)判斷,X在除號(hào)前用乘法,X在除號(hào)后用除法,從而得出他的規(guī)律是除法方程,前乘后除,它和減法有類(lèi)似感。
(三)、流程對(duì)測(cè):
小組內(nèi)各出加減乘除的方程各一條,然后交換計(jì)算,看誰(shuí)算得又快又準(zhǔn)確。
小組開(kāi)始探究,教師巡邏指導(dǎo)
(四)、結(jié)課拓展:請(qǐng)同學(xué)們說(shuō)說(shuō)這節(jié)課你學(xué)到了什么?
《解方程》小學(xué)數(shù)學(xué)教案2
教學(xué)內(nèi)容:
數(shù)學(xué)書(shū)P58-P59及“做一做”,練習(xí)十一第5-7題。
教學(xué)目標(biāo):
1、結(jié)合具體圖例,根據(jù)等式不變的規(guī)律會(huì)解方程。
2、掌握解方程的格式和寫(xiě)法。
3、進(jìn)一步提高學(xué)生分析、遷移的能力。
教學(xué)重難點(diǎn):
掌握解方程的方法。
教學(xué)過(guò)程:
一、導(dǎo)入新課
二、新知學(xué)習(xí)
(一)教學(xué)例1
出示例1,從圖中可以獲取哪些信息?圖中表示了什么樣的等量關(guān)系?盒子中的皮球與外面的3皮個(gè)球加起來(lái)共有9個(gè),方程怎么列?得到x+3=9
要求盒子中一共有多少個(gè)皮球,也就是求x等于什么,我們?cè)撛趺蠢玫仁?/p>
方程兩邊同時(shí)減去一個(gè)3,左右兩邊仍然相等。板書(shū):x+3-3=9-3
化簡(jiǎn),即得:x=6
這就是方程的解,誰(shuí)再來(lái)回顧一下我們是怎樣解方程的?
左右兩邊同時(shí)減去的為什么是3,而不是其它數(shù)呢?
追問(wèn):x=6帶不帶單位呢?讓學(xué)生明白x在這里只代表一個(gè)數(shù)值,因此不帶單位。
要檢驗(yàn)x=6是不是正確的答案,還需要驗(yàn)算。怎么驗(yàn)算呢?可抽學(xué)生回答。
板書(shū):方程左邊=x+3=6+3=9=方程右邊
所以,x=6是方程的解。
小結(jié):通過(guò)剛才解方程的過(guò)程,我們知道了在方程的左右兩邊同時(shí)減去一個(gè)相同的數(shù),左右兩邊仍然相等。不過(guò)需要注意的是,在書(shū)寫(xiě)的過(guò)程中寫(xiě)的都是等式,而不是遞等式。
(二)教學(xué)例2
利用等式不變的規(guī)律,我們?cè)賮?lái)解一個(gè)方程。
出示方程:3x=18,怎樣才能求到1個(gè)x是多少呢?同桌的同學(xué)互相討論,如有問(wèn)題,可以出示書(shū)上的示意圖幫助分析。
抽答,在方程兩邊同時(shí)除以3即可。為什么兩邊同時(shí)除以的是3,而不是其它數(shù)呢?剛好把左邊變成1個(gè)x。讓學(xué)生打開(kāi)書(shū)59頁(yè),把例2中的解題過(guò)程補(bǔ)充完整。
展示、訂正。
通過(guò),剛才的學(xué)習(xí),我們知道了在方程的兩邊同時(shí)減去一個(gè)相同的數(shù)或同時(shí)除以一個(gè)不為0的數(shù),左右兩邊仍然相等。這是我們解方程常用的兩種方法,想不想用它們來(lái)試一試呢?
(三)反饋練習(xí)
1、完成“做一做”的第1題。
2、試著解方程:x-2.4=6 x÷9=0.7(強(qiáng)調(diào)驗(yàn)算)
三、課堂小結(jié)。
這節(jié)課學(xué)習(xí)了什么?討論:什么時(shí)候應(yīng)該在方程的兩邊加,什么時(shí)候該減,什么時(shí)候該乘,什么時(shí)候該除呢?
四、作業(yè):練習(xí)十一5—7題。
解方程教學(xué)反思
在本節(jié)課中我力圖直觀,讓學(xué)生在直觀的操作與演示中自主建構(gòu)。同時(shí)借助觀察、操作、猜想與驗(yàn)證,一方面來(lái)促使學(xué)生進(jìn)一步理解等式的性質(zhì),能利用等式的性質(zhì)來(lái)解方程,同時(shí)也讓學(xué)生抽象方程,解釋算理中來(lái)經(jīng)歷代數(shù)的過(guò)程,發(fā)展學(xué)生的數(shù)感及數(shù)學(xué)素養(yǎng)。
1、在具體情境中理解算理,經(jīng)歷代數(shù)的過(guò)程。
本節(jié)課屬于典型的計(jì)算課,所以算理與算法是二條主線,今天的算法主要是突破學(xué)生原有的認(rèn)知,能夠利用天平的原理來(lái)解方程,所以理解算理,讓學(xué)生體驗(yàn)到解方程只要使天平的一邊剩下一個(gè)未知數(shù),但要在這個(gè)變化中必須使天平保持平衡,可以通過(guò)在天平的左右二邊同時(shí)減去相同的.數(shù)是本節(jié)課的重點(diǎn)。我通過(guò)創(chuàng)設(shè)情境,讓學(xué)生來(lái)領(lǐng)悟算理,突顯出本節(jié)課的重點(diǎn)。
2、在直觀操作中掌握方法,發(fā)展數(shù)學(xué)素養(yǎng)。
在本節(jié)課中,通過(guò)充分的直觀,利用學(xué)生熟悉的素材,力圖把方程建構(gòu)于天平之中,在學(xué)生的頭腦中建立深刻的模像。同時(shí),在讓學(xué)生用自己的生活,用自己的操作解釋、驗(yàn)證中發(fā)展學(xué)生的數(shù)學(xué)素養(yǎng)。
3、困惑:縱觀學(xué)生的起點(diǎn),他們已經(jīng)具有豐富的生活經(jīng)驗(yàn)與知識(shí)背景來(lái)解簡(jiǎn)單的方程,所以在教學(xué)中運(yùn)用“逆運(yùn)算”來(lái)解方程對(duì)于采用天平的原理來(lái)解方程造成了相當(dāng)?shù)臎_突,部分學(xué)生雖然對(duì)于運(yùn)用天平原理來(lái)解方程已經(jīng)十分理解,但他們還是不愿意用這種方法,主要的原因是他們體驗(yàn)不到這種方法的優(yōu)越性,所以如何在本節(jié)課中讓學(xué)生體驗(yàn)到天平原理的優(yōu)越性,從而自愿的采用這種方法,沒(méi)有好的策略?
《解方程》小學(xué)數(shù)學(xué)教案3
知識(shí)網(wǎng)絡(luò)
列方程解應(yīng)用題最關(guān)鍵是前兩步:設(shè)未知數(shù)和列方程。有的同學(xué)說(shuō)解方程的部分不是篇幅很長(zhǎng)么,為什么不是關(guān)鍵部分呢?其實(shí),只要仔細(xì)觀察一下,就會(huì)發(fā)現(xiàn),雖然篇幅很長(zhǎng),但只要注意到符號(hào)變化、分配律等基本運(yùn)算技巧,解的過(guò)程是較容易掌握的。相反,前兩步篇幅雖然短,但列方程解應(yīng)用題的精華和難點(diǎn)卻大部分集中在這里,需要用以體會(huì)。
一般地,設(shè)什么量為未知數(shù),最簡(jiǎn)單明了的想法是設(shè)所求為x(復(fù)雜的題目有時(shí)要采取迂回戰(zhàn)術(shù),間接地設(shè)未知數(shù)),當(dāng)所求的數(shù)較多時(shí),把這些所求的數(shù)量用一個(gè)或盡量少的未知數(shù)表達(dá)出來(lái),也是很重要的。
設(shè)完未知數(shù),就要找等量關(guān)系,來(lái)幫助列出方程。這時(shí)需要認(rèn)真讀題,因?yàn)樵S多等量關(guān)系是隱藏在字里行間的。中文有很多字、詞、句表達(dá)相等的意思,如相等、是、比多、比少、是的幾倍、的總和是、與的差是等等,根據(jù)這些字句的含義,再加上其中的量用未知數(shù)表達(dá)出來(lái),就能列出方程。
重點(diǎn)難點(diǎn)
列方程解應(yīng)用題是用字母來(lái)代替未知數(shù),根據(jù)等量關(guān)系列出含有未知數(shù)的等式,也就是列出方程,然后解出未知數(shù)的值,列方程解應(yīng)用題的優(yōu)點(diǎn)在于可以使未知數(shù)直接參加運(yùn)算。解這類(lèi)應(yīng)用題的關(guān)鍵在于能夠正確地設(shè)立未知數(shù),找出等量關(guān)系從而建立方程。而找出等量關(guān)系又在于熟練運(yùn)用數(shù)量之間的各種已知條件。掌握了這兩點(diǎn)就能正確地列出方程。
學(xué)法指導(dǎo)
。1)列方程解應(yīng)用題的一般步驟是:
1)弄清題意,找出已知條件和所求問(wèn)題;
2)依題意確定等量關(guān)系,設(shè)未知數(shù)x;
3)根據(jù)等量關(guān)系列出方程;
4)解方程;
5)檢驗(yàn),寫(xiě)出答案。
。2)初學(xué)列方程解應(yīng)用題,要養(yǎng)成多角度審視問(wèn)題的習(xí)慣,增強(qiáng)一題多解的自覺(jué)性,逐步提高分析問(wèn)題、解決問(wèn)題的能力。
(3)對(duì)于變量較多并且變量關(guān)系又容易確定的問(wèn)題,用方程組求解,過(guò)程更清晰。
經(jīng)典例題
例1 某縣農(nóng)機(jī)廠金工車(chē)間有77個(gè)工人。已知每個(gè)工人平均每天加工甲種零件5個(gè)或乙種零件4個(gè)或丙種零件3個(gè)。但加工3個(gè)甲種零件、1個(gè)乙種零件和9個(gè)丙種零件才恰好配成一套。問(wèn):應(yīng)安排生產(chǎn)甲、乙、丙種零件各多少人時(shí),才能使生產(chǎn)的三種零件恰好配套。
思路剖析
如果直接設(shè)生產(chǎn)甲、乙、丙三種零件的人數(shù)分別為x人、y人、z人,根據(jù)共有77人的條件可以列出方程x+y+z=77,但解起來(lái)比較麻煩 如果仔細(xì)分析題意,會(huì)出現(xiàn)除了上面提到的加工甲、乙、丙三種零件的人數(shù)為未知數(shù)外,還有甲、乙、丙三種零件各自的總件數(shù)也未知。而題目中又有關(guān)于甲、乙、丙三種零件之間裝配時(shí)的內(nèi)在聯(lián)系,這個(gè)內(nèi)在聯(lián)系可以用比例關(guān)系表示,而乙種零件件數(shù)又在中間起媒介作用。所以如用間接未知數(shù),設(shè)已種零件總數(shù)為x個(gè),為了配套,甲種、丙種零件件數(shù)總數(shù)分別為3x個(gè)和9x個(gè),再根據(jù)生產(chǎn)某種零件人數(shù)=生產(chǎn)這種零件的'個(gè)數(shù)工人勞動(dòng)效率,可以分別求出生產(chǎn)甲、乙、丙種零件需安排的人數(shù),從而找出等量關(guān)系,即按均衡生產(chǎn)推算的總?cè)藬?shù),列出方程 解 答
設(shè)加工乙種零件x個(gè),則加工甲種零件3x個(gè),加工丙種零件9x個(gè)。
答:應(yīng)安排加工甲、乙、丙三種零件工人人數(shù)分別為12人、5人和60人。
例2 牧場(chǎng)上長(zhǎng)滿牧草,每天牧草都勻速生長(zhǎng)。這片牧場(chǎng)可供10頭牛吃20天,可供15頭牛吃10天,問(wèn)可供25頭牛吃幾天?
思路剖析
這是以前接觸過(guò)的牛吃草問(wèn)題,它的算術(shù)解法步驟較多,這里用列方程的方法來(lái)解決。
設(shè)供25頭?沙詘天。
本題的等量關(guān)系比較隱蔽,讀一下問(wèn)題:每天牧草都勻速生長(zhǎng),草生長(zhǎng)的速度是固定的,這就可以發(fā)掘出等量關(guān)系,如從供10頭牛吃20天表達(dá)出生長(zhǎng)速度,再?gòu)墓?5頭牛吃10天表達(dá)出生長(zhǎng)速度,這兩個(gè)速度應(yīng)該一樣,就是一種相等關(guān)系;另外,最開(kāi)始草場(chǎng)的草應(yīng)該是固定的,也可以發(fā)掘出等量關(guān)系。
解 答
設(shè)供25頭?沙詘天。
由:草的總量=每頭牛每天吃的草頭數(shù)天數(shù)
=原有的草+新生長(zhǎng)的草
原有的草=每頭牛每天吃的草頭數(shù)天數(shù)-新生長(zhǎng)的草
新生長(zhǎng)的草=草的生長(zhǎng)速度天數(shù)
考慮已知條件,有
原有的草=每頭牛每天吃的草1020-草的生長(zhǎng)速度20
原有的草=每頭牛每天吃的草1510-草的生長(zhǎng)速度10
所以:原有的草=每頭牛每天吃的草200-草的生長(zhǎng)速度20
原有的草=每頭牛每天吃的草150-草的生長(zhǎng)速度10
即:每頭牛每天吃的草200-草的生長(zhǎng)速度20
=每頭牛每天吃的草150-草的生長(zhǎng)速度10
每頭牛每天吃的草200草的生長(zhǎng)速度20+每頭牛每天吃的草150-草的生長(zhǎng)速度10
每頭牛每天吃的草200-每頭牛每天吃的草150
=草的生長(zhǎng)速度20-草的生長(zhǎng)速度10
每頭牛每天吃的草(200-150)=草的生長(zhǎng)速度(20-10)
所以:每頭牛每天吃的草50=草的生長(zhǎng)速度10
每頭牛每天吃的草5=草的生長(zhǎng)速度
因此,設(shè)每頭牛每天吃的草為1,則草的生長(zhǎng)速度為5。
由:原有的草=每頭牛每天吃的草25x-草的生長(zhǎng)速度x
原有的草=每頭牛每天吃的草1020-草的生長(zhǎng)速度20
有:每頭牛每天吃的草25x-草的生長(zhǎng)速度x
=每頭牛每天吃的草1020-草的生長(zhǎng)速度20
所以:125x-5x=11020-520
解這個(gè)方程
25x-5x=1020-520
20x=100
x=5(天)
答:可供25頭牛吃5天。
例3 某建筑公司有紅、灰兩種顏色的磚,紅磚量是灰磚量的2倍,計(jì)劃修建住宅若干座。若每座住宅使用紅磚80米3,灰磚30米3,那么,紅磚缺40米3,灰磚剩40米3。問(wèn):計(jì)劃修建住宅多少座?
解 答
設(shè)計(jì)劃修建住宅x座,則紅磚有(80x-40)米3,灰磚有(30x+40)米3。根據(jù)紅磚量是灰磚量的2倍,列出方程
解法一:用直接設(shè)元法。
80x-40=(30x+40)2
80x-40=60x+80
20x=120
x=6(座)
解法二:用間接設(shè)元法。
設(shè)有灰磚x米3,則紅磚有2x米3。根據(jù)修建住宅的座數(shù),列出方程。
。▁-40)30=(2x+40)80
(x-40)80=(2x+40)30
80x-3200=60x+1200
20x=4400
x=220(米3)
由灰磚有220米3,推知修建住宅(220-40)30=6(座)。
同理,也可設(shè)有紅磚x米3。留給同學(xué)們練習(xí)。
答:計(jì)劃修建住宅6座。
例4 兩個(gè)數(shù)的和是100,差是8,求這兩個(gè)數(shù)。
思路剖析
這道題有兩個(gè)數(shù)均為未知數(shù),我們可以設(shè)其中一個(gè)數(shù)為x,那么另一個(gè)數(shù)可以用100-x或x+8來(lái)表示。
解 答
解法一:設(shè)較小的數(shù)為x,那么較大的數(shù)為x+8,根據(jù)題意它們的和是100,可以得到:
x+8+x=100
解這個(gè)方程:2x=100-8
所以 x=46
所以 較大的數(shù)是 46+8=54
也可以設(shè)較小的數(shù)為x,較大的數(shù)為100-x,根據(jù)它們的差是8列方程得:
100-x-x=8
所以 x=46
所以 較大的數(shù)為100-46=54
答:這兩個(gè)數(shù)是46與54。
【《解方程》小學(xué)數(shù)學(xué)教案】相關(guān)文章:
解方程說(shuō)課稿11-15
解方程教案03-29
《解方程》說(shuō)課稿12-23
解方程的教學(xué)反思03-10
解方程教學(xué)反思02-05
《解方程》教學(xué)反思04-07
《解方程》的教學(xué)反思04-07
解方程二的教學(xué)反思02-05
解方程教案15篇04-02