當(dāng)前位置:育文網(wǎng)>教學(xué)文檔>教學(xué)反思> 數(shù)學(xué)解簡(jiǎn)易方程教學(xué)反思

數(shù)學(xué)解簡(jiǎn)易方程教學(xué)反思

時(shí)間:2024-07-11 02:12:56 教學(xué)反思 我要投稿

數(shù)學(xué)解簡(jiǎn)易方程教學(xué)反思

  身為一名人民教師,課堂教學(xué)是我們的工作之一,通過教學(xué)反思可以有效提升自己的課堂經(jīng)驗(yàn),教學(xué)反思我們應(yīng)該怎么寫呢?下面是小編整理的數(shù)學(xué)解簡(jiǎn)易方程教學(xué)反思,僅供參考,大家一起來看看吧。

數(shù)學(xué)解簡(jiǎn)易方程教學(xué)反思

數(shù)學(xué)解簡(jiǎn)易方程教學(xué)反思1

  人教版五年級(jí)上冊(cè)《解簡(jiǎn)易方程》這個(gè)單元中,教材是通過等式的基本性質(zhì)來解方程,這個(gè)方法雖然說使得小學(xué)的知識(shí)與初中的知識(shí)更加的接軌,讓方程的解法更加的簡(jiǎn)單。從教材的編排上,整體難度下降,對(duì)學(xué)生以后的發(fā)展是有利的。但是教材中故意避開了減數(shù)和除數(shù)為未知數(shù)的方程,如:a-x=b或a÷x=b,要求學(xué)生根據(jù)實(shí)際問題的數(shù)量關(guān)系,列成如x+b=a或bx=a的方程。這樣的處理方法,有時(shí)也會(huì)無法避免地直接和方程思想發(fā)生矛盾。例如“爸爸比小明大28歲,小明Х歲,爸爸40歲!焙芏鄬W(xué)生列出了這樣的方程:40-Х=28,方程列的是沒有任何問題的,但是應(yīng)該怎么解呢?允不允許學(xué)生用四則運(yùn)算各部分的關(guān)系來解方程?是否該向?qū)W生講解方法?還是讓學(xué)生把此方程改成教材要求的那樣的方程?如果要改成教材要求的方程,那就是在向?qū)W生傳達(dá)這樣的思想:這樣的列法是不被認(rèn)可的,那么以后在學(xué)習(xí)“未知數(shù)是減數(shù)和除數(shù)的方程”時(shí),學(xué)生的思維不就又和現(xiàn)在沖突了嗎?現(xiàn)在學(xué)習(xí)的`節(jié)方程中,學(xué)生很容易看見加法就減,看見減法就加,看見乘法就除,看見除法就乘,如把30÷Ⅹ=15的解法教給學(xué)生,能熟練掌握并運(yùn)用的學(xué)生很少,對(duì)大部分學(xué)生來說越教越是糊涂,把本來剛建構(gòu)的解方程方法打破了。如果不安排,那么每次在出現(xiàn)的時(shí)故意回避嗎?

  在教學(xué)列方程解加減乘除解決問題第一課時(shí),我是這樣處理的。先出示做一做的題目,這題更接近學(xué)生的實(shí)際,學(xué)生也能更好理解數(shù)量關(guān)系。小明今年身高152厘米,比去年長(zhǎng)高了8厘米。小明去年身高多少?先讓學(xué)生讀題理解題目中有哪幾個(gè)量?引導(dǎo)學(xué)生進(jìn)行概括,去年的身高、今年的身高、相差數(shù)。追問:這三個(gè)量之間有怎樣的相等關(guān)系呢?

  去年的身高+長(zhǎng)高的8cm=今年的身高

  今年的身高-去年的身高=長(zhǎng)高的8cm

  今年的身高-長(zhǎng)高的8cm=去年的身高

  你能根據(jù)這三個(gè)數(shù)量關(guān)系列出方程嗎?學(xué)生嘗試列方程。幾乎全班學(xué)生都是正確的。

  X+8=152 152-x=8 152-8=x

  追問學(xué)生你對(duì)哪個(gè)方程有想法?學(xué)生一致認(rèn)為對(duì)第三個(gè)方程有想法?生1:這個(gè)根本沒有必要寫x,因?yàn)橹苯涌梢杂?jì)算了。生2:x不寫,就是一個(gè)算式,直接可以算了。我肯定到:列算式解決實(shí)際問題時(shí),未知數(shù)始終作為一個(gè)“解決的目標(biāo)”不參加列式運(yùn)算,只能用已知數(shù)和運(yùn)算符號(hào)組成算式,所以這樣的x就沒有必要。接著讓學(xué)生解這兩個(gè)方程X+8=152 、152-x=8方程。學(xué)生發(fā)現(xiàn)152-x=8解出來的解是不正確的。告訴學(xué)生減數(shù)為未知數(shù)的方程我們小學(xué)階段不作要求,所以你們就無法解答了。接著,我再引導(dǎo)學(xué)生觀察這三個(gè)數(shù)量關(guān)系,他們之間有聯(lián)系嗎?其實(shí)減法是加法的逆運(yùn)算,是有加法轉(zhuǎn)變過來。因此,我們?cè)谒伎紨?shù)量關(guān)系時(shí),只要思考加法的數(shù)量關(guān)系,這是順向思維,解題思路更加直截了當(dāng),降低了思考的難度。接著只要把未知數(shù)以一個(gè)字母(如x)為代表和已知數(shù)一起參加列式運(yùn)算x+b=a,體會(huì)列方程解決問題的優(yōu)越性。這就是我們今天學(xué)習(xí)的一種新的解決問題的方法——列方程解決問題。

  接著用同樣的教學(xué)方法探究bx=a的解決問題。

  我這樣的教學(xué)不知道是否合理?其實(shí)小學(xué)生在學(xué)習(xí)加減法、乘除法時(shí),早就對(duì)四則運(yùn)算之間的關(guān)系有所感知,并積累了比較豐富的感性經(jīng)驗(yàn)。要不要運(yùn)用等式的性質(zhì)對(duì)學(xué)生再加以概括呢?

數(shù)學(xué)解簡(jiǎn)易方程教學(xué)反思2

  新課程的改革,使得小學(xué)的知識(shí)要體現(xiàn)與初中更加的接軌,五年級(jí)上冊(cè)第四單元“解簡(jiǎn)易方程”中進(jìn)行了一次新的改革。要求方程的解法要根據(jù)天平的原理來進(jìn)行解答,也就是說要通過等式的性質(zhì)來解方程,這一方法雖然說讓方程的解法找到了本質(zhì)的東西,但是也讓我感到了許多困惑

  1、從教材的編排上,整體難度下降,有意避開了,形如:45-X=23等類型的題目。把用等式解決的方法單一化了。在實(shí)際教學(xué)中我們要求學(xué)生較熟練地利用等式的方法來解方程,但用這樣的方法來解方程之后,書本不再出現(xiàn)X前面是減號(hào)或除號(hào)的方程題了,學(xué)生在列方程解實(shí)際應(yīng)用時(shí),我們并不能刻意地強(qiáng)調(diào)學(xué)生不會(huì)列出X在后面的方程,我們更頭痛于學(xué)生的實(shí)際解答能力。在實(shí)際的.方程應(yīng)用中,這種情況是不可避免的。很顯然這存在著目前的局限性了。對(duì)于好的學(xué)生來說,我們會(huì)讓他們嘗試接受--解答X在后面這類方程的解答方法,就是等號(hào)二邊同時(shí)加上X,再左右換位置,再二邊減一個(gè)數(shù),真有點(diǎn)麻煩了。而且有的學(xué)生還很難掌握這樣方法。

  2、 內(nèi)容看似少實(shí)際教得多。難度下降后,看起來教師要教的內(nèi)容變得少了,可以實(shí)際上反而是多了。教師要給他們補(bǔ)充X前面是除號(hào)或減號(hào)的方程的解法。要教他們列方程時(shí)怎么避免X前面是除號(hào)或減號(hào)的方程的出現(xiàn)等等。

數(shù)學(xué)解簡(jiǎn)易方程教學(xué)反思3

《解簡(jiǎn)易方程》教學(xué)反思數(shù)學(xué)課程標(biāo)準(zhǔn)(實(shí)驗(yàn)稿)》改變了小學(xué)階段解方程方法的教學(xué)要求,采用了等式的性質(zhì)來教學(xué)解方程,F(xiàn)將解方程的新舊方法舉例如下:

  老方法:

  x + 4 = 20

  x = 20-4

  依據(jù)運(yùn)算之間的關(guān)系:一個(gè)加數(shù)等于和減另一個(gè)加數(shù)。

  新方法:

  x + 4 = 20

  x + 4-4=20-4

  依據(jù)等式的基本性質(zhì)1:等式兩邊加上或減去相等的數(shù),等式不變。

  改革的原因(摘自教學(xué)參考書):

  新教材編寫者如此說明:長(zhǎng)期以來,小學(xué)教學(xué)簡(jiǎn)易方程時(shí),方程變形的依據(jù)總是加減運(yùn)算的關(guān)系或乘除運(yùn)算之間的關(guān)系,這實(shí)際上是用算術(shù)的思路求未知數(shù)。到了中學(xué)又要另起爐灶,引入等式的基本性質(zhì)或方程的同解原理來教學(xué)解方程。小學(xué)的思路及其算法掌握得越牢固,對(duì)中學(xué)代數(shù)起步教學(xué)的負(fù)遷移就越明顯。因此,現(xiàn)在根據(jù)《標(biāo)準(zhǔn)》的要求,從小學(xué)起就引入等式的基本性質(zhì),并以此為基礎(chǔ)導(dǎo)出解方程的方法。這就較為徹底地避免了同一內(nèi)容兩種思路、兩種算理解釋的現(xiàn)象,有利于加強(qiáng)中小學(xué)數(shù)學(xué)教學(xué)的銜接。

  從這我們不難看出,為了和中學(xué)教學(xué)解方程的方法保持一致,是此次改革的主要原因。

  那么,小學(xué)生學(xué)這樣的方法,實(shí)際操作中會(huì)出現(xiàn)什么樣的情況?這樣的改革有沒有什么問題? 在我的教學(xué)過程中真的出現(xiàn)了問題 。

  1.無法解如a-x=b和ax=b此類的方程

  新教材認(rèn)為,利用等式基本性質(zhì)解方程后,解象x+a=b與x-a=b一類的方程,都可以歸結(jié)為等式兩邊同時(shí)減去(加上)a;解如ax=b與xa=b一類的方程,都可以歸結(jié)為等式兩邊同時(shí)除以(乘上)a。這就是所謂相比原來方法,思路更為統(tǒng)一的優(yōu)越性。然而,它有一個(gè)相應(yīng)的調(diào)整措施值得我們注意,那就是它把形如a-x=b和ax=b的方程回避掉了。原因是小學(xué)生還沒有學(xué)習(xí)正負(fù)數(shù)的四則運(yùn)算,利用等式的基本性質(zhì)解a-x=b,方程變形的過程及算理解釋比較麻煩;而ax=b的方程,因?yàn)槠浔举|(zhì)是分式方程,依據(jù)等式的基本性質(zhì)解需要先去分母,也不適合在小學(xué)階段學(xué)習(xí)。

  我認(rèn)為為了要運(yùn)用等式基本性質(zhì),卻回避掉了兩類方程,這似乎不妥。更重要的是,回避這兩類方程,新教材認(rèn)為并不影響學(xué)生列方程解決實(shí)際問題。因?yàn)楫?dāng)需要列出形如a-x=b或ax=b的方程時(shí),總是要求學(xué)生根據(jù)實(shí)際問題的數(shù)量關(guān)系,列成形如x+b=a或bx=a的方程。但我認(rèn)為,這樣的處理方法,有時(shí)更會(huì)無法避免地直接和方程思想發(fā)生矛盾。

  如3千克梨比5千克桃子貴0.5元。梨每千克2.5元,桃子每千克多少元?

  合理的做法應(yīng)是設(shè)桃子每千克X元,從順向思考,列出方程為2.53-5X=0.5。然而,按新教材的編排,因?yàn)閷W(xué)生現(xiàn)在不會(huì)解這樣的方程,所以要根據(jù)數(shù)量關(guān)系,轉(zhuǎn)列成5X+0.5=2.53之類的方程。又如:課本第62頁(yè)中的爸爸比小明大28歲,小明Х歲,爸爸40歲。很多學(xué)生根據(jù)爸爸比小明大28歲列出40-Х=28,可是無法求解,所以又轉(zhuǎn)成Х+28=40。

  很明顯,第二個(gè)方程是和方程思想的`基本理念相違背的。我們知道,方程最大的意義,就是讓未知數(shù)參與進(jìn)式子,使考慮問題更加直接自然。為實(shí)現(xiàn)這個(gè)目標(biāo),很重要的一點(diǎn),就是列式時(shí)應(yīng)盡量順向思考,以降低思考的難度。這是體現(xiàn)方程方法的優(yōu)越性必然要求。事實(shí)上,如果學(xué)生能夠列成5X+0.5=2.53 Х+28=40那就說明他已經(jīng)非常熟悉其中的數(shù)量關(guān)系了,此時(shí),用算術(shù)方法即可,哪還有列方程來解的必要呢?我們又怎談引導(dǎo)學(xué)生認(rèn)識(shí)方程的優(yōu)越性呢?

  我們不難看出,根據(jù)現(xiàn)實(shí)情境列方程解決問題,X當(dāng)作減數(shù)、當(dāng)作除數(shù),應(yīng)當(dāng)是很常見、很必要的現(xiàn)象。要學(xué)生學(xué)會(huì)解這些方程,是正常的教學(xué)要求,這是不應(yīng)該回避的,否則,我們的教學(xué)就會(huì)顯得片面和狹隘。

  2.解方程的書寫過程太繁瑣

  教材要求,在學(xué)生用等式基本性質(zhì)解方程時(shí),方程的變形過程應(yīng)該要寫出來,等到熟練以后,再逐步省略。這樣的要求,在實(shí)際操作中,帶來了書寫上的繁瑣。

  因?yàn)橛玫仁交拘再|(zhì)解方程,每?jī)刹讲拍芡瓿梢淮畏匠痰淖冃。這相對(duì)于簡(jiǎn)單的方程,尚沒什么,但對(duì)一些稍復(fù)雜的方程,其解的過程就顯得太繁瑣了

  從這兩個(gè)方面來看,小學(xué)里學(xué)習(xí)等式的基本性質(zhì),并運(yùn)用它來解方程,在實(shí)際操作中,也存在許多的現(xiàn)實(shí)問題。那么,如果說用算術(shù)思路解方程對(duì)初中學(xué)習(xí)有負(fù)遷移,需要改革,現(xiàn)在改成用等式基本性質(zhì)解方程,同樣出現(xiàn)問題,那我們又如何是好呢?

數(shù)學(xué)解簡(jiǎn)易方程教學(xué)反思4

  本節(jié)課的教學(xué)重點(diǎn)和難點(diǎn)是:理解“方程的解”、“解方程”兩個(gè)概念;會(huì)運(yùn)用天平平衡的道理解簡(jiǎn)單的方程。在教學(xué)環(huán)節(jié)的設(shè)計(jì)和安排上,盡量為突破教學(xué)重點(diǎn)和難點(diǎn)服務(wù),因此我進(jìn)行了大膽的嘗試,在講解方程的解時(shí),給學(xué)生一個(gè)明確的目的,告訴他們:“解方程就是為了求出“方程的解”而“方程的解”是一個(gè)神奇的數(shù),由此引起了學(xué)生的好奇心,通過練習(xí)讓學(xué)生充分感知“方程的解”的神奇之處。

  1.本課主要對(duì)解方程進(jìn)行了解題練習(xí)。通過搶奪小紅花等游戲的形式大大提高了學(xué)生學(xué)習(xí)數(shù)學(xué)的樂趣和興趣!

  2、通過本課的作業(yè)檢測(cè),有少量學(xué)生還是對(duì)本課的內(nèi)容練習(xí)不是很到位。需要教師在課下不斷的指導(dǎo)。

  3、學(xué)生對(duì)于方程的書寫格式掌握的很好,這一點(diǎn)很讓人欣喜.

  人教版五年級(jí)數(shù)學(xué)上冊(cè)《解方程》教學(xué)反思

  解方程是數(shù)學(xué)領(lǐng)域里一個(gè)關(guān)鍵的知識(shí),在實(shí)際中,擁有方程的解法之后,很多人不會(huì)算式解題,但是能用方程解題,足以見得方程可以做到一些算式無法超越的.能力。

  而如今五年級(jí)的學(xué)生開始學(xué)習(xí)解方程,作為教師的我更應(yīng)該讓學(xué)生吃透這方程,突破這重難點(diǎn)。在教這單元之前,我一直困惑解方程要采用初中的“移項(xiàng)解題,還是運(yùn)用書本的“等式性質(zhì)解題,面對(duì)困惑,向老教師請(qǐng)教,原來還有第三種老教材的“四則運(yùn)算之間的關(guān)系解題,方法多了,學(xué)生該吸收那種方法呢?困惑,學(xué)生該如何下手,運(yùn)用“移項(xiàng)解題,學(xué)生對(duì)于這個(gè)概念或許不會(huì)系統(tǒng)清晰,但是“等式性質(zhì)解題時(shí),在碰到a-x=b和a÷x=b此類的方程,學(xué)生能如何下手,“四則運(yùn)算之間的關(guān)系老教材的方式改變,必有他的理由,能用嗎?

  困惑!我先了解改革的原因(摘自教學(xué)參考書):新教材編寫者如此說明:長(zhǎng)期以來,小學(xué)教學(xué)簡(jiǎn)易方程時(shí),方程變形的依據(jù)總是加減運(yùn)算的關(guān)系或乘除運(yùn)算之間的關(guān)系,這實(shí)際上是用算術(shù)的思路求未知數(shù)。到了中學(xué)又要另起爐灶,引入等式的基本性質(zhì)或方程的同解原理來教學(xué)解方程。小學(xué)的思路及其算法掌握得越牢固,對(duì)中學(xué)代數(shù)起步教學(xué)的負(fù)遷移就越明顯。因此,現(xiàn)在根據(jù)《標(biāo)準(zhǔn)》的要求,從小學(xué)起就引入等式的基本性質(zhì),并以此為基礎(chǔ)導(dǎo)出解方程的方法。這就較為徹底地避免了同一內(nèi)容兩種思路、兩種算理解釋的現(xiàn)象,有利于加強(qiáng)中小學(xué)數(shù)學(xué)教學(xué)的銜接。從這不難看出,為了和中學(xué)教學(xué)解方程的方法保持一致,是此次改革的主要原因。但是從另一方面看出老教材的方法并無錯(cuò)誤,而且能讓學(xué)生清楚準(zhǔn)確地掌握實(shí)際解題,面對(duì)題目不會(huì)盲目,而采用等式基本性質(zhì)給學(xué)生帶來的是局部的銜接,而存在局部對(duì)學(xué)生會(huì)更困難,如a-x=b和a÷x=b此類的方程。

數(shù)學(xué)解簡(jiǎn)易方程教學(xué)反思5

  本節(jié)課的授課的題目是七年數(shù)學(xué)再探實(shí)際問題與一元一次方程的打折銷售問題。前面已經(jīng)學(xué)習(xí)過銷售問題中相關(guān)量的數(shù)量關(guān)系及簡(jiǎn)單的換算,所以本課內(nèi)容在知識(shí)結(jié)構(gòu)上難度不是很大,但是由于他和實(shí)際問題聯(lián)系密切,學(xué)生必須有這方面的生活經(jīng)驗(yàn)才能達(dá)到最好的效果,但是學(xué)生年齡小,加上他們?nèi)鄙偕罱?jīng)驗(yàn),所以必須在教師的引導(dǎo)下才能更好的去探究。

  我們初一數(shù)學(xué)研究的課題是如何提高數(shù)學(xué)課堂的教學(xué)效率,本課的探究性學(xué)習(xí)不僅是知識(shí)的構(gòu)建與運(yùn)用、技能的形成與鞏固,也包含了生活經(jīng)驗(yàn)的激活豐富與提升,學(xué)習(xí)策略的完善,情感的豐富和價(jià)值觀的形成。在本次教學(xué)中我能以學(xué)生為主體,以探究為主線,采取合作交流的探究式進(jìn)行學(xué)習(xí),課堂上學(xué)生積極主動(dòng),不斷出現(xiàn)學(xué)習(xí)的欲望和熱情,使學(xué)生的知識(shí)得到鞏固的同時(shí)使生活經(jīng)驗(yàn)、學(xué)習(xí)方法等得到提高也形成正確的價(jià)值觀。通過本課的教學(xué),我感到成功的地方有以下幾個(gè)方面:

  1、創(chuàng)設(shè)問題情境,聯(lián)系生活實(shí)際,激發(fā)學(xué)習(xí)動(dòng)機(jī),將學(xué)生置于問題情景中。

  比如在引課的時(shí)候,通過各種打折甩賣的廣告語,引出問題(1)商家把商品打折賣給我們會(huì)不會(huì)真的賠錢?(2)其中蘊(yùn)涵著那些數(shù)學(xué)道理?這樣將學(xué)生放在具體的問題中,可以激發(fā)他們對(duì)問題的一種好奇心,也能使學(xué)生明確本課的學(xué)習(xí)方向,以最佳狀態(tài)投入到學(xué)習(xí)中去。

  在解決問題1中,我也是創(chuàng)設(shè)了幾個(gè)問題情境,比如以黑板擦為例,問5元賣的黑板擦,想知道是賠錢還是賺錢,應(yīng)該關(guān)注什么?而題中缺少什么量?怎樣求?如何比較?結(jié)果如何?啟發(fā)學(xué)生積極思考,讓這些連續(xù)的階段性問題持續(xù)的激發(fā)學(xué)生的學(xué)習(xí)熱情和探究知識(shí)的興趣,促使學(xué)習(xí)達(dá)到最佳境界,對(duì)于后面的問題和習(xí)題我都采用了同樣的處理方式。

  2、充分發(fā)揮學(xué)生的主體作用,讓學(xué)生自覺參與到課堂中來。

  本節(jié)課的所有題目均由學(xué)生自主探究,通過合作獨(dú)立的寫出解題過程。讓學(xué)生口語表達(dá)或板書,創(chuàng)造機(jī)會(huì),鼓勵(lì)學(xué)生動(dòng)手動(dòng)口,以達(dá)到教學(xué)要求并借助多媒體展示來指導(dǎo)學(xué)生,促進(jìn)思維能力的發(fā)展,最后再指導(dǎo)學(xué)生用簡(jiǎn)練的語言概括教學(xué)問題。增強(qiáng)學(xué)生的自主學(xué)習(xí)能力,而且讓學(xué)生從數(shù)學(xué)的角度去分析和總結(jié)生活中的問題學(xué)會(huì)能在不同的.角度去探求生活經(jīng)驗(yàn)從而讓學(xué)生掌握知識(shí)的同時(shí)使思想水7和情感態(tài)度價(jià)值觀都得到提高。

  3、探究方式靈活,以培養(yǎng)學(xué)生的創(chuàng)新精神,探究性學(xué)習(xí)關(guān)注的不僅是探究成果的大小,而是注重探究過程和方法。

  在探究的時(shí)候,適當(dāng)掌握時(shí)間,能根據(jù)學(xué)生的探究情況及時(shí)引導(dǎo)。從而達(dá)到最優(yōu)的探究效果。

  從以上情況我認(rèn)為在教學(xué)中,一定要注重學(xué)生積極性的調(diào)動(dòng)。幫助學(xué)生裝設(shè)計(jì)恰當(dāng)?shù)膶W(xué)習(xí)活動(dòng)。讓他們發(fā)現(xiàn)所學(xué)東西的個(gè)人意義,營(yíng)造寬松和諧的學(xué)習(xí)氛圍。教師注重開發(fā)生活中蘊(yùn)含的各種教育因素。使學(xué)生感到學(xué)習(xí)的必要性和趣味性,能更好調(diào)動(dòng)學(xué)生投入到自主探究的學(xué)習(xí)活動(dòng)中去。當(dāng)然本課還存在很多的不足,我認(rèn)為在以下方面。

  1、探究的時(shí)間還需要考證,時(shí)間不易過長(zhǎng),應(yīng)合理分配。

  2、有些題目原計(jì)劃是有的不在展示臺(tái)展示。有的學(xué)生板書并講解但展臺(tái)接觸不好改用讓學(xué)生講解由于感覺時(shí)間不是所以取消。

  3、最后學(xué)生自己編了一些實(shí)際的應(yīng)用題,計(jì)劃讓學(xué)生自己上臺(tái)去表演,把問題體現(xiàn)出來,但是由于時(shí)間的關(guān)系,所以本課最精彩的最能掀起高潮的環(huán)節(jié)沒有展示出來。

  針對(duì)以上的問題,在今后的教學(xué)中應(yīng)該注意以下幾個(gè)問題:

  1、加強(qiáng)課堂教學(xué)的駕馭能力,要充分安排時(shí)間,有緊有松。

  2、多給學(xué)生的語言表達(dá)的機(jī)會(huì),即時(shí)表?yè)P(yáng)和鼓勵(lì)。

  3、多結(jié)合生活實(shí)際,使學(xué)生能置身于問題當(dāng)中,充分調(diào)動(dòng)學(xué)習(xí)興趣。

數(shù)學(xué)解簡(jiǎn)易方程教學(xué)反思6

  學(xué)生經(jīng)歷由天平上的具體操作抽象為代數(shù)問題的過程,能用等式的性質(zhì)(天平平衡的道理)列出方程,對(duì)于解比較簡(jiǎn)單的方程,學(xué)生并不陌生。

  比如:x+4=7學(xué)生能夠很快說出x=3,但是就方程的書寫規(guī)范來說,有必要一開始就強(qiáng)化訓(xùn)練,老師規(guī)范的板書,以發(fā)揮首次感知先入為主的強(qiáng)勢(shì)效應(yīng),促進(jìn)良好的書寫習(xí)慣的形成。對(duì)于稍復(fù)雜的方程要放手讓學(xué)生去試一試,這樣就可以使探究式課堂教學(xué)進(jìn)入一個(gè)理想的境界。

  不難看出,學(xué)生經(jīng)歷了把運(yùn)算符號(hào)+看錯(cuò)成了-,又自行改正的過程,在這一過程中學(xué)生體驗(yàn)到了緊張、焦急、期待,成功的感覺,這時(shí)的數(shù)學(xué)學(xué)習(xí)已進(jìn)入了學(xué)生的內(nèi)心,并成為學(xué)生生命成長(zhǎng)的過程,真正落實(shí)了《數(shù)學(xué)課程標(biāo)準(zhǔn)》中在數(shù)學(xué)學(xué)習(xí)活動(dòng)中獲得成功的體驗(yàn),鍛煉克服困難的意志,建立自信心的目標(biāo),在這個(gè)思維過程中,學(xué)生獲得了情感體驗(yàn)和發(fā)現(xiàn)錯(cuò)誤又自己解決問題的機(jī)會(huì)。老師以人為本,充分尊重學(xué)生,也體現(xiàn)在耐心的等待,熱切的期待的教學(xué)行為上,老師的教學(xué)行為充滿了人文關(guān)懷的氣息,微笑的'臉龐、期待的眼神、鼓勵(lì)的話語,無時(shí)無刻不使學(xué)生感到這不僅是數(shù)學(xué)學(xué)習(xí)的過程,更是一種生命交往的過程,學(xué)生有了很安全的心理空間,不然,他怎么會(huì)對(duì)老師說老師,我太緊張了,這是學(xué)生對(duì)老師的信任和自己不安的復(fù)雜情緒的表現(xiàn)。反思我們的教學(xué)行為,如果在課堂中多一些耐心和期待,就會(huì)有更多的愛灑向更多的學(xué)生,學(xué)生的人生歷程中就會(huì)多一份信心,多一份勇氣,多一份靈氣。

數(shù)學(xué)解簡(jiǎn)易方程教學(xué)反思7

  新課程的改革,使得小學(xué)的知識(shí)要體現(xiàn)與初中更加的接軌,五年級(jí)上冊(cè)第四單元“解簡(jiǎn)易方程”中進(jìn)行了一次新的改革。要求方程的解法要根據(jù)天平的原理來進(jìn)行解答,也就是說要通過等式的性質(zhì)來解方程,這一方法雖然說讓方程的解法找到了本質(zhì)的東西。老教材中解方程的教學(xué)是利用加減乘除各部分之間的關(guān)系解決的,學(xué)生只要掌握了一個(gè)加數(shù)=和-另一個(gè)加數(shù),減數(shù)=被減數(shù)-差,被減數(shù)=差+減數(shù),一個(gè)因數(shù)=積÷另一個(gè)因數(shù),除數(shù)=被除數(shù)÷商,被除數(shù)=商×除數(shù)這些關(guān)系式,不管是簡(jiǎn)單的還是復(fù)雜的方程都可以用這些關(guān)系式去解。而我們新教材卻完全不是這種方法,它是利用天平的平衡原理得到等式的基本性質(zhì),即等式的兩邊同時(shí)加上或減去同一個(gè)數(shù)等式不變,和等式的兩邊同時(shí)乘或除以同一個(gè)數(shù)(0除外),等式不變進(jìn)行解方程的 新教材如果能把天平的.規(guī)律教學(xué)得到位,這樣就能把等式性質(zhì)掌握好,等式性質(zhì)掌握的好了解起方程來也有規(guī)律可循了。于是,我在教學(xué)時(shí)充分地利用天平實(shí)物以及課件讓學(xué)生深入地理解天平的平衡規(guī)律,從而順利地揭示出了等式的性質(zhì)。這樣在解簡(jiǎn)易方程時(shí)學(xué)生很容易掌握方法。知道未知數(shù)加(或減)一個(gè)數(shù)時(shí),只要在方程的兩邊同時(shí)減(或加)同一個(gè)數(shù),未知數(shù)乘(或除)一個(gè)數(shù)時(shí),只要在方程的兩邊同時(shí)除(或乘)同一個(gè)數(shù)即可。一般不會(huì)出現(xiàn)運(yùn)算符號(hào)弄錯(cuò)的現(xiàn)象了。

  為新課奠定了基礎(chǔ)。在突破重難點(diǎn)時(shí),我設(shè)計(jì)借助天平理解解方程的過程,當(dāng)學(xué)生根據(jù)例1圖意列出方程X+3=9時(shí),我把皮球換成方格出現(xiàn)在大屏幕上時(shí),問學(xué)生:“要得出X的值,在天平上應(yīng)如何操作?”由于問題提的不符合學(xué)生實(shí)際學(xué)習(xí)情況,學(xué)生一時(shí)不知如何回答。我連忙糾正問道:“天平左邊有一個(gè)X和一個(gè)3,怎么讓方程左邊就剩下X呢?”學(xué)生馬上回答:“減去3!睅煟骸疤炱接疫呉矐(yīng)該怎么辦?”生:“也減去3.”師:“為什么?”生:“天平的兩邊同時(shí)減去相同的數(shù),天平仍然保持平衡!蔽乙騽(shì)利導(dǎo)地使學(xué)生學(xué)習(xí)解方程的方法及書寫格式。課堂練習(xí)時(shí)間也不充裕,致使擴(kuò)展思維題學(xué)生沒時(shí)間去思考,沒有達(dá)到預(yù)想的課堂效果。一節(jié)課雖然結(jié)束了,卻給我留下了難忘的印象,它將永遠(yuǎn)警示著我認(rèn)真鉆研教材,備好每一節(jié)課。

【數(shù)學(xué)解簡(jiǎn)易方程教學(xué)反思】相關(guān)文章:

解簡(jiǎn)易方程教學(xué)反思06-02

解簡(jiǎn)易方程的教學(xué)反思08-20

《解簡(jiǎn)易方程》教學(xué)反思(14篇)08-03

《解簡(jiǎn)易方程》教學(xué)反思10篇10-26

《解簡(jiǎn)易方程》教學(xué)反思14篇08-15

五年級(jí)數(shù)學(xué)解簡(jiǎn)易方程教學(xué)反思10-18

解簡(jiǎn)易方程說課稿01-14

五年級(jí)上冊(cè)數(shù)學(xué)《解簡(jiǎn)易方程》教學(xué)反思10-10

《簡(jiǎn)易方程》教學(xué)反思10-14