《倍數(shù)和因數(shù)》教學反思(15篇)
身為一名人民教師,我們都希望有一流的課堂教學能力,通過教學反思可以有效提升自己的教學能力,我們該怎么去寫教學反思呢?下面是小編為大家整理的《倍數(shù)和因數(shù)》教學反思,歡迎閱讀,希望大家能夠喜歡。
《倍數(shù)和因數(shù)》教學反思1
《因數(shù)和倍數(shù)》是人教版小學數(shù)學五年級下冊第二單元的起始課,也是一節(jié)重要的數(shù)學概念課,所涉及的知識點較多,內容較為抽象,對于學生來說是比較難掌握的內容,在這樣的前提下,如何能充分發(fā)揮學生的主體作用,讓他們自主探索,自己感悟概念的內涵,并靈活地運用“先學后教”的模式,達到課堂的高效,在課堂中我做了以下的嘗試。
一、領會意圖,做到用教材教。
我覺得作為一名教師,重要的是領會教材的編寫意圖,靈活的`運用教材,讓每個細節(jié)都能發(fā)揮它應有的作用。如教材是利用了一個簡單的實物圖(2行飛機,每行6架;3行飛機,每行4架)引出了要研究的兩個乘法算式“2×6=12,3×4=12”直接給出了“誰是誰的因數(shù),誰是誰的倍數(shù)”的概念。這樣做目的有二:一是滲透了從乘法算式中找因數(shù)倍數(shù)的方法,二是利用數(shù)與數(shù)之間的關系明確的看到因數(shù)倍數(shù)這種相互依存的關系。
但這樣做仍不夠開放,我是這樣做的:課始并沒有出示主題圖,直接提出問題:“如果有12架飛機,你可以怎樣去排列?”學生除了能想到圖中的兩種排法還能得到第三種,這樣做是用開放的問題做為誘因,使學生得到“2×6=12、3×4=12、1×12=12”三個算式,而這些算式不僅能夠清晰地體現(xiàn)因數(shù)倍數(shù)間的關系,更是后面“如何求一個數(shù)的因數(shù)”的方法的滲透和引導。看來靈活的運用教材,深放領會意圖,才能使教學更為輕松、高效!
二、模式運用,做到靈活自然。
模式是一種思想或是引子,面對不同的課型,我們應該大膽嘗試,不斷的積累經(jīng)驗,使模式不再是僵化的,機械的。只要是能促進學生能力形成的東西,我們不能因為要運用模式而把它們淡化,反之,應該想方設法,在不知不覺中體現(xiàn)出來。
如本課中例1是“求18的因數(shù)有哪些”,例2是“求2的倍數(shù)有哪些”教材的設計已經(jīng)能夠體現(xiàn)學生自主探索知識的軌跡,那我們何不通過一句簡短的過渡語讓學生進入到下面的學習中呢?而沒有必要非要設計出兩個“自學指導”讓學生按步就搬地往下走,而且讓學生對比著去感受一個數(shù)“因數(shù)和倍數(shù)”的求法的不同,比先學例1再學例2的方式更容易讓學生發(fā)現(xiàn)不同,得到方法,加深對知識的理解,同時也更加體現(xiàn)了學生的自主性,這才是模式的真正目的所在。內涵比形式更重要,發(fā)現(xiàn)比引導更有效!
《倍數(shù)和因數(shù)》教學反思2
一、“倍數(shù)和因數(shù)”與“倍數(shù)和約數(shù)”這兩種說法一定要分清。
“倍數(shù)和因數(shù)”與“倍數(shù)和約數(shù)”這兩種說法只是新舊教材的說法不同而已,其實都是表示同一類數(shù)。(即因數(shù)也是約數(shù))
二、為什么第十教科書上講“倍數(shù)與因數(shù)”的時候不提整除。
也許我的頭腦還受舊版教材的影響,我認為說到“倍數(shù)與因數(shù)”必須要談到整除,因為整除是研究“因數(shù)和倍數(shù)”的條件,學生在沒有這條件學習整除,只要教師的教學方法稍有不慎,學生會很快誤入小數(shù)也有因數(shù);但是我在實際的教學過程中,也體會到了教材中不提整除的好處。而我的心里卻又產生了一個新的疑問,S版教材到底在什么時候于什么數(shù)學環(huán)境下才提出“整除”這個概念呢?會不會在六年級課改才出現(xiàn)呢?我期待著。
三、教學2、5和3的倍數(shù)教師應注重“靈活”。
1、 在教學2和5的倍數(shù)時,是用同一種方法找出它們倍數(shù)的,學生很容易掌握,也很快就能把2和5的倍數(shù)說出,并能準確找出各自的倍數(shù),此時,教師應把學生的思維轉到同時是2和5的倍數(shù)怎樣找?接著引導學生歸納出同時是2和5的倍數(shù)的特征,因此,讓學生的知識面進一步加大。
2、教學3的倍數(shù)的特征時,教師首先讓學生用2和5的倍數(shù)的方法去找3的倍數(shù)的特征,讓學生嘗試這種方法是找不到3的倍數(shù)的特征,這時,教師應該引導學生對寫出的3的倍數(shù),要用另一種方法去歸納、總結3的倍數(shù)的特征,運用這一特點,教師可以有意識地寫些數(shù)(有3的倍數(shù),也有不是3的倍數(shù),而且是較大的數(shù))讓學生進行判斷,這樣可使學生對3的倍數(shù)的特征進一步得到鞏固;當學生熟練掌握3的倍數(shù)的特征時,教師話峰一轉,你們能歸納出9的倍數(shù)的特征嗎?學生在教師這一激發(fā)下,他們的求知欲興趣大增,然后教師啟學生運用找3的倍數(shù)的方法,去找9的倍數(shù)的特征,學生會輕而易舉地歸納、總結出9的倍數(shù)的`特征。通過找9的倍數(shù)的特征,既鞏固了學生學習3的倍數(shù)的特征,還使學生的知識面擴大,達到知識的鞏固和遷移的目的。
3、當學生掌握了2、5和3的倍數(shù)的特征時,教師這時應引導學生進一步歸納、總結,把這三個特征綜合,從而得出同時是2、3和5的倍數(shù)的特征。
通過這樣的教學,讓學生真正感受到“靈活”兩字,并且能把知識面向縱橫方向發(fā)展。
《倍數(shù)和因數(shù)》教學反思3
XXXX小學 XXXXX
教學內容:教材例1、例2
教學目標
1.知識與技能:讓學生初步理解因數(shù)和倍數(shù)的概念,掌握找因數(shù)和倍數(shù)的方法。學會用列舉法找一個數(shù)的因數(shù)和倍數(shù)。
2.過程與方法:借助直觀圖,先引導學生觀察后列出乘法算式,最后結合乘法算式來理解因數(shù)與倍數(shù)的概念。
3.情感、態(tài)度與價值觀:理解因數(shù)和倍數(shù)的意義能及兩者之間相互依存的關系。
教學重點:理解因數(shù)和倍數(shù)的概念。
教學難點:掌握求一個數(shù)的因數(shù)和倍數(shù)的方法。
教學方法:啟發(fā)式教學法、指導自主學習法。
教學準備:多媒體。
教學過程:
一、新課導入:
1.出示教材第5頁例1。
12÷2=6 9÷5=1.830÷6=5 2÷3=0.6
26÷8=3.5 19÷7≈2.7120÷10=2 21÷21=163÷9=7
(1)觀察: 引導觀察例1中的算式,你發(fā)現(xiàn)了什么?(都是除法算式)
(2)分類:你能把上面的除法算式分類嗎?
學生分類后,教師組織學生交流,引導學生根據(jù)是否整除分為以下兩類
第一類 12÷2=620÷10=2 30÷6=5 21÷21=1 63÷9=7 第二類 9÷5=1.8 19÷7≈2.71 2÷3=0.626÷8=3.25
2.引入課題。這節(jié)課我們就來學習有關數(shù)的整除的相關知識。(板書課題:因數(shù)和倍數(shù))
二、探索新知:
。ㄒ唬、明確因數(shù)與倍數(shù)的意義。(教學例1)
1. 教師引導。教師指出:在整數(shù)除法中,如果商是整數(shù)而沒有余數(shù),我們
就說被除數(shù)是除數(shù)和商的倍數(shù),除數(shù)和商是被除數(shù)的因數(shù)。例如:12÷2=6,我們說12是2和6的倍數(shù),2和6是12的因數(shù)。
2. 學生嘗試。
教師讓學生說一說第一類的每個算式中,誰是誰的因數(shù)?誰是誰的倍數(shù)?先同桌互相說一說,再組織全班交流。
3. 深化認識。師:通過剛才的說一說活動,你發(fā)現(xiàn)了什么?
引導學生體會:因數(shù)和倍數(shù)雖是兩個不同的概念,但又是相互依存的,二者不能單獨存在。我們不能說誰是因數(shù),誰是倍數(shù),而應該說誰是誰的因數(shù),誰是誰的倍數(shù)。例如,30÷6=5,30是6和5的倍數(shù),6和5是30的因數(shù)。教師強調,并讓學生注意:為了方便,在研究因數(shù)和倍數(shù)的時候,我們所說的數(shù)指的是自然數(shù)(一般不包括O)。
4. 即時練習。指導學生完成教材第5頁“做一做”。
小結:如果a÷b =c(a,b,c均是不為0的自然數(shù)),那么a就是b和c的倍數(shù),b和c是a的因數(shù)。因數(shù)和倍數(shù)是相互依存的.。
(二)、探索找一個數(shù)因數(shù)的方法。(教學例2)
1. 出示例2:18的因數(shù)有哪幾個?
(1) 學生獨立思考。
師:根據(jù)因數(shù)和倍數(shù)的意義,想一想18除以哪些整數(shù)的結果是整數(shù)。
18÷1=18,l和18是18的因數(shù);18÷2=9, 2和9是18的因數(shù);18÷3=6, 3和6是18的因數(shù)。引導學生把18的因數(shù)按從小到大的順序排列,每兩個因數(shù)之間用逗號隔開,全部寫完后用句號結束,即18的因數(shù)有:1,2,3,6,9 ,18。
(2)小組合作交流。交流時教師要讓學生說明找的方法,引導學生認識:只要想18除以哪些整數(shù)的結果是整數(shù),并且要從1開始,一對一對地找,避免遺漏。如果學生還有其他想法,只要合理,教師都應給予肯定。
(3)采用集合圖的方法。
教師指出也可用右面的集合圖來表示18的全部因數(shù)。明確:用圖示法表示18的因數(shù)時,先畫一個橢圓,在橢圓的上面寫上“18的因數(shù)”,再把18的因數(shù)按從小到大的順序有規(guī)律地寫在橢圓里,每兩個因數(shù)之間也用逗號隔開,全部寫完后不加句號。
(4)練習。讓學生找出30的因數(shù)和36的因數(shù),并組織交流。
30的因數(shù)有1,2,3,5,6,10,15,30。
36的因數(shù)有1,2,3,4,6,9,12,18,36。
三、鞏固練習
指導學生完成教材“練習二”第1、6題。學生獨立完成全部練習后教師組織學生進行集體證正。
四、課堂小結
師:通過本節(jié)課的學習,你有什么收獲?
板書設計:
因數(shù)和倍數(shù)
12÷2=6 12是2和6的倍數(shù)
2和6是12的因數(shù) 18的因數(shù)有1,2,3,6,9,18。
一個數(shù)的因數(shù)的個數(shù)是有限的,一個數(shù)的倍數(shù)的個數(shù)是無限的。
作業(yè):教材第7頁“練習二”第2(1)題。
第二單元:因數(shù)和倍數(shù)
第二課時:因數(shù)與倍數(shù)(2)
教學內容:教材P6例3及練習二第2(1)、3~8題。
教學目標:
知識與技能:通過學習,使學生能自主探究,找出求一個數(shù)的倍數(shù)的方法。 過程與方法:結合具體情境,使學生進一步認識自然數(shù)之間存在因數(shù)和倍數(shù)的關系,掌握求一個數(shù)的因數(shù)和倍數(shù)的方法。
情感、態(tài)度與價值觀:初步學會從數(shù)學的角度提出問題、理解問題,并能用所學知識解決問題。在解決問題的過程中,培養(yǎng)學生概括、分析和比較的能力,使學生體會數(shù)學知識的內在聯(lián)系。
教學重點:掌握求一個數(shù)的倍數(shù)的方法。
教學難點:理解因數(shù)和倍數(shù)兩者之間的關系。
教學方法:啟發(fā)式教學法、指導自主學習法。
教學準備:多媒體。
教學過程:
一、復習導入
10,28,42的因數(shù)有哪些?你是用什么方法找出這些數(shù)的因數(shù)個數(shù)的?一個數(shù)的因數(shù)中,最大的是幾?最小的是幾?
二、探索新知
1.探索找倍數(shù)的方法。(教學例3)
出示例3:2的倍數(shù)有哪些?
師:你會找2的倍數(shù)嗎?給你們1分鐘的時間,看誰寫得又對、又快、又多!準備好了嗎?開始!
師:時間到,你寫了多少個2的倍數(shù)?生1:15個。生2:24個。
師:大家都是用的什么方法呢?
生1:我是用乘法口訣,一二得二,二二得四……這樣寫下去的。
生2:我也是用乘法,用2去乘1、乘2……
師:哪些同學也是用乘法做的?
師:你們都是用2去乘一個數(shù),所得的積就是2的倍數(shù)。還有不同的方法嗎?
生3:我用的是除法,用2÷2=1,4÷2=2 6÷2=3??依次除下去。
師:很好!如果給你更長的時間,你能把2的倍數(shù)全部寫出來嗎?
師:為什么?(因為2的倍數(shù)有無數(shù)個)
師:怎么辦?(用省略號)
師:通過交流,你有什么發(fā)現(xiàn)?
引導學生初步體會2的倍數(shù)的個數(shù)是無限的。
追問:你能用集合圖表示2的倍數(shù)嗎?
學生填完后,教師組織學生進行核對。
(4)即時練習。讓學生找出3的倍數(shù)和5的倍數(shù),并組織交流。學生舉例時可能會產生錯誤,教師要引導學生根據(jù)錯例進行適時剖析。
4.反思提煉。師:從前面找因數(shù)和倍數(shù)的過程中,你有什么發(fā)現(xiàn)?
先讓學生在小組內交流,再組織全班集體交流,通過全班交流,引導學生認識以下三點:
(1)一個數(shù)的最小因數(shù)是1,最大因數(shù)是它本身。
(2)一個數(shù)的最小倍數(shù)是它本身,沒有最大倍數(shù)。
(3)一個數(shù)的因數(shù)的個數(shù)是有限的,一個數(shù)的倍數(shù)的個數(shù)是無限的。
三、鞏固提升
1.指導學生完成教材第7~8頁“練習二”第4、5、6、7題。
學生獨立完成全部練習后教師組織學生進行集體證正。
集體訂正時,教師著重引導學生認識以下幾點:
(1)第4題“15的因數(shù)有哪些?”和“15是哪些數(shù)的倍數(shù)”答案是一樣的。
(2)第5題中的第(2)小題是錯的,因為一個數(shù)的倍數(shù)的個數(shù)是無限的,第(4)小題也是錯的,因為在研究因數(shù)和倍數(shù)時,我們所說的數(shù)指的是自然數(shù),不含小數(shù)。
(3)思考題:兩數(shù)如果都是7(或9)倍數(shù),它們的和也一定是7(或9)的倍數(shù),即如果兩數(shù)都是n的倍數(shù),它的和也是n的倍數(shù)。
2.利用求倍數(shù)的方法解決生活中的實際問題
出示:媽媽買來幾個西瓜,2個2個地數(shù),正好數(shù)完,5個5個地數(shù),也正好數(shù)完。這些西瓜最少有多少個?
理解題意,分析解答。
教師提示“2個2個地數(shù),正好數(shù)完,說明西瓜的個數(shù)是2的倍數(shù),5個5
《倍數(shù)和因數(shù)》教學反思4
《倍數(shù)和因數(shù)》這一內容與原來教材比有了很大的不同,老教材中是先建立整除的概念,再在此基礎上認識因數(shù)倍數(shù),而現(xiàn)在是在未認識整除的情況下直接認識倍數(shù)和因數(shù)的。數(shù)學中的“起始概念”一般比較難教,這部分內容學生初次接觸,對于學生來說是比較難掌握的內容。首先是名稱比較抽象,在現(xiàn)實生活中又不經(jīng)常接觸,對這樣的概念教學,要想讓學生真正理解、掌握、判斷,需要一個長期的消化理解的過程。
這節(jié)課我在教學中充分體現(xiàn)以學生為主體,為學生的探究發(fā)現(xiàn)提供足夠的時空和適當?shù)闹笇,同時,也為提高課堂教學的有效性,我在本課的教學中體現(xiàn)了自主化、活動化、合作化和情意化,具體做到了以下幾點:
一、操作實踐,舉例內化,認識倍數(shù)和因數(shù)
我創(chuàng)設有效的數(shù)學學習情境,數(shù)形結合,變抽象為直觀。首先讓學生動手操作把12個小正方形擺成不同的長方形,再讓學生寫出不同的乘法算式,借助乘法算式引出因數(shù)和倍數(shù)的意義。這樣在學生已有的知識基礎上,從動手操作,直觀感知,使概念的揭示突破了從抽象到抽象,從數(shù)學到數(shù)學,讓學生自主體驗數(shù)與形的結合,進而形成因數(shù)與倍數(shù)的意義.使學生初步建立了“因數(shù)與倍數(shù)”的概念。這樣,充分學習、利用、挖掘教材,用學生已有的數(shù)學知識引出了新知識,減緩難度,效果較好。
二、自主探究,意義建構,找倍數(shù)和因數(shù)
整個教學過程中力求體現(xiàn)學生是學習的主體,教師只是教學活動的組織者、指導者、參與者。整節(jié)課中,教師始終為學生創(chuàng)造寬松的學習氛圍,讓學生自主探索,學習理解倍數(shù)和因數(shù)的意義,探索并掌握找一個數(shù)的倍數(shù)和因數(shù)的'方法,引導學生在充分的動口、動手、動腦中自主獲取知識。
新課程提出了合作學習的學習方式,教學中的多次合作不僅能讓學生在合作中發(fā)表意見,參與討論,獲得知識,發(fā)現(xiàn)特征,而且還很好地培養(yǎng)了學生的合作學習能力,初步形成合作與競爭的意識。
找一個數(shù)因數(shù)的方法是本節(jié)課的難點,如何做到既不重復又不遺漏地找36的因數(shù)對于剛剛對倍數(shù)因數(shù)有個感性認識的學生來說有一定困難,這里我充分發(fā)揮小組學習的優(yōu)勢討論交流,學生對自己剛才的方法進行反思,吸收同伴中好的方法,這時老師再給予有效的指導和總結。
三、變式拓展,實踐應用
練習的設計不僅緊緊圍繞教學重點,而且注意到了練習的層次性,趣味性。在游戲中,師生互動,激活了學生的情感,學生的思維不斷活躍起來,學生不僅參與率高,而且還較好地鞏固了新知。課上,我能注重自始至終關注學生學習興趣、學習熱情、學習自信等情感因素的培養(yǎng),并及時讓學生感受到學習成功的喜悅,享受數(shù)學,感悟文化魅力。
《倍數(shù)和因數(shù)》教學反思5
《倍數(shù)和因數(shù)》這一章是人教版五年級下冊的內容。由于這一單元概念較多,學生要掌握的知識較多,所以掌握起來較難。我上的這節(jié)復習課分以下四部分。
1、先從自然數(shù)入手,由自然數(shù)的概念讓學生總結自然數(shù)的個數(shù)是無限的,最小的自然數(shù)是0,沒有最大的自然數(shù)。又根據(jù)生活實際試著讓學生把自然數(shù)分成奇數(shù)和偶數(shù)。點名說出什么數(shù)是奇數(shù),什么數(shù)是偶數(shù),是根據(jù)什么分的,這樣有一種水到渠成的感覺。
2、由偶數(shù)都是2的倍數(shù),復習2的倍數(shù)的特征,5的倍數(shù)的特征,3的倍數(shù)的`特征。學生邊復習老師邊板書,由于大家共同協(xié)作,很快找出一個數(shù)的最小倍數(shù)是它本身,沒有最大的倍數(shù)。然后總結同時能被2、3整除的數(shù)就是6的倍數(shù),引出倍數(shù)和因數(shù)的意義。讓學生隨便說一個算式,說明誰是誰的倍數(shù),誰是誰的因數(shù)”,學生列舉乘法或除法算式,準確表達倍數(shù)與因數(shù)的關系,加深了學生對倍數(shù)與因數(shù)相互依存關系的理解和認識。
3、隨便給出一個數(shù)找出它的所有因數(shù),得出一個數(shù)最小的因數(shù)是1,最大的因數(shù)是它身。根據(jù)因數(shù)的個數(shù)把自然數(shù)分成質數(shù)、合數(shù)和1。復習什么是質數(shù),什么是合數(shù)。最小的質數(shù)是幾,最小的合數(shù)是幾。20以內的質數(shù)。為什么1既不是質數(shù)也不是合數(shù)。這是根據(jù)什么分類的呢?任意給出一個數(shù)判斷是質數(shù)還是合數(shù),若是合數(shù)讓學生分解質因數(shù)。先說分解質因數(shù)的方法,然后點名學生板演,教師巡視。指出錯誤。
4、帶領學生一起做練習,讓學生邊做邊說思路。這節(jié)課比較好的地方是條理清晰、內容全面;練習的設計不僅緊緊圍繞教學重點,而且注意到了練習的層次性、趣味性。
不足之處是我缺乏個性化的語言評價激活學生的情感,以后需多努力。
《倍數(shù)和因數(shù)》教學反思6
這個單元課時數(shù)比較多,對于學生數(shù)感的要求比較高,對于學生觀察能力,比較能力,推理能力的培養(yǎng)是個很好的訓練。通過一個單元的教學,發(fā)現(xiàn)學生在以下知識點的學習和掌握上還存在一些問題:
1、最大公因數(shù)和最小公倍數(shù)
教學中,我讓學生經(jīng)歷了三種方法:法一是先找各數(shù)的因數(shù)(或倍數(shù)),再找兩個數(shù)的公因數(shù)(或公倍數(shù)),最后再找最大公因數(shù)和最小公倍數(shù);二是介紹短除法;三是對于特殊關系的數(shù)(倍數(shù)關系或互質數(shù))直接根據(jù)規(guī)律寫結果。根據(jù)復習和練習反饋,發(fā)現(xiàn)學生對數(shù)的'感覺比較欠缺,特殊關系的數(shù)不容易看出來,且兩個概念有時還會出現(xiàn)混淆情況,也就是對因數(shù)和倍數(shù)的理解不夠透徹與深刻。如果學生對找最大公因數(shù)和最小公倍數(shù)學不扎實,將直接影響到后面的約分和通分。所以我準備在平時每節(jié)課都有三到五個訓練,并進行專項過關。在應用這個知識解決實際問題時,有少數(shù)后進生比較難以理解,需要輔助圖形來分析,也需要一個時間的積淀過程。
2、質數(shù)合數(shù)與奇數(shù)偶數(shù)
這四個概念按照兩個不同的標準分類所得。學生在分類思考時對概念的理解比較清晰,但混同在一起容易出現(xiàn)概念的交叉,如2既是質數(shù)又是偶數(shù),9既是合數(shù)又是奇數(shù)。
3、235倍數(shù)的特征
如果單獨讓學生去說去判斷一個數(shù)是不是235的倍數(shù),學生比較清楚,但在靈活應用時就比較遲鈍,特別是用短除法尋找公因數(shù)時,不能很快的進行反應,數(shù)的感覺不佳。
以上是本單元學生在學習過程中的主要障礙,數(shù)感的培養(yǎng)需要一個過程,而概念的理解加深還需要平時不斷的訓練。多給學生一點耐心,再堅持一份恒心,相信學生們會有提高,會有改變。
《倍數(shù)和因數(shù)》教學反思7
教學目標:
1、使學生結合具體情境初步理解倍數(shù)和因數(shù)的含義,初步理解倍數(shù)和因數(shù)相互依存的關系。
2、使學生依據(jù)倍數(shù)和因數(shù)的含義以及已有的乘法和除法知識,通過嘗試和交流等活動,探索并掌握找一個數(shù)的倍數(shù)和因數(shù)的方法,能在1-100的自然數(shù)中找出10以內某個數(shù)的所有倍數(shù),找出100以內某個數(shù)的所有因數(shù)。
3、使學生在認識倍數(shù)和因數(shù)以及找一個數(shù)的倍數(shù)和因數(shù)的過程中,進一步感受數(shù)學知識的內在聯(lián)系,提高數(shù)學思考的水平。
教學重點:
理解倍數(shù)和因數(shù)的含義。
教學難點:
探索并掌握找一個數(shù)的倍數(shù)和因數(shù)的方法。
教學過程:
一、理解倍數(shù)和因數(shù)
。薄⒂12個同樣大的正方形拼成一個長方形,可以怎樣擺?
先獨立思考,在同桌交流自己的看法,再集體交流。根據(jù)學生的回答,教師出示相應的拼法,并列式。
2、在4×3=12中,12是4的倍數(shù),12也是3的倍數(shù),3和4都是12的因數(shù)。你能照老師的樣子試著說一說嗎?如果有學生只說倍數(shù)和因數(shù),讓學生通過爭論明白倍數(shù)和因數(shù)表示的是兩個數(shù)之間的關系,因此一定要說誰是誰的倍數(shù),誰是誰的因數(shù)。
3、下面這些算式也能用倍數(shù)和因數(shù)表示嗎?
16÷2=85+6=1118-6=12
學生如果有爭論,讓學生說說自己的理由。由16÷2=8可以得到2×8=16,實際上16是2和8的乘積,所以也可以用倍數(shù)和因數(shù)來表示。
4、你能自己寫出一條算式,用倍數(shù)和因數(shù)來說一說嗎?學生自己思考,寫一寫,然后集體交流。
二、探索找一個數(shù)的倍數(shù)的方法
1、談話:3的倍數(shù)有哪些呢?我們來找找看。一分鐘內完成。
1分鐘內你們寫完了嗎?如果再給半分鐘呢?為什么?
2、3的倍數(shù)有很多,我們不能都寫出來,就用省略號來代替。下面,誰來說說看,3的倍數(shù)是怎么找的?小結:找一個數(shù)的倍數(shù),只要用這個數(shù)去乘以1、2、3、。就能得到它的倍數(shù)。
3、填一填:2的倍數(shù)有________________________
5的倍數(shù)有________________________
4、觀察上面的幾個例子,你有什么發(fā)現(xiàn)?
先小組交流,再指名回答。
指出:一個數(shù)的倍數(shù)的個數(shù)是無限的,最小的倍數(shù)是它本身,沒有最大的倍數(shù)。
三、探索找一個數(shù)因數(shù)的方法
1、嘗試:用自己的方法找出36的所有因數(shù)。
(1)先思考再嘗試。
(2)交流和評價
2、用這樣的方法,找找16的因數(shù)和7的因數(shù)。
3、討論:一個數(shù)的因數(shù)有哪些特征?
指出:一個數(shù)的因數(shù)的個數(shù)是有限的,最小的因數(shù)是1,最大的因數(shù)是它本身。
四、練習
練習一、二、三。
五、總結
這節(jié)課你有什么收獲?
反思:
讓學生借助乘法算式引出因數(shù)和倍數(shù)的意義。這樣在學生已有的知識基礎上,從動手操作,直觀感知,使概念的揭示突破了從抽象到抽象,從數(shù)學到數(shù)學,讓學生自主體驗數(shù)與形的結合,進而形成因數(shù)與倍數(shù)的意義.使學生初步建立了“因數(shù)與倍數(shù)”的概念。
在教學找一個數(shù)的倍數(shù)時,讓學生在1分鐘內寫3的倍數(shù),再組織交流:3的倍數(shù)有哪些呢?同學互評,交流形成自己的`學習成果,提高形成了知識的整體性教學,加大了探索的力度,提高了思維的難度,“1分鐘內你們寫完了嗎?如果再給半分鐘呢?為什么?”設疑,置疑,激發(fā)學生的反思力度,有效地激發(fā)了學生的求知欲望,從而積極主動地獲得知識。
找一個數(shù)因數(shù)的方法是本節(jié)課的難點,如何做到既不重復又不遺漏地找36的因數(shù),對于剛剛對倍數(shù)因數(shù)有個感性認識的學生來說有一定困難,這里可以充分發(fā)揮小組學習的優(yōu)勢。先讓學生自己獨立找36的因數(shù),我巡視了一下五分之一的學生能有序的思考,多數(shù)學生寫的算式不按一定的次序進行。接著讓學生在小組里討論兩個問題:用什么方法找36的因數(shù),如何找不重復也不遺漏。在小組交流的過程中,學生對自己剛才的方法進行反思,吸收同伴中好的方法,這時老師再給予有效的指導和總結。
《倍數(shù)和因數(shù)》教學反思8
《因數(shù)和倍數(shù)》是一節(jié)數(shù)學概念課,人教版新教材在引入因數(shù)和倍數(shù)的概念時與以往的教材有所不同。在以往的教材中,都是通過除法算式來引出整除的概念,每個除法算式對應著一對有整除關系的數(shù),如b÷a=c,表示b能被a整除,b÷c=a,表示b能被c整除。在此基礎上再引出因數(shù)和倍數(shù)的概念。而現(xiàn)在的人教版教材中沒有用數(shù)學語言給“整除”下定義,而是利用一個簡單的實物圖(2行飛機,每行6架)引出一個乘法算式2×6=12,通過這個乘法算式直接給出因數(shù)和倍數(shù)的概念。我覺得這部分內容學生初次接觸,對于學生來說是比較難掌握的內容。尤其對因數(shù)和倍數(shù)和是一對相互依存的概念,不能單獨存在,不是很好理解。我通過捕捉生活與數(shù)學之間的聯(lián)系,幫助學生理解因數(shù)倍數(shù)相互依存的關系。所以在上課之前我特意和孩子們玩了一個小游戲。用“我和誰是好朋友”這句話來理解相互依存的意思。即“我是誰的好朋友”,“誰是我的好朋友”,而不能說“我是好朋友”。學生對相互依存理解了,在描述因數(shù)和倍數(shù)的概念時就不會說錯了。對于這節(jié)課的教學,我特別注意下面幾個細節(jié)來幫助學生理解因數(shù)和倍數(shù)的概念。
一是教材雖然不是從過去的整除定義出發(fā),而是通過一個乘法算式來引出因數(shù)和倍數(shù)的概念,但本質上任是以“整除”為基礎。所以我上課時特別注意讓學生明白什么情況下才能討論因數(shù)和倍數(shù)的概念。我舉了一些反例加以說明.二是要學生注意區(qū)分乘法算式中的“因數(shù)”和本單元中的“因數(shù)”的`聯(lián)系和區(qū)別。在同一個乘法算式中,兩者都是指乘號兩邊的整數(shù),但前者是相對于“積”而言的,與“乘數(shù)”同義,可以是小數(shù),而后者是相對于“倍數(shù)”而言的,兩者都只能是整數(shù)。三是要注意區(qū)分“倍數(shù)”與前面學過的“倍”的聯(lián)系與區(qū)別。“倍”的概念比“倍數(shù)”要廣。可以說“15是3的5倍”,也可以說“1.5是0.3的5倍”,但我們只能說“15是3的倍數(shù)”,卻不能說“1.5是0.3的倍數(shù)”。我在課堂上反復強調,幫助孩子們認真理解辨析,所以學生一節(jié)課下來對這組概念就理解透徹了,不會模糊了。
《倍數(shù)和因數(shù)》教學反思2
本單元的重點是讓學生掌握因數(shù)、倍數(shù)、質數(shù)、合數(shù)等概念,以及它們之間的聯(lián)系和區(qū)別,內容較為抽象,為讓學生理清各概念間的前后承接關系,達到融會貫通的程度,在學習《因數(shù)和倍數(shù)》這節(jié)課時,我注意做到以下幾點:
一、加強對概念間相互關系的梳理,引導學生從本質上理解概念。
因數(shù)和倍數(shù)是最基本的兩個概念,理解了因數(shù)和倍數(shù)的含義對于一個數(shù)的因數(shù)的個數(shù)是有限的、倍數(shù)的個數(shù)是無限的等結論自然也就掌握了。因此,教學時,我引導學生觀察生活中的情景圖引出乘法算式2×6=12,讓學生在多說中體會、理解乘法算式中兩數(shù)之間的因數(shù)與倍數(shù)的關系。學生在交流中輕松地理解了兩數(shù)之間因數(shù)與倍數(shù)之間的關系,同時引出12的所有因數(shù),讓孩子感受到用乘法算式找一個數(shù)的因數(shù)的方法,為后面學習找一個數(shù)的因數(shù)做好鋪墊。
二,引導孩子在自主探究中學習新知
在學習找一個數(shù)的因數(shù)時,讓孩子們動腦思考,小組合作中探究方法,孩子們想出的方法很多,充分發(fā)揮了他們智慧,然后在老師的引導中優(yōu)化了方法,孩子們在體驗中逐步掌握了方法,學得深刻,方法熟練。
三、注意培養(yǎng)學生的抽象思維能力
教學中,注重學生的動腦思考、觀察,讓學生在自主的探究學習中表達自己的想法,通過一些特殊的例子,引導學生用數(shù)學的語言總結概括一些概念,逐步形成從特殊到一般的歸納推理能力。
《倍數(shù)和因數(shù)》教學反思9
本節(jié)課的內容是在學生已經(jīng)學習了一定的整數(shù)知識(包括整數(shù)的知識、整數(shù)的四則運算及其應用)的基礎上,進一步認識整數(shù)的性質。本單元所涉及的因數(shù)和倍數(shù)都是初等數(shù)論的基礎知識。
成功之處:
1.理解分類標準,明確因數(shù)和倍數(shù)的含義。在例1教學中,首先根據(jù)不同的除法算式讓學生進行分類,同時思考其標準依據(jù)是什么。通過學生的獨立思考和小組交流學生得出:第一種是分為兩類:一類是商是整數(shù),另一類是商是小數(shù);第二種是分為三類:一類商是整數(shù),一類是小數(shù),另一類是循環(huán)小數(shù)。究竟怎樣分類讓學生在爭論與交流中達成一致答案分為兩類。然后根據(jù)第一類情況得出倍數(shù)和因數(shù)的含義,特別強調的`是對于因數(shù)和倍數(shù)的含義要符合兩個條件:一是必須在整數(shù)除法中,二是必須商是整數(shù)而沒有余數(shù)。具備了這兩個條件才能說被除數(shù)是除數(shù)的倍數(shù),除數(shù)是被除數(shù)的因數(shù)。
2.厘清概念倍數(shù)和幾倍,注重強調倍數(shù)和因數(shù)的相互依存性。在教學中可以直接告訴學生因數(shù)和倍數(shù)都不能單獨存在,不能說2是因數(shù),12是倍數(shù),而必須說誰是誰的因數(shù),誰是誰的倍數(shù)。對于倍數(shù)與幾倍的區(qū)別:倍數(shù)必須是在整數(shù)除法中進行研究,而幾倍既可以在整數(shù)范圍內,也可以在小數(shù)范圍內進行研究,它的研究范圍較之倍數(shù)范圍大一些。
不足之處:
1.練習設計容量少了一些,導致課堂有剩余時間。
2. 對因數(shù)和倍數(shù)的含義還應該進行歸納總結上升到用字母來表示。
再教設計:
1.根據(jù)課本的練習相應的進行補充。
2.因數(shù)和倍數(shù)的含義用總結為a÷b=c(a、b、c均為非0自然數(shù)),a是b和c的倍數(shù),b和c是a的因數(shù)。
《倍數(shù)和因數(shù)》教學反思10
我在教學時做到了以下幾點:
(1)密切聯(lián)系生活中的數(shù)學,幫助學生理解概念間的關系。
今天在教學前,我讓學生學說話,就是培養(yǎng)學生對語言的概括能力和對事物間關系的理解能力。于是我利用課前談話讓學生在找找生活中的相互依存關系,課中遷移到數(shù)學中的倍數(shù)和因數(shù),這樣設計自然又貼切,既讓學生感受到了數(shù)學與生活的聯(lián)系,又幫助學生理解了倍數(shù)因數(shù)之間的相互依存關系,從而使學生更深一步的`認識倍數(shù)與因數(shù)的關系,
(2)改動呈現(xiàn)倍數(shù)和因數(shù)概念的方式。
我改變了例題,用杯子翻動的次數(shù)與杯口朝上的次數(shù)之間的關系,列出乘法算式,初步感知倍數(shù)關系的存在,從而引出倍數(shù)和因數(shù)的概念,并為下面學習如何找一個數(shù)的倍數(shù)奠定了良好的基礎。這樣不僅溝通了乘法和除法的關系,也讓學生很容易感悟到不管是根據(jù)乘法還是除法算式都可以找到因數(shù)和倍數(shù)。
(3)根據(jù)學生的實際情況,教學找一個數(shù)的因數(shù)的方法
雖然學生不能有序地找出來,但是基本能全部找到,再此基礎上讓體會有序找一個數(shù)因數(shù)的辦法學生容易接受,這樣的設計由易到難,由淺入深,我覺得能起到鞏固新知,發(fā)展思維的效果。
(4)設計有趣游戲活動,擴大學生思維的空間,培養(yǎng)學生發(fā)散思維的能力。
譬如“找朋友”游戲,答案不唯一,學生思考問題的空間很大,培養(yǎng)了學生的發(fā)散思維能力。我手里拿了5、17、38幾張數(shù)字卡片,讓學生判斷自己的學號數(shù)是哪些數(shù)的倍數(shù),是哪些數(shù)的因數(shù),,如果學生的學號數(shù)是老師出示卡片的倍數(shù)或因數(shù)就可以站起來。最后問能不能想個辦法讓所有的學生都站起來。出示地卡片應該是幾,找的朋友應該是倍數(shù)還是因數(shù)?學生面對問題積極思考,享受了數(shù)學思維的快樂
《倍數(shù)和因數(shù)》教學反思11
今天和孩子們一起學習了新的一節(jié)課《因數(shù)》,對于《因數(shù)》來說是孩子們第一冊接觸的知識,但是對于因數(shù)這個詞來說,孩子們也并不陌生,因為在乘法算式中已經(jīng)有了因數(shù)的一個初步的了解。所以對于本節(jié)課來說自己有如下的感受:
一、初步感知,數(shù)形結合讓學生形成表象
在教學的時候,我首先通過課本上飛機圖的情景圖讓學生看圖列算式,并且用現(xiàn)在自己五年級的思維來用不同的乘法算式來表示,這一環(huán)節(jié)對于學生列式來說是比較簡單的,基本上所有的學生都能夠很好的列出算是,然后根據(jù)學生列出的算式,引出因數(shù)和倍數(shù)的意義。在此環(huán)節(jié)的設計上由于方法的多樣性,為不同思維的展現(xiàn)提供了空間,激發(fā)了學生的形象思維,而又借助 “形”與“數(shù)”的關系,為接下來研究“因數(shù)與倍數(shù)”概念打下了良好基礎,有效地實現(xiàn)了已有知識與新知識之間的聯(lián)系。更好的分化了難點,讓學生很輕松的接受了知識的形成。
二、自主探究以鄰為師
在學生知道了因數(shù)和倍數(shù)的意義上,接下來出示了讓學生自己動手找18的所有的因數(shù)。為了能夠更好的、全面的找到18的所有因數(shù),讓同桌兩人互相合作來完成。通過教學發(fā)現(xiàn)學生的合作能力很強,能夠用數(shù)學語言來準確的表述,而且大多數(shù)學生在合作的.過程中也能很好的找到、找全18的所有的因數(shù)。
三、在練習中體驗學習的快樂
在 最后的環(huán)節(jié)中我設計了不同層次的練習,先讓學生說說有關因數(shù)和倍數(shù)的意義的一些練習題,加深對知識點的理解,主要是讓學生明白因數(shù)和倍數(shù)不是單獨存在的, 是相互已存的`,必須要說清楚是誰是誰的因數(shù)、誰是誰的倍數(shù)。通過教學來看學生掌握的還算可以。接著出示了讓學生找不同數(shù)的因數(shù),在這個環(huán)節(jié)的設計用了不同 的形式,比如:找朋友,你來說我來做,比一比說最快等形式來幫助學生理解知識,在此過程中學生很感興趣,激情很好課堂氣氛熱烈,也讓學生在輕松的氛圍中體 驗到學習的快樂。
不足之處:
在本節(jié)課的教學上還是存在很多不足之處,雖然自己也知道新課標提出要以學生為主體,老師只是引導著和合作者,可是在教學過程中許多地方還是不由自主的說得過多,給學生的自主探索空間太少。
如在教學找18的因數(shù)這一環(huán)節(jié)時,由于擔心孩子們是第一次接觸因數(shù),對于因數(shù)的概念不夠了解,而犯這樣或那樣的錯誤,所以引導的過多講解的過細,因此給他們自主探究的空間太小了,沒能很好的體現(xiàn)學生的主體性。
《倍數(shù)和因數(shù)》教學反思12
這節(jié)課帶給我的感想是頗多的,但綜觀整堂課,我覺得要改進的地方還有很多,我只有不斷地進行反思,才能不斷地完善思路,最終才能有所悟,有所長。下面就說說我對本課在教學設計上的反思和一些初淺的想法。
本單元內容在編排上與老教材有較大的差異,比如在認識“因數(shù)、倍數(shù)”時,不再運用整除的概念為基礎,引出因數(shù)和倍數(shù),而是直接從乘法算式引出因數(shù)和倍數(shù)的概念,目的是減去“整除”的數(shù)學化定義,降低學生的認知難度,雖然課本沒出現(xiàn)“整除”一詞,但本質上仍是以整除為基礎。本課的教學重點是求一個數(shù)的因數(shù),在學生已掌握了因數(shù)、倍數(shù)的概念及兩者之間的關系的基礎上,對學生而言,怎樣求一個數(shù)的因數(shù),難度并不算大,因此教學例題“找出18的因數(shù)”時,我先放手讓學生自己找,學生在獨立思考的過程中,自然而然的會結合自己對因數(shù)概念的理解,找到解決問題的方法(培養(yǎng)學生對已有知識的運用意識),然后在交流中不難發(fā)現(xiàn)可用乘法或除法來求一個數(shù)的因數(shù)(列出積是18的乘法算式或列出被除數(shù)是18的除法算式)。在這個學習活動環(huán)節(jié)中,我留給了學生較充分的思維活動的`空間,有了自由活動的空間,才會有思維創(chuàng)造的火花,才能體現(xiàn)教育活動的終極目標。特別是用除法找因數(shù)的學生,正是因為他們意識到了因數(shù)與倍數(shù)之間的整除關系的本質,才會想到用除法來解決問題,我也不由得佩服這些孩子對知識的遷移能力。在這個環(huán)節(jié)的處理上,教材的本意是先由教師提出“想一想,幾和幾相乘得18?”引導學生從因數(shù)的概念,用乘法來找因數(shù),而我考慮到本班孩子的學情(絕大多數(shù)學生能夠運用所學知識,找到求因數(shù)的方法),如教師一開始就引導學生:想幾和幾相乘,勢必會造成先入為主,妨礙學生創(chuàng)造性的思維活動?用已有的經(jīng)驗自主建構新知是提高學生學習能力的有效途徑,讓學生獨立思考、自主探索、促思(促進學生思維發(fā)展)、提能(提高學習能力)是我的教學策略主要內容。至于這兩種方法孰重孰輕,的確難以定論。實際上,對于數(shù)字較小的數(shù)(口訣表內的),用乘法來求因數(shù)還是比較容易,但是超出口訣表范圍的數(shù)用除法則更能顯示出它的優(yōu)勢,如求54的因數(shù)有哪些?學生要直接找出2和幾相乘得54,3和幾相乘得54,4和幾相乘得54,顯然加大了思維難度,如用除法不是更簡單直接一些嗎?學生的學習潛力是巨大的,教師是學生學習的引領者,因此教師的觀念和行為決定了學生的學習方式和結果,所以我認為教師要專研教材,充分利用教材,根據(jù)學生的實際情況,創(chuàng)造性地使用教材,為學生能力的發(fā)展提供素材和創(chuàng)造條件,真正實現(xiàn)學生學習的主體地位。
學生在找一個數(shù)的因數(shù)時最常犯的錯誤就是漏找,即找不全。學生怎樣按一定順序找全因數(shù)這也正是本課教學的難點。所以在學生交流匯報時,我結合學生所敘思維過程,相機引導并形成有條理的板書,如:36÷1=36,36÷2=18,36÷3=12,36÷4=9。這樣的板書幫助學生有序的思考,形成明晰的解題思路的作用是毋庸質疑的。教師能像教材中那樣一頭一尾地成對板書因數(shù),這樣既不容易寫漏,而且學生么隨著流程的進行,勢必會感受到越往下找,區(qū)間越小,需要考慮的數(shù)也就越少。當找到兩個相鄰的自然數(shù)時,他們自然就不會再找下去了。書寫格式這一細節(jié)的教學,既避免了教師羅嗦的講解,又有效突破了教學難點,我相信像這樣潤物無聲的細節(jié),無論于學生、于課堂都是有利無弊的。
《倍數(shù)和因數(shù)》教學反思13
這是自入職以來第一堂得到李老師指點的課。感覺得到李老師課堂上對學生信任。也讓我更深一步的體會到,只有學生自己找出來的規(guī)律,特點,才能理解的更透徹,掌握的更牢固,應用起來更有效率。平日里,沒有給學生充分的時間,很多規(guī)律甚至是老師直接告訴學生的,雖然課堂教學的速度有了,但是效率并不高,后期教師要花費的時間更多。那才是真正的丟了西瓜撿芝麻!
下面從幾點來分析本節(jié)課
一、優(yōu)點
課堂掌控力不錯,教師的個人素質也不錯。
二、不足
1、 是除不盡的。但是課堂上,我卻當做了能除盡的。思考出現(xiàn)這個錯誤的原因,是自己對課堂、對學生的預設不足!
2、26是13和2的倍數(shù),13和2是26的因數(shù)------大家發(fā)現(xiàn)沒有,大的是倍數(shù),小的是因數(shù)!
我非常清楚,倍數(shù)、因數(shù)是有依存關系的,而不能單獨說,但是課堂上卻說出了“大的是倍數(shù),小的是因數(shù)”這樣一句有問題的話。失!
歸結原因,還是課堂太想投機取巧。作為一個引導學生入門的老師,在知識的門口,真的'不能有絲毫差池,更不能為了一時的省事,而為后面的教學買下禍根!
三、除了錯誤,還有很多做的復雜、不到位的地方。
1、開篇之時,復習自然數(shù),是為本節(jié)課作知識鋪墊用的,但是,問題中的“自然數(shù)有什么特點?”卻是一個設計失敗的問題。已經(jīng)學到高等數(shù)學的我,自然之道,自然數(shù)的特點到底有多龐雜!根本不是一兩句話說的清的,但是我卻問了這樣一個問題。
2、給定12張卡片列除法算式求商時,可以限定時間30秒,看說寫的又多又準確。也就是說能全員參與的,就單獨。讓學生在數(shù)學作業(yè)紙上寫完后,可以抓條,然后教師可以挑選著在摘錄一些。這樣準備充分,也可以為后面的分類打下堅實的基礎。
3、找個一個數(shù)的因數(shù)時,要先找,在訂正,最后讓學生說說做法。而后更正練習,接著判斷,說方法。只有清楚的說出了方法,才能保證學生是真懂了。在這個過程中,還可以鼓勵學生總結一些自己的做法,比如用乘法找因數(shù),乘到幾就不乘了。用除法也是,除到幾就不除了。ㄟ@個數(shù)的中間位置)
4、本節(jié)課最好的量是到會找一個數(shù)的因數(shù)就可以了,接著歸納一個數(shù)因數(shù)的特點部分就拖堂了。內容不能很好的在一堂課中充分的展現(xiàn)!
一堂課教會了我很多,尤其是在教學方法上,李老師后來的引導,讓我清楚的看到了學生的聰明,學生的觀察力!要相信學生------首先要給學生時間去觀察,去思考,去發(fā)現(xiàn)!否則,學生的思維永遠得不到真正的發(fā)展!能力無法得到充分的提升。
《倍數(shù)和因數(shù)》教學反思14
【教學內容】
人教版數(shù)學五年級下冊P12一14,練習二。
【教學過程】
一、操作空間,初步感知。
1.同桌用12塊完全一樣的小正方形拼成一個長方形,有幾種拼法?要求:能想象的就想象,不能想象的才借助小正方形擺一擺。
2.學生動手操作,并與同桌交流擺法。
3.請用算式表達你的擺法。
匯報:1×12=12,2×6=12,3×4=12。
【評析】通過讓學生動手操作、想象、表達等環(huán)節(jié),既為新知探索提供材料,又孕育求一個數(shù)的因數(shù)的思考方法。
二、探索空間,理解新知。
1.理解因數(shù)和倍數(shù)。
(1)觀察3×4=12,你能從數(shù)學的角度說說它們之間的關系嗎? 師根據(jù)學生的表達完成以下板書: 3是12的因數(shù) 12是3的倍數(shù) 4是12的因數(shù) 12是4的倍數(shù) 3和4是12的因數(shù) 12是3和4的倍數(shù)
(2)用因數(shù)和倍數(shù)說說算式1×12=12,2×6=12的關系。
(3)觀察因數(shù)和倍數(shù)的相互關系。揭示:研究因數(shù)和倍數(shù)時,所指的數(shù)是整數(shù)(一般不包括O)。
2.求一個數(shù)的因數(shù)。
(1)出示2,5,12,15,36。從這些數(shù)中找一找誰是誰的因數(shù)。 學生匯報。
師:2和12是36的因數(shù),找1個、2個不難,難就難在把36所有的因數(shù)全部找出來,請同學們找出36的所有因數(shù)。
出示要求:
、倏瑟毩⑼瓿,也可同桌合作。
②可借助剛才找出12的所有因數(shù)的方法。
、蹖懗36的所有因數(shù)。
、芟胍幌,怎樣找才能保證既不重復,又不遺漏。 教師巡視,展示學生幾種答案。
生1:1,2,3,4,9,12,36。
生2:1,36,2,18,3,12,4,9,6。
生3:1,4,2,36,9,3,6,12,18。
(2)比較喜歡哪一種答案?為什么?
用什么方法找既不重復又不遺漏。(按順序一對一對找,一直找到兩個因數(shù)相差很小或相等為止)
師:有序思考更能準確找出一個數(shù)的所有因數(shù)。 完成板書:描述式、集合式。
(3)30的因數(shù)有哪些?
【評析】學生圍繞教師出示的思考步驟,尋找36的所有因數(shù)。既留足了自主探索的空間,又在方法上有所引導,避免了學生的盲目猜測。通過展示、比較不同的答案,發(fā)現(xiàn)了按順序一對一對找的好方法,突出了有序思考的重要性,有效地突破了教學的難點。
3.求一個數(shù)的倍數(shù)。
(1)3的倍數(shù)有:——,怎樣
有序地找,有多少個?
找一個數(shù)的倍數(shù),用1,2,3,4?分別乘這個數(shù)。 (2)練一練:6的倍數(shù)有: ,40以內6的倍數(shù)有:一o
【評析】
由于有了有序思考的基礎,求一個數(shù)的倍數(shù)水到渠成,本環(huán)節(jié)重在思考方法上的提升。
4.發(fā)現(xiàn)規(guī)律。
觀察上面幾個數(shù)的因數(shù)和倍數(shù)的例子,你對它們的最大數(shù)和最小數(shù)有什么發(fā)現(xiàn)? 根據(jù)學生匯報,歸納:一個數(shù)的最小因數(shù)是I,最大因數(shù)是它本身;一個數(shù)的最小倍數(shù)是它本身,沒有最大的倍數(shù)。
【評析】
通過觀察板書上幾個數(shù)的因數(shù)和倍數(shù),放手讓學生發(fā)現(xiàn)規(guī)律,既突出了學生的主體地位,又培養(yǎng)了學生觀察、歸納的能力。 三、歸納空間,內化新知。
師生共同總結:
(1)因數(shù)和倍數(shù)是相互的,不能單獨存在。
(2)找一個數(shù)的因數(shù)和倍數(shù),應有序思考。
四、拓展空間,應用新知。
1、15的因數(shù)有:——,15的倍數(shù)有:——。
2.判斷。
(1)6是因數(shù),24是倍數(shù)。( )
(2)3.6÷4=0.9,所以3.6是4的因數(shù)。 ( )
(3)1是1,2,3,4?的因數(shù)。 ( )
(4)一個數(shù)的最小倍數(shù)是21,這個數(shù)的因數(shù)有1,5,25。( )
3、選用4,6,8,24,1,5中的一些數(shù)字,用今天學習的知識說一句話。
4、舉座位號起立游戲。
(1)5的倍數(shù)。
(2)48的因數(shù)。
(3)既是9的倍數(shù),又是36的因數(shù)。
(4)怎樣說一句話讓還坐著的同學全部起立。
【評析】
本環(huán)節(jié)的前3題側重于鞏固新知,后2題側重于發(fā)展思維。通過“說一句話”和“起立游戲”,展現(xiàn)了學生的個性思維,體現(xiàn)了知識的應用價值。
【反思】
本課教學設計重在讓學生通過自主探索,掌握求一個數(shù)的因數(shù)和倍數(shù)的方法,體驗有序思考的重要性。體現(xiàn)了以下兩個特點: 一、留足空間,讓探索有質量。
留足思維空間,才能充分調動多種感官參與學習,充分發(fā)揮知識經(jīng)驗和生活經(jīng)驗,使探索成為知識不斷提升、思維不斷發(fā)展、情感不斷豐富的過程。第一,把教材中的飛機圖改為拼長方形,讓同桌同學借助12塊完全一樣的正方形拼成一個長方形。由于方法的多樣性,為不同思維的展現(xiàn)提供了空間。第二:放手讓每個同學找出36的所有因數(shù),由于個人經(jīng)驗和思
維的差異性,出現(xiàn)了不同的'答案,但這些不同的答案卻成為探索新知的資源,在比較不同的答案中歸納出求一個數(shù)的因數(shù)的思考方法。第三:通過觀察12,36,30的因數(shù)和3,6的倍數(shù),你發(fā)現(xiàn)了什么?由于提供了豐富的觀察對象,保證了觀察的目的性。第四:讓學生“選用4,6,8,24,1,5中的一些數(shù)字,用今天學習的知識說一句話”。不拘形式的說話空間,不僅體現(xiàn)了差異性教學,更是體現(xiàn)了不同的人在數(shù)學上的不同發(fā)展。 二、適度引導,讓探索有方向。
引導與探索并不矛盾,探索前的適度引導正是讓探索走得更遠。探索12塊完全一樣的正方形拼成一個長方形,有幾種拼法?教師提示能想象的就想象,不能想象的可借助小正方形擺一擺。這樣的引導,是尊重學生不同思維的有效引導。
在找36的所有因數(shù)時,教師出示4條要求,既是引導學生思考的方向,又是提醒學生探索的任務。在讓學生觀察幾個數(shù)的因數(shù)和倍數(shù)時,引導學生觀察最大數(shù)和最小數(shù),有什么發(fā)現(xiàn)?這樣的引導,避免了學生的盲目觀察?梢,適度的引導,保證了自主探索思維的方向性和順暢性。
整堂課,學生想象豐富、思維活躍、思考有序。整個認知過程是體驗不斷豐富、概念不斷形成、知識不斷建構的過程。
《倍數(shù)和因數(shù)》教學反思15
1、立足于學生的思維特點。中年級學生的思維特點是由具體形象思維到抽象概括思維過渡的重要年齡段。因此,我放棄了用12個小正方形擺長方形的動手實踐活動,而選用了看12個小正方形在腦中想象擺法。在留有短暫時間讓學生思考,腦中逐漸有了長方形的圖象紛紛舉手之后,我又不急于提問,而是追問:你能不能用一道乘法算式來表示?當學生說出乘法算式時,也不急于就此,還讓其余同學想想他是如何擺的,做到全員參與。這種由形象到抽象,再由抽象到形象的過程,是符合學生的思維特點的,對于發(fā)展學生的抽象概括思維是有利的。
2、層層輔墊,為學生自主探索打下了堅實的基礎。探索36的所有因數(shù)是本節(jié)課的.重難點,我在這之前做了層層的輔墊。
。1)3個乘法算式的呈現(xiàn)我作了調整:1×12=12,2×6=12,3×4=12。潛移默化的影響學生的有序思考。
(2)在學生根據(jù)其余兩算式說因數(shù)和倍數(shù)的關系之后,我對12的所有因數(shù)進行了小結:12的因數(shù)有1,12,2,6,3,4。讓學生感受到一道乘法算式中蘊藏著兩個因數(shù)。
。3)36這個數(shù)比較大,學生找起36的所有因數(shù)時有點困難,我設計了從3,5,18,20,36五個數(shù)中選擇兩個數(shù)來說說誰是誰的因數(shù),誰是誰的倍數(shù)?這一教學環(huán)節(jié),減輕了學生的困難,同時也能檢驗學生對因數(shù)和倍數(shù)概念是否已正確認識。當學生會說3是36的因數(shù),36是3的倍數(shù)時,說明他們腦中已經(jīng)有了判斷的依據(jù):3×12=36。
(4)在學生獨立探索前,我又提醒學生,在找36的所有因數(shù)時,如果遇到困難,不要忘了我們已經(jīng)尋找過12這個數(shù)的所有因數(shù),可以作為參考。
這四個方面的準備,學生的獨立思考才有了思維的依托,遇到困難,他們就會自我想辦法,自我解決問題,這樣的探索就會有效,不會浮于表面,流于形勢。
3、有層次的呈現(xiàn)作業(yè),給學生以正面引導為主。在概括總結找36所有因數(shù)的方法時,我找了三份的作業(yè),第一份是有序,成對思考的1,36,2,18,3,12,4,9,6。在交流中讓學生明確只有有序的,成對的思考才會做到既不遺漏,又能快捷方便,第二份作業(yè)是所有的因數(shù)按順序排列的1,2,3,4,6,9,12,18,36。結果作業(yè)中漏了一個4,這是個時機,在表揚了這個學生能按順序的排列,做到美觀這個優(yōu)點之后,提出問題:美中不足的是什么?學生:一個一個找麻煩,還容易丟。我接著追問;我們能給他提些建議嗎?第三份是無序的有遺漏的,也讓學生給他提建議,讓他也能做到一個不漏。這三份作業(yè)對比下來,先教給學生正確的思考方法,再以正確的方法判斷其他同學思考不當?shù)牡胤,并提出建議。尋找一個數(shù)所有因數(shù)的方法也能深刻地印在學生腦里。
4、大膽放手,產生矛盾沖突,發(fā)現(xiàn)問題,想辦法解決問題。在找3的倍數(shù)時,我想學生有了前面的學習基礎,我直接拋出問題:你能像上面這樣有序的從小到大的找出3的倍數(shù)嗎?學生在找中發(fā)現(xiàn):3的倍數(shù)有很多,寫不完。我追問;那怎么辦,有辦法嗎?通過一會兒的沉默思考后,紛紛有學生提出省略號。
5、趣味練習,聯(lián)想,探索。練習中我設計了兩道題,一是猜我的電話號碼,激發(fā)起學生的興趣,二是探索計數(shù)器的奧秘,多位老師問起我的設計意圖,我是這樣想的:重在培養(yǎng)學生善于聯(lián)想,勇于探索的習慣。由個體現(xiàn)象聯(lián)想到同類現(xiàn)象并能深入探索,這是創(chuàng)造的源泉,牛頓看到蘋果落地,通過聯(lián)想,最終發(fā)現(xiàn)了萬有引力定律,瓦特看到茶壺里冒出蒸氣,通過聯(lián)想,最終發(fā)明了蒸氣機…這與一個人的認真觀察,善于聯(lián)想,勇于探索是分不開的。
【《倍數(shù)和因數(shù)》教學反思】相關文章:
因數(shù)和倍數(shù)教學反思02-07
因數(shù)和倍數(shù)的教學反思02-21
倍數(shù)和因數(shù)教學反思02-26
因數(shù)和倍數(shù)教學反思07-17