高一數(shù)學的教學計劃15篇
時間的腳步是無聲的,它在不經(jīng)意間流逝,我們的工作又將在忙碌中充實著,在喜悅中收獲著,此時此刻需要為接下來的工作做一個詳細的計劃了。想學習擬定計劃卻不知道該請教誰?以下是小編為大家收集的高一數(shù)學的教學計劃,歡迎閱讀,希望大家能夠喜歡。
高一數(shù)學的教學計劃1
一、指導(dǎo)思想:
(1)隨著素質(zhì)教育的深入展開,《課程方案》提出了“教育要面向世界,面向未來,面向現(xiàn)代化”和“教育必須為社會主義現(xiàn)代化建設(shè)服務(wù),必須與生產(chǎn)勞動相結(jié)合,培養(yǎng)德、智、體等方面全面發(fā)展的社會主義事業(yè)的建設(shè)者和接班人”的指導(dǎo)思想和課程理念和改革要點。使學生掌握從事社會主義現(xiàn)代化建設(shè)和進一步學習現(xiàn)代化科學技術(shù)所需要的數(shù)學知識和基本技能。
(2)培養(yǎng)學生的邏輯思維能力、運算能力、空間想象能力,以及綜合運用有關(guān)數(shù)學知識分析問題和解決問題的能力。使學生逐步地學會觀察、分析、綜合、比較、抽象、概括、探索和創(chuàng)新的能力;運用歸納、演繹和類比的方法進行推理,并正確地、有條理地表達推理過程的能力。
(3)根據(jù)數(shù)學的學科特點,加強學習目的性的教育,提高學生學習數(shù)學的自覺心和興趣,培養(yǎng)學生良好的學習習慣,實事求是的科學態(tài)度,頑強的學習毅力和獨立思考、探索創(chuàng)新的精神。
(4)使學生具有一定的數(shù)學視野,逐步認識數(shù)學的科學價值、應(yīng)用價值和文化價值,形成批判性的思維習慣,崇尚數(shù)學的理性精神,體會數(shù)學的美學意義,理解數(shù)學中普遍存在著的運動、變化、相互聯(lián)系和相互轉(zhuǎn)化的情形,從而進一步樹立辯證唯物主義和歷史唯物主義世界觀。
(5)學會通過收集信息、處理數(shù)據(jù)、制作圖像、分析原因、推出結(jié)論來解決實際問題的思維方法和操作方法。
(6)本學期是高一的重要時期,教師承擔著雙重責任,既要不斷夯實基礎(chǔ),加強綜合能力的培養(yǎng),又要滲透有關(guān)高考的思想方法,為三年的學習做好準備。
二、學生狀況分析
本學期擔任高一(1)班和(5)班的數(shù)學教學工作,學生共有111人,其中(1)班學生是名校直通班,學生思維活躍,(5)班是火箭班,學生基本素質(zhì)不錯,一些基本知識掌握不是很好,學習積極性需要教師提高,成績以中等為主,中上不多。兩個班中,從軍訓一周來看,學生的學習積極性還是比較高,愛問問題的同學比較多,但由于基礎(chǔ)知識不太牢固,上課效率不是很高。
三、教材簡析
使用人教版《普通高中課程標準實驗教科書數(shù)學(A版)》,教材在堅持我國數(shù)學教育優(yōu)良傳統(tǒng)的前提下,認真處理繼承、借鑒、發(fā)展、創(chuàng)新之間的關(guān)系,體現(xiàn)基礎(chǔ)性、時代性、典型性和可接受性等,具有親和力、問題性、科學性、思想性、應(yīng)用性、聯(lián)系性等特點。必修1有三章(集合與函數(shù)概念;基本初等函數(shù);函數(shù)的應(yīng)用);必修4有三章(三角函數(shù);平面向量;三角恒等變換)。
必修1,主要涉及兩章內(nèi)容:
第一章集合
通過本章學習,使學生感受到用集合表示數(shù)學內(nèi)容時的簡潔性、準確性,幫助學生學會用集合語言表示數(shù)學對象,為以后的學習奠定基礎(chǔ)。
1.了解集合的含義,體會元素與集合的屬于關(guān)系,并初步掌握集合的表示方法;
2.理解集合間的包含與相等關(guān)系,能識別給定集合的子集,了解全集與空集的含義;
3.理解補集的含義,會求在給定集合中某個集合的補集;
4.理解兩個集合的并集和交集的含義,會求兩個簡單集合的并集和交集;
5.滲透數(shù)形結(jié)合、分類討論等數(shù)學思想方法;
6.在引導(dǎo)學生觀察、分析、抽象、類比得到集合與集合間的關(guān)系等數(shù)學知識的過程中,培養(yǎng)學生的思維能力。
第二章函數(shù)的概念與基本初等函數(shù)Ⅰ
教學本章時應(yīng)立足于現(xiàn)實生活從具體問題入手,以問題為背景,按照“問題情境—數(shù)學活動—意義建構(gòu)—數(shù)學理論—數(shù)學應(yīng)用—回顧反思”的順序結(jié)構(gòu),引導(dǎo)學生通過實驗、觀察、歸納、抽象、概括,數(shù)學地提出、分析和解決問題。通過本章學習,使學生進一步感受函數(shù)是探索自然現(xiàn)象、社會現(xiàn)象基本規(guī)律的工具和語言,學會用函數(shù)的思想、變化的觀點分析和解決問題,達到培養(yǎng)學生的創(chuàng)新思維的目的。
1.了解函數(shù)概念產(chǎn)生的背景,學習和掌握函數(shù)的概念和性質(zhì),能借助函數(shù)的知識表述、刻畫事物的變化規(guī)律;
2.理解有理指數(shù)冪的意義,掌握有理指數(shù)冪的運算性質(zhì);掌握指數(shù)函數(shù)的概念、圖象和性質(zhì);理解對數(shù)的概念,掌握對數(shù)的運算性質(zhì),掌握對數(shù)函數(shù)的概念、圖象和性質(zhì);了解冪函數(shù)的概念和性質(zhì),知道指數(shù)函數(shù)、對數(shù)函數(shù)、冪函數(shù)時描述客觀世界變化規(guī)律的重要數(shù)學模型;
3.了解函數(shù)與方程之間的關(guān)系;會用二分法求簡單方程的近似解;了解函數(shù)模型及其意義;
4.培養(yǎng)學生的理性思維能力、辯證思維能力、分析問題和解決問題的能力、創(chuàng)新意識與探究能力、數(shù)學建模能力以及數(shù)學交流的能力。
必修4,主要涉及三章內(nèi)容:
第一章三角函數(shù)
通過本章學習,有助于學生認識三角函數(shù)與實際生活的緊密聯(lián)系,以及三角函數(shù)在解決實際問題中的廣泛應(yīng)用,從中感受數(shù)學的價值,學會用數(shù)學的思維方式觀察、分析現(xiàn)實世界、解決日常生活和其他學科學習中的問題,發(fā)展數(shù)學應(yīng)用意識。
1.了解任意角的概念和弧度制;
2.掌握任意角三角函數(shù)的定義,理解同角三角函數(shù)的基本關(guān)系及誘導(dǎo)公式;
3.了解三角函數(shù)的周期性;
4.掌握三角函數(shù)的圖像與性質(zhì)。
第二章平面向量
在本章中讓學生了解平面向量豐富的實際背景,理解平面向量及其運算的意義,能用向量的語言和方法表述和解決數(shù)學和物理中的一些問題,發(fā)展運算能力和解決實際問題的能力。
1.理解平面向量的概念及其表示;
2.掌握平面向量的加法、減法和向量數(shù)乘的運算;
3.理解平面向量的正交分解及其坐標表示,掌握平面向量的坐標運算;
4.理解平面向量數(shù)量積的含義,會用平面向量的數(shù)量積解決有關(guān)角度和垂直的.問題。
第三章三角恒等變換
通過推導(dǎo)兩角和與差的余弦、正弦、正切公式,二倍角的正弦、余弦、正切公式以及積化和差、和差化積、半角公式的過程,讓學生在經(jīng)歷和參與數(shù)學發(fā)現(xiàn)活動的基礎(chǔ)上,體會向量與三角函數(shù)的聯(lián)系、向量與三角恒等變換公式的聯(lián)系,理解并掌握三角變換的基本方法。
1.掌握兩角和與差的余弦、正弦、正切公式;
2.掌握二倍角的正弦、余弦、正切公式;
3.能正確運用三角公式進行簡單的三角函數(shù)式的化簡、求值和恒等式證明。
四、教學任務(wù)
本期授課內(nèi)容為必修1和必修4,必修1在期中考試前完成(約在11月5日前完成);必修4在期末考試前完成(約在12月31日前完成)。
五、教學質(zhì)量目標
1.獲得必要的數(shù)學基礎(chǔ)知識和基本技能,理解基本的數(shù)學概念、數(shù)學結(jié)論的本質(zhì),體會數(shù)學思想和方法。
2.提高空間想象、抽象概括、推理論證、運算求解、數(shù)據(jù)處理等基本能力。
3.提高學生提出、分析和解決問題(包括簡單的實際問題)的能力,數(shù)學表達和交流的能力,發(fā)展獨立獲取數(shù)學知識的能力。
4.發(fā)展數(shù)學應(yīng)用意識和創(chuàng)新意識,力求對現(xiàn)實世界中蘊涵的一些數(shù)學模式進行思考和作出判斷。
5.提高學習數(shù)學的興趣,樹立學好數(shù)學的信心,形成鍥而不舍的鉆研精神和科學態(tài)度。
6.具有一定的數(shù)學視野,逐步認識數(shù)學的科學價值、應(yīng)用價值和文化價值,體會數(shù)學的美學意義,從而進一步樹立辯證唯物主義和歷史唯物主義世界觀。
六、促進目標達成的重點工作及措施
重點工作:
認真貫徹高中數(shù)學新課標精神,樹立新的教學理念,以“雙基”教學為主要內(nèi)容,堅持“抓兩頭、帶中間、整體推進”,使每個學生的數(shù)學能力都得到提高和發(fā)展。
分層推進措施
1、重視學生非智力因素培養(yǎng),要經(jīng)常性地鼓勵學生,增強學生學習數(shù)學興趣,樹立勇于克服困難與戰(zhàn)勝困難的信心。
2、合理引入課題,由數(shù)學活動、故事、提問、師生交流等方式激發(fā)學生學習興趣,注意從實例出發(fā),從感性提高到理性;注意運用對比的方法,反復(fù)比較相近的概念;注意結(jié)合直觀圖形,說明抽象的知識;注意從已有的知識出發(fā),啟發(fā)學生思考。
3、培養(yǎng)能力是數(shù)學教學的落腳點。能力是在獲得和運用知識的過程中逐步培養(yǎng)起來的。
在銜接教學中,首先要加強基本概念和基本規(guī)律的教學。
加強培養(yǎng)學生的邏輯思維能力和解決實際問題的能力,以及培養(yǎng)提高學生的自學能力,養(yǎng)成善于分析問題的習慣,進行辨證唯物主義教育。
4、講清講透數(shù)學概念和規(guī)律,使學生掌握完整的基礎(chǔ)知識,培養(yǎng)學生數(shù)學思維能力,抓住公式的推導(dǎo)和內(nèi)在聯(lián)系;加強復(fù)習檢查工作;抓住典型例題的分析,講清解題的關(guān)鍵和基本方法,注重提高學生分析問題的能力。
5、自始至終貫徹教學四環(huán)節(jié)(引入、探究、例析、反饋),針對不同的教材內(nèi)容選擇不同教法,提倡創(chuàng)新教學方法,把學生被動接受知識轉(zhuǎn)化主動學習知識。
6、重視數(shù)學應(yīng)用意識及應(yīng)用能力的培養(yǎng)。
7、加強學生良好學習習慣的培養(yǎng)
七、教學時間大致安排
集合與函數(shù)概念13課時
基本初等函數(shù)15課時
函數(shù)的應(yīng)用8課時
三角函數(shù)24課時
平面向量14課時
三角恒等變換9課時
高一數(shù)學的教學計劃2
本節(jié)課在教材中的地位和作用:《不等式的基本性質(zhì)》,對即將要學習的一元一次不等式的解法乃至高中的不等式的運用都是非常重要的基礎(chǔ)。本節(jié)內(nèi)容掌握的好壞,將直接影響到后面的教學內(nèi)容。而對于不等式的基本性質(zhì)1和2,相信絕大部分的學生都不會有很大困難,而不等式的基本性質(zhì)3,通過對以往學生的了解,發(fā)現(xiàn)很多學生會忘記分正負兩種情況,因此在本節(jié)新課教學中,我采用了將不等式未知的性質(zhì)與等式已知的性質(zhì)進行類比教學,讓學生自己去發(fā)現(xiàn)驗證不等式的性質(zhì)。
一、教學目標:
(一)知識與技能
1.掌握不等式的三條基本性質(zhì)。
2.運用不等式的基本性質(zhì)對不等式進行變形。
(二)過程與方法
1.通過等式的性質(zhì),探索不等式的性質(zhì),初步體會“類比”的數(shù)學思想。
2.通過觀察、猜想、驗證、歸納等數(shù)學活動,經(jīng)歷從特殊到一般、由具體到抽象的認知過程,感受數(shù)學思考過程的條理性,發(fā)展思維能力和語言表達能力。
(三)情感態(tài)度與價值觀
通過探究不等式基本性質(zhì)的活動,培養(yǎng)學生合作交流的意識和大膽猜想,樂于探究的良好思維品質(zhì)。
二、教學重難點
教學重點: 探索不等式的三條基本性質(zhì)并能正確運用它們將不等式變形。
教學難點: 不等式基本性質(zhì)3的探索與運用。
三、教學方法:自主探究——合作交流
四、教學過程:
情景引入:1.舉例說明什么是不等式?
2.判斷下列各式是否成立?并說明理由。
( 1 )若x-4=12, 則x=16()
( 2 )若3x=12, 則 x=4()
( 3 )若x-4>12 則 x>16()
( 4 )若3x>12則 x>4()
【設(shè)計意圖】(1)、(2)小題喚起對舊知識等式的基本性質(zhì)的回憶,(3)、(4)小題引導(dǎo)學生大膽說出自己的想法。通過復(fù)習既找準了舊知停靠點,又創(chuàng)設(shè)了一種情境,給學生提供了類比、想象的空間,為后續(xù)學習做好了鋪墊。
教師導(dǎo)語:當我們開始研究不等式的時候,自然會聯(lián)想到它是否與等式有相類似的性質(zhì)。這節(jié)課我們就通過類比來探究不等式的基本性質(zhì)。
溫故知新
問題1.由等式性質(zhì)1你能猜想一下不等式具有什么樣的性質(zhì)嗎?
等式性質(zhì)1:等式兩邊都加上或減去同一個數(shù)(或同一個整式),所得結(jié)果仍是不等式。
估計學生會猜:不等式兩邊都加上或減去同一個數(shù)(或同一個整式),所得結(jié)果仍是不等式。教師引導(dǎo):“=”沒有方向性,所以可以說所得結(jié)果仍是等式,而不等號:“>,<,≥,≤”具有方向性,我們應(yīng)該重點研究它在方向上的變化。
問題2.你能通過實驗、猜想,得出進一步的結(jié)論嗎?
同桌同學通過實例驗證得出結(jié)論,師生共同總結(jié)不等式性質(zhì)1。
問題3.你能由等式性質(zhì)2進一步猜想不等式還具有什么性質(zhì)嗎?
等式性質(zhì)2:等式兩邊都乘或除以同一個數(shù)(除數(shù)不能是0),等式依然成立。
估計學生會猜:不等式兩邊都乘或除以同一個數(shù)(除數(shù)不能是0),不等號的方向不變。
你能和小伙伴一起來驗證你們的猜想嗎?(教師鼓勵學生實踐是檢驗真理的唯一標準。)
學生在小組內(nèi)合作交流,發(fā)現(xiàn)了在不等式兩邊都乘或除以同一個數(shù)時,不等號的方向會出現(xiàn)兩種情況。教師進一步引導(dǎo)學生通過分析、比較探索規(guī)律,從而形成共識,歸納概括出不等式性質(zhì)2和3。
【設(shè)計意圖】猜想作為教學的出發(fā)點,啟發(fā)學生積極思維,探索規(guī)律,讓學生在“做”數(shù)學中學數(shù)學,真正成為學習的主人。
問題4.在不等式兩邊都乘0會出現(xiàn)什么情況?
問題5.如果a、b、c表示任意數(shù),且a
【設(shè)計意圖】把文字語言轉(zhuǎn)化為數(shù)學語言,是數(shù)學學習中的一項基本能力,這里有意識地進行滲透,指導(dǎo)學生先作變形再填不等號,對字母c的取值進行討論,培養(yǎng)學生的分類意識,對培養(yǎng)學生的思維能力有十分重要的意義。
【想一想】不等式的基本性質(zhì)與等式的基本性質(zhì)有什么相同之處,有什么不同之處?
學生思考,獨立總結(jié)異同點。
【設(shè)計意圖】引導(dǎo)學生把二者進行比較,有助于加深對不等式基本性質(zhì)的理解,促成知識的“正遷移”。
綜合訓練:你能運用不等式的基本性質(zhì)解決問題嗎?
1、課本62頁例3
教師引導(dǎo)學生觀察每個問題是由a>b經(jīng)過怎樣的變形得到的,應(yīng)該應(yīng)用不等式的哪條基本性質(zhì)。由學生思考后口答。
【設(shè)計意圖】對學生進行推理訓練,讓學生明白,敘述要有根據(jù),進一步提高學生的邏輯思維能力和語言表達能力。
2、你認為在運用不等式的基本性質(zhì)時哪一條性質(zhì)最容易出錯,應(yīng)該怎樣記住?
【設(shè)計意圖】及時進行學習反思,總結(jié)經(jīng)驗,通過相互評價學習效果,及時發(fā)現(xiàn)問題、解決知識盲點,培養(yǎng)學生的創(chuàng)新精神和實踐能力。
3.小明的`困惑:
小明用不等式的基本性質(zhì)將不等式m>n進行變形,兩邊都乘以4,4m>4n,兩邊都減去4m, 0>4n-4m,即0>4(n-m),兩邊都除以(n-m),得0>4,0怎么會大于4呢?
小明可糊涂了……聰明的同學,你能告訴小軍他究竟錯在什么地方嗎?同桌討論。
【設(shè)計意圖】通過替人排憂解難,強化對不等式三個基本性質(zhì)的理解與運用,突出重點,突破難點。
4.火眼金睛
、賏>2, 則3a___2a
②2a>3a,則 a ___ 0
【設(shè)計意圖】通過變式訓練,加深學生對新知的理解,培養(yǎng)學生分析、探究問題的能力。
課堂小結(jié):
這節(jié)課你有哪些收獲?有何體會?你認為自己的表現(xiàn)如何?教師引導(dǎo)學生回顧、思考、交流。
【設(shè)計意圖】回顧、總結(jié)、提高。學生自覺形成本節(jié)的課的知識網(wǎng)絡(luò)。
思考題:你來決策
咱們班的王帥同學準備在五、一期間和他的爸爸、媽媽外出旅游。青年旅行社的標準為:大人全價,小孩半價;方正旅行社的標準為:大人、小孩一律八折。若兩家旅行社的基本價一樣,你能幫王帥同學考慮一下選擇哪家旅行社更合算嗎?
【設(shè)計意圖】利用所學的數(shù)學知識,解決生活中的問題,加強數(shù)學與生活的聯(lián)系,體驗數(shù)學是描述現(xiàn)實世界的重要手段。既培養(yǎng)了學生用數(shù)學知識解決實際問題的能力,又樹立了學好數(shù)學的信心。
高一數(shù)學的教學計劃3
一、基本情況
高一計算機1323班共有學生55人,其中男生42人,女生13人。高一新生剛進入高中,學習環(huán)境新,好奇心強.但是普遍學習習慣不好,數(shù)學基礎(chǔ)較差,學習興趣不濃.所以工作的重心在于提高學生對數(shù)學科的興趣,以及在補足初中知識漏洞的前提下,進一步的夯實學生基礎(chǔ).
二、指導(dǎo)思想
全面提高學生的科學文化素養(yǎng),圍著課堂教學這個中心,更新教育觀念,進一步提高教學水平,培養(yǎng)學生分析問題解決問題的能力,同時扎扎實實抓好基礎(chǔ)知識,注意學生習慣的培養(yǎng),為三年后高考打下堅實的基礎(chǔ)。
三、工作任務(wù)和措施
任務(wù):基礎(chǔ)模塊第一章至第四章
第一章集合(9月份
第二章不等式(10月份
第三章函數(shù)(11月份
第四章指數(shù)函數(shù)與對數(shù)函數(shù)(12月份-1月份
措施:
1.夯實三基
知識、技能和能力三者關(guān)系是互相依存、互相促進的整體,能力是在知識的教學和技能的培訓中形成的`,通過數(shù)學思想的形成和數(shù)學方法的掌握,能力才得到培養(yǎng)和發(fā)展,同時,能力的提高又會對知識的理解和掌握起促進作用。因此,在教學中應(yīng)注意:
A.教學面向全體學生。
B.重視概念的歸納、規(guī)律的總結(jié)、技能的訓練。
C.重視知識的產(chǎn)生、發(fā)展過程。
D.加強知識過關(guān)檢測,做好查漏補缺工作。
2.優(yōu)化課堂教學結(jié)構(gòu)
A.精心設(shè)計課堂教學:
B.課堂練習典型化;
C.教學語言精練化
D.板書規(guī)范化。
3.加強學習方法指導(dǎo):
A.指導(dǎo)學生看書,培養(yǎng)學生主動學習的習慣。
B.指導(dǎo)學生整理知識,總結(jié)解題規(guī)律,歸納典型例題解法及一題多解與多題一解。
4.加強學風建設(shè)與學習習慣的培養(yǎng)。
適當安排作業(yè),認真檢查督促,加強優(yōu)生和后進生的輔導(dǎo),對學生的作業(yè)盡量做到面批。
四、各章節(jié)授課具體時間安排:
(基礎(chǔ)模塊第一章集合(約12課時
(1理解集合、元素及其關(guān)系,掌握集合的表示法。
(2掌握集合之間的關(guān)系(子集、真子集、相等。
(3理解集合的運算(交、并、補。
(4了解充要條件。
(基礎(chǔ)模塊第二章不等式(約12課時
(1理解不等式的基本性質(zhì)。
(2掌握區(qū)間的概念。高一上數(shù)學教學計劃高一上數(shù)學教學計劃。
(3掌握一元二次不等式的解法。
基礎(chǔ)模塊)第三章函數(shù)(約20課時
(1理解函數(shù)的概念和函數(shù)的三種表示法。
(2理解函數(shù)的單調(diào)性與奇偶性。
(3能運用函數(shù)的知識解決有關(guān)實際問題。
(基礎(chǔ)模塊第四章指數(shù)函數(shù)與對數(shù)函數(shù)(約20課時
(1理解有理指數(shù)冪,掌握實數(shù)指數(shù)冪及其運算法則,掌握利用計算器進行冪的計算方法。
(2了解冪函數(shù)的概念及其簡單性質(zhì)。
(3理解指數(shù)函數(shù)的概念、圖像及性質(zhì)。
(4理解對數(shù)的概念(含常用對數(shù)、自然對數(shù)及積、商、冪的對數(shù),掌握利用計算器求對數(shù)值的方法。
(5理解對數(shù)函數(shù)的概念、圖像及性質(zhì)。
(6能運用指數(shù)函數(shù)與對數(shù)函數(shù)的知識解決有關(guān)實際問題。
高一數(shù)學的教學計劃4
教學分析
課本從學生熟悉的集合(自然數(shù)的集合、有理數(shù)的集合等)出發(fā),通過類比實數(shù)間的大小關(guān)系引入集合間的關(guān)系,同時,結(jié)合相關(guān)內(nèi)容介紹子集等概念.在安排這部分內(nèi)容時,課本注重體現(xiàn)邏輯思考的方法,如類比等.
值得注意的問題:在集合間的關(guān)系教學中,建議重視使用Venn圖,這有助于學生通過體會直觀圖示來理解抽象概念;隨著學習的深入,集合符號越來越多,建議教學時引導(dǎo)學生區(qū)分一些容易混淆的關(guān)系和符號,例如∈與?的區(qū)別.
三維目標
1.理解集合之間包含與相等的含義,能識別給定集合的子集,能判斷給定集合間的關(guān)系,提高利用類比發(fā)現(xiàn)新結(jié)論的能力.
2.在具體情境中,了解空集的含義,掌握并能使用Venn圖表達集合的關(guān)系,加強學生從具體到抽象的思維能力,樹立數(shù)形結(jié)合的思想.
重點難點
教學重點:理解集合間包含與相等的含義.
教學難點:理解空集的含義.
課時安排
1課時
教學過程
導(dǎo)入新課
思路1.實數(shù)有相等、大小關(guān)系,如5=5,5<7 5="">3等等,類比實數(shù)之間的關(guān)系,你會想到集合之間有什么關(guān)系呢?(讓學生自由發(fā)言,教師不要急于作出判斷,而是繼續(xù)引導(dǎo)學生)
(2)學生畫出y=2x和y=3x圖象,得出函數(shù)遞增速度的差異.
(3)畫出y=2x和y=0.5x圖象,得到底數(shù)互為倒數(shù)的指數(shù)函數(shù)圖象關(guān)于y軸對稱.)
師:(板書學生交流結(jié)果,整理成表格.注意區(qū)分“函數(shù)性質(zhì)”與“函數(shù)之間的關(guān)系”.若有學生試圖說明結(jié)論的合理性,可提供機會.)大家認為底數(shù)a>1或0
[階段小結(jié)] 指數(shù)函數(shù)y=ax(a>0且a≠1)具有以下性質(zhì):
、俣x域為R.
②值域為(0, +∞).
、蹐D象過定點(0, 1).
、芊瞧娣桥己瘮(shù).
⑤當a>1時,函數(shù)y=ax在(-∞, +∞)上單調(diào)遞增;
當0
⑥函數(shù)y=ax與y=()x (a>0且a≠1)圖象關(guān)于y軸對稱.
、咧笖(shù)函數(shù)y=ax與y=bx(a>b)的圖象有如下關(guān)系:
x∈(-∞, 0)時,y=ax圖象在y=bx圖象下方;
x=0時,兩圖象相交;
x∈(0,+∞)時,y=ax圖象在y=bx圖象上方.
[意圖分析]通過探究活動,使學生獲得對指數(shù)函數(shù)圖象的直觀認識.學生觀察圖象,是對圖形語言的理解;根據(jù)圖象描述性質(zhì),是將圖形語言轉(zhuǎn)化為符號或文字語言.對函數(shù)的理解,是建立在三種語言相互轉(zhuǎn)化的基礎(chǔ)上的.在交流匯報過程中,一方面要通過對探究較深入學生的具體研究過程的剖析,總結(jié)提升學習方法,優(yōu)化學習策略;另一方面要關(guān)注部分探究意識與能力都薄弱的學生的表現(xiàn),鼓勵他們大膽發(fā)言,激勵他們主動參與活動,讓全體學生成為真正的學習主體.自主探究活動能充分激發(fā)學生的相互學習能力,能有效幫助學生突破難點.
3.新知運用鞏固深化
(方案一)(分析函數(shù)性質(zhì)的用途)
師:現(xiàn)在我們了解了指數(shù)函數(shù)的定義和性質(zhì),它們有什么用處呢?
師:函數(shù)的定義域是函數(shù)的基礎(chǔ),是運用性質(zhì)的前提.值域是研究函數(shù)最值的前提.具備奇偶性的函數(shù),可以利用對稱性簡化研究.指數(shù)函數(shù)過定點(0, 1),說明可以將常數(shù)1轉(zhuǎn)化為指數(shù)式,即1=20=30=…那么函數(shù)單調(diào)性有什么用呢?
生:可以求最值,可以比較兩個函數(shù)值的大小.
師:那你能舉出運用指數(shù)函數(shù)單調(diào)性比大小的例子嗎?(提示:既然是運用指數(shù)函數(shù)單調(diào)性,那應(yīng)該有指數(shù)式.)
生:(舉例并判斷大小.)
師:你考察了哪個指數(shù)函數(shù)?怎么想到的?(規(guī)范表述)
師:以往我們計算出冪的值來比大小,現(xiàn)在我們指數(shù)函數(shù)的單調(diào)性,不用計算就可以比較兩個冪的大小.(出示例1)
(方案二)
師:現(xiàn)在我們了解了指數(shù)函數(shù)的定義和性質(zhì),它們有什么用處呢?
師:(口述并板書)你能比較32與33的大小嗎?
生:直接計算比較.
師:那比較30.2與30.3的大小呢?能不能不計算呢?
生:利用函數(shù)y=3x的單調(diào)性.
師:能具體說明嗎?(引導(dǎo)學生規(guī)范表達)我們再試一試.
(出示例1)
【例1】比較下列各組數(shù)中兩個值的大。
、1.52.5,1.53.2;②0.5_1.2,0.5_1.5;③1.50.3,0.81.2.
[設(shè)計意圖] 引導(dǎo)學生運用指數(shù)函數(shù)性質(zhì).對于 32與33的大小比較,學生更可能計算出冪的值直接比較.變式后,學生可能作差或作商比較,轉(zhuǎn)化為比較30.1與1的大小,進而運用指數(shù)函數(shù)單調(diào)性,也可能直接運用單調(diào)性.初步運用新知解決問題,注重題意理解,擴大知識遷移,感悟解題方法,達到對新知鞏固記憶,加深理解.
[師生活動]學生板演,教師組織學生點評.
[教學預(yù)設(shè)] ①②兩題,學生能運用指數(shù)函數(shù)單調(diào)性解決.②題學生可能得到錯誤答案,教師可組織相互點評,規(guī)范表達,正確運用性質(zhì).③學生可能運用不同方法,應(yīng)給予充分的時間,并在具體問題解決后引導(dǎo)學生總結(jié)一般方法.
師:(引導(dǎo)學生規(guī)范表達)你考察了哪個指數(shù)函數(shù)?根據(jù)函數(shù)的什么性質(zhì)?
師:(對③的引導(dǎo))你考慮利用哪個函數(shù)?是y=1.5x還是y=0.8x?這兩個函數(shù)有什么關(guān)聯(lián)?(引導(dǎo)學生畫出圖象,從形上提示:圖象有什么關(guān)聯(lián)?)
生:它們都過點(0, 1).
師:也就是說,可以將1轉(zhuǎn)化為指數(shù)形式,即1=1.50=0.80.那接下來呢?
生:比較1.50.3,0.81.2和1的大小.
師:我們找到了一個比大小的中間量.以往我們計算出冪的值來比大小,現(xiàn)在我們指數(shù)函數(shù)的單調(diào)性,不用計算就可以比較兩個冪的大小.
【例2】
、僖阎3x≥30.5,求實數(shù)x的取值范圍;
②已知0.2x<25,求實數(shù)x的取值范圍.
[設(shè)計意圖]指數(shù)函數(shù)單調(diào)性的逆用,同時考查指數(shù)函數(shù)的定義域.
4.概括知識總結(jié)方法
〖問題4本節(jié)課我們學習了哪些知識?你還學會了哪些方法?
[設(shè)計意圖] 回顧所學內(nèi)容,深化認知.開放式小結(jié),不同學生有不同的收獲.
[師生活動]學生發(fā)言總結(jié),交流所得.
[教學預(yù)設(shè)]
通過本節(jié)課對指數(shù)函數(shù)圖象和性質(zhì)的研究,我們獲得了以下知識和方法:
、僦笖(shù)函數(shù)的定義與性質(zhì);
、谘芯亢瘮(shù)的一般方法和步驟.
師:本節(jié)課我們學習了什么知識?
生:指數(shù)函數(shù)的定義和性質(zhì).
師:回顧我們的研究過程,我們是怎樣研究指數(shù)函數(shù)的?
生:先確定研究的內(nèi)容:定義域、值域、單調(diào)性、奇偶性和其它性質(zhì).
生:然后從幾個具體的指數(shù)函數(shù)開始,畫出圖象,列出性質(zhì),最后得到一般情況.
師:這是一種從特殊到一般的研究方法.研究指數(shù)函數(shù)的方法,也是研究函數(shù)的一般方法,今后我們還會運用這樣的方法研究新的函數(shù).
[意圖分析]課堂總結(jié)不是對所學知識的簡單回顧,應(yīng)讓學生在知識、方法和策略上多層次地整理,促進學生理解所用學習方法的合理性與普遍性,使學生獲得知識與能力的共同進步.
5.分層作業(yè),因材施教
(1)感受理解:課本第54頁,習題2.2(2):1,2,3,4;
(2)思考運用:運用今天的研究方法,你還能得到指數(shù)函數(shù)的其它性質(zhì)嗎?
[設(shè)計意圖]分層布置作業(yè),“感受理解”面向全體學生,旨在掌握指數(shù)函數(shù)的圖象與性質(zhì).“思考運用”提供學生運用函數(shù)研究的一般方法自主研究的機會.
、觯毯蠓此蓟仡
一、對于指數(shù)函數(shù)概念的認識
指數(shù)函數(shù)是一種函數(shù)模型,其基本特征是自變量在指數(shù)位置.底數(shù)取值范圍有規(guī)定,使得這一模型形式簡單又不失本質(zhì).不必糾結(jié)于“y=22x是否為指數(shù)函數(shù)”,把重點放在概念的合理性的理解以及體會模型思想.
二、對于培養(yǎng)學生思維習慣的考慮
在學生自主探索的過程中,教師應(yīng)注意培養(yǎng)學生良好的思維習慣.實際上,選擇底數(shù)a的數(shù)據(jù)的大小和數(shù)量,需要對指數(shù)函數(shù)的性質(zhì)有預(yù)判;從列表到作圖的過程中,都可以感受到指數(shù)函數(shù)單調(diào)性等性質(zhì);觀察并歸納性質(zhì),既需要特殊到一般的推理模式,也應(yīng)養(yǎng)成有序進行觀察和歸納的良好的思維習慣.對所歸納的指數(shù)函數(shù)的性質(zhì),應(yīng)根據(jù)學生已有的知識水平或教學要求進行證明或合理的說明.學生不僅學到了數(shù)學知識,也初步體驗了研究問題的基本方法.
三、關(guān)于設(shè)計定位的反思
本節(jié)課的教學設(shè)計,力圖體現(xiàn)因材施教原則。不同的學情下,教師應(yīng)采用不同的教學策略.如果學生基礎(chǔ)相對薄弱,問題的提出可以分層次進行。另外,注意通過“你是怎么想的?”“你同意他的意見嗎?為什么”等問話形式,促使學生暴露思維過程.、
高一數(shù)學的教學計劃6
本節(jié)課的教學內(nèi)容,是指數(shù)函數(shù)的概念、性質(zhì)及其簡單應(yīng)用。教學重點是指數(shù)函數(shù)的圖像與性質(zhì)。
I這是指數(shù)函數(shù)在本章的位置。
指數(shù)函數(shù)是學生在學習了函數(shù)的概念、圖象與性質(zhì)后,學習的第一個新的初等函數(shù)。它是一種新的函數(shù)模型,也是應(yīng)用研究函數(shù)的一般方法研究函數(shù)的一次實踐。指數(shù)函數(shù)的學習,一方面可以進一步深化對函數(shù)概念的理解,另一方面也為研究對數(shù)函數(shù)、冪函數(shù)、三角函數(shù)等初等函數(shù)打下基礎(chǔ)。因此,本節(jié)課的學習起著承上啟下的作用,也是學生體驗數(shù)學思想與方法應(yīng)用的過程。
指數(shù)函數(shù)模型在貸款利率的計算以及考古中年代的測算等方面有著廣泛地應(yīng)用,與我們的日常生活、生產(chǎn)和科學研究有著緊密的聯(lián)系,因此,學習這部分知識還有著一定的現(xiàn)實意義。
、颍虒W目標設(shè)置
1。學生能從具體實例中概括指數(shù)函數(shù)典型特征,并用數(shù)學符號表示,建構(gòu)指數(shù)函數(shù)的概念。
2。學生通過自主探究,掌握指數(shù)函數(shù)的圖象特征與性質(zhì),能夠利用指數(shù)函數(shù)的性質(zhì)比較兩個冪的大小。
3。學生運用數(shù)形結(jié)合的思想,經(jīng)歷從特殊到一般、具體到抽象的研究過程,體驗研究函數(shù)的一般方法。
4。在探究活動中,學生通過獨立思考和合作交流,發(fā)展思維,養(yǎng)成良好思維習慣,提升自主學習能力。
、螅畬W生學情分析
授課班級學生為南京師大附中實驗班學生。
1。學生已有認知基礎(chǔ)
學生已經(jīng)學習了函數(shù)的概念、圖象與性質(zhì),對函數(shù)有了初步的認識。學生已經(jīng)完成了指數(shù)取值范圍的擴充,具備了進行指數(shù)運算的能力。學生已有研究一次函數(shù)、二次函數(shù)等初等函數(shù)的直接經(jīng)驗。學生數(shù)學基礎(chǔ)與思維能力較好,初步養(yǎng)成了獨立思考、合作交流、反思質(zhì)疑等學習習慣。
2。達成目標所需要的認知基礎(chǔ)
學生需要對研究的目標、方法和途徑有初步的認識,需要具備較好的歸納、猜想和推理能力。
3。難點及突破策略
難點:1。 對研究函數(shù)的一般方法的認識。
2。 自主選擇底數(shù)不當導(dǎo)致歸納所得結(jié)論片面。
突破策略:
1。教師引導(dǎo)學生先明確研究的內(nèi)容與方法,從總體上認識研究的目標與手段。
2。組織匯報交流活動,展現(xiàn)思維過程,相互評價,相互啟發(fā),促進反思。
3。對猜想進行適當?shù)刈C明或說明,合情推理與演繹推理相結(jié)合。
、簦虒W策略設(shè)計
根據(jù)學生已有學習基礎(chǔ),為提升學生的學習能力,本節(jié)課的教學,采用自主學習方式。通過教師引領(lǐng)學生經(jīng)歷研究函數(shù)及其性質(zhì)的過程,認識研究的目標與策略,在研究的過程中逐漸完善研究的方法與手段。
學生的自主學習,具體落實在三個環(huán)節(jié):
(1)建構(gòu)指數(shù)函數(shù)概念時,學生自主舉例,歸納特征,并用符號表示,討論底數(shù)的取值范圍,完善概念。
(2)探究指數(shù)函數(shù)圖象特征與性質(zhì)時,學生自選底數(shù),開展自主研究,并通過匯報交流相互提升。
(3)性質(zhì)應(yīng)用階段,學生自主舉例說明指數(shù)函數(shù)性質(zhì)的應(yīng)用。
研究函數(shù)的性質(zhì),可以從形和數(shù)兩個方面展開。從圖形直觀和數(shù)量關(guān)系兩個方面,經(jīng)歷從特殊到一般、具體到抽象的過程。借助具體的指數(shù)函數(shù)的圖象,觀察特征,發(fā)現(xiàn)函數(shù)性質(zhì),進而猜想、歸納一般指數(shù)函數(shù)的圖象特征與性質(zhì),并適時應(yīng)用函數(shù)解析式輔以必要的說明和證明。
、酰虒W過程設(shè)計
1。創(chuàng)設(shè)情境建構(gòu)概念
師:我們已經(jīng)學習了函數(shù)的概念、圖象與性質(zhì),大家都知道函數(shù)可以刻畫兩個變量之間的關(guān)系。你能用函數(shù)的觀點分析下面的例子嗎?
師:大家知道細胞分裂的規(guī)律嗎?(出示情境問題)
[情境問題1]某細胞分裂時,由一個分裂成2個,2個分裂成4個,4個分裂成8個,……如果細胞分裂x次,相應(yīng)的細胞個數(shù)為y,如何描述這兩個變量的關(guān)系?
[情境問題2]某種放射性物質(zhì)不斷變化為其他物質(zhì),每經(jīng)過一年,這種物質(zhì)剩余的質(zhì)量是原來的84%。如果經(jīng)過x年,該物質(zhì)剩余的質(zhì)量為y,如何描述這兩個變量的關(guān)系?
[師生活動]引導(dǎo)學生分析,找到兩個變量之間的函數(shù)關(guān)系,并得到解析式y(tǒng)=2x和y=0。84x。
師:這樣的函數(shù)你見過嗎?是一次函數(shù)嗎?二次函數(shù)?這樣的函數(shù)有什么特點?你能再舉幾個例子嗎?
〖問題1類似的函數(shù),你能再舉出一些例子嗎?這些函數(shù)有什么共同特點?能否寫成一般形式?
[設(shè)計意圖]通過列舉生活中指數(shù)函數(shù)的具體例子,感受指數(shù)函數(shù)與實際生活的聯(lián)系。引導(dǎo)學生從具體實例中概括典型特征,初步形成指數(shù)函數(shù)的概念,并用數(shù)學符號表示。初步得到y(tǒng)=ax這個形式后,引導(dǎo)學生關(guān)注底數(shù)的取值范圍,完成概念建構(gòu)。指數(shù)范圍擴充到實數(shù)后,關(guān)注x∈R時,y=ax是否始終有意義,因此規(guī)定a>0。a≠1并不是必須的,常函數(shù)在高等數(shù)學里是基本函數(shù),也有重要的意義。為了使指數(shù)函數(shù)與對數(shù)函數(shù)能構(gòu)成反函數(shù),規(guī)定a≠1。此處不需對此解釋,只要補充說“1的任何次方總是1,所以通常還規(guī)定a≠1”。
[師生活動]學生舉例,教師引導(dǎo)學生觀察,其共同特點是自變量在指數(shù)位置,從而初步建立函數(shù)模型y=ax。
[教學預(yù)設(shè)]學生能舉出具體的例子——y=3x,y=0。5x…。如出現(xiàn)y=(-2)x最好,更便于引發(fā)對a的討論,但一般不會出現(xiàn)。進而提出這類函數(shù)一般形式y(tǒng)=ax。
、觯毯蠓此蓟仡
一、對于指數(shù)函數(shù)概念的`認識
指數(shù)函數(shù)是一種函數(shù)模型,其基本特征是自變量在指數(shù)位置。底數(shù)取值范圍有規(guī)定,使得這一模型形式簡單又不失本質(zhì)。不必糾結(jié)于“y=22x是否為指數(shù)函數(shù)”,把重點放在概念的合理性的理解以及體會模型思想。
二、對于培養(yǎng)學生思維習慣的考慮
在學生自主探索的過程中,教師應(yīng)注意培養(yǎng)學生良好的思維習慣。實際上,選擇底數(shù)a的數(shù)據(jù)的大小和數(shù)量,需要對指數(shù)函數(shù)的性質(zhì)有預(yù)判;從列表到作圖的過程中,都可以感受到指數(shù)函數(shù)單調(diào)性等性質(zhì);觀察并歸納性質(zhì),既需要特殊到一般的推理模式,也應(yīng)養(yǎng)成有序進行觀察和歸納的良好的思維習慣。對所歸納的指數(shù)函數(shù)的性質(zhì),應(yīng)根據(jù)學生已有的知識水平或教學要求進行證明或合理的說明。學生不僅學到了數(shù)學知識,也初步體驗了研究問題的基本方法。
三、關(guān)于設(shè)計定位的反思
本節(jié)課的教學設(shè)計,力圖體現(xiàn)因材施教原則。不同的學情下,教師應(yīng)采用不同的教學策略。如果學生基礎(chǔ)相對薄弱,問題的提出可以分層次進行。另外,注意通過“你是怎么想的?”“你同意他的意見嗎?為什么”等問話形式,促使學生暴露思維過程。
高一數(shù)學的教學計劃7
一、內(nèi)容及其解析
1。內(nèi)容:這是一節(jié)建立直線的點斜式方程(斜截式方程)的概念課。學生在此之前已學習了在直角坐標系內(nèi)確定直線一條直線幾何要素,已知直線上的一點和直線的傾斜角(斜率)可以確定一條直線,已知兩點也可以確定一條直線。本節(jié)要求利用確定一條直線的幾何要素直線上的一點和直線的傾斜角,建立直線方程,通過方程研究直線。
2。解析:直線方程屬于解析幾何的基礎(chǔ)知識,是研究解析幾何的開始。從整體來看,直線方程初步體現(xiàn)了解析幾何的實質(zhì)用代數(shù)的知識研究幾何問題。從集合與對應(yīng)的角度構(gòu)建了平面上的直線與二元一次方程的一一對應(yīng)關(guān)系,是學習解析幾何的基礎(chǔ)。對后續(xù)圓、直線與圓的位置關(guān)系等內(nèi)容的學習,無論是知識上還是方法上都有著積極的意義。從本節(jié)來看,學生對直線既是熟悉的,又是陌生的。熟悉是學生知道一次函數(shù)的圖像是直線,陌生是用解析幾何的方法求直線的方程。直線的點斜式方程是推導(dǎo)其它直線方程的基礎(chǔ),在直線方程中占有重要地位。
二、目標及其解析
1。目標
掌握直線的點斜式和斜截式方程的推導(dǎo)過程,并能根據(jù)條件熟練求出直線的點斜式方程和斜截式方程。
2。解析
、僦乐本上的一點和直線的傾斜角的代數(shù)含義是這個點的坐標和這條直線的斜率。知道建立直線方程就是將確定直線的幾何要素用代數(shù)形式表示出來。
②理解建立直線點斜式方程就是用直線上任意一點與已知點這兩個點的坐標表示斜率。
、劢(jīng)歷直線的點斜式方程的推導(dǎo)過程,體會直線和直線方程之間的關(guān)系,滲透解析幾何的基本思想。
、茉谟懻撝本的點斜式方程的應(yīng)用條件與建立直線的斜截式方程中,體會分類討論的思想,體會特殊與一般思想。
、菰诮⒅本方程的過程中,體會數(shù)形結(jié)合思想。在直線的斜截式方程與一次函數(shù)的比較中,體會兩者區(qū)別與聯(lián)系,特別是體會兩者數(shù)形結(jié)合的區(qū)別,進一步體會解析幾何的基本思想。
三、教學問題診斷分析
1。學生在初中已經(jīng)學習了一次函數(shù),知道一次函數(shù)的圖像是一條直線,因此學生對研究直線的方程可能心存疑慮,產(chǎn)生疑慮的原因是學生初次接觸到解析幾何,不明確解析幾何的實質(zhì),因此應(yīng)跟學生講請解析幾何與函數(shù)的區(qū)別。
2。學生能聽懂建立直線的點斜式的過程,但可能會不知道為什么要這么做。因此還是要跟學生講清坐標法的實質(zhì)把幾何問題轉(zhuǎn)化成代數(shù)問題,用代數(shù)運算研究幾何圖形性質(zhì)。
3。由于學生沒有學習曲線與方程,因此學生難以理解直線與直線的方程,甚至認為驗證直線是方程的直線是多余的。這里讓學生初步理解就行,隨著后面教學的深入和反復(fù)滲透,學生會逐步理解的。
四、教法與學法分析
1、教法分析
新課標指出,學生是教學的主體。教師要以學生活動為主線。在原有知識的基礎(chǔ)上,構(gòu)建新的知識體系。本節(jié)課可采用啟發(fā)式問題教學法教學。通過問題串,啟發(fā)學生自主探究來達到對知識的發(fā)現(xiàn)和接受。通過縱向挖掘知識的深度,橫向加強知識間的聯(lián)系,培養(yǎng)學生的創(chuàng)新精神。并且使學生的有效思維量加大,隨著對新知識和方法產(chǎn)生有意注意,使能力與知識的形成相伴而行,使學生在解決問題的同時,形成方法。
2、學法分析
改善學生的學習方式是高中數(shù)學課程追求的基本理念。學生的數(shù)學學習活動不僅僅限于對概念結(jié)論和技能的記憶、模仿和積累。獨立思考,自主探索,動手實踐,合作交流,閱讀自學等都是學習數(shù)學的重要方式,這些方式有助于發(fā)揮學生學習主觀能動性,使學生的學習過程成為在教師引導(dǎo)下的再創(chuàng)造的過程。為學生形成積極主動的、多樣的學習方式創(chuàng)造有利的條件。以激發(fā)學生的學習興趣和創(chuàng)新潛能,幫助學生養(yǎng)成獨立思考,積極探索的習慣。
通過直線的點斜式方程的推導(dǎo),加深對用坐標求方程的理解;通過求直線的點斜式方程,理解一個點和方向可以確定一條直線;通過求直線的斜截式方程,熟悉用待定系數(shù)法求的過程,讓學生利用圖形直觀啟迪思維,實現(xiàn)從感性認識到理性思維質(zhì)的飛躍。讓學生從問題中質(zhì)疑、嘗試、歸納、總結(jié),培養(yǎng)學生發(fā)現(xiàn)問題、研究問題和分析解決問題的能力。
五、教學過程設(shè)計
問題1:在直角坐標系內(nèi)確定直線一條直線幾何要素是什么?如何將這些幾何要素代數(shù)化?
[設(shè)計意圖]讓學生理解直線上的一點和直線的傾斜角的代數(shù)含義是這個點的坐標和這條直線的斜率。
問題2:建立直線方程的實質(zhì)是什么?
[設(shè)計意圖]建立直線方程就是將確定直線的幾何要素用代數(shù)形式表示出來。也就是將直線上點的'坐標滿足的條件用方程表示出來。
引例:若直線經(jīng)過點,斜率為,點在直線上運動,那么點的坐標滿足什么條件?
[設(shè)計意圖]讓學生通過具體例子經(jīng)歷求直線的點斜式方程的過程,初步了解求直線方程的步驟。
問題2。1要得到坐標滿足什么條件,就是找出與、斜率為之間的關(guān)系,它們之間有何種關(guān)系?
(過與兩點的直線的斜率為)
[設(shè)計意圖]讓學生尋找確定直線的條件,體會動中找靜。
問題2。2如何將上述條件用代數(shù)形式表示出來?
[設(shè)計意圖]讓學生理解和體會用坐標表示確定直線的條件。
用代數(shù)式表示出來就是,即。
問題2。3為什么說是滿足條件的直線方程?
[設(shè)計意圖]讓學生初步感受直線與直線方程的關(guān)系。
此時的坐標也滿足此方程。所以當點在直線上運動時,其坐標滿足。
另外以方程的解為坐標的點也在直線上。
所以我們得到經(jīng)過點,斜率為的直線方程是。
問題2。4:能否說方程是經(jīng)過,斜率為的直線方程?
[設(shè)計意圖]讓學生初步感受直線(曲線)方程的完備性。盡管學生不可能深刻理解直線(曲線)方程的完備性,但在這里仍要滲透,為后因理解曲線方程的埋下伏筆。
問題3:推廣:已知一直線過一定點,且斜率為k,怎樣求直線的方程?
[設(shè)計意圖]由特殊到一般的學習思路,培養(yǎng)學生的是歸納概括能力。
問題4:直線上有無數(shù)個點,如何才能選取所有的點?以前學習中有沒有類似的處理問題的方法?
[設(shè)計意圖]引導(dǎo)學生掌握解析幾何取點的方法。
引導(dǎo)學生求出直線的點斜式方程
注:在求直線方程的過程中要說明直線上的點的坐標滿足方程,也要說明以方程的解為坐標的點在直線上,即方程的解與直線上的點的坐標是一一對應(yīng)的。為以后學習曲線與方程打好基礎(chǔ)。教學中讓學生感覺到這一點就可以。不必做過多解釋。
問題5:從求直線方程的過程中,你知道了求幾何圖形的方程的步驟有哪些嗎?
[設(shè)計意圖]讓學生初步感受解析幾何求曲線方程的步驟。
、僭O(shè)點———用表示曲線上任一點的坐標;
②尋找條件————寫出適合條件;
③列出方程————用坐標表示條件,列出方程
、芑啞匠虨樽詈喰问;
、葑C明————證明以化簡后的方程的解為坐標的點都是曲線上的點。
例1分別求經(jīng)過點,且滿足下列條件的直線的方程,并畫出直線。
、艃A斜角
、菩甭
、桥c軸平行;
⑷與軸平行。
[設(shè)計意圖]讓學生掌握直線的點斜式的使用條件,把直線的點斜式方程作公式用,讓學生熟練掌握直線的點斜式方程,并理解直線的點斜式方程使用條件。
注:⑴應(yīng)用直線的點斜式方程的條件是:①定點,②斜率存在,即直線的傾斜角。
、婆c的區(qū)別。后者表示過,且斜率為k的直線方程,而前者不包括。
、钱斨本的傾斜角時,直線的斜率,直線方程是。
、犬斨本的傾斜角時,此時不能直線的點斜式方程表示直線,直線方程是。
練習:1。。
2。已知直線的方程是,則直線的斜率為,傾斜角為,這條直線經(jīng)過的一個已知點為。
[設(shè)計意圖]在直線的點斜式方程的逆用過程中,進一步體會和理解直線的點斜式方程。
問題6:特別地,如果直線的斜率為,且與軸的交點坐標為(0,b),求直線的方程。
[設(shè)計意圖]由一般到特殊,培養(yǎng)學生的推理能力,同時引出截距的概念和直線斜截式方程。
將斜率與定點代入點斜式直線方程可得:
說明:我們把直線與y軸交點(0,b)的縱坐標b叫做直線在y軸上的截距。這個方程是由直線的斜率與它在y軸上的截距b確定,所以叫做直線的斜截式方程。
注(1)截距可取任意實數(shù),它不同于距離。直線在軸上截距的是。
(2)斜截式方程中的k和b有明顯的幾何意義。
(3)斜截式方程的使用范圍和斜截式一樣。
問題7:直線的斜截式方程與我們學過的一次函數(shù)的類似。我們知道,一次函數(shù)的圖像是一條直線。你如何從直線方程的角度認識一次函數(shù)?一次函數(shù)中k和b的幾何意義是什么?
[設(shè)計意圖]讓學生理解直線方程與一次函數(shù)的區(qū)別與聯(lián)系,進一步理解解析幾何的實質(zhì)。函數(shù)圖像是以形助數(shù),而解析幾何是以數(shù)論形。
練習:1。。
2。直線的斜率為2,在軸上的截距為,求直線的方程。
[設(shè)計意圖]讓學生明確截距的含義。
3。直線過點,它的斜率與直線的斜率相等,求直線的方程。
[設(shè)計意圖]讓學生進一步理解直線斜截式方程的結(jié)構(gòu)特征。
4。已知直線過兩點和,求直線的方程。
[設(shè)計意圖]讓學生能合理選擇直線方程的不同形式求直線方程,同時為下節(jié)學習直線的兩點式方程埋下伏筆。
例2:已知直線,試討論
。1)與平行的條件是什么?
。2)與重合的條件是什么?
。3)與垂直的條件是什么?
說明:①平行、重合、垂直都是幾何上位置關(guān)系,如何用代數(shù)的數(shù)量關(guān)系來刻畫。
、诮虒W中從兩個方面來說明,若兩直線平行,則且反過來,若且,則兩直線平行。
、廴糁本的斜率不存在,與之平行、垂直的條件分別是什么?
練習:
問題8:本節(jié)課你有哪些收獲?
要點:
。1)直線方程的點斜式、斜截式的命名都是顧名思義的,要會加以區(qū)別。
(2)兩種形式的方程要在熟記的基礎(chǔ)上靈活運用。
總結(jié):制定教學計劃的主要目的是為了全面了解學生的數(shù)學學習歷程,激勵學生的學習和改進教師的教學。
高一數(shù)學的教學計劃8
進一步深化教育教學改革,樹立全新的語文教育觀,構(gòu)建全新而科學的教學目標體系、數(shù)學網(wǎng)特制定高一上學期數(shù)學函數(shù)的基本性質(zhì)教學計劃模板。
教材分析
函數(shù)性質(zhì)是函數(shù)的固有屬性,是認識函數(shù)的重要手段,而函數(shù)性質(zhì)可以由函數(shù)圖象直觀的反應(yīng)出來,因此,函數(shù)各個性質(zhì)的學習要從特殊的、已知的圖象入手,抽象出此類函數(shù)的共同特征,并用數(shù)學語言來定義敘述;诖,本節(jié)的概念課教學要注重引導(dǎo),注重知識的形成過程,習題課教學以具體技巧、方法作為輔助練習。
學情分析
學生對函數(shù)概念重新認識之后,可以結(jié)合初中學過的簡單函數(shù)的圖象對函數(shù)性質(zhì)進行抽象定義。另外,為了方便學生做題及熟悉函數(shù)性質(zhì),還需要補充一些函數(shù)圖象的知識,例如平移、二次函數(shù)圖象、含絕對值函數(shù)的圖象、反比例函數(shù)及其變形的函數(shù)圖象?傊竟(jié)課的教學要從學生認知實際出發(fā),堅持從圖象中來到圖象中去的原則。
教學建議
以圖象作為切入點進行概念課教學,引導(dǎo)學生對概念的形成有一個清晰的認識,尤其是概念中的'部分關(guān)鍵詞要做深入講解,用函數(shù)圖象指導(dǎo)學生做題。
教學目標
知識與技能
(1)能理解函數(shù)單調(diào)性、最值、奇偶性的圖形特征
(2)會用單調(diào)性定義證明具體函數(shù)的單調(diào)性;會求函數(shù)的最值;會用奇偶性定義判斷函數(shù)奇偶性
(3)單調(diào)性與奇偶性的綜合題
(4)培養(yǎng)學生觀察、歸納、推理的抽象思維能力
過程與方法
(1)從觀察具體函數(shù)的圖像特征入手,結(jié)合相應(yīng)問題引導(dǎo)學生一步步轉(zhuǎn)化到用數(shù)學語言形式化的建立相關(guān)概念
(2)滲透數(shù)形結(jié)合的數(shù)學思想進行習題課教學
情感、態(tài)度與價值觀
(1)使學生學會認識事物的一般規(guī)律:從特殊到一般,抽象歸納
(2)培養(yǎng)學生嚴密的邏輯思維能力,進一步規(guī)范學生用數(shù)學語言、數(shù)學符號進行表達
課時安排
(1)概念課:單調(diào)性2課時,最值1課時,奇偶性1課時
(2)習題課:5課時
高一數(shù)學的教學計劃9
一、高考要求
、倭私庥成涞母拍,理解函數(shù)的概念;
②了解函數(shù)的單調(diào)性和奇偶性的概念,掌握判斷一些簡單函數(shù)單調(diào)性奇偶性的方法;
、哿私夥春瘮(shù)的概念及互為反函數(shù)的函數(shù)圖象間的關(guān)系,會求一些簡單函數(shù)的反函數(shù);
、芾斫夥謹(shù)指數(shù)冪的概念,掌握有理數(shù)冪的運算性質(zhì),掌握指數(shù)函數(shù)的概念、圖像和性質(zhì);
、堇斫鈱(shù)函數(shù)的概念、圖象和性質(zhì);⑥能夠應(yīng)用函數(shù)的性質(zhì)、指數(shù)函數(shù)和對數(shù)函數(shù)性質(zhì)解決某些簡單實際問題.
二、兩點解讀
重點:①求函數(shù)定義域;②求函數(shù)的值域或最值;③求函數(shù)表達式或函數(shù)值;④二次函數(shù)與二次方程、二次不等式相結(jié)合的有關(guān)問題;⑤指數(shù)函數(shù)與對數(shù)函數(shù);⑥求反函數(shù);⑦利用原函數(shù)和反函數(shù)的定義域值域互換關(guān)系解題.
難點:①抽象函數(shù)性質(zhì)的研究;②二次方程根的分布.
三、課前訓練
1.函數(shù)的定義域是 ( D )
(A) (B) (C) (D)
2.函數(shù)的反函數(shù)為 ( B )
(A) (B)
(C) (D)
3.設(shè)則 .
4.設(shè),函數(shù)是增函數(shù),則不等式的`解集為 (2,3)
四、典型例題
例1 設(shè),則的定義域為 ( )
(A) (B)
(C) (D)
解:∵在中,由,得, ∴,
∴在中,.
故選B
例2 已知是上的減函數(shù),那么a的取值范圍是 ( )
(A) (B) (C) (D)
解:∵是上的減函數(shù),當時,,∴;又當時,,∴,∴,且,解得:.∴綜上,,故選C
例3 函數(shù)對于任意實數(shù)滿足條件,若,則
解:∵函數(shù)對于任意實數(shù)滿足條件,
∴,即的周期為4,
高一數(shù)學的教學計劃10
一、制定的依據(jù)
隨著高一新教材的全面實施,本年級數(shù)學學科的教學進入了新課程改革實際階段,高一數(shù)學教學計劃。本計劃制定的依據(jù)主要是以下三個:
(1)二期課改的理念:一個為本、三類課程、三維目標
(2)新數(shù)學課程標準(詳見《廣州市中小學數(shù)學課程標準》)
(3)三本書:課本、教參、練習冊
(4)本校教研組對本學期學科的要求
二、基本情況分析
高一(3)全班共52人,男生24人,女生28人。上學期期末為區(qū)統(tǒng)測,平均分為54.1分,合格率為5%,優(yōu)秀率為0%,低分率為56%。高一(4)全班共53人,男生26人,女生27人。上學期期末為區(qū)統(tǒng)測,平均分為50.3分,合格率為3%,優(yōu)秀率為0%,低分率為62%。
從上學期期末統(tǒng)測來看,我班的學生在數(shù)學學習上可以說既有優(yōu)勢也有不足。優(yōu)勢是:1、有潛力;2、師生關(guān)系比較融洽,互相信任,配合默契。存在的不足是:1、聰明有余,而努力不足;2、男生聰明,上課積極,但不夠勤奮、踏實;女生認真,但上課效率不高,學得不夠靈活。3、從期末統(tǒng)測來看,差生的比重大;4、個別學生懶惰成性,學習態(tài)度、學習習慣極差;5、平時學習不夠用心,自覺,專心思考、鉆研的時間太少;6、一些同學學習成績起伏大,不穩(wěn)定;7、一些好學生滿足現(xiàn)狀,驕傲自滿,思想放松,導(dǎo)致成績退步;8、學習興趣,動力,上進心不足。
三、本學期力爭達到的目標
1、完成三類課程的教學任務(wù);A(chǔ)性課程要扎扎實實,夯實基礎(chǔ);拓展性課程要適當延伸和補充,進一步提高學生的能力和水平;研究性課程要重過程,不重結(jié)果,培養(yǎng)學生自主學習,探索研究的習慣與品質(zhì)。
2、完成新數(shù)學課程標準規(guī)定的教學目標。
3、進一步規(guī)范學生的學習習慣(包括預(yù)習、上課、作業(yè)、復(fù)習等)。
4、轉(zhuǎn)化學困生,提高成績。有些學生成績總是上不去,以為不是塊讀數(shù)學的料,久而久之,產(chǎn)生放棄數(shù)學,討厭數(shù)學的心理。由此,我在學習中,要多方面激發(fā)其學習興趣,耐心指導(dǎo),不斷激勵。讓其感受到成功的喜悅,增強自信心,讓其喜歡數(shù)學,找到學習數(shù)學的樂趣。
5、一手提高優(yōu)秀率,一手減少不及格人數(shù),力爭班與班之間無明顯差距。
四、具體措施
1、從期末統(tǒng)測來看,學困生的比重大,優(yōu)秀率沒有。為此要進行分層教學,學困生要注重基本題、常規(guī)題的反復(fù)操練,增強他們對數(shù)學學習的信心和興趣。好學生要避免無謂失分的情況,注重數(shù)學思想、方法、能力的培養(yǎng),著眼于高三?偠灾,學困生還是繼續(xù)注重雙基的訓練,將做過,講過的題目再反復(fù)操練。另外也不能忽略了高分學生的培養(yǎng),給好學生布置一些有質(zhì)量的課外題,定期查閱,批改,答疑。這樣,通過抓兩頭,促中間,帶動整體水平的提高。
2、提高教學質(zhì)量,要抓好課堂教學這一主陣地。根據(jù)課程標準,教參,切實落實教學目標,做到全面不遺漏,要以考綱為標準。另外,每節(jié)課要安排必要的練習時間,多安排隨堂測試是有好處的。試題講解時要突出方法,突出思考、分析過程,要暴露學生解題過程中思維、概念、計算等方面的`錯誤,對學生的錯誤要有針對性的矯正,補償。不就題講題,注意適當?shù)淖兪。幫助學生掌握解題的方法,積累解題經(jīng)驗,課后要引導(dǎo)學生進行反思、訂正,以加深對概念的理解,方法的掌握。
3、從期末統(tǒng)測看學生應(yīng)用能力明顯不足。教師要通過平時教學培養(yǎng)學生閱讀審題、數(shù)學建模的能力。讓學生熟悉一些常見的實際問題的背景,及解決這些問題的相關(guān)數(shù)學知識。
4、期末統(tǒng)測中選擇題普遍得分不高,應(yīng)引起我們的重視,工作計劃《高一數(shù)學教學計劃》。由于選擇題只有唯一答案,所以解答選擇題的策略是:合理、迅速、檢驗,要善于轉(zhuǎn)化,避免機械套用公式、定理和“小題大做,舍近求遠,簡單問題復(fù)雜化”的不良習慣。另外,由填空題的錯誤表達和解答題的計算粗心、考慮不全面而造成的無謂失分,導(dǎo)致了分數(shù)上不去和好學生考不出高分。所以,為保證得到該得的分數(shù),要求必須認真審題,明確要求,弄清概念,思考全面,正確表達。
5、注重講練結(jié)合。要多安排課堂練習,當堂檢測。當日作業(yè),周練,月考要及時安排時間進行講評。平時要注意練習的有效性(適當題量,恰當難度,精選精練),規(guī)范書寫,認真批改,及時講評,反饋矯正(建立錯題集,進行再認識)。堅決反對只練不講,只講不練。評講中要針對學生的錯因進行分析,找出存在的問題,有針對性地加以彌補缺漏,發(fā)現(xiàn)問題要跟蹤到題,跟蹤到人。本次統(tǒng)測中許多試題平時講過,練過,考過,但錯誤仍然很多,值得我們重視與反思。
五、保障措施和可行性
1、關(guān)愛學生,嚴格要求,用情實現(xiàn)師與生的溝通,用景實現(xiàn)教與學的融合;
2、加強基礎(chǔ)知識、基本技能、基本方法的教學和基本能力的培養(yǎng),精心組織教學內(nèi)容,難度要適當,要追求最有效的訓練,要清楚哪些學生需要哪些訓練,切實注重部分學生的補差和提高,關(guān)注全體學生的學,基本教學要求要有效落實到位;
3、注重加強知識之間的聯(lián)系和綜合,內(nèi)容和方式要更新,有層次推進,多角度理解,反思總結(jié),重視教與學的方式多樣化;
4、激發(fā)興趣,重視過程教學,重視錯誤分析型學習;
5、重視開放性、研究性問題的教學,關(guān)注主觀評判性問題的學習,研究新題型,真正發(fā)展學生的數(shù)學素質(zhì),培養(yǎng)其數(shù)學能力。
6、結(jié)合二期課改新課程標準、教參,扎實落實集體備課,通過集體討論,抓住教學內(nèi)容的實質(zhì),形成較好的教學方案,擬好典型例題、練習題、周練題、章考題、月考題。
7、加大課堂教改力度,培養(yǎng)學生的自主學習能力。
8、加強課外輔導(dǎo),利用中午和晚間休息時間輔導(dǎo)學生答疑解惑、找學生談話等等。課外輔導(dǎo)是課堂的有力補充,是提高數(shù)學成績的有力手段。
9、搞好單元考試、階段性考試的分析。學生只有通過不斷的練習才能提高成績,單元考試、階段性考試是最好的練習,每次都要做好分析,并指導(dǎo)學生糾錯。在分析過程中要遵循自主的思維習慣,使學生真正理解,過關(guān)。
10、學生除配套練習冊外,每人訂一本《一課一練》作為補充練習,并要求每周寫學習感悟與學習疑惑,每人準備一本錯題本收集錯題,每人在課本留白處做好課堂筆記。另外,我自己有充足的時間與資料,進行習題精選與練習補充。
六、總目標達成度與現(xiàn)階段教學目標達成度的相關(guān)分析
本學期一定要在如何提高課堂效率上下功夫,同時抓平時的學習習慣,學習規(guī)范,作業(yè)質(zhì)量等細節(jié)問題,切實提高學習的有效性。另外,在上學期的基礎(chǔ)上,本學期力爭消滅不及格,并使那些因無謂失分而導(dǎo)致分數(shù)起伏不定的學生能穩(wěn)定下來,從而進一步提高優(yōu)秀率。
目前,我班面臨的困難與問題還非常多,好在學生的學習勢頭保持良好。我和我們班的全體學生,將盡我們所能,力爭在本學期能有所收獲,更進一步。
七、課堂教學改革與創(chuàng)新、信息技術(shù)的應(yīng)用與整合
1、結(jié)合二期課改,將“接受式學習”變?yōu)椤爸鲃邮綄W習”,“啟發(fā)式學習”,將“要我學”變?yōu)椤拔乙獙W”,并積極開展拓展性課程,研究性課程,培養(yǎng)學生的創(chuàng)新精神和實踐能力。
2、加強基礎(chǔ)訓練,但要避免“題!睉(zhàn)術(shù),要精講精練,舉一反三,突出方法,總結(jié)經(jīng)驗,采取變式訓練,專題訓練等多種方式。
3、針對本學期三角公式多的特點,設(shè)計一些學生學習支持材料,如公式默寫表,公式背誦口訣,公式記憶方法,公式小卡片等。
4、借助“TI圖形計算器”強大的圖形功能以及多媒體教學設(shè)備,制作精美課件,輔助教學,使教學內(nèi)容更加形象直觀,通俗易懂。
5、利用“Bb”系統(tǒng)建設(shè)e課堂,建設(shè)網(wǎng)絡(luò)學習包。
6、寫數(shù)學感悟或一周問題,與學生進行書面討論交流,答疑解惑,給予學法指導(dǎo)。
7、對不同層次的學生進行分層輔導(dǎo),分層補充課外練習。
8、進行數(shù)學演講,了解數(shù)學史,寫寫數(shù)學周記等,提升學生的數(shù)學素養(yǎng)與興趣。
高一數(shù)學的教學計劃11
一、教材分析(結(jié)構(gòu)系統(tǒng)、單元內(nèi)容、重難點)
必修5第一章:解三角形;重點是正弦定理與余弦定理;難點是正弦定理與余弦定理的應(yīng)用;
第二章:數(shù)列;重點是等差數(shù)列與等比數(shù)列的前n項的和;難點是等差數(shù)列與等比數(shù)列前n項的和與應(yīng)用;
第三章:不等式;重點是一元二次不等式及其解法、二元一次不等式(組)與簡單的線性規(guī)劃問題、基本不等式;難點是二元一次不等式(組)與簡單的線性規(guī)劃問題及應(yīng)用;
必修2第一章:空間幾何體;重點是空間幾何體的三視圖和直觀圖及表面積與體積;難點是空間幾何體的三視圖;
第二章:點、直線、平面之間的位置關(guān)系;重點與難點都是直線與平面平行及垂直的判定及其性質(zhì);
第三章:直線與方程;重點是直線的傾斜角與斜率及直線方程;難點是如何選擇恰當?shù)闹本方程求解題目;
第四章:圓與方程;重點是圓的方程及直線與圓的位置關(guān)系;難點是直線與圓的位置關(guān)系;
二、學生分析(雙基智能水平、學習態(tài)度、方法、紀律)
較去年而言,今年的學生的素質(zhì)有了比較大的提高,學生的基礎(chǔ)知識水平與基本學習方法比較扎實,大部分的學生對學習都有很大的興趣,學習紀律比較自覺。
三、教學目的要求
1.通過對任意三角形邊長和角度關(guān)系的探索,掌握正弦定理、余弦定理,并能解決一些簡單的三角形度量問題和與測量及幾何計算有關(guān)的實際問題。
2.通過日常生活中的實例,了解數(shù)列的概念和幾種簡單的表示方法,了解數(shù)列是一種特殊的函數(shù);理解等差數(shù)列、等比數(shù)列的概念,探索并掌握2種數(shù)列的通項公式與前n項和的公式,能用有關(guān)的知識解決相應(yīng)的問題。
3.理解不等式(組)對于刻畫不等關(guān)系的意義和價值;掌握求解一元二次不等式的'基本方法,并能解決一些實際問題;能用一元二次不等式組表示平面區(qū)域,并嘗試解決簡單的二元線性規(guī)劃問題。
4.幾何學研究現(xiàn)實世界中物體的形狀、大小與位置的學科。直觀感知、操作確認、思辨論證、度量計算是認識和探索幾何圖形及其性質(zhì)的方法。先從對空間幾何體的整體觀察入手,認識空間圖形及其直觀圖的畫法;再以長方體為載體,直觀認識和理解空間中點、直線、平面之間的位置關(guān)系,并利用數(shù)學語言表述有關(guān)平行、垂直的性質(zhì)與判定,對某些結(jié)論進行論證。另外了解一些簡單幾何體的表面積與體積的計算方法。在解析幾何初步中,在平面直角坐標系中建立直線和圓的代數(shù)方程,運用代數(shù)方法研究它們的幾何性質(zhì)及其相互關(guān)系,了解空間直角坐標系。體會數(shù)形結(jié)合的思想,初步形成用代數(shù)方法解決幾何問題的能力。
四、完成教學任務(wù)和提高教學質(zhì)量的具體措施
積極做好集體備課工作,達到內(nèi)容統(tǒng)一、進度統(tǒng)一、目標統(tǒng)一、例題統(tǒng)一、習題統(tǒng)一、資料統(tǒng)一;上好每一節(jié)課,及時對學生的思想進行觀察與指導(dǎo);課后進行有效的輔導(dǎo);進行有效的課堂反思。
高一數(shù)學的教學計劃12
一、指導(dǎo)思想:
使學生學好從事社會主義現(xiàn)代化建設(shè)和進一步學習現(xiàn)代科學技術(shù)所必需的數(shù)學基礎(chǔ)知識和基本技能,培養(yǎng)學生的運算能力、邏輯思維能力和空間想象能力,以逐步形成運用數(shù)學知識來分析和解決實際問題的能力。要培養(yǎng)學生對數(shù)學的興趣,激勵學生為實現(xiàn)四個現(xiàn)代化學好數(shù)學的積極性,培養(yǎng)學生的科學態(tài)度和辨證唯物主義的觀點。
二、基本情況分析:
1、4班共人,男生人,女生人;本班相對而言,數(shù)學尖子約人,中上等生約人,中等生約人,中下生約人,差生約人。
5班共人,男生人,女生人;本班相對而言,數(shù)學尖子約人,中上等生約人,中等生約人,中下生約人,差生約人。
2、4班在初中升入高中的升學考試中,數(shù)學成績在100’及以上的有人,80’—99’有人,60’—79’有人,40’—59’有人,40’以下有人,其中最高分為,最低分為。
5班在初中升入高中的升學考試中,數(shù)學成績在100’及以上的有人,80’—99’有人,60’—79’有人,40’—59’有人,40’以下有人,其中最高分為,最低分為。
3、4/5班分別為高一年級9個班中編排一個普高班和一個普高班之后的體育班,整體分析的結(jié)果是:
三、教材分析:
1、教材內(nèi)容:集合、一元二次不等式、簡易邏輯、映射與函數(shù)、指數(shù)函數(shù)和對數(shù)函數(shù)、數(shù)列、等差數(shù)列、等比數(shù)列。
2、集合概念及其基本理論,是近代數(shù)學最基本的內(nèi)容之一;函數(shù)是中學數(shù)學中最重要的基本概念之一;數(shù)列有著廣泛的應(yīng)用,是進一步學習高等數(shù)學的`基礎(chǔ)。
3、教材重點:幾種函數(shù)的圖像與性質(zhì)、不等式的解法、數(shù)列的概念、等差數(shù)列與等比數(shù)列的通項公式、前n項和的公式。
4、教材難點:關(guān)于集合的各個基本概念的涵義及其相互之間的區(qū)別和聯(lián)系、映射的概念以及用映射來刻畫函數(shù)概念、反函數(shù)、一些代數(shù)命題的證明、
5、教材關(guān)鍵:理解概念,熟練、牢固掌握函數(shù)的圖像與性質(zhì)。
6、采用了由淺入深、減緩坡度、分散難點,逐步展開教材內(nèi)容的做法,符合從有限到無限的認識規(guī)律,體現(xiàn)了從量變到質(zhì)變和對立統(tǒng)一的辯證規(guī)律。每階段的內(nèi)容相對獨立,方法比較單一,有助于掌握每一階段內(nèi)容。
7、各部分知識之間的聯(lián)系較強,每一階段的知識都是以前一階段為基礎(chǔ),同時為下階段的學習作準備。
8、全期教材重要的內(nèi)容是:集合運算、不等式解法、函數(shù)的奇偶性與單調(diào)性、等差與等比數(shù)列的通項和前n項和。
四、教學要求:
1、理解集合、子集、交集、并集、補集的概念。了解空集和全集的意義,了解屬于、包含、相等關(guān)系的意義,能掌握有關(guān)的術(shù)語和符號,能正確地表示一些簡單的集合。
2、掌握一元二次不等式的解法和絕對值不等式的解法,并能熟練求解。
3、了解命題的概念、邏輯聯(lián)結(jié)詞的含義,掌握四種命題及其關(guān)系,掌握充分、必要、充要條件,初步掌握反證法。
4、了解映射的概念,在此基礎(chǔ)上理解函數(shù)及其有關(guān)的概念,掌握互為反函數(shù)的函數(shù)圖象間的關(guān)系。
5、理解函數(shù)的單調(diào)性和奇偶性的概念,并能判斷一些簡單函數(shù)的單調(diào)性和奇偶性,能利用函數(shù)的奇偶性與圖象的對稱性的關(guān)系描繪圖象。
6、掌握指數(shù)函數(shù)、對數(shù)函數(shù)的概念及其圖象和性質(zhì),并會解簡單的函數(shù)應(yīng)用問題。
7、使學生理解數(shù)列的有關(guān)概念,掌握等差數(shù)列與等比數(shù)列的概念、通項公式、前n項和的公式,并能夠運用這些知識解決一些問題。
五、教學措施:
1、激發(fā)學生的學習興趣。由數(shù)學活動、故事、吸引人的課、合理的要求、師生談話等途徑樹立學生的學習信心,提高學習興趣,在主觀作用下上升和進步。
2、注意從實例出發(fā),從感性提高到理性;注意運用對比的方法,反復(fù)比較相近的概念;注意結(jié)合直觀圖形,說明抽象的知識;注意從已有的知識出發(fā),啟發(fā)學生思考。
3、加強培養(yǎng)學生的邏輯思維能力就解決實際問題的能力,以及培養(yǎng)提高學生的自學能力,養(yǎng)成善于分析問題的習慣,進行辨證唯物主義教育。
4、抓住公式的推導(dǎo)和內(nèi)在聯(lián)系;加強復(fù)習檢查工作;抓住典型例題的分析,講清解題的關(guān)鍵和基本方法,注重提高學生分析問題的能力。
5、自始至終貫徹教學四環(huán)節(jié),針對不同的教材內(nèi)容選擇不同教法。
高一數(shù)學的教學計劃13
本學期擔任高一(9)(10)兩班的數(shù)學教學工作,兩班學生共有120人,初中的基礎(chǔ)參差不齊,但兩個班的學生整體水平不高;部分學生學習習慣不好,很多學生不能正確評價自己,這給教學工作帶來了一定的難度,為把本學期教學工作做好,制定如下教學工作計劃。
一、指導(dǎo)思想:
使學生在九年義務(wù)教育數(shù)學課程的基礎(chǔ)上,進一步提高作為未來公民所必要的數(shù)學素養(yǎng),以滿足個人發(fā)展與社會進步的需要。具體目標如下。
1.獲得必要的數(shù)學基礎(chǔ)知識和基本技能,理解基本的數(shù)學概念、數(shù)學結(jié)論的本質(zhì),了解概念、結(jié)論等產(chǎn)生的背景、應(yīng)用,體會其中所蘊涵的數(shù)學思想和方法,以及它們在后續(xù)學習中的作用。通過不同形式的自主學習、探究活動,體驗數(shù)學發(fā)現(xiàn)和創(chuàng)造的歷程。
2.提高空間想像、抽象概括、推理論證、運算求解、數(shù)據(jù)處理等基本能力。
3.提高數(shù)學地提出、分析和解決問題(包括簡單的實際問題)的`能力,數(shù)學表達和交流的能力,發(fā)展獨立獲取數(shù)學知識的能力。
4.發(fā)展數(shù)學應(yīng)用意識和創(chuàng)新意識,力求對現(xiàn)實世界中蘊涵的一些數(shù)學模式進行思考和作出判斷。
5.提高學習數(shù)學的興趣,樹立學好數(shù)學的信心,形成鍥而不舍的鉆研精神和科學態(tài)度。
6.具有一定的數(shù)學視野,逐步認識數(shù)學的科學價值、應(yīng)用價值和文化價值,形成批判性的思維習慣,崇尚數(shù)學的理性精神,體會數(shù)學的美學意義,從而進一步樹立辯證唯物主義和歷史唯物主義世界觀。
二、教學目標:
(一)情意目標
(1)通過分析問題的方法的教學,培養(yǎng)學生的學習的興趣。
(2)提供生活背景,通過數(shù)學建模,讓學生體會數(shù)學就在身邊,培養(yǎng)學數(shù)學用數(shù)學的意識。(3)在探究函數(shù)、等差數(shù)列、等比數(shù)列的性質(zhì),體驗獲得數(shù)學規(guī)律的艱辛和樂趣,在分組 研究合作學習中學會交流、相互評價,提高學生的合作意識
(4)基于情意目標,調(diào)控教學流程,堅定學習信念和學習信心。
(5)還時空給學生、還課堂給學生、還探索和發(fā)現(xiàn)權(quán)給學生,給予學生自主探索與合作交流的機會,在發(fā)展他們思維能力的同時,發(fā)展他們的數(shù)學情感、學好數(shù)學的自信心和追求數(shù)學的科學精神。
(6)讓學生體驗“發(fā)現(xiàn)——挫折——矛盾——頓悟——新的發(fā)現(xiàn)”這一科學發(fā)現(xiàn)歷程法。
(二)能力要求 培養(yǎng)學生記憶能力。
(1)通過定義、命題的總體結(jié)構(gòu)教學,揭示其本質(zhì)特點和相互關(guān)系,培養(yǎng)對數(shù)學本質(zhì)問題的背景事實及具體數(shù)據(jù)的記憶。
(3)通過揭示立體集合、函數(shù)、數(shù)列有關(guān)概念、公式和圖形的對應(yīng)關(guān)系,培養(yǎng)記憶能力。
2、培養(yǎng)學生的運算能力。
(1)通過概率的訓練,培養(yǎng)學生的運算能力。
(2)加強對概念、公式、法則的明確性和靈活性的教學,培養(yǎng)學生的運算能力。
(3)通過函數(shù)、數(shù)列的教學,提高學生是運算過程具有明晰性、合理性、簡捷性能力。
(4)通過一題多解、一題多變培養(yǎng)正確、迅速與合理、靈活的運算能力,促使知識間的滲透和遷移。
(5)利用數(shù)形結(jié)合,另辟蹊徑,提高學生運算能力。
高一數(shù)學的教學計劃14
平面上的直線就是由平面直角坐標系中的一個二元一次方程所表示的圖形 。
教學目標
(1)掌握由一點和斜率導(dǎo)出直線方程的方法,掌握直線方程的點斜式、兩點式和直線方程的一般式,并能根據(jù)條件熟練地求出直線的方程.
(2)理解直線方程幾種形式之間的內(nèi)在聯(lián)系,能在整體上把握直線的方程.
(3)掌握直線方程各種形式之間的互化.
(4)通過直線方程一般式的教學培養(yǎng)學生全面、系統(tǒng)、周密地分析、討論問題的能力.
(5)通過直線方程特殊式與一般式轉(zhuǎn)化的教學,培養(yǎng)學生靈活的思維品質(zhì)和辯證唯物主義觀點.
(6)進一步理解直線方程的概念,理解直線斜率的意義和解析幾何的思想方法.
教學建議
1.教材分析
(1)知識結(jié)構(gòu)
由直線方程的概念和直線斜率的概念導(dǎo)出直線方程的點斜式;由直線方程的點斜式分別導(dǎo)出直線方程的斜截式和兩點式;再由兩點式導(dǎo)出截距式;最后都可以轉(zhuǎn)化歸結(jié)為直線的一般式;同時一般式也可以轉(zhuǎn)化成特殊式.
(2)重點、難點分析
①本節(jié)的重點是直線方程的點斜式、兩點式、一般式,以及根據(jù)具體條件求出直線的方程.
解析幾何有兩項根本性的任務(wù):一個是求曲線的方程;另一個就是用方程研究曲線.本節(jié)內(nèi)容就是求直線的方程,因此是非常重要的.內(nèi)容,它對以后學習用方程討論直線起著直接的作用,同時也對曲線方程的學習起著重要的作用.
直線的點斜式方程是平面解析幾何中所求出的第一個方程,是后面幾種特殊形式的源頭.學生對點斜式學習的效果將直接影響后繼知識的學習.
②本節(jié)的難點是直線方程特殊形式的限制條件,直線方程的整體結(jié)構(gòu),直線與二元一次方程的關(guān)系證明.
2.教法建議
(1)教材中求直線方程采取先特殊后一般的思路,特殊形式的方程幾何特征明顯,但局限性強;一般形式的方程無任何限制,但幾何特征不明顯.教學中各部分知識之間過渡要自然流暢,不生硬.
(2)直線方程的一般式反映了直線方程各種形式之間的統(tǒng)一性,教學中應(yīng)充分揭示直線方程本質(zhì)屬性,建立二元一次方程與直線的對應(yīng)關(guān)系,為繼續(xù)學習曲線方程打下基礎(chǔ).
直線一般式方程都是字母系數(shù),在揭示這一概念深刻內(nèi)涵時,還需要進行正反兩方面的分析論證.教學中應(yīng)重點分析思路,還應(yīng)抓住這一有利時使學生學會嚴謹科學的分類討論方法,從而培養(yǎng)學生全面、系統(tǒng)、辯證、周密地分析、討論問題的能力,特別是培養(yǎng)學生邏輯思維能力,同時培養(yǎng)學生辯證唯物主義觀點
(3)在強調(diào)幾種形式互化時要向?qū)W生充分揭示各種形式的特點,它們的幾何特征,參數(shù)的意義等,使學生明白為什么要轉(zhuǎn)化,并加深對各種形式的理解.
(4)教學中要使學生明白兩個獨立條件確定一條直線,如兩個點、一個點和一個方向或其他兩個獨立條件.兩點確定一條直線,這是學生很早就接觸的幾何公理,然而在解析幾何,平面向量等理論中,直線或向量的方向是極其重要的要素,解析幾何中刻畫直線方向的量化形式就是斜率.因此,直線方程的兩點式和點斜式在直線方程的幾種形式中占有很重要的地位,而已知兩點可以求得斜率,所以點斜式又可推出兩點式(斜截式和截距式僅是它們的特例),因此點斜式最重要.教學中應(yīng)突出點斜式、兩點式和一般式三個教學高潮.
求直線方程需要兩個獨立的條件,要依不同的幾何條件選用不同形式的方程.根據(jù)兩個條件運用待定系數(shù)法和方程思想求直線方程.
(5)注意正確理解截距的概念,截距不是距離,截距是直線(也是曲線)與坐標軸交點的相應(yīng)坐標,它是有向線段的數(shù)量,因而是一個實數(shù);距離是線段的長度,是一個正實數(shù)(或非負實數(shù)).
(6)本節(jié)中有不少與函數(shù)、不等式、三角函數(shù)有關(guān)的問題,是函數(shù)、不等式、三角與直線的重要知識交匯點之一,教學中要適當選擇一些有關(guān)的問題指導(dǎo)學生練習,培養(yǎng)學生的綜合能力.
(7)直線方程的理論在其他學科和生產(chǎn)生活實際中有大量的應(yīng)用.教學中注意聯(lián)系實際和其它學科,教師要注意引導(dǎo),增強學生用數(shù)學的意識和能力.
(8)本節(jié)不少內(nèi)容可安排學生自學和討論,還要適當增加練習,使學生能更好地掌握,而不是僅停留在觀念上.
高一數(shù)學的教學計劃15
一、指導(dǎo)思想:
使學生在九年義務(wù)教育數(shù)學課程的基礎(chǔ)上,進一步提高作為未來公民所必要的數(shù)學素養(yǎng),以滿足個人發(fā)展與社會進步的需要。具體目標如下。
1.獲得必要的數(shù)學基礎(chǔ)知識和基本技能,理解基本的數(shù)學概念、數(shù)學結(jié)論的本質(zhì),了解概念、結(jié)論等產(chǎn)生的背景、應(yīng)用,體會其中所蘊涵的數(shù)學思想和方法,以及它們在后續(xù)學習中的作用。通過不同形式的自主學習、探究活動,體驗數(shù)學發(fā)現(xiàn)和創(chuàng)造的歷程。
2.提高空間想像、抽象概括、推理論證、運算求解、數(shù)據(jù)處理等基本能力。
3.提高數(shù)學地提出、分析和解決問題(包括簡單的實際問題)的能力,數(shù)學表達和交流的能力,發(fā)展獨立獲取數(shù)學知識的能力。
4.發(fā)展數(shù)學應(yīng)用意識和創(chuàng)新意識,力求對現(xiàn)實世界中蘊涵的一些數(shù)學模式進行思考和作出判斷。
5.提高學習數(shù)學的興趣,樹立學好數(shù)學的信心,形成鍥而不舍的鉆研精神和科學態(tài)度。
6.具有一定的數(shù)學視野,逐步認識數(shù)學的科學價值、應(yīng)用價值和文化價值,形成批判性的思維習慣,崇尚數(shù)學的理性精神,體會數(shù)學的美學意義,從而進一步樹立辯證唯物主義和歷史唯物主義世界觀。
二、教材特點:
我們所使用的教材是人教版《普通高中課程標準實驗教科書數(shù)學(A版)》,它在堅持我國數(shù)學教育優(yōu)良傳統(tǒng)的前提下,認真處理繼承,借簽,發(fā)展,創(chuàng)新之間的關(guān)系,體現(xiàn)基礎(chǔ)性,時代性,典型性和可接受性等到,具有如下特點:
1.親和力:以生動活潑的呈現(xiàn)方式,激發(fā)興趣和美感,引發(fā)學習激情。
2.問題性:以恰時恰點的.問題引導(dǎo)數(shù)學活動,培養(yǎng)問題意識,孕育創(chuàng)新精神。
3.科學性與思想性:通過不同數(shù)學內(nèi)容的聯(lián)系與啟發(fā),強調(diào)類比,推廣,特殊化,化歸等思想方法的運用,學習數(shù)學地思考問題的方式,提高數(shù)學思維能力,培育理性精神。
4.時代性與應(yīng)用性:以具有時代性和現(xiàn)實感的素材創(chuàng)設(shè)情境,加強數(shù)學活動,發(fā)展應(yīng)用意識。
三、教法分析:
1.選取與內(nèi)容密切相關(guān)的,典型的,豐富的和學生熟悉的素材,用生動活潑的語言,創(chuàng)設(shè)能夠體現(xiàn)數(shù)學的概念和結(jié)論,數(shù)學的思想和方法,以及數(shù)學應(yīng)用的學習情境,使學生產(chǎn)生對數(shù)學的親切感,引發(fā)學生看個究竟的沖動,以達到培養(yǎng)其興趣的目的。
2.通過觀察,思考,探究等欄目,引發(fā)學生的思考和探索活動,切實改進學生的學習方式。
3.在教學中強調(diào)類比,推廣,特殊化,化歸等數(shù)學思想方法,盡可能養(yǎng)成其邏輯思維的習慣。
四、學情分析:
1、基本情況:12班共人,男生人,女生人;本班相對而言,數(shù)學尖子約人,中上等生約人,中等生約人,中下生約人,后進生約人。
14班共人,男生人,女生人;本班相對而言,數(shù)學尖子約人,中上等生約人,中等生約人,中下生約人,后進生約人。
2、兩個班均屬普高班,學習情況良好,但學生自覺性差,自我控制能力弱,因此在教學中需時時提醒學生,培養(yǎng)其自覺性。班級存在的最大問題是計算能力太差,學生不喜歡去算題,嫌麻煩,只注重思路,因此在以后的教學中,重點在于培養(yǎng)學生的計算能力,同時要進一步提高其思維能力。同時,由于初中課改的原因,高中教材與初中教材銜接力度不夠,需在新授時適機補充一些內(nèi)容。因此時間上可能仍然吃緊。同時,其底子薄弱,因此在教學時只能注重基礎(chǔ)再基礎(chǔ),爭取每一堂課落實一個知識點,掌握一個知識點。
五、教學措施:
1、激發(fā)學生的學習興趣。由數(shù)學活動、故事、吸引人的課、合理的要求、師生談話等途徑樹立學生的學習信心,提高學習興趣,在主觀作用下上升和進步。
2、注意從實例出發(fā),從感性提高到理性;注意運用對比的方法,反復(fù)比較相近的概念;注意結(jié)合直觀圖形,說明抽象的知識;注意從已有的知識出發(fā),啟發(fā)學生思考。
3、加強培養(yǎng)學生的邏輯思維能力就解決實際問題的能力,以及培養(yǎng)提高學生的自學能力,養(yǎng)成善于分析問題的習慣,進行辨證唯物主義教育。
4、抓住公式的推導(dǎo)和內(nèi)在聯(lián)系;加強復(fù)習檢查工作;抓住典型例題的分析,講清解題的關(guān)鍵和基本方法,注重提高學生分析問題的能力。
5、自始至終貫徹教學四環(huán)節(jié),針對不同的教材內(nèi)容選擇不同教法。
6、重視數(shù)學應(yīng)用意識及應(yīng)用能力的培養(yǎng)。
六、教學進度安排
周 次 | 時 | 內(nèi) 容 | 重 點、難 點 |
第1周 2.12~2.18 | 5 | 算法與程序框圖(2)基本算法語句(3) | 理解算法的含義。理解程序框圖的三種基本邏輯結(jié)構(gòu)。理解5種基本的算法語句。 |
第2周 2.19~2.25 | 5 | 算法案例(6) |
【高一數(shù)學的教學計劃】相關(guān)文章:
數(shù)學高一教學計劃03-10
高一數(shù)學教學計劃06-22
(精選)高一數(shù)學教學計劃03-08
高一數(shù)學教學計劃06-16
高一數(shù)學的教學計劃03-14
高一下數(shù)學教學計劃02-13
高一下數(shù)學教學計劃05-21
高一數(shù)學教學計劃精選15篇06-16
高一數(shù)學上冊教學計劃03-20