當(dāng)前位置:育文網(wǎng)>教學(xué)文檔>教案> 二次根式教案

二次根式教案

時間:2024-08-04 18:29:49 教案 我要投稿

【精華】二次根式教案4篇

  作為一位杰出的老師,時常需要用到教案,教案是教學(xué)活動的總的組織綱領(lǐng)和行動方案。怎樣寫教案才更能起到其作用呢?下面是小編精心整理的二次根式教案4篇,歡迎閱讀與收藏。

【精華】二次根式教案4篇

二次根式教案 篇1

  一、內(nèi)容和內(nèi)容解析

  1.內(nèi)容

  二次根式的除法法則及其逆用,最簡二次根式的概念。

  2.內(nèi)容解析

  二次根式除法法則及商的算術(shù)平方根的探究,最簡二次根式的提出,為二次根式的運(yùn)算指明了方向,學(xué)習(xí)了除法法則后,就有比較豐富的運(yùn)算法則和公式依據(jù),將一個二次根式化成最簡二次根式,是加減運(yùn)算的基礎(chǔ).

  基于以上分析,確定本節(jié)課的教學(xué)重點(diǎn):二次根式的除法法則和商的算術(shù)平方根的性質(zhì),最簡二次根式.

  二、目標(biāo)和目標(biāo)解析

  1.教學(xué)目標(biāo)

  (1)利用歸納類比的方法得出二次根式的除法法則和商的算術(shù)平方根的性質(zhì);

  (2)會進(jìn)行簡單的二次根式的除法運(yùn)算;

  (3) 理解最簡二次根式的概念.

  2.目標(biāo)解析

  (1)學(xué)生能通過運(yùn)算,類比二次根式的'乘法法則,發(fā)現(xiàn)并描述二次根式的除法法則;

  (2)學(xué)生能理解除法法則逆用的意義,結(jié)合二次根式的概念、性質(zhì)、乘除法法則,對簡單的二次根式進(jìn)行運(yùn)算.

  (3)通過觀察二次根式的運(yùn)算結(jié)果,理解最簡二次根式的特征,能將二次根式的運(yùn)算結(jié)果化為最簡二次根式.

  三、教學(xué)問題診斷分析

  本節(jié)內(nèi)容主要是在做二次根式的除法運(yùn)算時,分母含根號的處理方式上,學(xué)生可能會出現(xiàn)困難或容易失誤,在除法運(yùn)算中,可以先計算后利用商的算術(shù)平方根的性質(zhì)來進(jìn)行,也可以先利用分式的性質(zhì),去掉分母中的根號,再結(jié)合乘法法則和積的算術(shù)平方根的性質(zhì)來進(jìn)行.二次根式的除法與分式的運(yùn)算類似,如果分子、分母中含有相同的因式,可以直接約去,以簡化運(yùn)算.教學(xué)中不能只是列舉題型,應(yīng)以各級各類習(xí)題為載體,引導(dǎo)學(xué)生把握運(yùn)算過程,估計運(yùn)算結(jié)果,明確運(yùn)算方向.

  本節(jié)課的教學(xué)難點(diǎn)為:二次根式的除法法則與商的算術(shù)平方根的性質(zhì)之間的關(guān)系和應(yīng)用.

  四、教學(xué)過程設(shè)計

  1.復(fù)習(xí)提問,探究規(guī)律

  問題1 二次根式的乘法法則是什么內(nèi)容?化簡二次根式的一般步驟怎樣?

  師生活動 學(xué)生回答。

  【設(shè)計意圖】讓學(xué)生回憶探究乘法法則的過程,類比該過程,學(xué)生可以探究除法法則.

  五、目標(biāo)檢測設(shè)計

二次根式教案 篇2

  教學(xué)目的:

  1、在二次根式的混合運(yùn)算中,使學(xué)生掌握應(yīng)用有理化分母的方法化簡和計算二次根式;

  2、會求二次根式的代數(shù)的值;

  3、進(jìn)一步提高學(xué)生的綜合運(yùn)算能力。

  教學(xué)重點(diǎn):在二次根式的混合運(yùn)算中,靈活選擇有理化分母的方法化簡二次根式

  教學(xué)難點(diǎn):正確進(jìn)行二次根式的混合運(yùn)算和求含有二次根式的代數(shù)式的值

  教學(xué)過程:

  一、二次根式的混合運(yùn)算

  例1 計算:

  分析:(1)題是二次根式的加減運(yùn)算,可先把前三個二次根式化最簡二次根式,把第四式的分母有理化,然后再進(jìn)行二次根式的加減運(yùn)算。

  (2)題是含乘方、加、減和除法的混合運(yùn)算,應(yīng)按運(yùn)算的順序進(jìn)行計算,先算括號內(nèi)的式子,最后進(jìn)行除法運(yùn)算。注意的計算。

  練習(xí)1:P206 / 8--① P207 / 1①②

  例2 計算

  問:計算思路是什么?

  答:先把第一人的括號內(nèi)的式子通分,把第二個括號內(nèi)的式子的分母有理化,再進(jìn)行計算。

  二、求代數(shù)式的值。 注意兩點(diǎn):

  (1)如果已知條件為含二次根式的式子,先把它化簡;

  (2)如果代數(shù)式是含二次根式的式子,應(yīng)先把代數(shù)式化簡,再求值。

  例3 已知,求的值。

  分析:多項(xiàng)式可轉(zhuǎn)化為用與表示的式子,因此可根據(jù)已知條件中的及的值。求得與的.值。在計算中,先把及的式了有理化分母。可使計算簡便。

  例4 已知,求的值。

  觀察代數(shù)式的特點(diǎn),請說出求這個代數(shù)式的值的思路。

  答:所求的代數(shù)式中,相減的兩個式子的分母都含有二次根式,為化去它們的分母中的根號,可以分別先把各自的分母有理化或進(jìn)行]通分,把這個代數(shù)式化簡后,再求值。

  三、小結(jié)

  1、對于二次根式的混合混合運(yùn)算。應(yīng)根據(jù)二次根式的加、減、乘除和乘方運(yùn)算的順序進(jìn)行,即先進(jìn)行乘方運(yùn)算,再進(jìn)行乘、除運(yùn)算,最后進(jìn)行加、減運(yùn)算。如果有括號,先進(jìn)行括號內(nèi)的式子的運(yùn)算,運(yùn)算結(jié)果要化為最簡二次根式。

  2、在代數(shù)式求值問題中,如果已知條件所求式子中有含二次根式(或分式)的式子,應(yīng)先把它們化簡,然后再求值。

  3、在進(jìn)行二次根式的混合運(yùn)算時,要根據(jù)題目特點(diǎn),靈活選擇解題方法,目的在于使計算更簡捷。

  四、作業(yè)

  P206 / 7 P206 / 8---②③

二次根式教案 篇3

  【教學(xué)目標(biāo)】

  1.運(yùn)用法則

  進(jìn)行二次根式的乘除運(yùn)算;

  2.會用公式

  化簡二次根式。

  【教學(xué)重點(diǎn)】

  運(yùn)用

  進(jìn)行化簡或計算

  【教學(xué)難點(diǎn)】

  經(jīng)歷二次根式的乘除法則的探究過程

  【教學(xué)過程】

  一、情境創(chuàng)設(shè):

  1.復(fù)習(xí)舊知:什么是二次根式?已學(xué)過二次根式的哪些性質(zhì)?

  2.計算:

  二、探索活動:

  1.學(xué)生計算;

  2.觀察上式及其運(yùn)算結(jié)果,看看其中有什么規(guī)律?

  3.概括:

  得出:二次根式相乘,實(shí)際上就是把被開方數(shù)相乘,而根號不變。

  將上面的公式逆向運(yùn)用可得:

  積的算術(shù)平方根,等于積中各因式的.算術(shù)平方根的積。

  三、例題講解:

  1.計算:

  2.化簡:

  小結(jié):如何化簡二次根式?

  1.(關(guān)鍵)將被開方數(shù)因式分解或因數(shù)分解,使之出現(xiàn)“完全平方數(shù)”或“完全平方式”;

  2.P62結(jié)果中,被開方數(shù)應(yīng)不含能開得盡方的因數(shù)或因式。

  四、課堂練習(xí):

  (一).P62 練習(xí)1、2

  其中2中(5)

  注意:

  不是積的形式,要因數(shù)分解為36×16=242.

  (二).P67 3 計算 (2)(4)

  補(bǔ)充練習(xí):

  1.(x>0,y>0)

  2.拓展與提高:

  化簡:1).(a>0,b>0)

  2).(y

  2.若,求m的取值范圍。

  ☆3.已知:,求的值。

  五、本課小結(jié)與作業(yè):

  小結(jié):二次根式的乘法法則

  作業(yè):

  1).課課練P9-10

  2).補(bǔ)充習(xí)題

二次根式教案 篇4

  一、教學(xué)目標(biāo)

  1.了解二次根式的意義;

  2. 掌握用簡單的一元一次不等式解決二次根式中字母的取值問題;

  3. 掌握二次根式的性質(zhì) 和 ,并能靈活應(yīng)用;

  4.通過二次根式的計算培養(yǎng)學(xué)生的邏輯思維能力;

  5. 通過二次根式性質(zhì) 和 的介紹滲透對稱性、規(guī)律性的數(shù)學(xué)美.

  二、教學(xué)重點(diǎn)和難點(diǎn)

  重點(diǎn):(1)二次根的意義;(2)二次根式中字母的.取值范圍.

  難點(diǎn):確定二次根式中字母的取值范圍.

  三、教學(xué)方法

  啟發(fā)式、講練結(jié)合.

  四、教學(xué)過程

  (一)復(fù)習(xí)提問

  1.什么叫平方根、算術(shù)平方根?

  2.說出下列各式的意義,并計算:

  通過練習(xí)使學(xué)生進(jìn)一步理解平方根、算術(shù)平方根的概念.

  觀察上面幾個式子的特點(diǎn),引導(dǎo)學(xué)生總結(jié)它們的被平方數(shù)都大于或等于零,其中 ,

  表示的是算術(shù)平方根.

  (二)引入新課

  我們已遇到的這樣的式子是我們這節(jié)課研究的內(nèi)容,引出:

  新課:二次根式

  定義: 式子 叫做二次根式.

  對于 請同學(xué)們討論論應(yīng)注意的問題,引導(dǎo)學(xué)生總結(jié):

  (1)式子 只有在條件a0時才叫二次根式, 是二次根式嗎? 呢?

  若根式中含有字母必須保證根號下式子大于等于零,因此字母范圍的限制也是根式的一部分.

  (2) 是二次根式,而 ,提問學(xué)生:2是二次根式嗎?顯然不是,因此二次

  根式指的是某種式子的外在形態(tài).請學(xué)生舉出幾個二次根式的例子,并說明為什么是二次根式.下面例題根據(jù)二次根式定義,由學(xué)生分析、回答.

  例1 當(dāng)a為實(shí)數(shù)時,下列各式中哪些是二次根式?

  分析: , , , 、 、 、 四個是二次根式. 因?yàn)閍是實(shí)數(shù)時,a+10、a2-1不能保證是非負(fù)數(shù),即a+10、a2-1可以是負(fù)數(shù)(如當(dāng)a-10時,a+10又如當(dāng)0

  例2 x是怎樣的實(shí)數(shù)時,式子 在實(shí)數(shù)范圍有意義?

  解:略.

  說明:這個問題實(shí)質(zhì)上是在x是什么數(shù)時,x-3是非負(fù)數(shù),式子 有意義.

  例3 當(dāng)字母取何值時,下列各式為二次根式:

  (1) (2) (3) (4)

  分析:由二次根式的定義 ,被開方數(shù)必須是非負(fù)數(shù),把問題轉(zhuǎn)化為解不等式.

  解:(1)∵a、b為任意實(shí)數(shù)時,都有a2+b20,當(dāng)a、b為任意實(shí)數(shù)時, 是二次根式.

  (2)-3x0,x0,即x0時, 是二次根式.

  (3) ,且x0,x0,當(dāng)x0時, 是二次根式.

  (4) ,即 ,故x-20且x-20, x2.當(dāng)x2時, 是二次根式.

  例4 下列各式是二次根式,求式子中的字母所滿足的條件:

  (1) ; (2) ; (3) ; (4)

  分析:這個例題根據(jù)二次根式定義,讓學(xué)生分析式子中字母應(yīng)滿足的條件,進(jìn)一步鞏固二次根式的定義,.即: 只有在條件a0時才叫二次根式,本題已知各式都為二次根式,故要求各式中的被開方數(shù)都大于等于零.

  解:(1)由2a+30,得 .

  (2)由 ,得3a-10,解得 .

  (3)由于x取任何實(shí)數(shù)時都有|x|0,因此,|x|+0.10,于是 ,式子 是二次根式. 所以所求字母x的取值范圍是全體實(shí)數(shù).

  (4)由-b20得b20,只有當(dāng)b=0時,才有b2=0,因此,字母b所滿足的條件是:b=0.

  (三)小結(jié)(引導(dǎo)學(xué)生做出本節(jié)課學(xué)習(xí)內(nèi)容小結(jié))

  1.式子 叫做二次根式,實(shí)際上是一個非負(fù)的實(shí)數(shù)a的算術(shù)平方根的表達(dá)式.

  2.式子中,被開方數(shù)(式)必須大于等于零.

  (四)練習(xí)和作業(yè)

  練習(xí):

  1.判斷下列各式是否是二次根式

  分析:(2) 中, , 是二次根式;(5)是二次根式. 因?yàn)閤是實(shí)數(shù)時,x、x+1不能保證是非負(fù)數(shù),即x、x+1可以是負(fù)數(shù)(如x0時,又如當(dāng)x-1時=,因此(1)(3)(4)不是二次根式,(6)無意義.

  2.a是怎樣的實(shí)數(shù)時,下列各式在實(shí)數(shù)范圍內(nèi)有意義?

  五、作業(yè)

  教材P.172習(xí)題11.1;A組1;B組1.

  六、板書設(shè)計

【二次根式教案】相關(guān)文章:

二次根式教案05-15

二次根式的教案10-24

二次根式教案02-16

二次根式教案(推薦)12-27

二次根式教案優(yōu)秀10-19

二次根式教案15篇02-27

二次根式說課稿06-21

二次根式教案模板8篇04-05

二次根式教案匯總9篇04-05

【精品】二次根式教案四篇04-08