當(dāng)前位置:育文網(wǎng)>教學(xué)文檔>教案> 二次根式教案

二次根式教案

時(shí)間:2024-10-10 22:55:21 教案 我要投稿

二次根式教案范文匯編十篇

  作為一名老師,常常要寫一份優(yōu)秀的教案,編寫教案有利于我們科學(xué)、合理地支配課堂時(shí)間。怎樣寫教案才更能起到其作用呢?下面是小編整理的二次根式教案10篇,僅供參考,大家一起來看看吧。

二次根式教案范文匯編十篇

二次根式教案 篇1

  教學(xué)目的

  1.使學(xué)生掌握最簡二次根式的定義,并會應(yīng)用此定義判斷一個(gè)根式是否為最簡二次根式;

  2.會運(yùn)用積和商的算術(shù)平方根的性質(zhì),把一個(gè)二次根式化為最簡二次根式。

  教學(xué)重點(diǎn)

  最簡二次根式的定義。

  教學(xué)難點(diǎn)

  一個(gè)二次根式化成最簡二次根式的方法。

  教學(xué)過程

  一、復(fù)習(xí)引入

  1.把下列各根式化簡,并說出化簡的根據(jù):

  2.引導(dǎo)學(xué)生觀察考慮:

  化簡前后的根式,被開方數(shù)有什么不同?

  化簡前的被開方數(shù)有分?jǐn)?shù),分式;化簡后的被開方數(shù)都是整數(shù)或整式,且被開方數(shù)中開得盡方的因數(shù)或因式,被移到根號外。

  3.啟發(fā)學(xué)生回答:

  二次根式,請同學(xué)們考慮一下被開方數(shù)符合什么條件的二次根式叫做最簡二次根式?

  二、講解新課

  1.總結(jié)學(xué)生回答的內(nèi)容后,給出最簡二次根式定義:

  滿足下列兩個(gè)條件的'二次根式叫做最簡二次根式:

  (1)被開方數(shù)的因數(shù)是整數(shù),因式是整式;

  (2)被開方數(shù)中不含能開得盡的因數(shù)或因式。

  最簡二次根式定義中第(1)條說明被開方數(shù)不含有分母;分母是1的例外。第(2)條說明被開方數(shù)中每個(gè)因式的指數(shù)小于2;特別注意被開方數(shù)應(yīng)化為因式連乘積的形式。

  2.練習(xí):

  下列各根式是否為最簡二次根式,不是最簡二次根式的說明原因:

  3.例題:

  例1 把下列各式化成最簡二次根式:

  例2 把下列各式化成最簡二次根式:

  4.總結(jié)

  把二次根式化成最簡二次根式的根據(jù)是什么?應(yīng)用了什么方法?

  當(dāng)被開方數(shù)為整數(shù)或整式時(shí),把被開方數(shù)進(jìn)行因數(shù)或因式分解,根據(jù)積的算術(shù)平方根的性質(zhì),把開得盡方的因數(shù)或因式用它的算術(shù)平方根代替移到根號外面去。

  當(dāng)被開方數(shù)是分?jǐn)?shù)或分式時(shí),根據(jù)分式的基本性質(zhì)和商的算術(shù)平方根的性質(zhì)化去分母。

  此方法是先根據(jù)分式的基本性質(zhì)把被開方數(shù)的分母化成能開得盡方的因式,然后分子、分母再分別化簡。

  三、鞏固練習(xí)

  1.把下列各式化成最簡二次根式:

  2.判斷下列各根式,哪些是最簡二次根式?哪些不是最簡二次根式?如果不是,把它化成最簡二次根式。

  四、小結(jié)

  本節(jié)課學(xué)習(xí)了最簡二次根式的定義及化簡二次根式的方法。同學(xué)們掌握用最簡二次根式的定義判斷一個(gè)根式是否為最簡二次根式,要根據(jù)積的算術(shù)平方根和商的算術(shù)平方根的性質(zhì)把一個(gè)根式化成最簡二次根式,特別注意當(dāng)被開方數(shù)為多項(xiàng)式時(shí)要進(jìn)行因式分解,被開方數(shù)為兩個(gè)分?jǐn)?shù)的和則要先通分,再化簡。

  五、布置作業(yè)

  下列各式化成最簡二次根式:

二次根式教案 篇2

  【教學(xué)目標(biāo)】

  1.運(yùn)用法則

  進(jìn)行二次根式的乘除運(yùn)算;

  2.會用公式

  化簡二次根式。

  【教學(xué)重點(diǎn)】

  運(yùn)用

  進(jìn)行化簡或計(jì)算

  【教學(xué)難點(diǎn)】

  經(jīng)歷二次根式的乘除法則的探究過程

  【教學(xué)過程】

  一、情境創(chuàng)設(shè):

  1.復(fù)習(xí)舊知:什么是二次根式?已學(xué)過二次根式的哪些性質(zhì)?

  2.計(jì)算:

  二、探索活動:

  1.學(xué)生計(jì)算;

  2.觀察上式及其運(yùn)算結(jié)果,看看其中有什么規(guī)律?

  3.概括:

  得出:二次根式相乘,實(shí)際上就是把被開方數(shù)相乘,而根號不變。

  將上面的公式逆向運(yùn)用可得:

  積的算術(shù)平方根,等于積中各因式的算術(shù)平方根的.積。

  三、例題講解:

  1.計(jì)算:

  2.化簡:

  小結(jié):如何化簡二次根式?

  1.(關(guān)鍵)將被開方數(shù)因式分解或因數(shù)分解,使之出現(xiàn)“完全平方數(shù)”或“完全平方式”;

  2.P62結(jié)果中,被開方數(shù)應(yīng)不含能開得盡方的因數(shù)或因式。

  四、課堂練習(xí):

  (一).P62 練習(xí)1、2

  其中2中(5)

  注意:

  不是積的形式,要因數(shù)分解為36×16=242.

  (二).P67 3 計(jì)算 (2)(4)

  補(bǔ)充練習(xí):

  1.(x>0,y>0)

  2.拓展與提高:

  化簡:1).(a>0,b>0)

  2).(y

  2.若,求m的取值范圍。

  ☆3.已知:,求的值。

  五、本課小結(jié)與作業(yè):

  小結(jié):二次根式的乘法法則

  作業(yè):

  1).課課練P9-10

  2).補(bǔ)充習(xí)題

二次根式教案 篇3

  教學(xué)目的:

  1、在二次根式的混合運(yùn)算中,使學(xué)生掌握應(yīng)用有理化分母的方法化簡和計(jì)算二次根式;

  2、會求二次根式的代數(shù)的值;

  3、進(jìn)一步提高學(xué)生的綜合運(yùn)算能力。

  教學(xué)重點(diǎn):在二次根式的混合運(yùn)算中,靈活選擇有理化分母的方法化簡二次根式

  教學(xué)難點(diǎn):正確進(jìn)行二次根式的混合運(yùn)算和求含有二次根式的代數(shù)式的值

  教學(xué)過程:

  一、二次根式的混合運(yùn)算

  例1 計(jì)算:

  分析:(1)題是二次根式的加減運(yùn)算,可先把前三個(gè)二次根式化最簡二次根式,把第四式的分母有理化,然后再進(jìn)行二次根式的加減運(yùn)算。

  (2)題是含乘方、加、減和除法的混合運(yùn)算,應(yīng)按運(yùn)算的順序進(jìn)行計(jì)算,先算括號內(nèi)的式子,最后進(jìn)行除法運(yùn)算。注意的計(jì)算。

  練習(xí)1:P206 / 8--① P207 / 1①②

  例2 計(jì)算

  問:計(jì)算思路是什么?

  答:先把第一人的括號內(nèi)的式子通分,把第二個(gè)括號內(nèi)的式子的分母有理化,再進(jìn)行計(jì)算。

  二、求代數(shù)式的值。 注意兩點(diǎn):

  (1)如果已知條件為含二次根式的式子,先把它化簡;

  (2)如果代數(shù)式是含二次根式的式子,應(yīng)先把代數(shù)式化簡,再求值。

  例3 已知,求的值。

  分析:多項(xiàng)式可轉(zhuǎn)化為用與表示的式子,因此可根據(jù)已知條件中的及的值。求得與的值。在計(jì)算中,先把及的式了有理化分母。可使計(jì)算簡便。

  例4 已知,求的值。

  觀察代數(shù)式的特點(diǎn),請說出求這個(gè)代數(shù)式的值的思路。

  答:所求的代數(shù)式中,相減的'兩個(gè)式子的分母都含有二次根式,為化去它們的分母中的根號,可以分別先把各自的分母有理化或進(jìn)行]通分,把這個(gè)代數(shù)式化簡后,再求值。

  三、小結(jié)

  1、對于二次根式的混合混合運(yùn)算。應(yīng)根據(jù)二次根式的加、減、乘除和乘方運(yùn)算的順序進(jìn)行,即先進(jìn)行乘方運(yùn)算,再進(jìn)行乘、除運(yùn)算,最后進(jìn)行加、減運(yùn)算。如果有括號,先進(jìn)行括號內(nèi)的式子的運(yùn)算,運(yùn)算結(jié)果要化為最簡二次根式。

  2、在代數(shù)式求值問題中,如果已知條件所求式子中有含二次根式(或分式)的式子,應(yīng)先把它們化簡,然后再求值。

  3、在進(jìn)行二次根式的混合運(yùn)算時(shí),要根據(jù)題目特點(diǎn),靈活選擇解題方法,目的在于使計(jì)算更簡捷。

  四、作業(yè)

  P206 / 7 P206 / 8---②③

二次根式教案 篇4

  1.教學(xué)目標(biāo)

  (1)經(jīng)歷二次根式的乘法法則和積的算術(shù)平方根的性質(zhì)的形成過程;會進(jìn)行簡單的二次根式的乘法運(yùn)算;

  (2)會用公式化簡二次根式.

  2.目標(biāo)解析

  (1)學(xué)生能通過計(jì)算發(fā)現(xiàn)規(guī)律并對其進(jìn)行一般化的推廣,得出乘法法則的內(nèi)容;

  (2)學(xué)生能利用二次根式的乘法法則和積的算術(shù)平方根的性質(zhì),化簡二次根式.

  教學(xué)問題診斷分析

  本節(jié)課的學(xué)習(xí)中,學(xué)生在得出乘法法則和積的算術(shù)平方根的性質(zhì)后,對于何時(shí)該選用何公式簡化運(yùn)算感到困難.運(yùn)算習(xí)慣的養(yǎng)成與符號意識的養(yǎng)成、運(yùn)算能力的形成緊密相關(guān),由于該內(nèi)容與以前學(xué)過的實(shí)數(shù)內(nèi)容有較多的聯(lián)系,例如,整式中的乘法公式在二次根式的運(yùn)算中也成立,在教學(xué)中,要多從聯(lián)系性上下力氣.,培養(yǎng)學(xué)生良好的運(yùn)算習(xí)慣.

  在教學(xué)時(shí),通過實(shí)例運(yùn)算,對于將一個(gè)二次根式化為最簡二次根式,一般有兩種情況:(1)如果被開方數(shù)是分?jǐn)?shù)或分式(包括小數(shù)),可以采用直接利用分式的性質(zhì),結(jié)合二次根式的性質(zhì)進(jìn)行化簡(例見教科書例6解法1),也可以先寫成算術(shù)平方根的商的形式,再利用分式的性質(zhì)處理分母的根號(例見教科書例6解法2);(2)如果被開方數(shù)不含分母,可以先將它分解因數(shù)或分解因式,然后吧開得盡方的因數(shù)或因式開出來,從而將式子化簡.

  本節(jié)課的教學(xué)難點(diǎn)為:二次根式的性質(zhì)及乘法法則的正確應(yīng)用和二次根式的化簡.

  教學(xué)過程設(shè)計(jì)

  1.復(fù)習(xí)引入,探究新知

  我們前面已經(jīng)學(xué)習(xí)了二次根式的概念和性質(zhì),本節(jié)課開始我們要學(xué)習(xí)二次根式的乘除.本節(jié)課先學(xué)習(xí)二次根式的乘法.

  問題1 什么叫二次根式?二次根式有哪些性質(zhì)?

  師生活動 學(xué)生回答。

  【設(shè)計(jì)意圖】乘法運(yùn)算和二次根式的化簡需要用到二次根式的性質(zhì).

  問題2 教材第6頁“探究”欄目,計(jì)算結(jié)果如何?有何規(guī)律?

  師生活動 學(xué)生計(jì)算、思考并嘗試歸納,引導(dǎo)學(xué)生用自己的語言描述乘法法則的內(nèi)容.

  【設(shè)計(jì)意圖】學(xué)生在自主探究的過程中發(fā)現(xiàn)規(guī)律,運(yùn)用類比思想,由特殊到一般地,采用不完全歸納的方法得出二次根式的乘法法則.要求學(xué)生用數(shù)學(xué)語言和文字分別描述法則,以培養(yǎng)學(xué)生的符號意識.

  2.觀察比較,理解法則

  問題3 簡單的根式運(yùn)算.

  師生活動 學(xué)生動手操作,教師檢驗(yàn).

  問題4 二次根式的乘除成立的條件是什么?等式反過來有什么價(jià)值?

  師生活動 學(xué)生回答,給出正確答案后,教師給出積的算術(shù)平方根的性質(zhì).

  【設(shè)計(jì)意圖】讓學(xué)生運(yùn)用法則進(jìn)行簡單的二次根式的乘法運(yùn)算,以檢驗(yàn)法則的掌握情況.乘法法則反過來就是積的算術(shù)平方根的性質(zhì),性質(zhì)是為運(yùn)算服務(wù)的,積的算術(shù)平方根的性質(zhì)將積的算術(shù)平方根分解成幾個(gè)因數(shù)或因式的.算術(shù)平方根的積,利用整式的運(yùn)算法則、乘法公式等可以簡化二次根式,培養(yǎng)學(xué)生的運(yùn)算能力.

  3.例題示范,學(xué)會應(yīng)用

  例1 化簡:(1)二次根式的乘除; (2)二次根式的乘除.

  師生活動 提問:你是怎么理解例(1)的?

  如果學(xué)生回答不完善,再追問:這個(gè)問題中,就直接將結(jié)果算成二次根式的乘除可以嗎?你認(rèn)為本題怎樣才達(dá)到了化簡的效果?

  師生合作回答上述問題.對于根式運(yùn)算的最后結(jié)果,一般被開方數(shù)中有開得盡方的因數(shù)或因式,應(yīng)依據(jù)二次根式的性質(zhì)二次根式的乘除將其移出根號外.

  再提問:你能仿照第(1)題的解答,能自己解決(2)嗎?

  【設(shè)計(jì)意圖】通過運(yùn)算,培養(yǎng)學(xué)生的運(yùn)算能力,明確二次根式化簡的方向.積的算術(shù)平方根的性質(zhì)可以進(jìn)行二次根式的化簡.

  例2 計(jì)算:(1)二次根式的乘除; (2)二次根式的乘除; (3)二次根式的乘除

  師生活動 學(xué)生計(jì)算,教師檢驗(yàn).

  (1)在被開方數(shù)相乘的時(shí)候,就可以考慮因數(shù)或因式分解,由二次根式的乘除直接可得二次根式的乘除而不必先寫成二次根式的乘除再分解;

  (2)二次根式的乘法運(yùn)算類似于整式的乘法運(yùn)算,交換律、結(jié)合律都是適用的.對于根號外有系數(shù)的根式在相乘時(shí),可以將系數(shù)先相乘作為積的系數(shù),再對根式進(jìn)行運(yùn)算;

  (3)例(3)的運(yùn)算是選學(xué)內(nèi)容.讓學(xué)有余力的學(xué)生學(xué)到“根號下為字母的二次根式”的運(yùn)算.本題先利用積的算術(shù)平方根的性質(zhì),得到二次根式的乘除,然后利用二次根式的乘法法則,變成二次根式的乘除,由于二次根式的乘除可以判斷二次根式的乘除,因此直接將x移出根號外.

  【設(shè)計(jì)意圖】引導(dǎo)學(xué)生及時(shí)總結(jié),強(qiáng)調(diào)利用運(yùn)算律進(jìn)行運(yùn)算,利用乘法公式簡化運(yùn)算.讓學(xué)生認(rèn)識到,二次根式是一類特殊的實(shí)數(shù),因此滿足實(shí)數(shù)的運(yùn)算律,關(guān)于整式運(yùn)算的公式和方法也適用.

  教材中雖然指明,如未特別說明,本章中所有的字母都表示正數(shù),但仍應(yīng)強(qiáng)調(diào),看到根號就要注意被開方數(shù)的符號.可以根據(jù)二次根式的概念對字母的符號進(jìn)行判斷,在移出根號時(shí)正確處理符號問題.

  4.鞏固概念,學(xué)以致用

  練習(xí):教科書第7頁練習(xí)第1題. 第10頁習(xí)題16.2第1題.

  【設(shè)計(jì)意圖】鞏固性練習(xí),同時(shí)檢驗(yàn)乘法法則的掌握情況.

  5.歸納小結(jié),反思提高

  師生共同回顧本節(jié)課所學(xué)內(nèi)容,并請學(xué)生回答以下問題:

  (1)你能說明二次根式的乘法法則是如何得出的嗎?

  (2)你能說明乘法法則逆用的意義嗎?

  (3)化簡二次根式的基本步驟是怎樣?一般對最后結(jié)果有何要求?

  6.布置作業(yè):教科書第7頁第2、3題.習(xí)題16.2第1,6題.

  五、目標(biāo)檢測設(shè)計(jì)

  1.下列各式中,一定能成立的是( )

  A.二次根式的乘除 B.二次根式的乘除

  C.二次根式的乘除 D.二次根式的乘除

  【設(shè)計(jì)意圖】考查二次根式的概念和性質(zhì),這是進(jìn)行二次根式的乘法運(yùn)算的基礎(chǔ).

  2.化簡二次根式的乘除 ______________________________。

  【設(shè)計(jì)意圖】二次根式是特殊的實(shí)數(shù),實(shí)數(shù)的相關(guān)運(yùn)算法則也適用于二次根式.

  3.已知二次根式的乘除,化簡二次根式二次根式的乘除的結(jié)果是(  )

  A.二次根式的乘除 B.二次根式的乘除 C.二次根式的乘除 D.二次根式的乘除

  【設(shè)計(jì)意圖】鞏固二次根式的性質(zhì),利用積的算術(shù)平方根的性質(zhì)正確化簡二次根式.

二次根式教案 篇5

  目 標(biāo)

  1. 熟練地運(yùn)用二次根式的性質(zhì)化簡二次根式;

  2. 會運(yùn)用二次根式解決簡單的實(shí)際問題;

  3. 進(jìn)一步體驗(yàn)二次根式及其運(yùn)算的實(shí)際意義和應(yīng)用價(jià)值。

  教學(xué)設(shè)想

  本節(jié)課的重點(diǎn)是:二次根式及其運(yùn)算的實(shí)際應(yīng)用;難點(diǎn)是:例7涉及多方面的知識和綜合運(yùn)用,思路比較復(fù)雜。

  教 學(xué) 程序 與 策 略

  一、預(yù)習(xí)檢測

  1.解決節(jié)前問題:

  如圖,架在消防車上的云梯AB長為15m,AD:BD=1 :0.6,云梯底部離地面的距離BC為2m。你能求出云梯的頂端離地面的距離AE嗎?

  歸納:

  在日常生活和生產(chǎn)實(shí)際中,我們在解決一 些問題,尤其是涉及直角三角形邊長計(jì)算的問題時(shí)經(jīng)常用到二次根式及其運(yùn)算。

  二、合作交流:

  1、:如圖,扶梯AB的坡比(BE與AE的長度之比)為1:0.8,滑梯CD的坡比為1:1.6,AE= 米,BC= CD。一男孩從扶梯走到滑梯的頂部,然后從滑梯滑下,他經(jīng)過了多少路程(結(jié)果要求先化簡,再取近似值,精確到0.01米)

  讓學(xué)生有充分的.時(shí)間閱讀問題,并結(jié)合圖形分析問題:(1)所求的路程實(shí)際上是哪些線段的和?哪些線段的長是已知的?哪些線段的長是未知的?它們之間有什么關(guān)系?(2)列出的算式中有哪些運(yùn)算?能化簡嗎?

  注意解題格式

  教 學(xué) 程 序 與 策 略

  三、鞏固練習(xí):

  完成課本P17、1,組長檢查反饋;

  四、拓展提高:

  1:如圖是一張等腰三角形彩色紙,AC=BC=40cm,將斜邊上的高CD四等分,然后裁出3張寬度相等的長方形紙條。(1)分別求出3張長方形紙條的長度。(2)若用這些紙條為一幅正方形美術(shù)作品鑲邊(紙條不重疊),如右圖,正方形美術(shù)作品的面積最大不能超過多少cm。

  師生共同分析解題思路,請學(xué)生寫出解題過程。

  五、課堂小結(jié):

  1.談一談:本節(jié)課你有什么收獲?

  2.運(yùn)用二次根式解決簡單的實(shí)際問題時(shí)應(yīng)注意的的問題

  六、堂堂清

  1: 作業(yè)本(2)

  2:課本P17頁:第4、5題選做。

二次根式教案 篇6

  一、內(nèi)容和內(nèi)容解析

  1.內(nèi)容

  二次根式的性質(zhì)。

  2.內(nèi)容解析

  本節(jié)教材是在學(xué)生學(xué)習(xí)二次根式概念的基礎(chǔ)上,結(jié)合二次根式的概念和算術(shù)平方根的概念,通過觀察、歸納和思考得到二次根式的兩個(gè)基本性質(zhì).

  對于二次根式的性質(zhì),教材沒有直接從算術(shù)平方根的意義得到,而是考慮學(xué)生的年齡特征,先通過 “探究”欄目中給出四個(gè)具體問題,讓學(xué)生學(xué)生根據(jù)算術(shù)平方根的意義,就具體數(shù)字進(jìn)行分析得出結(jié)果,再分析這些結(jié)果的共同特征,由特殊到一般地歸納出結(jié)論.基于以上分析,確定本節(jié)課的教學(xué)重點(diǎn)為:理解二次根式的性質(zhì).

  二、目標(biāo)和目標(biāo)解析

  1.教學(xué)目標(biāo)

 。1)經(jīng)歷探索二次根式的性質(zhì)的過程,并理解其意義;

  (2)會運(yùn)用二次根式的性質(zhì)進(jìn)行二次根式的化簡;

 。3)了解代數(shù)式的概念.

  2.目標(biāo)解析

 。1)學(xué)生能根據(jù)具體數(shù)字分析和算術(shù)平方根的意義,由特殊到一般地歸納出二次根式的性質(zhì),會用符號表述這一性質(zhì);

 。2)學(xué)生能靈活運(yùn)用二次根式的性質(zhì)進(jìn)行二次根式的化簡;

 。3)學(xué)生能從已學(xué)過的各種式子中,體會其共同特點(diǎn),得出代數(shù)式的概念.

  三、教學(xué)問題診斷分析

  二次根式的性質(zhì)是二次根式化簡和運(yùn)算的重要基礎(chǔ).學(xué)生根據(jù)二次根式的概念和算術(shù)平方根的意義,由特殊到一般地得出二次根式的性質(zhì)后,重在能靈活運(yùn)用二次根式的性質(zhì)進(jìn)行二次根式的化簡和解決一些綜合性較強(qiáng)的問題.由于學(xué)生初次學(xué)習(xí)二次根式的性質(zhì),對二次根式性質(zhì)的靈活運(yùn)用存在一定的困難,突破這一難點(diǎn)需要教師精心設(shè)計(jì)好每一道習(xí)題,讓學(xué)生在練習(xí)中進(jìn)一步掌握二次根式的性質(zhì),培養(yǎng)其靈活運(yùn)用的能力.

  本節(jié)課的教學(xué)難點(diǎn)為:二次根式性質(zhì)的靈活運(yùn)用.

  四、教學(xué)過程設(shè)計(jì)

  1.探究性質(zhì)1

  問題1 你能解釋下列式子的含義嗎?

  師生活動:教師引導(dǎo)學(xué)生說出每一個(gè)式子的含義.

  【設(shè)計(jì)意圖】讓學(xué)生初步感知,這些式子都表示一個(gè)非負(fù)數(shù)的算術(shù)平方根的平方.

  問題2 根據(jù)算術(shù)平方根的意義填空,并說出得到結(jié)論的依據(jù).

  師生活動 學(xué)生獨(dú)立完成填空后,讓學(xué)生展示其思維過程,說出得到結(jié)論的依據(jù).

  【設(shè)計(jì)意圖】學(xué)生通過計(jì)算或根據(jù)算術(shù)平方根的意義得出結(jié)論,為歸納二次根式的性質(zhì)1作鋪墊.

  問題3 從以上的結(jié)論中你能發(fā)現(xiàn)什么規(guī)律?你能用一個(gè)式子表示這個(gè)規(guī)律嗎?

  師生活動:引導(dǎo)學(xué)生歸納得出二次根式的性質(zhì): ( ≥0).

  【設(shè)計(jì)意圖】讓學(xué)生經(jīng)歷從特殊到一般的過程,概括出二次根式的性質(zhì)1,培養(yǎng)學(xué)生抽象概括的能力.

  例2 計(jì)算

  (1) ;(2) .

  師生活動:學(xué)生獨(dú)立完成,集體訂正.

  【設(shè)計(jì)意圖】鞏固二次根式的性質(zhì)1,學(xué)會靈活運(yùn)用.

  2.探究性質(zhì)2

  問題4 你能解釋下列式子的含義嗎?

  師生活動:教師引導(dǎo)學(xué)生說出每一個(gè)式子的含義.

  【設(shè)計(jì)意圖】讓學(xué)生初步感知,這些式子都表示一個(gè)數(shù)的平方的算術(shù)平方根.

  問題5 根據(jù)算術(shù)平方根的意義填空,并說出得到結(jié)論的依據(jù).

  師生活動 學(xué)生獨(dú)立完成填空后,讓學(xué)生展示其思維過程,說出得到結(jié)論的依據(jù).

  【設(shè)計(jì)意圖】學(xué)生通過計(jì)算或根據(jù)算術(shù)平方根的意義得出結(jié)論,為歸納二次根式的性質(zhì)2作鋪墊.

  問題6 從以上的結(jié)論中你能發(fā)現(xiàn)什么規(guī)律?你能用一個(gè)式子表示這個(gè)規(guī)律嗎?

  師生活動:引導(dǎo)學(xué)生歸納得出二次根式的性質(zhì): ( ≥0)

  【設(shè)計(jì)意圖】讓學(xué)生經(jīng)歷從特殊到一般的過程,概括出二次根式的性質(zhì)2,培養(yǎng)學(xué)生抽象概括的能力.

  例3 計(jì)算

 。1) ;(2) .

  師生活動:學(xué)生獨(dú)立完成,集體訂正.

  【設(shè)計(jì)意圖】鞏固二次根式的性質(zhì)2,學(xué)會靈活運(yùn)用.

  3.歸納代數(shù)式的概念

  問題7 回顧我們學(xué)過的式子,如, ( ≥0),這些式子有哪些共同特征?

  師生活動:學(xué)生概括式子的共同特征,得出代數(shù)式的概念.

  【設(shè)計(jì)意圖】學(xué)生通過觀察式子的共同特征,形成代數(shù)式的概念,培養(yǎng)學(xué)生的`概括能力.

  4.綜合運(yùn)用

 。1)算一算:

  【設(shè)計(jì)意圖】設(shè)計(jì)有一定綜合性的題目,考查學(xué)生的靈活運(yùn)用的能力,第(2)、(3)、(4)小題要特別注意結(jié)果的符號.

 。2)想一想: 中, 的取值范圍是什么?當(dāng) ≥0時(shí), 等于多少?當(dāng) 時(shí), 又等于多少?

  【設(shè)計(jì)意圖】通過此問題的設(shè)計(jì),加深學(xué)生對 的理解,開闊學(xué)生的視野,訓(xùn)練學(xué)生的思維.

 。3)談一談你對 與 的認(rèn)識.

  【設(shè)計(jì)意圖】加深學(xué)生對二次根式性質(zhì)的理解.

  5.總結(jié)反思

  (1)你知道了二次根式的哪些性質(zhì)?

 。2)運(yùn)用二次根式性質(zhì)進(jìn)行化簡需要注意什么?

  (3)請談?wù)劙l(fā)現(xiàn)二次根式性質(zhì)的思考過程?

  (4)想一想,到現(xiàn)在為止,你學(xué)習(xí)了哪幾類字母表示數(shù)得到的式子?說說你對代數(shù)式的認(rèn)識.

  6.布置作業(yè):教科書習(xí)題16.1第2,4題.

  五、目標(biāo)檢測設(shè)計(jì)

  1. ; ; .

  【設(shè)計(jì)意圖】考查對二次根式性質(zhì)的理解.

  2.下列運(yùn)算正確的是( )

  A. B. C. D.

  【設(shè)計(jì)意圖】考查學(xué)生運(yùn)用二次根式的性質(zhì)進(jìn)行化簡的能力.

  3.若 ,則 的取值范圍是 .

  【設(shè)計(jì)意圖】考查學(xué)生對一個(gè)數(shù)非負(fù)數(shù)的算術(shù)平方根的理解.

  4.計(jì)算: .

  【設(shè)計(jì)意圖】考查二次根式性質(zhì)的靈活運(yùn)用.

二次根式教案 篇7

  【 學(xué)習(xí)目標(biāo) 】

  1、知識與技能:了解二次根式的概念,能求根號內(nèi)字母范圍,理解二次根式的雙重非負(fù)性,并能應(yīng)用它解決相關(guān)問題。

  2、過程與方法:進(jìn)一步體會分類討論的數(shù)學(xué)思想。

  3、情感、態(tài)度與價(jià)值觀:通過小組合作學(xué)習(xí),體驗(yàn)在合作探索中學(xué)習(xí)數(shù)學(xué)的樂趣。

  【 學(xué)習(xí)重難點(diǎn) 】

  1、重點(diǎn):準(zhǔn)確理解二次根式的概念,并能進(jìn)行簡單的計(jì)算。

  2、難點(diǎn):準(zhǔn)確理解二次根式的雙重非負(fù)性。

  【 學(xué)習(xí)內(nèi)容 】課本第2— 3頁

  【 學(xué)習(xí)流程 】

  一、 課前準(zhǔn)備(預(yù)習(xí)學(xué)案見附件1)

  學(xué)生在家中認(rèn)真閱讀理解課本中相關(guān)內(nèi)容的知識,并根據(jù)自己的理解完成預(yù)習(xí)學(xué)案。

  二、 課堂教學(xué)

  (一)合作學(xué)習(xí)階段。

  教師出示課堂教學(xué)目標(biāo)及引導(dǎo)材料,各學(xué)習(xí)小組結(jié)合本節(jié)課學(xué)習(xí)目標(biāo),根據(jù)課堂引導(dǎo)材料中得內(nèi)容,以小組合作的形式,組內(nèi)交流、總結(jié),并記錄合作學(xué)習(xí)中碰到的問題。組內(nèi)各成員根據(jù)課堂引導(dǎo)材料的要求在小組合作的前提下認(rèn)真完成課堂引導(dǎo)材料。教師在巡視中觀察各小組合作學(xué)習(xí)的情況,并進(jìn)行及時(shí)的引導(dǎo)、點(diǎn)撥,對普遍存在的問題做好記錄。

  (二)集體講授階段。(15分鐘左右)

  1. 各小組推選代表依次對課堂引導(dǎo)材料中的問題進(jìn)行解答,不足的本組成員可以補(bǔ)充。

  2. 教師對合作學(xué)習(xí)中存在的普遍的不能解決的'問題進(jìn)行集體講解。

  3. 各小組提出本組學(xué)習(xí)中存在的困惑,并請其他小組幫助解答,解答不了的由教師進(jìn)行解答。

  (三)當(dāng)堂檢測階段

  為了及時(shí)了解本節(jié)課學(xué)生的學(xué)習(xí)效果,及對本節(jié)課進(jìn)行及時(shí)的鞏固,對學(xué)生進(jìn)行當(dāng)堂檢測,測試完試卷上交。

  (注:合作學(xué)習(xí)階段與集體講授階段可以根據(jù)授課內(nèi)容進(jìn)行適當(dāng)調(diào)整次序或交叉進(jìn)行)

  三、 課后作業(yè)(課后作業(yè)見附件2)

  教師發(fā)放根據(jù)本節(jié)課所學(xué)內(nèi)容制定的針對性作業(yè),以幫助學(xué)生進(jìn)一步鞏固提高課堂所學(xué)。

  四、板書設(shè)計(jì)

  課題:二次根式(1)

  二次根式概念 例題 例題

  二次根式性質(zhì)

  反思:

二次根式教案 篇8

  一、內(nèi)容和內(nèi)容解析

  1.內(nèi)容

  二次根式的除法法則及其逆用,最簡二次根式的概念。

  2.內(nèi)容解析

  二次根式除法法則及商的算術(shù)平方根的探究,最簡二次根式的提出,為二次根式的運(yùn)算指明了方向,學(xué)習(xí)了除法法則后,就有比較豐富的運(yùn)算法則和公式依據(jù),將一個(gè)二次根式化成最簡二次根式,是加減運(yùn)算的基礎(chǔ).

  基于以上分析,確定本節(jié)課的教學(xué)重點(diǎn):二次根式的`除法法則和商的算術(shù)平方根的性質(zhì),最簡二次根式.

  二、目標(biāo)和目標(biāo)解析

  1.教學(xué)目標(biāo)

  (1)利用歸納類比的方法得出二次根式的除法法則和商的算術(shù)平方根的性質(zhì);

  (2)會進(jìn)行簡單的二次根式的除法運(yùn)算;

  (3) 理解最簡二次根式的概念.

  2.目標(biāo)解析

  (1)學(xué)生能通過運(yùn)算,類比二次根式的乘法法則,發(fā)現(xiàn)并描述二次根式的除法法則;

  (2)學(xué)生能理解除法法則逆用的意義,結(jié)合二次根式的概念、性質(zhì)、乘除法法則,對簡單的二次根式進(jìn)行運(yùn)算.

  (3)通過觀察二次根式的運(yùn)算結(jié)果,理解最簡二次根式的特征,能將二次根式的運(yùn)算結(jié)果化為最簡二次根式.

  三、教學(xué)問題診斷分析

  本節(jié)內(nèi)容主要是在做二次根式的除法運(yùn)算時(shí),分母含根號的處理方式上,學(xué)生可能會出現(xiàn)困難或容易失誤,在除法運(yùn)算中,可以先計(jì)算后利用商的算術(shù)平方根的性質(zhì)來進(jìn)行,也可以先利用分式的性質(zhì),去掉分母中的根號,再結(jié)合乘法法則和積的算術(shù)平方根的性質(zhì)來進(jìn)行.二次根式的除法與分式的運(yùn)算類似,如果分子、分母中含有相同的因式,可以直接約去,以簡化運(yùn)算.教學(xué)中不能只是列舉題型,應(yīng)以各級各類習(xí)題為載體,引導(dǎo)學(xué)生把握運(yùn)算過程,估計(jì)運(yùn)算結(jié)果,明確運(yùn)算方向.

  本節(jié)課的教學(xué)難點(diǎn)為:二次根式的除法法則與商的算術(shù)平方根的性質(zhì)之間的關(guān)系和應(yīng)用.

  四、教學(xué)過程設(shè)計(jì)

  1.復(fù)習(xí)提問,探究規(guī)律

  問題1 二次根式的乘法法則是什么內(nèi)容?化簡二次根式的一般步驟怎樣?

  師生活動 學(xué)生回答。

  【設(shè)計(jì)意圖】讓學(xué)生回憶探究乘法法則的過程,類比該過程,學(xué)生可以探究除法法則.

  五、目標(biāo)檢測設(shè)計(jì)

二次根式教案 篇9

  一、教學(xué)目標(biāo)

  1。使學(xué)生知道什么是最簡二次根式,遇到實(shí)際式子能夠判斷是不是最簡二次根式。

  2。使學(xué)生掌握化簡一個(gè)二次根式成最簡二次根式的方法。

  3。使學(xué)生了解把二次根式化簡成最簡二次根式在實(shí)際問題中的應(yīng)用。

  二、教學(xué)重點(diǎn)和難點(diǎn)

  1。重點(diǎn):能夠把所給的二次根式,化成最簡二次根式。

  2。難點(diǎn):正確運(yùn)用化一個(gè)二次根式成為最簡二次根式的方法。

  三、教學(xué)方法

  通過實(shí)際運(yùn)算的例子,引出最簡二次根式的概念,再通過解題實(shí)踐,總結(jié)歸納化簡二次根式的方法。

  四、教學(xué)手段

  利用投影儀。

  五、教學(xué)過程

 。ㄒ唬┮胄抡n

  提出問題:如果一個(gè)正方形的面積是0。5m2,那么它的邊長是多少?能不能求出它的近似值?

  了。這樣會給解決實(shí)際問題帶來方便。

  (二)新課

  由以上例子可以看出,遇到一個(gè)二次根式將它化簡,為解決問題創(chuàng)

  這兩個(gè)二次根式化簡前后有什么不同,這里要引導(dǎo)學(xué)生從兩個(gè)方面考慮,一方面是被開方數(shù)的因數(shù)化簡后是否是整數(shù)了,另一方面被開方數(shù)中還有沒有開得盡方的因數(shù)。

  總結(jié)滿足什么樣的'條件是最簡二次根式。即:滿足下列兩個(gè)條件的二次根式,叫做最簡二次根式:

  1。被開方數(shù)的因數(shù)是整數(shù),因式是整式。

  2。被開方數(shù)中不含能開得盡方的因數(shù)或因式。

  例1 指出下列根式中的最簡二次根式,并說明為什么。

  分析:

  說明:這里可以向?qū)W生說明,前面兩小節(jié)化簡二次根式,就是要求化成最簡二次根式。前面二次根式的運(yùn)算結(jié)果也都是最簡二次根式。

  例2 把下列各式化成最簡二次根式:

  說明:引導(dǎo)學(xué)生觀察例2題中二次根式的特點(diǎn),即被開方數(shù)是整式或整數(shù),再啟發(fā)學(xué)生總結(jié)這類題化簡的方法,先將被開方數(shù)或被開方式分解因數(shù)或分解因式,然后把開得盡方的因數(shù)或因式開出來,從而將式子化簡。

  例3 把下列各式化簡成最簡二次根式:

  說明:

  1。引導(dǎo)學(xué)生觀察例題3中二次根式的特點(diǎn),即被開方數(shù)是分?jǐn)?shù)或分式,再啟發(fā)學(xué)生總結(jié)這類題化簡的方法,先利用商的算術(shù)平方根的性質(zhì)把它寫成分式的形式,然后利用分母有理化化簡。

  2。要提問學(xué)生

  問題,通過這個(gè)小題使學(xué)生明確如何使用化簡中的條件。

  通過例2、例3總結(jié)把一個(gè)二次根式化成最簡二次根式的兩種情況,并引導(dǎo)學(xué)生小結(jié)應(yīng)該注意的問題。

  注意:

 、倩啎r(shí),一般需要把被開方數(shù)分解因數(shù)或分解因式。

 、诋(dāng)一個(gè)式子的分母中含有二次根式時(shí),一般應(yīng)該把它化簡成分母中不含二次根式的式子,也就是把它的分母進(jìn)行有理化。

 。ㄈ┬〗Y(jié)

  1。滿足什么條件的根式是最簡二次根式。

  2。把一個(gè)二次根式化成最簡二次根式的主要方法。

 。ㄋ模┚毩(xí)

  1。指出下列各式中的最簡二次根式:

  2。把下列各式化成最簡二次根式:

  六、作業(yè)

  教材P。187習(xí)題11。4;A組1;B組1。

  七、板書設(shè)計(jì)

二次根式教案 篇10

  【1】二次根式的加減教案

  教材分析:

  本節(jié)內(nèi)容出自九年級數(shù)學(xué)上冊第二十一章第三節(jié)的第一課時(shí),本節(jié)在研究最簡二次根式和二次根式的乘除的基礎(chǔ)上,來學(xué)習(xí)二次根式的加減運(yùn)算法則和進(jìn)一步完善二次根式的化簡。本小節(jié)重點(diǎn)是二次根式的加減運(yùn)算,教材從一個(gè)實(shí)際問題引出二次根式的加減運(yùn)算,使學(xué)生感到研究二次根式的加減運(yùn)算是解決實(shí)際問題的需要。通過探索二次根式加減運(yùn)算,并用其解決一些實(shí)際問題,來提高我們用數(shù)學(xué)解決實(shí)際問題的意識和能力。另外,通過本小節(jié)學(xué)習(xí)為后面學(xué)生熟練進(jìn)行二次根式的加減運(yùn)算以及加、減、乘、除混合運(yùn)算打下了鋪墊。

  學(xué)生分析:

  本節(jié)課的內(nèi)容是知識的延續(xù)和創(chuàng)新,學(xué)生積極主動的投入討論、交流、建構(gòu)中,自主探索、動手操作、協(xié)作交流,全班學(xué)生具有較扎實(shí)的知識和創(chuàng)新能力,通過自學(xué)、小組討論大部分學(xué)生能夠達(dá)到教學(xué)目標(biāo),少部分學(xué)生有困難,基礎(chǔ)差、自學(xué)能力差,因此要提供賞識性評價(jià)教學(xué)策略,給予個(gè)別關(guān)照、心理暗示以及適當(dāng)?shù)木窦?lì),克服自卑心理,讓他們逐步樹立自尊心與自信心,從而完成自己的學(xué)習(xí)任務(wù)。

  設(shè)計(jì)理念:

  新課程有效課堂教學(xué)明確倡導(dǎo),學(xué)生是學(xué)習(xí)的主人,在學(xué)生自學(xué)文本的基礎(chǔ)上動手實(shí)踐、自主探究、合作交流,來倡導(dǎo)新的學(xué)習(xí)觀,讓他們完成二次根式加減知識研究。教師從過去知識的傳授者轉(zhuǎn)變?yōu)閷W(xué)生的自主性、探究性、合作性學(xué)習(xí)活動的設(shè)計(jì)者和組織者,與學(xué)生零距離接觸共同探究。在教學(xué)過程中教師設(shè)置開放的、面向?qū)嶋H的、富有挑戰(zhàn)性的問題情境,使學(xué)生在嘗試、探索、思考、交流與合作中培養(yǎng)分析、歸納、總結(jié)的能力,把“要我學(xué)”變成“我要學(xué)”,通過開放式命題,嘗試從不同角度尋求解決問題的方法,養(yǎng)成良好的學(xué)習(xí)習(xí)慣,掌握學(xué)習(xí)策略,并根據(jù)活動中示范和指導(dǎo)培養(yǎng)學(xué)生大膽闡述并討論觀點(diǎn),說明所獲討論的有效性,并對推論進(jìn)行評價(jià)。從而營造一個(gè)接納的、支持的、寬容的良好氛圍進(jìn)行學(xué)習(xí)。

  教學(xué)目標(biāo)知識與技能目標(biāo):

  會化簡二次根式,了解同類二次根式的概念,會進(jìn)行簡單的二次根式的.加減法;通過加減運(yùn)算解決生活的實(shí)際問題。

  過程與方法目標(biāo):

  通過類比整式加減法運(yùn)算體驗(yàn)二次根式加減法運(yùn)算的過程;學(xué)生經(jīng)歷由實(shí)際問題引入數(shù)學(xué)問題的過程,發(fā)展學(xué)生的抽象概括能力。

  情感態(tài)度與價(jià)值觀:

  通過對二次根式加減法的探究,激發(fā)學(xué)生的探索熱情,讓學(xué)生充分參與到數(shù)學(xué)學(xué)習(xí)的過程中來,使他們體驗(yàn)到成功的樂趣.

  重點(diǎn)、難點(diǎn):重點(diǎn):

  合并被開放數(shù)相同的同類二次根式,會進(jìn)行簡單的二次根式的加減法。

  難點(diǎn):

  二次根式加減法的實(shí)際應(yīng)用。

  關(guān)鍵問題 :

  了解同類二次根式的概念,合并同類二次根式,會進(jìn)行二次根式的加減法。

  教學(xué)方法:.

  1. 引導(dǎo)發(fā)現(xiàn)法:在教師的啟發(fā)引導(dǎo)下,鼓勵(lì)學(xué)生積極參與,與實(shí)際問題相結(jié)合,采用“問題—探索—發(fā)現(xiàn)”的研究模式,讓學(xué)生自主探索,合作學(xué)習(xí),歸納結(jié)論,掌握規(guī)律。

  2. 類比法:由實(shí)際問題導(dǎo)入二次根式加減運(yùn)算;類比合并同類項(xiàng)合并同類二次根式。

  3.嘗試訓(xùn)練法:通過學(xué)生嘗試,教師針對個(gè)別問題進(jìn)行點(diǎn)撥指導(dǎo),實(shí)現(xiàn)全優(yōu)的教育效果。

  【2】二次根式的加減教案

  教學(xué)目標(biāo):

  1.知識目標(biāo):二次根式的加減法運(yùn)算

  2.能力目標(biāo):能熟練進(jìn)行二次根式的加減運(yùn)算,能通過二次根式的加減法運(yùn)算解決實(shí)際問題。

  3.情感態(tài)度:培養(yǎng)學(xué)生善于思考,一絲不茍的科學(xué)精神。

  重難點(diǎn)分析:

  重點(diǎn):能熟練進(jìn)行二次根式的加減運(yùn)算。

  難點(diǎn):正確合并被開方數(shù)相同的二次根式,二次根式加減法的實(shí)際應(yīng)用。

  教學(xué)關(guān)鍵:通過復(fù)習(xí)舊知識,運(yùn)用類比思想方法,達(dá)到溫故知新的目的;運(yùn)用創(chuàng)設(shè)問題激發(fā)學(xué)生求知欲;通過學(xué)生全面參與學(xué)習(xí)(分層次要求),達(dá)到每個(gè)學(xué)生在學(xué)習(xí)數(shù)學(xué)上有不同的發(fā)展。

  運(yùn)用教具:小黑板等。

  教學(xué)過程:

問題與情景

師生活動

設(shè)計(jì)目的

活動一:

情景引入,導(dǎo)學(xué)展示

1.把下列二次根式化為最簡二次根式: , ; , , 。上述兩組二次根式,有什么特點(diǎn)?

2.現(xiàn)有一塊長7.5dm、寬5dm的木板,能否采用如教科書圖21.3-所示的方式,在這塊木板上截出兩個(gè)面積分別是8dm 和18dm 的正方形木板?

這道題是舊知識的回顧,老師可以找同學(xué)直接回答。對于問題,老師要關(guān)注:學(xué)生是否能熟練得到正確答案。 教師傾聽學(xué)生的交流,指導(dǎo)學(xué)生探究。

問:什么樣的二次根式能進(jìn)行加減運(yùn)算,運(yùn)算到那一步為止。

由此也可以看到二次根式的加減只有通過找出被開方數(shù)相同的二次根式的途徑,才能進(jìn)行加減。

加強(qiáng)新舊知識的聯(lián)系。通過觀察,初步認(rèn)識同類二次根式。

引出二次根式加減法則。

3. A、B層同學(xué)自主學(xué)習(xí)15頁例1、例2、例3,C層同學(xué)至少完成例1、例2的學(xué)習(xí)。

例1.計(jì)算:

(1) ;

(2) - ;

例2. 計(jì)算:

1)

2)

例3.要焊接一個(gè)如教科書圖21.3—2所示的鋼架,大約需要多少米鋼材(精確到0.1米)?

活動二:分層練習(xí),合作互助

1.下列計(jì)算是否正確?為什么?

(1)

(2) ;

(3) 。

2.計(jì)算:

(1) ;

(2)

(3)

(4)

3.(見課本16頁)

補(bǔ)充:

活動三:分層檢測,反饋小結(jié)

教材17頁習(xí)題:

A層、 B層:2、3.

C層1、2.

小結(jié):

這節(jié)課你學(xué)到了什么知識?你有什么收獲?

作業(yè):課堂練習(xí)冊第5、6頁。

自學(xué)的同時(shí)抽查部分同學(xué)在黑板上板書計(jì)算過程。抽2名C層同學(xué)在黑板上完成例1板書過程,學(xué)生在計(jì)算時(shí)若出現(xiàn)錯(cuò)誤,抽2名B層同學(xué)訂正。抽2名B層同學(xué)在黑板上完成例2板書過程,若出現(xiàn)錯(cuò)誤,再抽2名A層同學(xué)訂正。抽1名A層同學(xué)在黑板上完成例3板書過程,并做適當(dāng)?shù)姆治鲋v解。

此題是聯(lián)系實(shí)際的題目,需要學(xué)生先列式,再計(jì)算。并將結(jié)果精確到0.1 m, 學(xué)生考慮問題要全面,不能漏掉任何一段鋼材。

老師提示:

1)解決問題的方案是否得當(dāng);2)考慮的問題是否全面。3)計(jì)算是否準(zhǔn)確。

A層同學(xué)完成16頁練習(xí)1、2、3;B層同學(xué)完成練習(xí)1、2,可選做第3題;C層同學(xué)盡量完成練習(xí)1、2。多數(shù)同學(xué)完成后,讓學(xué)生在小組內(nèi)互相檢查,有問題時(shí)共同分析矯正或請教老師。也可以抽查部分同學(xué)。例如:抽3名C層同學(xué)口答練習(xí)1;抽4名B層或C層同學(xué)在黑板上板書練習(xí)第2題;抽1名A層或B層同學(xué)在黑板上板書練習(xí)第3題后再分析講解。

點(diǎn)撥:1)對 的化簡是否正確;2)當(dāng)根式中出現(xiàn)小數(shù)、分?jǐn)?shù)、字母時(shí),是否能正確處理;

3)運(yùn)算法則的運(yùn)用是否正確

先測試,再小組內(nèi)互批,查找問題。學(xué)生反思本節(jié)課學(xué)到的知識,談自己的`感受。

小結(jié)時(shí)教師要關(guān)注:

1)學(xué)生是否抓住本課的重點(diǎn);

2)對于常見錯(cuò)誤的認(rèn)識。

把學(xué)習(xí)目標(biāo)由高到低分為A、B、C三個(gè)層次,教學(xué)中做到分層要求。

學(xué)生學(xué)習(xí)經(jīng)歷由淺到深的過程,可以提高學(xué)生能力,同時(shí)有利于激發(fā)學(xué)生的探索知識的欲望。

二次根式的加減運(yùn)算融入實(shí)際問題中去,提高了學(xué)生的學(xué)習(xí)興趣和對數(shù)學(xué)知識的應(yīng)用意識和能力。

小組成員互相檢查學(xué)生對于新的知識掌握的情況,鞏固學(xué)生剛掌握的知識能力。達(dá)到共同把關(guān)、合作互助的目的。

培養(yǎng)學(xué)生的計(jì)算的準(zhǔn)確性,以培養(yǎng)學(xué)生科學(xué)的精神。

對課堂的問題及時(shí)反饋,使學(xué)生熟練掌握新知識。

每個(gè)學(xué)生對于知識的理解程度不同,學(xué)生回答時(shí)教師要多鼓勵(lì)學(xué)生。

【二次根式教案】相關(guān)文章:

二次根式教案02-16

二次根式的教案10-24

二次根式教案05-15

二次根式教案優(yōu)秀10-19

二次根式教案(推薦)12-27

二次根式教案15篇02-27

二次根式說課稿06-21

二次根式教案范文6篇02-03

【熱門】二次根式教案3篇07-25

【精華】二次根式教案4篇08-04