當前位置:育文網(wǎng)>教學文檔>教案> 《完全平方公式》教案

《完全平方公式》教案

時間:2024-04-02 10:38:58 澤彪 教案 我要投稿

《完全平方公式》教案(通用15篇)

  作為一名教學工作者,編寫教案是必不可少的,通過教案準備可以更好地根據(jù)具體情況對教學進程做適當?shù)谋匾恼{(diào)整?靵韰⒖冀贪甘窃趺磳懙陌!以下是小編為大家整理的《完全平方公式》教案,歡迎閱讀,希望大家能夠喜歡。

《完全平方公式》教案(通用15篇)

  《完全平方公式》教案 1

  學習目標:

  1、經(jīng)歷探索完全平方公式的過程,發(fā)展學生觀察、交流、歸納、猜測、驗證等能力。

  2、會推導完全平方公式,了解公式的幾何背景,會用公式計算。

  3、數(shù)形結合的數(shù)學思想和方法。

  學習重點:

  會推導完全平方公式,并能運用公式進行簡單的計算。

  學習難點:

  掌握完全平方公式的結構特征,理解公式中a.b的廣泛含義。

  學習過程:

  一、學習準備

  1、利用多項式乘以多項式計算:(a+b)2 (a-b)2

  2、這兩個特殊形式的多項式乘法結果稱為完全平方公式。

  嘗試用自己的語言敘述完全平方公式:

  3、完全平方公式的幾何意義:閱讀課本64頁,完成填空。

  4、完全平方公式的結構特征:

  (a+b)2=a2+2ab+b2

  (a-b)2=a2-2ab+b2

  左邊是 形式,右邊有三項,其中兩項是 形式,另一項是

  注意:公式中字母的含義廣泛,可以是 ,只要題目符合公式的結構特征,就可以運用這一公式,可用符號表示為:(□±△)=□2±2□△+△2

  5、兩個完全平方公式的.轉化:

  (a-b)2= 2=( )2+2( )+( )2=

  二、合作探究

  1、利用乘法公式計算:

  (1) (3a+2b)2 (2) (-4x2-1)2

  分析:要分清題目中哪個式子相當于公式中的a ,哪個式子相當于公式中的b

  2、利用乘法公式計算:

  (1) 992 (2) ( )2

  分析:要利用完全平方公式,需具備完全平方公式的結構,所以992可以轉化( )2,( )2可以轉化為( )2

  3、利用完全平方公式計算:

  (1) (a+b+c)2 (2) (a-b)3

  三、學習

  對照學習目標,通過預習,你覺得自己有哪些方面的收獲?又存在哪些方面的疑惑?

  四、自我測試

  1、下列計算是否正確,若不正確,請訂正;

  (1) (-1+3a)2=9a2-6a+1

  (2) (3x2- )2=9x4-

  (3) (xy+4)2=x2y2+16

  (4) (a2b-2)2=a2b2-2a2b+4

  2、利用乘法公式計算:

  (1) (3x+1)2 (2) (a-3b)2

  (3) (-2x+ )2 (4) (-3m-4n)2

  3、利用乘法公式計算:

  (1) 9992 (2) (100.5)2

  4、先化簡,再求值;

  ( m-3n)2-( m+3n)2+2,其中m=2,n=3

  五、思維拓展

  1、如果x2-kx+81是一個完全平方公式,則k的值是

  2、多項式4x2+1加上一個單項式后,使它能成為一個整式的完全平方,那么加上的單項式可以是

  3、已知(x+y)2=9, (x-y)2=5 ,求xy的值

  4、x+y=4 ,x-y=10 ,那么xy=

  5、已知x- =4,則x2+ =

  《完全平方公式》教案 2

  教學目標

  1、知識與技能:體會公式的發(fā)現(xiàn)和推導過程,了解公式的幾何背景,理解公式的本質(zhì),會應用公式進行簡單的計算。

  2、過程與方法:通過讓學生經(jīng)歷探索完全平方公式的過程,培養(yǎng)學生觀察、發(fā)現(xiàn)、歸納、概括、猜想等探究創(chuàng)新能力,發(fā)展推理能力和有條理的表達能力。培養(yǎng)學生的數(shù)形結合能力。

  3、情感態(tài)度價值觀:體驗數(shù)學活動充滿著探索性和創(chuàng)造性,并在數(shù)學活動中獲得成功的體驗與喜悅,樹立學習自信心。

  教學重難點

  教學重點:

  1、對公式的理解,包括它的推導過程、結構特點、語言表述(學生自己的語言)、幾何解釋。

  2、會運用公式進行簡單的.計算。

  教學難點:

  1、完全平方公式的推導及其幾何解釋。

  2、完全平方公式的結構特點及其應用。

  教學工具:

  課件

  教學過程

  一、復習舊知、引入新知

  問題1:請說出平方差公式,說說它的結構特點。

  問題2:平方差公式是如何推導出來的?

  問題3:平方差公式可用來解決什么問題,舉例說明。

  問題4:想一想、做一做,說出下列各式的結果。

  (1)(a+b)2(2)(a-b)2

  (此時,教師可讓學生分別說說理由,并且不直接給出正確評價,還要繼續(xù)激發(fā)學生的學習興趣。)

  二、創(chuàng)設問題情境、探究新知

  一塊邊長為a米的正方形實驗田,因需要將其邊長增加b米,形成四塊實驗田,以種植不同的新品種。(如圖)

  (1)四塊面積分別為:

  (2)兩種形式表示實驗田的總面積:

 、僬w看:邊長為的大正方形,S=;

 、诓糠挚矗核膲K面積的和,S=.

  總結:通過以上探索你發(fā)現(xiàn)了什么?

  問題1:通過以上探索學習,同學們應該知道我們提出的問題4正確的結果是什么了吧?

  問題2:如果還有同學不認同這個結果,我們再看下面的問題,繼續(xù)探索.(a+b)2表示的意義是什么?請你用多項式的乘法法則加以驗證。

  (教學過程中教師要有意識地提到猜想、感覺得到的不一定正確,只有再通過驗證才能得出真知,但還是要鼓勵學生大膽猜想,發(fā)表見解,但要驗證)

  問題3:你能說說(a+b)2=a2+2ab+b2

  這個等式的結構特點嗎?用自己的語言敘述。

  (結構特點:右邊是二項式(兩數(shù)和)的平方,右邊有三項,是兩數(shù)的平方和加上這兩數(shù)乘積的二倍)

  問題4:你能根據(jù)以上等式的結構特點說出(a-b)2等于什么嗎?請你再用多項式的乘法法則加以驗證。

  總結:我們把(a+b)2=a2+2ab+b2(a–b)2=a2–2ab+b2稱為完全平方公式。

  問題:①這兩個公式有何相同點與不同點?②你能用自己的語言敘述這兩個公式嗎?

  語言描述:兩數(shù)和(或差)的平方等于這兩數(shù)的平方和加上(或減去)這兩數(shù)積的2倍。

  強化記憶:首平方,尾平方,首尾二倍放中央,和是加來差是減。

  三、例題講解,鞏固新知

  例1:利用完全平方公式計算

  (1)(2x-3)2(2)(4x+5y)2(3)(mn-a)2

  解:(2x-3)2=(2x)2-2o(2x)o3+32

  =4x2-12x+9

  (4x+5y)2=(4x)2+2o(4x)o(5y)+(5y)2

  =16x2+40xy+25y2

  (mn-a)2=(mn)2-2o(mn)oa+a2

  =m2n2-2mna+a2

  交流總結:運用完全平方公式計算的一般步驟

  (1)確定首、尾,分別平方;

  (2)確定中間系數(shù)與符號,得到結果。

  四、練習鞏固

  練習1:利用完全平方公式計算

  練習2:利用完全平方公式計算

  練習3:

  (練習可采用多種形式,學生上黑板板演,師生共同評價。也可學生獨立完成后,學生互相批改,力求使學生對公式完全掌握,如有學生出現(xiàn)問題,學生、教師應及時幫助。)

  五、變式練習

  六、暢談收獲,歸納總結

  1、本節(jié)課我們學習了乘法的完全平方公式。

  2、我們在運用公式時,要注意以下幾點:

  (1)公式中的字母a、b可以是任意代數(shù)式;

  (2)公式的結果有三項,不要漏項和寫錯符號;

  (3)可能出現(xiàn)①②這樣的錯誤。也不要與平方差公式混在一起。

  七、作業(yè)設置

  《完全平方公式》教案 3

  學習目標:

  1、會推導完全平方公式,并能用幾何圖形解釋公式;

  2、利用公式進行熟練地計算;

  3、經(jīng)歷探索完全平方公式的推導過程,發(fā)展符號感,體會特殊一般特殊的認知規(guī)律。

  學習過程:

  (一)自主探索

  1、計算:(1)(a+b)2 (2)(a-b)2

  2、你能用文字敘述以上的結論嗎?

  (二)合作交流:

  你能利用下圖的面積關系解釋公式(a+b)2=a2+2ab+b2嗎?與同學交流。

  (三)試一試,我能行。

  1、利用完全平方公式計算:

  (1)(x+6)2 (2)(a+2b)2 (3)(3s-t)2

  (四)鞏固練習

  利用完全平方公式計算:

  A組:

  (1)( x+ y)2 (2)(-2m+5n)2

  (3)(2a+5b)2 (4)(4p-2q)2

  B組:

  (1)( x- y2) 2 (2)(1.2m-3n)2

  (3)(- a+5b)2 (4)(- x- y)2

  C組:

  (1)1012 (2)542 (3)9972

  (五)小結與反思

  我的.收獲:

  我的疑惑:

  (六)達標檢測

  1、(a-b)2=a2+b2+ .

  2、(a+2b)2= .

  3、如果(x+4)2=x2+kx+16,那么k= .

  4、計算:

  (1)(3m- )2 (2)(x2-1)2

  (2)(-a-b)2 (4)( s+ t)2

  《完全平方公式》教案 4

  總體說明:

  完全平方公式則是對多項式乘法中出現(xiàn)的較為特殊的算式的一種歸納、總結。同時,完全平方公式的推導是初中數(shù)學中運用推理方法進行代數(shù)式恒等變形的開端,通過完全平方公式的學習對簡化某些整式的運算、培養(yǎng)學生的求簡意識有較大好處。而且完全平方公式是后繼學習的必備基礎,不僅對學生提高運算速度、準確率有較大作用,更是以后學習分解因式、分式運算、解一元二次方程以及二次函數(shù)的恒等變形的重要基礎,同時也具有培養(yǎng)學生逐漸養(yǎng)成嚴密的邏輯推理能力的作用。因此學好完全平方公式對于代數(shù)知識的后繼學習具有相當重要的意義。

  本節(jié)是北師大版七年級數(shù)學下冊第一章《整式的運算》的第8小節(jié),占兩個課時,這是第一課時,它主要讓學生經(jīng)歷探索與推導完全平方公式的過程,培養(yǎng)學生的符號感與推理能力,讓學生進一步體會數(shù)形結合的思想在數(shù)學中的作用。

  一、學生學情分析

  學生的技能基礎:學生通過對本章前幾節(jié)課的學習,已經(jīng)學習了整式的`概念、整式的加減、冪的運算、整式的乘法、平方差公式,這些基礎知識的學習為本節(jié)課的學習奠定了基礎。

  學生活動經(jīng)驗基礎:在平方差公式一節(jié)的學習中,學生已經(jīng)經(jīng)歷了探索和應用的過程,獲得了一些數(shù)學活動的經(jīng)驗,培養(yǎng)了一定的符號感和推理能力;同時在相關知識的學習過程中,學生經(jīng)歷了很多探究學習的過程,具有了一定的獨立探究意識以及與同伴合作交流的能力。

  二、教學目標

  知識與技能:

  (1)讓學生會推導完全平方公式,并能進行簡單的應用。

  (2)了解完全平方公式的幾何背景。

  數(shù)學能力:

  (1)由學生經(jīng)歷探索完全平方公式的過程,進一步發(fā)展學生的符號感與推理能力。

  (2)發(fā)展學生的數(shù)形結合的數(shù)學思想。

  情感與態(tài)度:

  將學生頭腦中的前概念暴露出來進行分析,避免形成教學上的“相異構想”。

  三、教學重難點

  教學重點:1、完全平方公式的推導;

  2、完全平方公式的應用;

  教學難點:1、消除學生頭腦中的前概念,避免形成“相異構想”;

  2、完全平方公式結構的認知及正確應用。

  四、教學設計分析

  本節(jié)課設計了十一個教學環(huán)節(jié):學生練習、暴露問題——驗證——推廣到一般情況,形成公式——數(shù)形結合——進一步拓廣——總結口訣——公式應用——學生反饋——學生PK——學生反思——鞏固練習。

  第一環(huán)節(jié):學生練習、暴露問題

  活動內(nèi)容:計算:(a+2)2

  設想學生的做法有以下幾種可能:

  ①(a+2)2=a2+22

 、(a+2)2=a2+2a+22

 、壅_做法;

  針對這幾種結果都將a=1代入計算,得出①②都是錯誤的,但③的做法是否一定正確呢?怎么驗證?

  活動目的:在很多學生的頭腦中,認為兩數(shù)和的完全平方與兩數(shù)的平方和等同,即:

  (a+2)2=a2+22,如果不將這種定式思維_就很難建立起一個正確的概念;這一環(huán)節(jié)的目的就是讓學生的這種錯誤或其它錯誤充分暴露出來,并讓學生充分認識到自己原有的定式思維是錯誤的,為下一步構建新的思維模式埋下伏筆。

  第二環(huán)節(jié):驗證(a+2)2=a2–4a+22

  活動內(nèi)容:(a+2)2=(a+2)?(a+2)=a2+2a+2a+22

  活動目的:在前一環(huán)節(jié)已經(jīng)打破了學生的原有的思維定式的基礎上,給學生建立正確的思維方法,避免形成“相異構想”。

  第三環(huán)節(jié):推廣到一般情況,形成公式

  活動內(nèi)容:(a+b)2=(a+b)(a+b)=a2+ab+ab+b2=a2+2ab+b2

  活動目的:讓學生經(jīng)歷從特殊到一般的探究過程,體驗到發(fā)現(xiàn)的快樂。

  第四環(huán)節(jié):數(shù)形結合

  活動內(nèi)容:設問:在多項式的乘法中,很多公式都都可以用幾何圖形進行解釋,那么完全平方公式怎樣用幾何圖形解釋呢?

  展示動畫,用幾何圖形詮釋完全平方公式的幾何意義。

  學生思考:還有沒有其它的方法來詮釋完全平方公式?(課后思考)

  活動目的:讓學生進一步認識到數(shù)與形都不是孤立存在的,數(shù)與形是可以有機地結合在一起,從而發(fā)展學生的數(shù)形結合的數(shù)學思想.

  第五環(huán)節(jié):進一步拓廣

  活動內(nèi)容:推導兩數(shù)差的完全平方公式:(a–b)2=a2–2ab+b2

  方法1:(a–b)2=(a–b)(a–b)=a2–ab–ab+b2=a2–2ab+b2

  方法2:(a–b)2=[a+(–b)]2=a2+2a(–b)+(–b)2=a2–2ab+b2

  活動目的:讓學生經(jīng)歷由兩數(shù)和的完全平方公式拓廣到兩數(shù)差的完全平方公式的過程,體會到符號差異帶來的結果差異,由第二種推導方法體會到兩數(shù)差的完全平方公式是兩數(shù)和的完全平方公式的應用。

  第六環(huán)節(jié):總結口訣、認識特征

  活動內(nèi)容:比較兩個公式的共同點與不同點:(a+b)2=a2+2ab+b2

  (a–b)2=a2–2ab+b2

  特征:①左邊都是一個二項式的完全平方,兩者僅有一個符號不同;右邊都是二次三項式,其中第一、三項是公式左邊二項式中每一項的平方,中間一項是左邊二項式中兩項乘積的兩倍,兩者也僅一個符號不同;

 、诠街械腶、b可以是任意一個代數(shù)式(數(shù)、字母、單項式、多項式)

  口訣:首平方,尾平方,首尾相乘的兩倍在中央。

  活動目的:認識完全平方公式的特征,總結出完全平方公式的口訣,便于學生理解與記憶,避免學生在應用該公式中出現(xiàn)錯誤.

  第七環(huán)節(jié):公式應用

  活動內(nèi)容:例:計算:①(2x–3)2;②(4x+)2

  解:①(2x–3)2=(2x)2–2?(2x)?3+32=4x2–12x+9

 、(4x+)2=(4x)2+2?????(4x)()+()2=16x2+2xy+

  活動目的:在前幾個環(huán)節(jié)中,學生對完全平方公式已經(jīng)有了感性認識,通過本環(huán)節(jié)的講解以及下一環(huán)節(jié)的練習,使學生逐步經(jīng)歷認識——模仿——再認識。從而上升到理性認識的階段。

  第八環(huán)節(jié):隨堂練習

  活動內(nèi)容:計算:①;②;③(n+1)2–n2

  活動目的:通過學生的反饋練習,使教師能全面了解學生對完全平方公式的理解是否到位,完全平方公式的應用是否得當,以便教師能及時地進行查缺補漏。

  第九環(huán)節(jié):學生PK

  活動內(nèi)容:每個學生各出五道完全平方公式的計算題給自己的同桌解答,比一比誰的準確性率高,速度快。

  活動目的:活躍課堂氣氛,激起學生的好勝心,進一步鞏固學生對完全平方公式的理解與應用。

  第十環(huán)節(jié):學生反思

  活動內(nèi)容:通過今天這堂課的學習,你有哪些收獲?

  收獲1:認識了完全平方公式,并能簡單應用;

  收獲2:了解了兩數(shù)和與兩數(shù)差的完全平方公式之間的差異;

  收獲3:感受到數(shù)形結合的數(shù)學思想在數(shù)學中的作用。

  活動目的:通過對一堂課的歸納與總結,鞏固學生對完全平方公式的認識,體會數(shù)學思想的精妙。

  第十一環(huán)節(jié):布置作業(yè):

  課本P43習題1.13

  《完全平方公式》教案 5

  一、教材分析

  本節(jié)內(nèi)容在全書及章節(jié)的地位:《完全平方公式》是人教版數(shù)學八年級上冊第十四章的內(nèi)容。在此之前,學生已學習了多項式的乘法,這為過渡到本節(jié)的學習起著鋪墊作用。本節(jié)課通過學生合作學習,利用多項式相乘法則和圖形解釋而得到完全平方公式,進而理解和運用完全平方公式,對以后學習因式分解,解一元二次方程都具有舉足輕重的作用。

  作為一名數(shù)學老師,不僅要傳授給學生數(shù)學知識,更重要的是傳授給學生數(shù)學思想、數(shù)學意識,因此本節(jié)課在教學中力圖向?qū)W生滲透換元思想和數(shù)形結合思想 。

  二、學情分析

  學生剛學過多項式的乘法,已具備學習和運用完全平方公式的知識結構,但是由于學生初步學習乘法公式,認清公式結構并不容易,因此教學時要循序漸進。

  三、教學目標

  知識與技能

  1.完全平方公式的推導及其應用。

  2.完全平方公式的幾何證明。

  過程與方法

  經(jīng)歷探索完全平方公式的過程,進一步發(fā)展符號感和推理能力。

  情感態(tài)度與價值觀

  對學生觀察能力、概括能力、語言表述能力的培養(yǎng),以及數(shù)學思想的滲透。

  四、教學重點難點

  教學重點

  完全平方公式的推導過程;結構特點與公式的應用。

  教學難點

  完全平方公式結構特點及其應用。

  五、教法學法

  多媒體輔助教學,將知識形象化、生動化,激發(fā)學生的興趣。教學中逐步設置疑問,引導學生動手、動腦、動口,積極參與知識全過程。

  六、教學過程設計

  師生活動

  設計意圖

  一.復習多項式與多項式的乘法法則

  1、多項式與多項式的`乘法法則內(nèi)容。

  2、多項式與多項式的乘法練習。

  二.講授新課

  完全平方公式的推導

  1、利用多項式與多項式的乘法法則和幾何法推導完全平方(和)公式

  附:有簡單的填空練習

  2、利用多項式乘法則和換元法推導完全平方 (差)公式

  (a+b)2=a2+2ab+b2

  (a-b)2=a2-2ab+b2

  二、總結完全平方公式的特點

  介紹助記口訣:首平方,尾平方,首尾兩倍乘積放中央。

  三、課堂練習

  1、改錯練習

  2、例題講解(總結利用完全平方公式計算的步驟)

  第一步選擇公式,明確是哪兩項和(或差)的平方;

  第二步準確代入公式;

  第三步化簡。

  計算練習

 。ǎ保┱n本110頁第一題

 。ǎ玻 (x-6)2 (y-5)2

  四、課堂小結:

  1、應用完全平方公式應注意什么?

  在解題過程中要準確確定a和b,對照公式原形的兩邊, 做到不丟項、不弄錯符號、2ab時不能少乘以2。

  2、助記口訣

  復習多項式與多項式的乘法法則為新課的學習做準備。

  利用不同的的方法來推導完全平方公式,讓學生認知數(shù)學中的不同解題方法。

  利用助記口訣幫助學生更加準確的掌握完全平方公式的特點。

  通過課堂練習,使學生掌握用完全平方公式計算的步驟,加強學生解題的準確率。

  強調(diào)應用完全平方公式解題的注意點和助記口訣,提高學生解決問題的能力和解題的準確率。

  《完全平方公式》教案 6

  教學目標:

  1、經(jīng)歷探索完全平方公式的過程,并從完全平方公式的推導過程中,培養(yǎng)學生觀察、發(fā)現(xiàn)、歸納、概括、猜想等探究創(chuàng)新能力,發(fā)展邏輯推理能力和有條理的表達能力。

  2、體會公式的發(fā)現(xiàn)和推導過程,理解公式的本質(zhì),從不同的層次上理解完全平方公式,并會運用公式進行簡單的計算。

  3、了解完全平方公式的幾何背景,培養(yǎng)學生的數(shù)形結合意識。

  4、在學習中使學生體會學習數(shù)學的樂趣,培養(yǎng)學習數(shù)學的信心,感愛數(shù)學的內(nèi)在美。

  教學重點:

  1、弄清完全平方公式的來源及其結構特點,用自己的語言說明公式及其特點;

  2、會用完全平方公式進行運算。

  教學難點:

  會用完全平方公式進行運算

  教學方法:

  探索討論、歸納總結。

  教學過程:

  一、回顧與思考

  活動內(nèi)容:復習已學過的平方差公式

  1、平方差公式:(a+b)(a—b)=a2—b2;

  公式的結構特點:左邊是兩個二項式的乘積,即兩數(shù)和與這兩數(shù)差的積。

  右邊是兩數(shù)的平方差。

  2、應用平方差公式的注意事項:弄清在什么情況下才能使用平方差公式。

  二、情境引入

  活動內(nèi)容:提出問題:

  一塊邊長為a米的正方形實驗田,由于效益比較高,所以要擴大農(nóng)田,將其邊長增加b米,形成四塊實驗田,以種植不同的新品種(如圖)。

  用不同的形式表示實驗田的總面積,并進行比較。

  三、初識完全平方公式

  活動內(nèi)容:

  1、通過多項式的乘法法則來驗證(a+b)2=a2+2ab+b2的正確性。并利用兩數(shù)和的完全平方公式推導出兩數(shù)差的完全平方公式:(a—b)2=a2—2ab+b2。

  2、引導學生利用幾何圖形來驗證兩數(shù)差的完全平方公式。

  3、分析完全平方公式的結構特點,并用語言來描述完全平方公式。

  結構特點:左邊是二項式(兩數(shù)和(差))的平方;

  右邊是兩數(shù)的平方和加上(減去)這兩數(shù)乘積的兩倍。

  語言描述:兩數(shù)和(或差)的平方,等于這兩數(shù)的平方和加上(或減去)這兩數(shù)積的兩倍。

  四、再識完全平方公式

  活動內(nèi)容:例1用完全平方公式計算:

  (1)(2x?3)2(2)(4x+5y)2(3)(mn?a)2(4)(—1—2x)2(5)(—2x+1)2

  2、總結口訣:首平方,尾平方,兩倍乘積放中央,加減看前方,同加異減。

  五、鞏固練習:

  1、下列各式中哪些可以運用完全平方公式計算。

  1、6完全平方公式:

  一、學習目標

  1、會推導完全平方公式,并能運用公式進行簡單的計算。

  2、了解完全平方公式的'幾何背景

  二、學習重點:會用完全平方公式進行運算。

  三、學習難點:理解完全平方公式的結構特征并能靈活應用公式進行計算。

  四、學習設計

  (一)預習準備

 。1)預習書p23—26

 。2)思考:和的平方等于平方的和嗎?

  1、6《完全平方公式》習題

  1、已知實數(shù)x、y都大于2,試比較這兩個數(shù)的積與這兩個數(shù)的和的大小,并說明理由。

  2、已知(a+b)2=24,(a—b)2=20,求:

 。1)ab的值是多少?

  (2)a2+b2的值是多少?

  3、已知2(x+y)=—6,xy=1,求代數(shù)式(x+2)—(3xy—y)的值。

  《1、6完全平方公式》課時練習

  1、(5—x2)2等于;

  答案:25—10x2+x4

  解析:解答:(5—x2)2=25—10x2+x4

  分析:根據(jù)完全平方公式與冪的乘方法則可完成此題。

  2、(x—2y)2等于;

  答案:x2—8xy+4y2

  解析:解答:(x—2y)2=x2—8xy+4y2

  分析:根據(jù)完全平方公式與積的乘方法則可完成此題。

  3、(3a—4b)2等于;

  答案:9a2—24ab+16b2

  解析:解答:(3a—4b)2=9a2—24ab+16b2

  分析:根據(jù)完全平方公式可完成此題。

  《完全平方公式》教案 7

  一、教材分析:

  (一)教材的地位與作用

  本節(jié)內(nèi)容主要研究的是完全平方公式的推導和公式在整式乘法中的應用。它是在學生學習了代數(shù)式的概念、整式的加減法、冪的運算和整式的乘法后進行學習的,其地位和作用主要體現(xiàn)在以下幾方面:

  (1)整式是初中代數(shù)研究范圍內(nèi)的一塊重要內(nèi)容,整式的運算又是整式中一大主干,乘法公式則是在學習了單項式乘法、多項式乘法之后來進行學習的;一方面是對多項式乘法中出現(xiàn)的較為特殊的算式的一種歸納、總結;另一方面,乘法公式的推導是初中代數(shù)中運用推理方法進行代數(shù)式恒等變形的開端,通過乘法公式的學習對簡化某些整式的運算、培養(yǎng)學生的求簡意識有較大好處。

 。2)乘法公式是后續(xù)學習的必備基礎,不僅對學生提高運算速度、準確率有較大作用,更是以后學習因式分解、分式運算的重要基礎,同時也具有培養(yǎng)學生逐漸養(yǎng)成嚴密的邏輯推理能力的功能。

 。3)公式的發(fā)現(xiàn)與驗證給學生體驗規(guī)律發(fā)現(xiàn)的基本方法和基本過程提供了很好模式。

  (二)教學目標的確定

  在素質(zhì)背景下的數(shù)學教學應以學生的發(fā)展為本,學生的能力培養(yǎng)為重,尤其是創(chuàng)新、創(chuàng)造能力,以及培養(yǎng)學生良好的個性品質(zhì)等。根據(jù)以上指導思想,同時參照義務教育階段《數(shù)學課程標準》的要求,確定本節(jié)課的教學目標如下:

  1、知識目標:

  理解公式的推導過程,了解公式的幾何背景,會應用公式進行簡單的計算。

  2、能力目標:

  滲透建模、化歸、換元、數(shù)形結合等思想方法,培養(yǎng)學生的發(fā)現(xiàn)能力、求簡意識、應用意識、解決問題的能力和創(chuàng)新能力。

  3、情感目標:

  培養(yǎng)學生敢于挑戰(zhàn),勇于探索的精神和善于觀察,大膽創(chuàng)新的思維品質(zhì)。

 。ㄈ┙虒W重點與難點

  完全平方公式和平方差公式一樣是主要的'乘法公式,其本質(zhì)是多項式乘法,是學生今后用于計算的一種重要依據(jù),因此,本節(jié)教學的重點與難點如下:

  本節(jié)的重點是體會公式的發(fā)現(xiàn)和推導過程,理解公式的本質(zhì),并會運用公式進行簡單的計算。

  本節(jié)的難點是從廣泛意義上理解公式中的字母含義,判明要計算的代數(shù)式是哪兩數(shù)的和(差)的平方。

  二、教學方法與手段

 。ㄒ唬┙虒W方法:

  針對初一學生的形象思維大于抽象思維,注意力不能持久等年齡特點,及本節(jié)課實際,采用自主探索,啟發(fā)引導,合作交流展開教學,引導學生主動地進行觀察、猜測、驗證和交流。同時考慮到學生的認知方式、思維水平和學習能力的差異進行分層次教學,讓不同層次的學生都能主動參與并都能得到充分的發(fā)展。邊啟發(fā),邊探索邊歸納,突出以學生為主體的探索性學習活動和因材施教原則,教師努力為學生的探索性學習創(chuàng)造知識環(huán)境和氛圍,遵循知識產(chǎn)生過程,從特殊→一般→特殊,將所學的知識用于實踐中。

  采用小組討論,大組競賽等多種形式激發(fā)學習興趣。

 。ǘ┙虒W手段:

  利用投影儀輔助教學,突破教學難點,公式的推導變成生動、形象、直觀,提高教學效率。

 。ㄈ⿲W法指導:

  在學法上,教師應引導學生積極思維,鼓勵學生進行合作學習,讓每個學生都動口、動手、動腦,自己歸納出運算法則,培養(yǎng)學生學習的主動性和積極性。

  三、教材處理

  根據(jù)本節(jié)內(nèi)容特點,本著循序漸進的原則,我將以“邊長為(a+b)的正方形面積是多少?”這個實際問題引入新課,關于兩數(shù)和的平方公式通過實例、推導、驗證幾個步驟完成。關于兩數(shù)差的平方公式,我將為學生提供三種不同的思路,由學生自己選擇學習、理解,然后再歸納的方法進行,再通過分層次練習,加以鞏固。

  四、教學程序

  教 學 過 程

  設計意圖

  一、創(chuàng)設情境,引出課題

  如圖,有一個邊長為a米的正方形廣場,則這個廣場的面積是多少?

  a

  若在這個廣場的相鄰兩邊鋪一條寬為10米的道路,則面積是多少?

  a 10

  引導學生利用圖形分割求面積。

  另一方面:正方形

  10 10a 102 面積為(a+10)2, 所以:

  (a+10)2=a2+20a+102

  a a2 10a

  a 10

  b ab b2 把10替換為b,(a+b)2=a2+2ab+b2

  a a2 ab 提出課題

  a b

  通過較為簡單的幾何圖形面積計算和較熟悉的整式乖法計算。引入本節(jié)學習內(nèi)容(a+b)·(a+b)

 。ǜ鶕(jù)初一學生年齡特點,采用圖形變化來激發(fā)學生學習興趣)

  問題是知識、能力的生長點,通過富有實際意義的問題能激活學生原有認知,促使學生主動地進行探索和思考。

  對公式(a+b)2=a2+2ab+b2的形式進行初步認識,接觸

  二、交流對話,探求新知

  1、推導兩數(shù)和的完全平方公式

  計算(a+b)2

  解:(a+b)2=(a+b)(a+b)=a2+ab+ab+b2=a2+2ab+b2

  2、理解公式特征

 、偎闶剑簝蓴(shù)和的平方

 、诜e:兩個數(shù)的平方和加上這兩個數(shù)積的2倍

  3、語言敘述

  (a+b)2=a2+2ab+b2用語言如何敘述

  4、公式(a-b)2=a2-2ab+b2教學

  ①利用多項式乘法 (a-b)2=(a-b)(a-b)

 、诶脫Q元思想 (a-b)2=[a+(-b)]2

 、劾脠D形

  b

  a

  (a-b) b

  a

  5、學生總結、歸納:

  (a+b)2=a2+2ab+b2

  (a-b)2=a2-2ab+b2

  這兩個公式叫做完全平方公式,兩數(shù)和(或差)的平方,等于這兩數(shù)的平方和,加上(或減去)這兩數(shù)積的2倍。

  6、公式中的字母含義的理解。(學生回答)

  (x+2y)2是哪兩個數(shù)的和的平方?

  (x+2y)2=( )2+2( )( )+( )2

  (2x-5y)2是哪兩個數(shù)的差的平方?

  (2x+5y)2=( )2+2( )( )+( )2

  變式 (2x-5y)2可以看成是哪兩個數(shù)的和的平方?

  利用多項式乘法推導公式,使學生了解公式的來源以及理解乘法公式的本質(zhì)。

  組織學生小組討論,使學生明確公式特征,加深對公式表象的理解。

  由學生對公式

  (a+b)2=a2+2ab+b2進行口頭語言敘述。

  (1)說明:教師提供三種模式,由學生選擇一種去解決。培養(yǎng)學生學習的主動性,開闊學生的思路。(2)同時對滲透數(shù)形結合思想、換元思想,也是分散、分步突破本節(jié)的難點的第一個層次;(3)體會辯證統(tǒng)一的唯物主義觀點;(4)正確引導學生學習時知識的正遷移。

  使學生學會對公式的正確表述,有利于學生正確用于計算之中,此時也可以讓學生對兩個公式特點進行討論歸納,適當總結一定的口訣:“頭平方,尾平方,兩倍的乘積中間放!

  加深學生對公式中的字母含義的理解,明確字母意義的廣泛性

  三、整理新知形成結構

  1、完全平方公式并分析公式左右的特征。

  2、換元的基本想法

  四、應用新知,體驗成功

  1、例1教學:用完全平方公式計算

  (1)(a+3)2 (2)(y-)2 (3)(-2x+t)2 (4)(-3x-4y)2

  學生直接運用公式計算,教師板演,講評時邊口述理由,針對第(4)題(-3x-4y)2可以看成是-3x與4y差的平方,也可以看成-3x與-4y和的平方

  提出以下問題:

  (1)可否看成兩數(shù)和的平方,運用兩數(shù)和的平方公式來計算?

 。2)可否看成兩數(shù)差的平方,運用兩數(shù)差的平方公式來計算?

 。3)能不能進行符號轉化?如(-3x-4y)2=(3x+4y)2

  2、公式鞏固

 。1)同桌同學互相編一道用完全平方公式計算題目,然后解答。

 。2)下列各式的計算,錯在哪里?應怎樣改正?

 、(a+b)2=a2+b2 ②(a-b)2=a2-b2

 、(a-2b)2=a2+2ab+2b2

  3、練習:運用完全平方公式計算:(學生板演)

 、(a+5)2 ②(3+x)2 ③(y-2)2 ④(7-y)2

  ⑤(2x+3y)2⑥(-2x-3y)2 ⑦(3- )2 ⑧(- - )2

  4、例2,運用完全平方公式計算:(1)1012 (2)982

  5、練習:運用完全平方公式計算

  (1)912 (2)7982 (3)(10 )2

  6、討論:(1-2x)(-1-2x), (x-2y)(-2y+1)如何計算

  五、公式拓展,鼓勵探究

  1、a2+b2=(a+b)2-______ a2+b2+ _______=(a+b)2

  a2+b2+ ________ =(a-b)2

  2、(a+b)2-(a-b)2=______ 3、(a+b+c)2=________

  4、提出思考題:(a+b)3=? (a+b)4=?

  5、已知 求 的值。

  6、已知: ,求 , 的值。

  6. 已知 ,求x和y的值。

  (1)遵循及時鞏固原則。(2)針對初一學生注意力不能持久的特點。(3)形成知識網(wǎng)絡,有利于學生進一步學習公式的運用

  (1)直接運用公式進行計算。(2)進一步幫助學生掌握換元法。(3)進行符號轉化的變換,加深學生對公式理解的深度,也為進一步學習其它知識打好基礎。

  對這幾個式子的辨析目的在于防止學生對以前學過的如(ab)2=a2b2的公式的負遷移作用

  講練結合

  (1)合作學習,四人小組討論(教師逐步引導到運用完全平方公式計算)學生講自己解題的想法和步驟,培養(yǎng)語言表達能力。(2)體會公式實際運用作用,增加學習興趣

  進一步辨析完全平方公式與平方差公式的區(qū)別

  公式變形利于各種計算

  提出一個問題,引導學生用學習研究完全平方公式的方法去研究公式的拓展變形問題。如:三項式的平方,兩項式的立方、四次方等,培養(yǎng)學生的嚴謹?shù)闹螌W態(tài)度和鉆研精神。

  六、小結提高,知識升華

  1、兩個公式 (a+b)2=a2+2ab+b2

  (a-b)2=a2-2ab+b2

  2、兩種推導方法:多項式乘法導出;圖形面積導出

  3、換元法與轉化

  七、作業(yè)布置,分層落實

  1、閱讀教材 6.17內(nèi)容

  2、見省編作業(yè)本 6.17

  3、對(a+b)2,(a+b)3 ……的展開式從項數(shù)、系數(shù)方面進行研究

  由學生自己小結本節(jié)所學知識、方法等。教師根據(jù)學生回答情況作出補充。

  (1)作業(yè)1主要以培養(yǎng)學習良好的學習習慣為目的。(2)結合學生實際情況,貫徹面向全體學生,因材施教原則。作業(yè)2要求全體學都能完成。作業(yè)3為選做題,部分學有余力的學生可選做。在減輕學生的課業(yè)負擔同時,注重人本思想,以學生的能力發(fā)展為重。 也能滿足不同層次學生的不同要求。

  附:板書設計與時間大致安排

  屏 幕

  課題

  公式……例題

  學生板演

  本課時的時間大致安排:

  引入課題3分鐘左右,探求新知15分鐘左右,整理新知2分鐘左右,應用新知15分鐘左右,公式拓展5分鐘左右,小結作業(yè)布置約5分鐘。

  設 計 說 明

  本節(jié)課的教學設計注重體現(xiàn)以教師為主導、學生為主體,以發(fā)展學生為本的思想。遵循初一學生的心理特點(形象思維大于抽象思維)和認知規(guī)律(從特殊到一般)。結合學生實際學習情況(已較熟練掌握多項式乘法,并且本節(jié)之前也已經(jīng)學習了平方差公式)進行本課設計的。下面就設計作幾點簡單說明:

  1、完全平方公式的本質(zhì)是多項式乘法,它的推導方法與平方差公式推導方法是一樣的,根據(jù)乘方的意義與多項式乘法法則,就可以推導出完全平方公式。因此在兩數(shù)和的平方公式推導中,采取先由學生自己計算(a+b)2,然后教師點題的方式,再加上引課時已經(jīng)由幾何圖形面積的計算得出的結論(a+b)2=a2+2ab+b2,學生是容易接受的。在兩數(shù)差的平方公式推導中,更進一步,由學生自主選擇一種模式解決、驗證,增加了數(shù)學課堂的開放性。

  2、充分發(fā)揮學生自主學習、探究的能力。從引入時圖形變換的教師啟發(fā)引導,到公式驗證、推導時的學生自主探索,再到學生與學生之間的合作交流學習,都突出了學生是探索性學習活動的主體。在公式拓展中還提出了思考題(a+b)3=?(a+b)4=?……(a+b+c)2=?培養(yǎng)學生嚴謹?shù)闹螌W態(tài)度和鉆研探索的精神。同時讓學生明確本節(jié)課不僅要學會完全平方公式,更加要學會完全平方公式的推導方法,即授學生以漁,讓學生學會學習。

  3、在練習設計與作業(yè)布置中都體現(xiàn)了分層次教學的要求,讓不同層次的學生都能主動的參與并都能得到充分的發(fā)展。同時也遵循了面向全體與因材施教相結合的教學原則。

  4、充分挖掘本課時教材中的隱含的各種數(shù)學思想,在教學中滲透如建模思想、數(shù)形結合思想、換元思想、化歸思想,注重培養(yǎng)學生的發(fā)現(xiàn)問題、解決問題的能力、求簡意識、應用意識、創(chuàng)新能力等各方面能力。

  5、公式(a-b)2=a2-2ab+b2可以作為(a+b)2=a2+2ab+b2的一個應用,這樣兩個公式便統(tǒng)一為一個公式,這樣做有助于學生的記憶和理解,但作為應用,實踐表明還是把它們分開來用的好。因此,教學中在公式(a-b)2=a2-2ab+b2的推導過程就有意識的安排與(a+b)2=a2-2ab+b2統(tǒng)一,但又它與(a+b)2=a2+2ab+b2同等的對待。最后在小結時,對于兩者的聯(lián)系再加以說明,讓學生領會到數(shù)學中的辯證統(tǒng)一思想。

  《完全平方公式》教案 8

  本節(jié)課教學內(nèi)容分析

  《完全平方公式》是學生在已經(jīng)掌握單項式乘法、多項式乘法及平方差公式基礎上的拓展,而且公式的推導是初中數(shù)學中運用推理方法進行代數(shù)式恒等變形的開端,是從一般到特殊的認知規(guī)律的典型范例.通過對公式的學習來簡化某些整式的運算,為以后的因式分解、分式的化簡、二次根式中的分母有理化、解一元二次方程、函數(shù)等內(nèi)容奠定了基礎.因此,完全平方公式在初中階段的教學中具有很重要地位。

  依據(jù)課程標準

  本節(jié)課對應的課標要求是讓學生了解公式的幾何背景,能推導驗證公式的準確性,并會利用公式進行簡單計算。經(jīng)歷從“數(shù)”與“形”兩個角度解決問題的過程,體會數(shù)形結合的思想。經(jīng)歷探究解決簡單問題的過程,提高學生分析問題和解決問題的能力,發(fā)展應用意識。

  學習者特征分析

  八年級的學生年齡基本都在十四歲左右,正處于活潑好動的青春期中期。此階段的學生,個人意識增強,渴望歸屬感和被認同。如果課堂氣氛沉悶單調(diào),他們也會較快的感到疲勞煩躁。針對學生的心智特征及本課實際,我以“引”為主,主要采用啟發(fā)引導,合作交流的方式展開教學,引導學生主動參與到教學過程中來建構知識。

  教學策略闡述

  1、問題引入策略:通過提出問題,激發(fā)學生學習的興趣和求知欲,創(chuàng)設寬松活潑的課堂教學氣氛,維持學生學習的動機。

  2、自主學習策略:學生通過自己觀察、思考,促進思維的深層次加工和提高課堂參與度。

  3、引導探究策略:學生通過小組合作,推導驗證公式,充分發(fā)揮學生的主體作用。

  4、類比啟發(fā)策略:在完成教學要求的基礎上,通過解決與生活實際緊密聯(lián)系的問題情境,鞏固提高學生運用公式解決生活問題的能力。

  本節(jié)課教學目標

  知識和技能:

  1、經(jīng)歷探索完全平方公式的過程,進一步發(fā)展符號感和推理能力;

  2、會推導完全平方公式,并能運用公式進行簡單的計算;

  3、了解完全平方公式的幾何背景。

  過程和方法:

  1、在學習的過程中使學生體會數(shù)形結合的思想;

  2、經(jīng)歷公式的驗證,進一步發(fā)展符號感和推理能力,培養(yǎng)學生數(shù)學建模的思想。情感態(tài)度和價值觀:體驗數(shù)學活動充滿著探索性和創(chuàng)造性,并在數(shù)學活動中獲得成功的體驗與喜悅,樹立自信心。

  教學重點和難點

  項目內(nèi)容解決措施

  教學重點完全平方公式的結構特點及公式的直接運用在教學中逐步設置疑問,引導學生動手、動腦、動口,積極參與知識全過程。由易到難安排例題、練習,符合八年級學生的認知結構特點。課堂中,對學生激勵為主,表揚為輔,樹立其學習的自信心。師生互動、講練結合,從而突出教學重點、突破教學難點.

  教學難點完全平方公式的應用以及對公式中字母a、b的廣泛含義的理解與正確應用

  教學過程設計教學過程設計教學過程設計教學過程設計教學內(nèi)容師生互動設計意圖

  活動一:問題感知,情景切入有一種記憶游戲,游戲規(guī)則是:每次只能翻一張底牌,記憶并找出相同內(nèi)容的底牌,連續(xù)點出相同內(nèi)容的底牌即可消失,直至底牌全部消失就算過關。下圖是每個關卡的底牌布局,觀察并回答下列問題:第a個關卡有xx張底牌;第b個關卡有xx張底牌;第(a+b)個關卡有xxxxx張底牌;第a個關卡的'底牌數(shù)與第b個關卡的底牌數(shù)之和與第(a+b)個關卡的底牌數(shù)哪個多?多多少?

  師:班班通展示問題,層層設問,引導學生解決實際問題,并關注學生情況。

  生:在教師引導下思考并解決問題利用生活情景引入,消除學生的陌生感,激發(fā)學生的學習興趣,體會數(shù)學來源于生活。

  活動二:深入問題,合作探究2、計算下列各式,你能發(fā)現(xiàn)什么規(guī)律

  (1)(p+1) =(p+1)(p+1) = xxxx;

 。2)(m+2) = xxxx;

 。3)(p-1) = (p-1)(p-1)=xxx;

 。4)(m-2) = xxxxx.

 。5)(a+b) =xxxxx;(a-b) =xxxxxxx.在教師的引導下,學生獨立完成解題,觀察并找出式子的規(guī)律讓學生體會到完全平方公式是乘法公式的特例,因應用廣泛,計算簡捷,故作為公式學習。

  3、猜想?你是怎樣推導的呢?還有其他證明方法嗎?

  生:用代數(shù)的方法驗證公式的準確性繼續(xù)讓學生體會到完全平方公式是乘法公式的特例化未學為已知,體會數(shù)學中的化歸思想。

  活動三:結構分析,建構新知4、完全平方公式:

  5、分析公式的結構特征:左邊:兩數(shù)和的平方。右邊:是一個二次三項式,其中兩項為兩數(shù)的平方和;另一項是兩數(shù)積的2倍,且與左邊乘式中間的符號相同。用文字語言敘述:兩數(shù)和的平方,等于它們的平方和加上它們積的2倍。簡記:首平方,尾平方,積的2倍中間放,積的符號看前方。幾何解釋:完全平方和公式完全平方差公式

  師:引導學生觀察公式的左右邊,進一步挖掘公式的結構特征教師在學生的發(fā)言過程中進行逐步歸納。

  生:用幾何的方法驗證公式的準確性學生自主學習養(yǎng)成獨立思考、分析問題、解決問題的習慣以形助數(shù),使學生體會數(shù)學中的數(shù)學結合思想

  活動四:范例分析,深化新知例1、用完全平方公式計算下列各題,并指出誰可以看作公式中的a、b。

  (2)仔細閱讀例1,注意以下問題:

 、倜康佬☆}分別選用了哪個完全平方公式,為什么?并能指出誰可以看作公式中的

 、诮忸}步驟.師:例題講解分析解題思路,強調(diào)注意事項,規(guī)范解題格式生:及時小結讓學生學會優(yōu)化選擇

  活動五:嘗試練習,拓展提升

  7、下面各式的計算結果是否正確?如果不正確,應當怎樣改正(1)(2)(3)(4)

  8、活用公式:

  9、你能用幾種方法運用完全平方公式計算(1) (2)例2、運用完全平方公式計算:(1)102(2)99師:搶答題,看誰的反應快生:在搶答后小結套用公式的注意事項師:引導學生一題多解并關注學生的書寫的規(guī)范性。

  生:靈活運用公式解題及時練習鞏固應用在例題、練習的基礎上變式,加深學生對所學知識的理解滲透一題多解的數(shù)學思想,發(fā)散學生數(shù)學思維。多層面多方位考察完全平方公式,加深理解。

  活動六:課堂小結,歸納提高本節(jié)課你有哪些收獲完全平方公式:記憶口訣:首平方,尾平方,積的2倍中間放,積的符號看前方。注意:

  a、b可以表示數(shù),單項式或多項式。

  2、解題技巧:在解題之前應注意觀察思考,選擇不同的方法會有不同的效果,要學會優(yōu)化選擇.

  3、數(shù)學思想:體會數(shù)學中的一題多解,數(shù)形結合思想,化歸思想,整體代入思想.教師引導學生總結回顧學習內(nèi)容,幫助學生學習歸納反思。并關注不同層次學生對本節(jié)知識的理解、掌握程度。學生自己總結,互相補充。通過學生的自評與反思,有助于學生養(yǎng)成整理知識的習慣,有助于學生在剛剛理解了新知識的基礎上,及時把知識系統(tǒng)化、條理化。同時又有利于及時調(diào)整教學策略,為下節(jié)課的教學打下伏筆。

  活動七:布置作業(yè),自我評價

  1、必做題:課本第112頁

  2 、3(1)(3)2、選做題:課本第112頁

  3(2)(4)、4、7教師精選習題,布置作業(yè)學生課外獨立完成作業(yè)。課后作業(yè)是對課堂所學知識的鞏固,提高、延續(xù)和補充。

  板書設計

  §14.2.2完全平方公式公式口訣解題技巧例1.略例2.略練習、草稿

  教學預測、反思

  預測:

 。1)這節(jié)課倡導了以學生為主,教師為輔的思想,留足了一定的時間讓學生去發(fā)現(xiàn)探索、以及做練習,學生學習效果明顯。

 。2)采用了多媒體輔助教學,以較清晰的手段呈現(xiàn)了學生整個學習過程,讓課堂更加直觀明了,同時容量也增大了。

  (3)完全平方公式的直接應用掌握還可以,公式的靈活應用和妙用大部分學生還沒有掌握,課下加強聯(lián)系,多變幻題型,突破難關。

  《完全平方公式》教案 9

  一、教材分析

  完全平方公式是初中代數(shù)的一個重要組成部分,是學生在已經(jīng)掌握單項式乘法、多項式乘法及平方差公式基礎上的拓展,對以后學習因式分解、解一元二次方程、配方法、勾股定理及圖形面積計算都有舉足輕重的作用。

  本節(jié)課是繼乘法公式的內(nèi)容的一種升華,起著承上啟下的作用。在內(nèi)容上是由多項式乘多項式而得到的,同時又為下一節(jié)課打下了基礎,環(huán)環(huán)相扣,層層遞進。通過這節(jié)課的學習,可以培養(yǎng)學生探索與歸納能力,體會到從簡單到復雜,從特殊到一般和轉化等重要的思想方法。

  二、學情分析

  多數(shù)學生的抽象思維能力、邏輯思維能力、數(shù)學化能力有限,理解完全平方公式的幾何解釋、推導過程、結構特點有一定困難。所以教學中應盡可能多地讓學生動手操作,突出完全平方公式的探索過程,自主探索出完全平方公式的基本形式,并用語言表述其結構特征,進一步發(fā)展學生的合情推理能力、合作交流能力和數(shù)學化能力。

  三、教學目標

  知識與技能

  利用添括號法則靈活應用乘法公式。

  過程與方法

  利用去括號法則得到添括號法則,培養(yǎng)學生的`逆向思維能力。

  情感態(tài)度與價值觀

  鼓勵學生算法多樣化,培養(yǎng)學生多方位思考問題的習慣,提高學生的合作交流意識和創(chuàng)新精神。

  四、教學重點難點

  教學重點

  理解添括號法則,進一步熟悉乘法公式的合理利用.

  教學難點

  在多項式與多項式的乘法中適當添括號達到應用公式的目的.

  五、教學方法

  思考分析、歸納總結、練習、應用拓展等環(huán)節(jié)。

  六、教學過程設計

  師生活動

  設計意圖

  一、提出問題,創(chuàng)設情境

  請同學們完成下列運算并回憶去括號法則.

 。1)4+(5+2) (2)4-(5+2) (3)a+(b+c) (4)a-(b-c)去括號法則:

  去括號時,如果括號前是正號,去掉括號后,括號里的`每一項都不改變符合;如果括號前是負號,去掉括號后,括號里的各項都改變符合.

  也就是說,遇“加”不變,遇“減”都變.

  二、探究新知

  把上述四個等式的左右兩邊反過來,又會得到什么結果呢?

 。1) 4+5+2=4+(5+2) (2)4-5-2=4-(5+2)

 。3) a+b+c =a+(b+c)(4)a-b+c=a-(b-c)

  左邊沒括號,右邊有括號,也就是添了括號,同學們可不可以總結出添括號法則來呢?

 。▽W生分組討論,最后總結)

  添括號法則是:

  添括號時,如果括號前面是正號,括到括號里的各項都不變符號;如果括號前面是負號,括到括號里的各項都改變符號.

  也是:遇“加”不變,遇“減”都變.

  請同學們利用添括號法則完成下列練習:

  1.在等號右邊的括號內(nèi)填上適當?shù)捻棧?/p>

 。1)a+b-c=a+( ) (2)a-b+c=a-( )

 。3)a-b-c=a-( ) (4)a+b+c=a-( )

  判斷下列運算是否正確.

  (1)2a-b-=2a-(b-) (2)m-3n+2a-b=m+(3n+2a-b)

 。3)2x-3y+2=-(2x+3y-2) (4)a-2b-4c+5=(a-2b)-(4c+5)

  總結:添括號法則是去括號法則反過來得到的,無論是添括號,還是去括號,運算前后代數(shù)式的值都保持不變,所以我們可以用去括號法則驗證所添括號后的代數(shù)式是否正確.

  三、新知運用

  有些整式相乘需要先作適當?shù)淖冃,然后再用公式,這就需要同學們理解乘法公式的結構特征和真正內(nèi)涵.請同學們分組討論,完成下列計算.

  例:運用乘法公式計算

 。1)(x+2y-3)(x-2y+3) (2)(a+b+c)2

 。3)(x+3)2-x2 (4)(x+5)2-(x-2)(x-3)

  四.隨堂練習:

  1.課本P111練習

  2.《學案》101頁——鞏固訓練

  五、課堂小結:

  通過本節(jié)課的學習,你有何收獲和體會?

  我們學會了去括號法則和添括號法則,利用添括號法則可以將整式變形,從而靈活利用乘法公式進行計算.

  我體會到了轉化思想的重要作用,學數(shù)學其實是不斷地利用轉化得到新知識,比如由繁到簡的轉化,由難到易的轉化,由已知解決未知的轉化等等.

  六、檢測作業(yè)

  習題14.2: 必做題: 3 、4 、5題

  選做題:7題

  知識梳理,教學導入,激發(fā)學生的學習熱情

  交流合作,探究新知,以問題驅(qū)動,層層深入。

  歸納總結,提升課堂效果。

  作業(yè)檢測,檢測目標的達成情況。

  《完全平方公式》教案 10

  一、教學目標:

  (1)知識與技能;學生通過推導完全平方公式,掌握公式結構,能計算。

  (2)過程與方法目標;學生探究完全平方公式,體會數(shù)形結合。

  二、教學重點:

  公式結構及運用。

  三、教學難點:

  公式中字母AB的含義理解與公式正確運用。

  四、教具:

  自制長方形、正方形卡片

  五、教學過程:

  教師活動

  學生活動

  1、創(chuàng)設情景,提出問題,引入課題

  (1)想一想

  一位老人很喜歡孩子,每當孩子到他家做客時,老人都拿出糖招待他們,來了幾個孩子老人就會每個孩子幾塊糖。

  (1)第一天,a個男孩去看老人,老人共給他們幾塊糖?

  (2)第二天,個女孩子去看望老人,老人共給他們多少塊糖?

  (3)第三天,(xx)個孩子一起去看望老人,老人共給他們多少塊糖?

  (4)第三天比前二天的孩子得到糖總數(shù)哪個多?多多少?為什么?(分組討論)

  1、學生四人一組討論。

  填空:

  (1)第一天給孩子塊糖。

  (2)第二天給孩子塊糖。

  (3)第三天給孩子塊糖。

  男孩子第三天多得塊糖

  女孩第三天多得塊糖。

  教師活動

  學生活動

  (2)做一做、請同學拼圖

  教師巡視指導學生拼圖

  2、教師提問:

  (1)、大正方形邊長?

  (2)每一塊卡片的面積是多少?

  (3)用不同形式表示正方形總面積,比較發(fā)現(xiàn)什么?

  3、想一想

  (1)(a+b)用多項式乘法法則說明

  (2)(a-b)

  4、請同學們自己敘述上面的`等式

  5、說一說,ab能表示什么?

  (□+○)□+2□○+○

  6、算一算

  (1)(2X-3)(2)(4X+5Y)

  請同學們分清ab

  7、練一練

  (1)(2X-3Y)(2)(2XY-3X)

  8、試一試(a+b+c)

  作業(yè):P1351、2

  學生2人一組拼圖交流

  2、學生觀察思考

  (1)大正方形邊長?

  (2)四塊卡片的`面積分別是

  (3)大正方形的總面積是多少?

  3、(1)學生運用多項式乘法法則推導

  (a+b)=a+2ab+b說出每一步運算理由

  (2)學生自己探究交流

  4、學生用語言敘述公式

  5、師生共同a、b對應項教師書寫

  6、學生獨立完成練一練展示結果

  7、學生四人一組討論交流

  8、有興趣的同學可以探

  《完全平方公式》教案 11

  教學目標

  1、使學生理解完全平方公式的意義,弄清完全平方公式的形式和特點;使學生知道把完全平方公式反過來就可以得到相應的`.因式分解。

  2、掌握運用完全平方公式分解因式的方法,能正確運用完全平方公式把多項式分解因式(直接用公式不超過兩次)

  教學方法:

  對比發(fā)現(xiàn)法課型新授課教具投影儀

  教師活動:

  學生活動

  復習鞏固:

  上節(jié)課我們學習了運用平方差公式分解因式,請同學們先閱讀課本87—88頁,看看你能有什么發(fā)現(xiàn)?

  新課講解:

  (投影)我們把形如a2+2ab+b2與a2-2ab+b2叫做完全平方式,和平方差公式一樣,我們也可以利用它把一些多項式因式分解。例如:

  a2+8a+16=a2+2×4a+42=(a+4)2

  a2-8a+16=a2-2×4a+42=(a-4)2

  (要強調(diào)注意符號)

  首先我們來試一試:(投影:牛刀小試)

  1.把下列各式分解因式:

  (1)x2+8x+16;;(2)25a4+10a2+1

  (3)(m+n)2-4(m+n)+4

  (教師強調(diào)步驟的重要性,注意發(fā)現(xiàn)學生易錯點,及時糾正)

  2.把81x4-72x2y2+16y4分解因式

  (本題用了兩次乘法公式,難度稍大,教師要鼓勵學生大膽嘗試,敢于創(chuàng)新)

  將乘法公式反過來就得到多項式因式分解的公式。運用這些公式把一個多項式分解因式的方法叫做運用公式法。

  練習:第88頁練一練第1、2題

  《完全平方公式》教案 12

  一、教學內(nèi)容:

  本節(jié)內(nèi)容是人教版教材八年級上冊,第十四章第2節(jié)乘法公式的第二課時――完全平方公式。

  二、教材分析:

  完全平方公式是乘法公式的重要組成部分,也是乘法運算知識的升華,它是在學生學習整式乘法后,對多項式乘法中出現(xiàn)的一種特殊的算式的總結,體現(xiàn)了從一般到特殊的思想方法。完全平方公式是學生后續(xù)學好因式分解、分式運算的必備知識,它還是配方法的基本模式,為以后學習一元二次方程、函數(shù)等知識奠定了基礎,所以說完全平方公式屬于代數(shù)學的基礎地位。

  本節(jié)課內(nèi)容是在學生掌握了平方差公式的基礎上,研究完全平方公式的推導和應用,公式的發(fā)現(xiàn)與驗證為學生體驗規(guī)律探索提供了一種較好的模式,培養(yǎng)學生逐步形成嚴密的邏輯推理能力。完全平方公式的學習對簡化某些代數(shù)式的運算,培養(yǎng)學生的求簡意識很有幫助。使學生了解到完全平方公式是有力的數(shù)學工具。

  重點:掌握完全平方公式,會運用公式進行簡單的計算。

  難點:理解公式中的字母含義,即對公式中字母a、b的理解與正確應用。

  三、教學目標

 。1)經(jīng)歷探索完全平方公式的推導過程,掌握完全平方公式,并能正確運用公式進行簡單計算。

  (2)進一步發(fā)展學生的符號感和推理能力,了解公式的幾何背景,感受數(shù)與形之間的聯(lián)系,學會獨立思考。

 。3)通過推導完全平方公式及分析結構特征,培養(yǎng)學生觀察、分析、歸納的能力,學會與他人合作交流,體驗解決問題的多樣性。

  (4)體驗完全平方公式可以簡化運算從而激發(fā)學生的學習興趣;在自主探究、合作交流的學習過程中獲得體驗成功的喜悅,增強學習數(shù)學的自信心。

  四、學情分析與教法學法

  學情分析:課程標準提出數(shù)學教學活動必須建立在學生的認知發(fā)展水平和已有的知識經(jīng)驗基礎之上,本節(jié)課就是在前面的學習中,學生已經(jīng)掌握了整式的'乘法運算及平方差公式的基礎上開展的,具備了初步的總結歸納能力。另外,14歲的中學生充滿了好奇心,有較強的求知欲、創(chuàng)造欲、表現(xiàn)欲,所以只有能調(diào)動學生的學習熱情,本節(jié)內(nèi)容才較易掌握。但八年級學生的探究能力有差異,邏輯推理能力也有待于提高,而且易粗心馬虎,這都是本節(jié)課要注意的問題。

  學法:以自主探究為主要學習方式,使學生在獨立思考、歸納總結、合作交流

  總結反思中獲得數(shù)學知識與技能。

  教法:以啟發(fā)引導式為主要教學方式,在引導探究、歸納總結、典例精析、合作交流的教學過程中,教師做好組織者和引導者,讓學生在老師的`指導下處于主動探究的學習狀態(tài)。

  五、教學評價

  在教學中,教師在精心設置教學環(huán)節(jié)中,做到以學生為主體,做好組織者和引導者,全面評價學生在知識技能、數(shù)學思考、問題解決和情感態(tài)度等方面的表現(xiàn)。教師通過情境引入、提供問題引導學生從已有的知識為出發(fā)點,自主探究,發(fā)現(xiàn)問題,深入思考。學生解決問題要以獨立思考為主,當遇到困難時學會求助交流,教師也要給學生思考交流的時間,讓學生經(jīng)歷得出結論的過程,培養(yǎng)發(fā)現(xiàn)問題解決問題的能力。

  在整個學習過程中,通過對學生參與自主探究的程度、合作交流的意識以及獨立思考的習慣,發(fā)現(xiàn)問題的能力進行評價,并對學生的想法或結論給予鼓勵評價。

  《完全平方公式》教案 13

  一、教學目標

  【知識與技能】

  能夠運用完全平方公式對簡單的多項式進行因式分解

  【過程與方法】

  通過對實例的探究與合作,鍛煉公式推導與總結能力

  【情感態(tài)度與價值觀】

  在合作探究中,體會到數(shù)學學習的樂趣,加強交流合作能力

  二、教學重難點

  【教學重點】

  完全平方公式

  【教學難點】

  完全平方公式的推導過程與應用

  三、教學過程

  (1)情景設置,設疑導入

  老師展示正方形廣場圖片,并告知已知條件:邊長為a的正方形廣場兩個鄰邊有5米寬的道路,形成一個較大的正方形廣場,嘗試用不同方法求解整個廣場(包括道路)的大小。

  預設:①(a+5)(看作一個整體)

 、赼+5+2×5×a(看作幾個部分)

  (2)師生合作,新課教學

  由學生板書得出等式:(a+5)=a+5+2×5×a,提出問題:如果將5米寬,換成b米寬又能得到什么呢?(小組交流討論)

  得出結論:

  進行證明:

  得到完全平方公式,記憶口訣:首平方,尾平方,首尾兩倍放中央。

  (3)鞏固提升,深化新知

  (4)小結作業(yè),及時反思

  小結:請同學們談一談今天這節(jié)課的收獲:

  1.學會了完全平方公式

  2.學會了簡易計算平方式的能力

  3.提高了與同學們合作探究的`能力,體會到了合作的樂趣

  作業(yè):

  公式拓展:a+b=(a+b)+()

  91=()

  及時復習鞏固完全平方公式,并在生活中找一找完全平方公式的運用

  《完全平方公式》教案 14

  一、教學目標:

  經(jīng)歷探索完全平方公式的過程,進一步發(fā)展符號感和推理能力;在變式中,拓展提高;通過積極參與數(shù)學學習活動,培養(yǎng)學生自主探究能力,勇于創(chuàng)新的精神和合作學習的習慣;重點是正確理解完全平方公式(a±b)2=a2±2ab+b2,并初步運用;難點是完全平方公式的運用。

  二、教學過程:

  1.檢查學生的“預習知識樹”,導入課題:

  師:前面學習了平方差公式,同學們對平方差公式的結構特點、運用以及學習公式的意義有了初步的認識。今天,我們繼續(xù)學習、研究另一種“乘法公式”――完全平方公式。請拿出你的“預習知識樹”,小組內(nèi)互查并交流,在預習中有疑問的同學請詢問。

  (活動:老師巡視、檢查學生的預習情況,并解答學生在預習中存在的問題)生:(互查、討論“預習知識樹”,有問題的詢問問題。)師:(老師點評學生預習情況,并出示老師做的“知識樹”,引出課題:完全平方公式。)說明:把預習提到課前,利用“知識樹”引導學生自學,學生可以獨立思考、自主學習,也可合作交流、討論研究,這樣預習會更充分,聽講時就能有準備、有選擇;一上課,老師就檢查“預習知識樹”,了解學生新課學習情況,適當點撥,在課堂上留出更多的時間大量拓展、提高,發(fā)展學生的能力。

  2.自學檢測,制造通用工具:師:下面進行自學檢測.計算:⑴(x+3)2;⑵(2x-5)2;⑶(mn+t)2;⑷(-4x+y2)2。

  (活動:投影顯示練習題。)生:(四人到黑板上板演,答錯了,由學生糾正,老師再點評。)師:觀察練習,公式中的a、b可代表什么?

  生:可以表示一個數(shù),也可以表示一個單項式、多項式。

  說明:點評時,老師反復引導學生分清題目中哪部分相當于公式中的a,哪部分相當于公式中的b,就是讓學生明確“公式中的a、b可表示數(shù),也可表示一個單項式、多項式或其他的式子”的變化規(guī)律,即制造通用工具。在前面學習平方差公式時,學生應該認識到這個道理,在這里再次強化。

  師:說得非常好,明確“公式中的a、b可以表示一個數(shù),也可以表示一個單項式、多項式”的變化規(guī)律,就能正確運用公式解題了。顯然,剛做的練習題是由公式變化來的,若是變下去,能變多少道題?

  生:無數(shù)道。師:最終是幾道題?生:一道。說明:這就是老師的“暗線”語言,引導學生明白從公式出發(fā),反映在a、b上只是取值不同,可以演變出無數(shù)道題,是“解壓”的過程,最終還是利用公式解題,所有的題目只有“一道”,只是形式不同,這又是“壓縮”的過程,把握了變化規(guī)律才能更好地解題。

  師:你會變了嗎?請各小組編題。(活動:四人小組先在組內(nèi)討論、交流,再推選完成最快的兩個小組出示題目,其他小組同學練習。)說明:引導學生現(xiàn)場出題,一是激發(fā)學生興趣、活躍氣氛,二是驗證變化規(guī)律。

  師:下面思考,如何計算:(a+b+c)2生1:可根據(jù)多項式乘以多項式來計算,就是把(a+b+c)2看做(a+b+c)(a+b+c)。

  師:不錯。還有其他方法嗎?生2:也可以把其中的.(a+b)兩項看成一項,變成[(a+b)+c]2的形式,就能直接運用完全平方公式了。

  師:說得非常好。兩種方法都可以,但哪種更簡單呢?請你任選一種,完成練習。

  生:(緊張地做題,同時找兩個學生到黑板上板演。)師:這道題若是變?yōu)?a+b+c+d)2,你會做嗎?

  生:(齊答)會。師:怎么辦?生1:把其中(a+b)看做一項,(c+d)看做一項,還是利用完全平方公式解題。

  生2:還有其他分組方式,如把(a+c)看做一項,(b+d)看做一項,也能直接運用公式解題。

  師:方法一樣嗎?生:一樣的。師:還能變下去嗎?這樣可以變出多少道題?

  生:無數(shù)道。師:最終是幾道題?生:(齊答)一道題。師:現(xiàn)在,老師相信每個學生都會解這樣的題了。課下,請同學們思考:如果把(a+b)2的指數(shù)變化一下,又可以變出多少道題,你能計算出來嗎?

  (活動:投影顯示一組題目,如(a+b)3、(a+b)4……)說明:這就是老師進一步利用這個例子論證“公式中的a、b可表示數(shù),也可表示一個單項式、多項式或其他的式子”的變化規(guī)律。

  3.通過大量的習題驗證通用工具,學生并且自造通用工具。

  師:通過前面的檢測,看出同學們已經(jīng)基本掌握了完全平方公式。下面進入達標檢測。

  (活動:投影顯示達標檢測題)1.填空:

  ①(2x+3y)2=______;②(14a-1)2=116a2-____+1;③當x=5,y=2,則(x+y)(x-y)-(x-y)2=_________。

  2.計算:

 、(-2m-n)2;②(2-3a2)(3a2-2);③(-cd+12)2;④(n+3)2-n23.計算:(x+2y+3)(x+2y-3)生:(積極、主動地在作業(yè)本上完成上面練習題。)師:(巡視,批閱完成快的學生的作業(yè),最后集體點評,只講不會的。)說明:第2①題,可先變形為[-(2m+n)]2,再按(a+b)2的公式展開,也可直接理解成-2m與n的差,按(a-b)2計算;第2②題將(2-3a2)變形為-(3a2-2),原式可轉化為-(3a2-2)2,直接運用公式計算;第2④題把(n+3)看做a、n看做b,逆用平方差公式也是一種解法,同時訓練學生的逆向思維;第3題是下節(jié)課訓練內(nèi)容,在這里可以提前,引導學生通過變形,得出(x+2y+3)(x+2y-3)=[(x+2y)+3][(x+2y)-3]=(x+2y)2-32=x2+4xy+4y2-9,這里還是把(x+2y)看做a、3看做b,進一步驗證了“通用工具”,即“解決某一類問題的一種思維方式或方法”。拓展提高還是在“變”上下功夫,要求學生能較熟練掌握,逐步達到腦算的層次,水到渠成,能力自然提高,學生就會自造“通用工具”了。

  4.嫁接“知識樹”,推薦作業(yè)。師:本節(jié)課你有什么收獲?還有什么問題嗎?

  (活動:再次投影本節(jié)課“知識樹”。)生:這節(jié)課我們學習、研究了完全平方公式(a±b)2=a2±2ab+b2,知道了公式中a、b,可以是單項式也可以是多項式,能運用公式解題了,能力上又有新的提高.師:課下完成本節(jié)課的作業(yè).[投影顯示]思考題:計算(a+b+c)2、(a+b+c+d)2的結果,觀察有什么規(guī)律,感興趣的同學還可計算(a+b)3、(a+b)4的結果,你又能發(fā)現(xiàn)什么規(guī)律.預習指導:①課本第38-39頁內(nèi)容,重點研究例3兩個題目的解題方法,能嘗試獨自解答課后隨堂練習或習題,②設計下節(jié)課“知識樹”,優(yōu)化本單元“知識樹”。說明:本環(huán)節(jié)是將本節(jié)課“知識樹”

  移植到乘法公式的單元“知識樹”上,整體構建知識,同時更加強化了學生的“能力樹”。作業(yè)是推薦性的作業(yè),達標檢測就是“堂堂清”,學生課下只須做好預習作業(yè)就行了,這樣會有更多自由安排的時間,發(fā)展個性。

  《完全平方公式》教案 15

  一、教學目標

  1.理解完全平方公式的意義,準確掌握兩個公式的結構特征.

  2.熟練運用公式進行計算.

  3.通過推導公式訓練學生發(fā)現(xiàn)問題、探索規(guī)律的能力.

  4.培養(yǎng)學生用數(shù)形結合的方法解決問題的數(shù)學思想.

  5.滲透數(shù)學公式的結構美、和諧美.

  二、學法引導

  1.教學方法:嘗試指導法、講練結合法.

  2.學生學法:本節(jié)學習了乘法公式中的完全平方,一個是兩數(shù)和的平方,另一個是兩數(shù)差的平方,兩者僅一個“符號”不同.相乘的結果是兩數(shù)的平方和,加上(或減去)兩數(shù)的積的2倍,兩者也僅差一個“符號”不同,運用完全平方公式計算時,要注意:

 。1)切勿把此公式與公式 混淆,而隨意寫成 .

 。2)切勿把“乘積項”2ab中的2丟掉.

 。3)計算時,要先觀察題目是否符合公式的條件.若不符合,應先變形為符合公式的條件的形式,再利用公式進行計算;若不能變?yōu)榉蠗l件的形式,則應運用乘法法則進行計算.

  三、重點·難點及解決辦法

 。ㄒ唬┲攸c

  掌握公式的結構特征和字母表示的廣泛含義,正確運用公式進行計算.

 。ǘ╇y點

  綜合運用平方差公式與完全平方公式進行計算.

 。ㄈ┙鉀Q辦法

  加強對公式結構特征的深入理解,在反復練習中掌握公式的應用.

  四、課時安排

  一課時.

  五、教具學具準備

  投影儀或電腦、自制膠片.

  六、師生互動活動設計

  1.讓學生自編幾道符合平方差公式結構的計算題,目的是辨認題目的結構特征.

  2.引入完全平方公式,讓學生用文字概括公式的內(nèi)容,培養(yǎng)抽象的數(shù)字思維能力.

  3.舉例分析如何正確使用完全平方公式,師生共練完成本課時重點內(nèi)容.

  4.適時練習并總結,從實踐到理論再回到實踐,以指導今后的解題.

  七、教學步驟

 。ㄒ唬┟鞔_目標

  本節(jié)課重點學習完全平方公式及其應用.

 。ǘ┱w感知

  掌握好完全平方公式的關鍵在于能正確識別符合公式特征的結構,同時還要注意公式中2ab中2的問題,在解題過程中應多觀察、多思考、多揣摩規(guī)律.

  (三)教學過程

  1.計算導入;求得公式

 。1)敘述平方差公式的內(nèi)容并用字母表示;

 。2)用簡便方法計算

  ①103×97

 、103 × 103

 。3)請同學們自編一個符合平方差公式結構的`計算題,并算出結果.

  學生活動:編題、解題,然后兩至三個學生說出題目和結果.

  要想用好公式,關鍵在于辨認題目的結構特征,正確使用公式,這節(jié)課我們繼續(xù)學習“乘

  法公式”.

  引例:計算 ,學生活動:計算 , ,兩名學生板演,其他學生在練習本上完成,然后說出答案,得出公式.

  或合并為:

  教師引導學生用文字概括公式.

  方法:由學生概括,教師給予肯定、否定或更正,同時板書.

  兩數(shù)和(或差)的平方,等于它們的平方和,加上(或減去)它們的積的2倍.

  【教法說明】

 、購土暺椒讲罟,主要是引起回憶,鞏固公式;編題在于提高興趣.

  ②有了平方差公式的推導過程,學生基本建立起了一些特殊多項式乘法的認識方法,因此推導完全平方公式可以由計算直接得出.

  2.結合圖形,理解公式

  根據(jù)圖形完成下列問題:

  如圖:A、B兩圖均為正方形,(1)圖A中正方形的面積為____________,(用代數(shù)式表示)

  圖Ⅰ、Ⅱ、Ⅲ、Ⅳ的面積分別為_______________________。

 。2)圖B中,正方形的面積為____________________,Ⅲ的面積為______________,Ⅰ、Ⅱ、Ⅳ的面積和為____________,用B、Ⅰ、Ⅱ、Ⅳ的面積表示Ⅲ的面積_________________。

  分別得出結論:

  學生活動:在教師引導下回答問題.

  【教法說明】利用圖形講解,增強學生對公式的直觀理解,以便更好地掌握公式,同時也培養(yǎng)學生數(shù)形結合的數(shù)學思想。

  3.探索新知,講授新課

 。1)引例:計算

  教師講解:在 中,把x看成a,把2y看成b,在 中把2x看成a,把3y看成b,則 、 ,就可用完全平方公式來計算,即

  【教法說明】 引例的目的在于使學生進一步理解公式的結構,為運用公式打好基礎.

 。2)例1 運用完全平方公式計算:

  ①  、   ③

  學生活動:學生獨立在練習本上嘗試解題,3個學生板演.

  【教法說明】 讓學生先模仿公式解題,學生可能會出現(xiàn)一些問題,這也正是學生對公式理解、應用和熟練程度上存在的需要解決的問題,反饋后要緊扣公式,重點講解,達到解決問題的目的,關于例呈中(3)的計算,可對照公式直接計算,也可變形成 ,然后再進行計算,同時也可訓練學生靈活運用學過的知識的能力.

  4.嘗試反饋,鞏固知識

  練習一

  運用完全平方公式計算:

 。1)   (2)  。3)

  (4)  。5)  。6)

 。7)  。8)  。9)

 。╨0)

  學生活動:學生在練習本上完成,然后同學互評,教師抽看結果,練習中存在的共性問題要集中解決.

  5.變式訓練,培養(yǎng)能力

  練習二

  運用完全平方公式計算:

 。╨) 。2) 。3)  (4)

  學生活動:學生分組討論,選代表解答.

  練習三

 。1)有甲、乙、丙、丁四名同學,共同計算,以下是他們的計算過程,請判斷他們的計算是否正確,不正確的請指出錯在哪里.

  甲的計算過程是:原式

  乙的計算過程是:原式

  丙的計算過程是:原式

  丁的計算過程是:原式

 。2)想一想, 與 相等嗎?為什么?

  與 相等嗎?為什么?

  學生活動:觀察、思考后,回答問題.

  【教法說明】 練習二是一組數(shù)字計算題,使學生體會到公式的用途,也可以激發(fā)學生學習興趣,調(diào)動學生的學習積極性,同時也起到加深理解公式的作用.練習三第(l)題實際是課本例4,此題是與平方差公式的綜合運用,難度較大.通過給出解題步驟,讓學生進行判斷,使難度降低,學生易于理解,教師要注意引導學生分析這類題的結構特征,掌握解題方法.通過完成第(2)題使學生進一步理解 與 之間的相等關系,同時加深理解代數(shù)中“a”具有的廣泛意義.

  練習四

  運用乘法公式計算:

 。╨)  。2)

 。3) 。4)

  學生活動:采取比賽的方式把學生分成四組,每組完成一題,看哪一組完成得快而且準確,每組各派一個學生板演本組題目.

  【教法說明】 這樣做的目的是訓練學生的快速反應能力及綜合運用知識的能力,同時也激發(fā)學生的學習興趣,活躍課堂氣氛.

 。ㄋ模┛偨Y、擴展

  這節(jié)課我們學習了乘法公式中的完全平方公式.

  引導學生舉例說明公式的結構特征,公式中字母含義和運用公式時應該注意的問題.

  八、布置作業(yè)

  P133 1,2.(3)(4).

  參考答案

  略.

【《完全平方公式》教案】相關文章:

《完全平方公式》教案02-19

完全平方公式的教案11-29

完全平方公式教案02-21

數(shù)學《完全平方公式》教案04-13

完全平方公式教學反思03-23

完全平方公式課件教案設計08-26

《完全平方和差公式》教學反思02-22

八年級上冊完全平方公式教案03-19

《完全平方和差公式》教學反思3篇03-30