當(dāng)前位置:育文網(wǎng)>教學(xué)文檔>說課稿> 高中數(shù)學(xué)說課稿

高中數(shù)學(xué)說課稿

時間:2024-05-20 12:59:01 說課稿 我要投稿

(優(yōu))高中數(shù)學(xué)說課稿

  作為一位兢兢業(yè)業(yè)的人民教師,可能需要進(jìn)行說課稿編寫工作,說課稿可以幫助我們提高教學(xué)效果。說課稿要怎么寫呢?下面是小編為大家整理的高中數(shù)學(xué)說課稿,歡迎閱讀與收藏。

(優(yōu))高中數(shù)學(xué)說課稿

高中數(shù)學(xué)說課稿1

  一、教材分析

  1、教材內(nèi)容

  本節(jié)課是蘇教版第二章《函數(shù)概念和基本初等函數(shù)Ⅰ》§2。1。3函數(shù)簡單性質(zhì)的第一課時,該課時主要學(xué)習(xí)增函數(shù)、減函數(shù)的定義,以及應(yīng)用定義解決一些簡單問題。

  2、教材所處地位、作用

  函數(shù)的性質(zhì)是研究函數(shù)的基石,函數(shù)的單調(diào)性是首先研究的一個性質(zhì)。通過對本節(jié)課的學(xué)習(xí),讓學(xué)生領(lǐng)會函數(shù)單調(diào)性的概念、掌握證明函數(shù)單調(diào)性的步驟,并能運(yùn)用單調(diào)性知識解決一些簡單的實(shí)際問題。通過上述活動,加深對函數(shù)本質(zhì)的認(rèn)識。函數(shù)的單調(diào)性既是學(xué)生學(xué)過的函數(shù)概念的延續(xù)和拓展,又是后續(xù)研究指數(shù)函數(shù)、對數(shù)函數(shù)、三角函數(shù)的單調(diào)性的基礎(chǔ)。此外在比較數(shù)的大小、函數(shù)的定性分析以及相關(guān)的數(shù)學(xué)綜合問題中也有廣泛的應(yīng)用,它是整個高中數(shù)學(xué)中起著承上啟下作用的核心知識之一。從方法論的角度分析,本節(jié)教學(xué)過程中還滲透了探索發(fā)現(xiàn)、數(shù)形結(jié)合、歸納轉(zhuǎn)化等數(shù)學(xué)思想方法。

  3、教學(xué)目標(biāo)

 。1)知識與技能:使學(xué)生理解函數(shù)單調(diào)性的概念,掌握判別函數(shù)單調(diào)性

  的方法;

  (2)過程與方法:從實(shí)際生活問題出發(fā),引導(dǎo)學(xué)生自主探索函數(shù)單調(diào)性的概念,應(yīng)用圖象和單調(diào)性的定義解決函數(shù)單調(diào)性問題,讓學(xué)生領(lǐng)會數(shù)形結(jié)合的數(shù)學(xué)思想方法,培養(yǎng)學(xué)生發(fā)現(xiàn)問題、分析問題、解決問題的能力。

  (3)情感態(tài)度價值觀:讓學(xué)生體驗數(shù)學(xué)的科學(xué)功能、符號功能和工具功能,培養(yǎng)學(xué)生直覺觀察、探索發(fā)現(xiàn)、科學(xué)論證的良好的數(shù)學(xué)思維品質(zhì)。

  4、重點(diǎn)與難點(diǎn)

  教學(xué)重點(diǎn)(1)函數(shù)單調(diào)性的概念;

  (2)運(yùn)用函數(shù)單調(diào)性的定義判斷一些函數(shù)的單調(diào)性。

  教學(xué)難點(diǎn)(1)函數(shù)單調(diào)性的知識形成;

 。2)利用函數(shù)圖象、單調(diào)性的定義判斷和證明函數(shù)的單調(diào)性。

  二、教法分析與學(xué)法指導(dǎo)

  本節(jié)課是一節(jié)較為抽象的數(shù)學(xué)概念課,因此,教法上要注意:

  1、通過學(xué)生熟悉的實(shí)際生活問題引入課題,為概念學(xué)習(xí)創(chuàng)設(shè)情境,拉近數(shù)學(xué)與現(xiàn)實(shí)的距離,激發(fā)了學(xué)生求知欲,調(diào)動了學(xué)生主體參與的積極性。

  2、在運(yùn)用定義解題的過程中,緊扣定義中的關(guān)鍵語句,通過學(xué)生的主體參與,逐個完成對各個難點(diǎn)的突破,以獲得各類問題的解決。

  3、在鼓勵學(xué)生主體參與的同時,不可忽視教師的主導(dǎo)作用。具體體現(xiàn)在設(shè)問、講評和規(guī)范書寫等方面,要教會學(xué)生清晰的思維、嚴(yán)謹(jǐn)?shù)耐评,并成功地完成書面表達(dá)。

  4、采用投影儀、多媒體等現(xiàn)代教學(xué)手段,增大教學(xué)容量和直觀性。

  在學(xué)法上:

  1、讓學(xué)生從問題中質(zhì)疑、嘗試、歸納、總結(jié)、運(yùn)用,培養(yǎng)學(xué)生發(fā)現(xiàn)問題、研究問題和解決問題的'能力。

  2、讓學(xué)生利用圖形直觀啟迪思維,并通過正、反例的構(gòu)造,來完成從感性認(rèn)識到理性思維的一個飛躍。

  三、 教學(xué)過程

  教學(xué)

  環(huán)節(jié)

  教 學(xué) 過 程

  設(shè) 計 意 圖

  問題

  情境

 。úシ胖醒腚娨暸_天氣預(yù)報的音樂)

  滿足在定義域上的單調(diào)性的討論。

  2、重視學(xué)生發(fā)現(xiàn)的過程。如:充分暴露學(xué)生將函數(shù)圖象(形)的特征轉(zhuǎn)化為函數(shù)值(數(shù))的特征的思維過程;充分暴露在正、反兩個方面探討活動中,學(xué)生認(rèn)知結(jié)構(gòu)升華、發(fā)現(xiàn)的過程。

  3、重視學(xué)生的動手實(shí)踐過程。通過對定義的解讀、鞏固,讓學(xué)生動手去實(shí)踐運(yùn)用定義。

  4、重視課堂問題的設(shè)計。通過對問題的設(shè)計,引導(dǎo)學(xué)生解決問題。

高中數(shù)學(xué)說課稿2

  一、教材分析

  1.本節(jié)課內(nèi)容在整個教材中的地位和作用

  概括地講,二次函數(shù)的圖像在教材中起著承上啟下的作用,它的地位體現(xiàn)在它的思想的基礎(chǔ)性。一方面,本節(jié)課是對初中有關(guān)內(nèi)容的深化,為后面進(jìn)一步學(xué)習(xí)二次函數(shù)的性質(zhì)打下基礎(chǔ);另一方面,二次函數(shù)解析式中的系數(shù)由常數(shù)轉(zhuǎn)變?yōu)閰?shù),使學(xué)生對二次函數(shù)的圖像由感性認(rèn)識上升到理性認(rèn)識,能培養(yǎng)學(xué)生利用數(shù)形結(jié)合思想解決問題的能力。

  2.教學(xué)目標(biāo)定位

  根據(jù)教學(xué)大綱要求、新課程標(biāo)準(zhǔn)精神,我確定了三個層面的教學(xué)目標(biāo)。

 。1)基礎(chǔ)知識與能力目標(biāo):理解二次函數(shù)的圖像中a、b、c、k、h的作用,能熟練地對二次函數(shù)的一般式進(jìn)行配方,會對圖像進(jìn)行平移變換,領(lǐng)會研究二次函數(shù)圖像的方法,培養(yǎng)學(xué)生運(yùn)用數(shù)形結(jié)合與等價轉(zhuǎn)化等數(shù)學(xué)思想方法解決問題的能力,提高運(yùn)算和作圖能力;

 。2)過程和方法:讓學(xué)生經(jīng)歷作圖、觀察、比較、歸納的學(xué)習(xí)過程,使學(xué)生掌握類比、化歸等數(shù)學(xué)思想方法,養(yǎng)成即能自主探索,又能合作探究的良好學(xué)習(xí)習(xí)慣;

 。3)情感、態(tài)度和價值觀:在教學(xué)中滲透美的教育,滲透數(shù)形結(jié)合的思想,讓學(xué)生在數(shù)學(xué)活動中學(xué)會與人相處,感受探索與創(chuàng)造,體驗成功的喜悅。

  3.教學(xué)重難點(diǎn)

  重點(diǎn)是二次函數(shù)各系數(shù)對圖像和形狀的影響,利用二次函數(shù)圖像平移的特例分析過程,培養(yǎng)學(xué)生數(shù)形結(jié)合的思想和劃歸思想。難點(diǎn)是圖像的平移變換,關(guān)鍵是二次函數(shù)頂點(diǎn)式中h、k的正負(fù)取值對函數(shù)圖像平移變換的影響。

  二、教法學(xué)法分析

  數(shù)學(xué)是發(fā)展學(xué)生思維、培養(yǎng)學(xué)生良好意志品質(zhì)和美好情感的重要學(xué)科,在教學(xué)中,我們不僅要使學(xué)生獲得知識、提高解題能力,還要讓學(xué)生在教師的啟發(fā)引導(dǎo)下學(xué)會學(xué)習(xí)、樂于學(xué)習(xí),感受數(shù)學(xué)學(xué)科的人文思想,感受數(shù)學(xué)的自然美。為了更好地體現(xiàn)在課堂教學(xué)中"教師為主導(dǎo),學(xué)生為主體"的教學(xué)關(guān)系和"以人為本,以學(xué)定教"的教學(xué)理念,在本節(jié)課的教學(xué)過程中,我將緊緊圍繞教師組織——啟發(fā)引導(dǎo),學(xué)生探究——交流發(fā)現(xiàn),組織開展教學(xué)活動。

  為此,我設(shè)計了5個環(huán)節(jié):

  ①創(chuàng)設(shè)情景——引入新課;

  ②交流探究——發(fā)現(xiàn)規(guī)律;

  ③啟發(fā)引導(dǎo)——形成結(jié)論;

 、苡(xùn)練小結(jié)——深化鞏固;

 、菟季S拓展——提高能力。這五個環(huán)節(jié)環(huán)環(huán)相扣、層層深入,注重關(guān)注整個過程和全體學(xué)生,充分調(diào)動了學(xué)生的參與性。

  三、教學(xué)過程分析

  1.創(chuàng)設(shè)情景—引入新課

  教學(xué)應(yīng)充分考慮學(xué)生的情感和需要,想方設(shè)法讓學(xué)生在學(xué)習(xí)中樹立信心,感受學(xué)習(xí)樂趣。根據(jù)教材內(nèi)容,我首先出示一道題目,以需要畫y=2x?圖像為引子,讓學(xué)生畫y=x?和y=2x?圖像,進(jìn)而比較這兩個圖像的相同點(diǎn)和不同點(diǎn)為背景切入,一方面讓學(xué)生總結(jié)復(fù)習(xí)已有知識,為后面的學(xué)習(xí)做好鋪墊,另一方面,使學(xué)生在自己熟悉的問題中首先獲得解題成功的快樂體驗,最后引導(dǎo)學(xué)生總結(jié)出函數(shù)y=x?與y=ax?圖像的關(guān)系,得出本節(jié)課的第一個知識點(diǎn),即二次項系數(shù)a決定圖像的開口方向和開口大小。

  由淺入深,下面讓學(xué)生畫y=2x,y=2(x+1)與y=2(x+1)+3的圖像并尋找它們的聯(lián)系,再讓學(xué)生與多媒體課件展示出的圖像進(jìn)行對比,最后總結(jié)出圖像的變換規(guī)律:a決定開口方向、h決定左右平移、k決定上下平移。由于二次函數(shù)的重要性,本節(jié)課我以考題為背景引入新課,可以提高學(xué)生的學(xué)習(xí)興趣,吸引學(xué)生的課堂注意力,可以讓學(xué)生實(shí)實(shí)在在感受到高考題就在我們的課本中,就在我們平常的練習(xí)中。

  2.探究交流—發(fā)現(xiàn)規(guī)律

  從特別到一般是我們發(fā)現(xiàn)問題、尋求規(guī)律、揭示本質(zhì)最常用的方法之一。讓學(xué)生做出y=2x與y=2x+4x-1的圖像,再與課件上的圖像對比并敘述二者之間的位置關(guān)系,得出結(jié)論:若二次函數(shù)的解析式為y=ax+bx+c,先將其化成y=a(x+h)+k的形式,從而判斷出y=ax+bx+c的圖像是如何由y=ax變換得到的。在課本第42頁例1(1)中要提醒學(xué)生注意,在含有參數(shù)的解析式y(tǒng)=a(x+h)+k中,頂點(diǎn)坐標(biāo)應(yīng)是(-h,k),而不是(h,k)。所以,例1(1)中二次函數(shù)f(x)頂點(diǎn)的橫坐標(biāo)是4,即-h=4,h=-4,括號里面就是x-4(這里容易出錯)。例1(2)中h、k的值是已知的,只需要確定a的值就可以了。

  3.啟發(fā)引導(dǎo)—形成結(jié)論

  前面的練習(xí)和例題,基本涵蓋了二次函數(shù)圖像平移變換的各種情況,啟發(fā)并引導(dǎo)了學(xué)生將實(shí)例的結(jié)論進(jìn)行總結(jié),得出y=x到y(tǒng)=ax,y=ax到y(tǒng)=a(x+h)+k,y=ax到y(tǒng)=ax+bx+c(其中,a均不為0)的圖像變化過程,即a>0開口向上,a<0開口向下;h正左移,h負(fù)右移;k正上移,k負(fù)下移。

  4.練習(xí)小結(jié)——鞏固深化

  為了鞏固和加深二次函數(shù)y=ax?+bx+c中的a.b.c對圖像的影響,接下來組織學(xué)生進(jìn)行課題練習(xí),完成課本44頁練習(xí)1—3題。上課時間有限,為保證在完成教學(xué)任務(wù)的前提下,讓學(xué)生充分練習(xí)和討論,我一直堅持讓學(xué)生規(guī)范使用演草本。課堂上需要學(xué)生動手演練的地方不急于安排學(xué)生馬上討論,而是讓學(xué)生思考后將自己的答案整齊地寫在演草本上,然后小組內(nèi)四人相互交換進(jìn)行量分,因為是在課堂上,量分標(biāo)準(zhǔn)要簡單,我要求用30分的整分制。用時較短10分,書寫整齊規(guī)范10分,解答正確10分。

  這個過程中會產(chǎn)生學(xué)生之間的三次競爭:

 、倏凑l解的快、用時最短;

 、诳凑l書寫的整齊;

 、劭凑l做的對。

  這個自己做和批閱的過程,也是學(xué)生對題目加深理解的過程。量完分后組織學(xué)生對不同解法進(jìn)行探究,這又會產(chǎn)生學(xué)生之間的'第四次競爭,看誰的方法簡便,思維更嚴(yán)密。當(dāng)然做題時有的學(xué)生會做的很快,可以讓他們判斷黑板上演示學(xué)生的解題得分情況,這也促進(jìn)在黑板上演示的學(xué)生同下面學(xué)生之間的競爭。

  這個充滿競爭的過程其實(shí)也是教師通過演草本無形引導(dǎo)學(xué)生解決問題、收獲新知的過程,也是一個培養(yǎng)學(xué)生探究精神和思考、比較、辨別能力的過程,使學(xué)生成為學(xué)習(xí)上的主人。這樣每節(jié)課都有競爭,能使學(xué)生發(fā)現(xiàn)自己在學(xué)習(xí)的長處,增強(qiáng)了自己的自信心,切實(shí)感受到了學(xué)習(xí)的樂趣,課堂才能真正的活起來?荚囍校煽儽厝粫鸩教岣,能避免現(xiàn)在我們教學(xué)中學(xué)生"考試什么都不會,考完后什么都會"以及閱卷中發(fā)現(xiàn)的學(xué)生書寫凌亂的通病,經(jīng)過長期這樣的練習(xí),每個學(xué)生練就了快思考、求準(zhǔn)確、寫整齊的能力。

  5.延伸拓廣——提高能力

  課堂教學(xué)既要面對全體學(xué)生,又應(yīng)關(guān)注學(xué)生的個體差異,體現(xiàn)分類推進(jìn),分層教學(xué)原則。為此,我設(shè)計了一個提高練習(xí)題組,共兩道被選題目,以供學(xué)有余力的學(xué)生能夠更好的展示自己的解題能力,取得進(jìn)一步提高。

高中數(shù)學(xué)說課稿3

  一、教學(xué)目標(biāo):

  知識與技能目標(biāo):準(zhǔn)確理解橢圓的定義,掌握橢圓的標(biāo)準(zhǔn)方程及其推導(dǎo)。

  過程與方法目標(biāo):通過引導(dǎo)學(xué)生親自動手嘗試畫圖、發(fā)現(xiàn)橢圓的形成過程進(jìn)而歸納出橢圓的定義,培養(yǎng)學(xué)生觀察、辨析、歸納問題的能力。

  情感、態(tài)度與價值觀目標(biāo):通過經(jīng)歷橢圓方程的化簡,增強(qiáng)學(xué)生戰(zhàn)勝困難的意志品質(zhì)并體會數(shù)學(xué)的簡潔美、對稱美,通過討論橢圓方程推導(dǎo)的等價性養(yǎng)成學(xué)生扎實(shí)嚴(yán)謹(jǐn)?shù)目茖W(xué)態(tài)度。

  二、教學(xué)重點(diǎn)、難點(diǎn):

  重點(diǎn)是橢圓的定義及標(biāo)準(zhǔn)方程,難點(diǎn)是推導(dǎo)橢圓的標(biāo)準(zhǔn)方程。

  三、教學(xué)過程:

  教學(xué)環(huán)節(jié)

  教學(xué)內(nèi)容和形式

  設(shè)計意圖

  復(fù)習(xí)

  提問:

 。1)圓的定義是什么?圓的標(biāo)準(zhǔn)方程的形式怎樣?

  (2)如何推導(dǎo)圓的標(biāo)準(zhǔn)方程呢?

  激活學(xué)生已有的認(rèn)知結(jié)構(gòu),為本課推導(dǎo)橢圓標(biāo)準(zhǔn)方程提供了方法與策略。

  講授新課

  一、授新

  1.橢圓的定義:(略)

  活動過程:

  操作-----交流-----歸納-----多媒體演示-----聯(lián)系生活

  形成概念:

  操作:

  <1>固定一條細(xì)繩的兩端,用筆尖將細(xì)繩拉緊并運(yùn)動,在紙上你得到了怎樣的圖形?

  在動手過程中,培養(yǎng)學(xué)生觀察、辨析、歸納問題的能力。

  在變化的過程中發(fā)現(xiàn)圓與橢圓的聯(lián)系;建立起用聯(lián)系與發(fā)展的觀點(diǎn)看問題;為下一節(jié)深入研究方程系數(shù)的幾何意義埋下伏筆。

  教學(xué)環(huán)節(jié)

  深化概念:

  注:1、平面內(nèi)。

  2、若,則點(diǎn)P的軌跡為橢圓。

  若,則點(diǎn)P的軌跡為線段。

  若,則點(diǎn)P的軌跡不存在。

  聯(lián)系生活:

  情境1.生活中,你見過哪些類似橢圓的圖形或物體?

  情境2.讓學(xué)生觀察傾斜的圓柱形水杯的水面邊界線,并從中抽象出數(shù)學(xué)模型.(教師用多媒體演示)

  情境3.觀看天體運(yùn)行的軌道圖片。

  教學(xué)內(nèi)容和形式:

  準(zhǔn)確理解橢圓的`定義。

  滲透數(shù)學(xué)源于生活,圓錐曲線在生產(chǎn)和技術(shù)中有著廣泛的應(yīng)用。

  設(shè)計意圖:

  2.橢圓的標(biāo)準(zhǔn)方程:

  例:已知點(diǎn)、為橢圓的兩個焦點(diǎn),P為橢圓上的任意一點(diǎn),且,其中,求橢圓的方程

  活動過程:點(diǎn)撥-----板演-----點(diǎn)評

  一般步驟:

  (1)建系設(shè)點(diǎn)

  (2)寫出點(diǎn)的集合

  (3)寫出代數(shù)方程

  (4)化簡方程:

  <1>請一位基礎(chǔ)較好,書寫規(guī)范的同學(xué)板演。

  (5)證明:討論推導(dǎo)的等價性

  掌握橢圓標(biāo)準(zhǔn)方程及推導(dǎo)方法。

  培養(yǎng)學(xué)生戰(zhàn)勝困難的意志品質(zhì)并感受數(shù)學(xué)的簡潔美、對稱美。

  養(yǎng)成學(xué)生扎實(shí)嚴(yán)謹(jǐn)?shù)目茖W(xué)態(tài)度。

  應(yīng)用

  舉例

  教學(xué)環(huán)節(jié)

  二、應(yīng)用

  例1.(1)橢圓的焦點(diǎn)坐標(biāo)為:

  (2)橢圓的焦距為4,則m的值為:

  活動過程:思考-----解答-----點(diǎn)評

  例2.已知橢圓焦點(diǎn)的坐標(biāo)分別是(-4,0)、(4,0),橢圓上一點(diǎn)P到兩焦點(diǎn)的距離的和等于10,求橢圓的標(biāo)準(zhǔn)方程

  活動過程:思考-----解答-----點(diǎn)評

  變式<1>已知橢圓焦點(diǎn)的坐標(biāo)分別是(-4,0)(4,0),且經(jīng)過點(diǎn),求橢圓的標(biāo)準(zhǔn)方程。

  求橢圓的標(biāo)準(zhǔn)方程

  活動過程:思考-----解答-----點(diǎn)評

  認(rèn)清橢圓兩種標(biāo)準(zhǔn)方程形式上的特征。

  課堂小結(jié):

  提問:本節(jié)課學(xué)習(xí)的主要知識是什么?你學(xué)會了哪些數(shù)學(xué)思想與方法?

  活動過程:教師提問-----學(xué)生小結(jié)-----師生補(bǔ)充完善。

  讓學(xué)生回顧本節(jié)所學(xué)知識與方法,以逐步提高學(xué)生自我獲取知識的能力。

  作業(yè)布置:

  作業(yè):教材第95頁,練習(xí)2、4,第96頁習(xí)題8-1,1、2、3、

  探索:平面內(nèi)到兩個定點(diǎn)的距離差、積、商為定值的點(diǎn)的軌跡是否存在?若存在軌跡是什么?

  分層次布置作業(yè),幫助學(xué)生鞏固所學(xué)知識;為學(xué)有余力的學(xué)生留有進(jìn)一步探索、發(fā)展的空間。

  四、板書設(shè)計

  8.1橢圓及其標(biāo)準(zhǔn)方程

  一、復(fù)習(xí)引入二、新課講解三、習(xí)題研討

  1.橢圓的定義

  2.橢圓的標(biāo)準(zhǔn)方程

  總體說明:本節(jié)課的設(shè)計力圖貫徹"以人的發(fā)展為本"的教育理念,體現(xiàn)"教師為主導(dǎo),學(xué)生為主體"的現(xiàn)代教學(xué)思想。在對橢圓定義的講授中,遵循從生動直觀到抽象概括的教學(xué)原則和教學(xué)途徑,通過引導(dǎo)學(xué)生親自動手嘗試畫圖、發(fā)現(xiàn)橢圓的形成過程進(jìn)而歸納出橢圓的定義,培養(yǎng)學(xué)生觀察、辨析、歸納問題的能力;讓橢圓生動靈活地呈現(xiàn)在學(xué)生面前,更有助于學(xué)生理解橢圓的內(nèi)涵和外延。對本課另一難點(diǎn)標(biāo)準(zhǔn)方程推導(dǎo)的講授中,在關(guān)鍵處設(shè)疑,以疑導(dǎo)思,讓學(xué)生先從目的、再從方法上考慮,引導(dǎo)學(xué)生對比、分析,師生共同完成。通過經(jīng)歷橢圓方程的化簡,增強(qiáng)了學(xué)生戰(zhàn)勝困難的意志品質(zhì)并體會數(shù)學(xué)的簡潔美、對稱美.通過討論橢圓方程推導(dǎo)的等價性養(yǎng)成學(xué)生扎實(shí)嚴(yán)謹(jǐn)?shù)目茖W(xué)態(tài)度。設(shè)計的例題及變式練習(xí),充分利用新知識解決問題,使所學(xué)內(nèi)容得以鞏固。變式(2)的設(shè)計讓學(xué)生站在方程的角度認(rèn)清橢圓兩種標(biāo)準(zhǔn)方程形式上的特征,將學(xué)生的思維提升到了一個新的高度。課后分層次布置作業(yè),幫助學(xué)生鞏固所學(xué)知識;課后探索更為學(xué)有余力的學(xué)生留有進(jìn)一步探索、發(fā)展的空間。在教學(xué)中借助多媒體生動、直觀、形象的特點(diǎn)來突出教學(xué)重點(diǎn)。自始至終很好地調(diào)動學(xué)生的積極性,挖掘他們的內(nèi)在潛能,提高學(xué)生的綜合素質(zhì)。

高中數(shù)學(xué)說課稿4

  一、說教材

  1、 教材的地位和作用

  《集合的概念》是人教版第一章的內(nèi)容(中職數(shù)學(xué))。本節(jié)課的主要內(nèi)容:集合以及集合有關(guān)的概念,元素與集合間的關(guān)系。初中數(shù)學(xué)課本中已現(xiàn)了一些數(shù)和點(diǎn)的集合,如:自然數(shù)的集合、有理數(shù)的集合、不等式解的集合等,但學(xué)生并不清楚“集合”在數(shù)學(xué)中的含義,集合是一個基礎(chǔ)性的概念,也是也是中職數(shù)學(xué)的開篇,是我們后續(xù)學(xué)習(xí)的重要工具,如:用集合的語言表示函數(shù)的定義域、值域、方程與不等式的解集,曲線上點(diǎn)的集合等。通過本章節(jié)的學(xué)習(xí),能讓學(xué)生領(lǐng)會到數(shù)學(xué)語言的簡潔和準(zhǔn)確性,幫助學(xué)生學(xué)會用集合的語言描述客觀,發(fā)展學(xué)生運(yùn)用數(shù)學(xué)語言交流的能力。

  2、 教學(xué)目標(biāo)

 。1)知識目標(biāo):a、通過實(shí)例了解集合的含義,理解集合以及有關(guān)概念;

  b、初步體會元素與集合的“屬于”關(guān)系,掌握元素與集合關(guān)系的表示方法。

 。2)能力目標(biāo):a、讓學(xué)生感知數(shù)學(xué)知識與實(shí)際生活得密切聯(lián)系,培養(yǎng)學(xué)生解決實(shí)際的能力;

  b、學(xué)會借助實(shí)例分析,探究數(shù)學(xué)問題,發(fā)展學(xué)生的觀察歸納能力。

 。3)情感目標(biāo):a、通過聯(lián)系生活,提高學(xué)生學(xué)習(xí)數(shù)學(xué)的積極性,形成積極的學(xué)習(xí)態(tài)度;

  b、通過主動探究,合作交流,感受探索的樂趣和成功的體驗,體會數(shù)學(xué)的理性和嚴(yán)謹(jǐn)。

  3、重點(diǎn)和難點(diǎn)

  重點(diǎn):集合的概念,元素與集合的關(guān)系。

  難點(diǎn):準(zhǔn)確理解集合的概念。

  二、學(xué)情分析(說學(xué)情)

  對于中職生來說,學(xué)生的數(shù)學(xué)基礎(chǔ)相對薄弱,他們還沒具備一定的觀察、分析理解、解決實(shí)際問題的能力,在運(yùn)算能力、思維能力等方面參差不齊,學(xué)生學(xué)好數(shù)學(xué)的自信心不強(qiáng),學(xué)習(xí)積極性不高,有厭學(xué)情緒。

  三、說教法

  針對學(xué)生的實(shí)際情況,采用探究式教學(xué)法進(jìn)行教學(xué)。首先從學(xué)生較熟悉的實(shí)例出發(fā),提高學(xué)生的注意力和激發(fā)學(xué)生的學(xué)習(xí)興趣。在創(chuàng)設(shè)情境認(rèn)知策略上給予適當(dāng)?shù)狞c(diǎn)撥和引導(dǎo),引導(dǎo)學(xué)生主動思、交流、討論,提出問題。在此基礎(chǔ)上教師層層深入,啟發(fā)學(xué)生積極思維,逐步提升學(xué)生的數(shù)學(xué)學(xué)習(xí)能力。集合概念的形成遵循由感性到理性,由具體到抽象,便于學(xué)生的理解和掌握。

  四、學(xué)習(xí)指導(dǎo)(說學(xué)法)

  教學(xué)的矛盾主要方面是學(xué)生的學(xué),學(xué)是中心,會學(xué)是目的,因此在教學(xué)中要不斷指導(dǎo)學(xué)生學(xué)會學(xué)習(xí)。根據(jù)數(shù)學(xué)的特點(diǎn)這節(jié)課主要是教學(xué)生動腦思考、多訓(xùn)練、勤鉆研的研討,這樣做增加了學(xué)生主動參與的機(jī)會,增強(qiáng)了參與的意識,教學(xué)生獲取知識的途徑,思考問題的方法,使學(xué)生成為教學(xué)的主體,進(jìn)而才能達(dá)到預(yù)期的教學(xué)目的和效果。

  五、教學(xué)過程

  1、引入新課:

  a、創(chuàng)設(shè)情境,揭示本課主題,同時對集合的整體性有個初步的感性認(rèn)識。

  b、介紹集合論的創(chuàng)始者康托爾

  2、究竟什么是集合?(實(shí)例探究)切合學(xué)生現(xiàn)有的認(rèn)知水平, 以學(xué)生熟悉的事物(物體),以實(shí)際生活為背景進(jìn)行探究, 為本課教學(xué)創(chuàng)造出一種自然和諧的氛圍,充分調(diào)動學(xué)生的學(xué)習(xí)熱情接待探究過程學(xué)生積極思考、交流、作答,教師針對學(xué)生的回答啟發(fā),引導(dǎo)學(xué)生尋找實(shí)例中的共同特征,培養(yǎng)學(xué)生觀察,總結(jié)能力范圍由具體到抽象,由感性到理性,為下面水到渠成的.介紹集合概念做好鋪墊。

  3、集合的概念,本課的重點(diǎn)。結(jié)合探究中的實(shí)例,讓學(xué)生說出集合和元素各是什么?知識的呈現(xiàn)由抽象到具體進(jìn)一步熟悉元素與集合的概念,讓學(xué)生分清實(shí)際問題中的集合和元素為后面學(xué)習(xí)兩者間的關(guān)系做好鋪墊。

  教師在這一環(huán)節(jié)做好學(xué)習(xí)指導(dǎo),確定的對象組成的整體叫集合,如果對象不確定,就不能確定為集合(舉例)加深對概念的理解。

  4、 熟悉鞏固集合的概念通過例題,練習(xí)、幫助學(xué)生進(jìn)一步熟悉和理解集合的概念。

  5、 集合的符號記法,為本節(jié)重點(diǎn)做好鋪墊。

  6、 從實(shí)例入行手,探索元素和集合的關(guān)系,學(xué)生能用文字語言描述,如何用數(shù)學(xué)語言描述,給出元素與集合關(guān)系符號表示,在這個環(huán)節(jié)教師適當(dāng)引導(dǎo)學(xué)生積極主動參與到知識逐步形成過程,便于學(xué)生理解和掌握,落實(shí)本課的重點(diǎn),學(xué)習(xí)指導(dǎo):⑴集合元素的確定。⑵理解兩符號的含義。

  7、 思考交流本課的重要環(huán)節(jié)在課堂上給學(xué)生提供充分的活動時間和空間。通過自由舉例,能深化概念。同時還能提升學(xué)生的分析能力表達(dá)自己見解的能力。

  8、 從所舉的例子中抽象出數(shù)集的概念,并給出常見數(shù)集的記法。

  9、 學(xué)生練習(xí):通過練習(xí),識記常見數(shù)集的記法,同時進(jìn)一步鞏固元素與集合間的關(guān)系。

  10、知識的實(shí)際應(yīng)用:

  問題不難,落實(shí)課本能力目標(biāo),培養(yǎng)學(xué)生運(yùn)用數(shù)學(xué)的意識和能力初步培養(yǎng)學(xué)生應(yīng)用集合的眼光觀看世界。

  11、課堂小節(jié)

  以學(xué)生小節(jié)為主教師幫助為輔,鞏固所學(xué)知識,幫助學(xué)生認(rèn)識到要學(xué)會梳理所學(xué)內(nèi)容,要學(xué)會總結(jié)反思,使學(xué)生的認(rèn)識進(jìn)一步升華,培養(yǎng)學(xué)生的鬼納總結(jié)能力。

  六、評價

  教學(xué)評價的及時能有效調(diào)動課堂氣氛,感染學(xué)生的情緒,對課堂教學(xué)發(fā)揮著積極作用,教學(xué)過程尊重學(xué)生之間的差異培養(yǎng)學(xué)生應(yīng)用集合的眼光看研究對象,注重過程評價與多元評價將教學(xué)評價貫穿于本堂課的每個教學(xué)環(huán)節(jié)。

  七、教學(xué)反思

  1、 通過現(xiàn)實(shí)生活中的實(shí)例,從特殊到一般,在具體感知基礎(chǔ)上得出集合的描述概念,便于學(xué)生理解接受。

  2、 啟發(fā)探究教學(xué),營造學(xué)生的學(xué)習(xí)氛圍,培養(yǎng)學(xué)生自主學(xué)習(xí),合作交流的能力。

  八、板書設(shè)計

高中數(shù)學(xué)說課稿5

  尊敬的各位考官,大家好,我是今天的X號考生,今天我說課的題目是《分層抽樣》。

  新課標(biāo)指出:高中教育屬于基礎(chǔ)教育,具有基礎(chǔ)性,且具有多樣性與選擇性,使不同的學(xué)生在數(shù)學(xué)上得到不同的發(fā)展。今天我將貫徹這一理念從教材分析、學(xué)情分析、教學(xué)過程等幾個方面展開我的說課。

  一、說教材

  我認(rèn)為要真正的教好一節(jié)課,首先就是要對教材熟悉,那么我就先來說一說我對本節(jié)課教材的理解!斗謱映闃印肥侨私藺版必修3第二章第一節(jié)的第三小節(jié),本節(jié)課的內(nèi)容是對分層抽樣進(jìn)行探討。本小節(jié)通過具體問題情境引出分層抽樣的抽樣方法,并對它的概念、特點(diǎn)和步驟進(jìn)行了探討。本節(jié)內(nèi)容是第一節(jié)隨機(jī)抽樣方法的擴(kuò)充,這也為后面學(xué)習(xí)用樣本估計總體奠定基礎(chǔ)。學(xué)習(xí)本節(jié)課將會更好的提高學(xué)生解決生活實(shí)際問題的能力。

  二、說學(xué)情

  合理把握學(xué)情是上好一堂課的基礎(chǔ),下面我來談?wù)剬W(xué)生的實(shí)際情況。本階段的學(xué)生是高中生,他們具有了自主探索學(xué)習(xí)的能力,同時觀察能力、總結(jié)能力、歸納能力、類比能力、抽象能力等已經(jīng)發(fā)展的比較成熟,但本階段的學(xué)生容易脫離生活實(shí)際進(jìn)行機(jī)械的學(xué)習(xí),所以在教學(xué)中老師一定要凸顯學(xué)生的自主性,可以將更多的活動交給學(xué)生進(jìn)行探究,在探究過程中繼續(xù)提高學(xué)生的各方面能力。在學(xué)習(xí)本節(jié)知識之前,學(xué)生已經(jīng)具備了統(tǒng)計的一些基礎(chǔ)知識,但是對統(tǒng)計具體的抽樣方法沒有系統(tǒng)的學(xué)習(xí),故本節(jié)課的學(xué)習(xí)應(yīng)該站在學(xué)生已有經(jīng)驗的基礎(chǔ)上進(jìn)行教學(xué),幫助學(xué)生提高數(shù)學(xué)的應(yīng)用能力。

  三、說教學(xué)目標(biāo)

  根據(jù)以上對教材的分析以及對學(xué)情的把握,我制定了如下三維教學(xué)目標(biāo):

 。ㄒ唬┲R與技能

  了解隨機(jī)抽樣中的分層抽樣的特點(diǎn)和適用情況,并會用分層抽樣解決實(shí)際問題。

 。ǘ┻^程與方法

  經(jīng)歷分層抽樣的特點(diǎn)的探索過程,提升概括能力和應(yīng)用能力。

 。ㄈ┣楦小B(tài)度與價值觀

  在探索的過程中,學(xué)習(xí)如何處理數(shù)據(jù),運(yùn)用所學(xué)知識和方法解決實(shí)際問題,體會數(shù)學(xué)與生活的緊密聯(lián)系。

  四、說教學(xué)重難點(diǎn)

  我認(rèn)為一節(jié)好的數(shù)學(xué)課,從教學(xué)內(nèi)容上說一定要突出重點(diǎn)、突破難點(diǎn)。而教學(xué)重點(diǎn)的確立與我本節(jié)課的內(nèi)容肯定是密不可分的。那么根據(jù)授課內(nèi)容可以確定本節(jié)課的教學(xué)重點(diǎn)為:分層抽樣的特點(diǎn)及步驟。難點(diǎn):分層抽樣特點(diǎn)的探究過程。

  五、說教法和學(xué)法

  依據(jù)新課程改革精神與學(xué)生認(rèn)知發(fā)展現(xiàn)狀,突破難點(diǎn)有效實(shí)現(xiàn)知識的鞏固,我將采用講授法、探究法、練習(xí)法等教學(xué)方法,并在教學(xué)過程中有意識的培養(yǎng)學(xué)生的合作探究能力,自主探究能力,使之在真正意義上成為學(xué)會學(xué)習(xí)的人。

  六、說教學(xué)過程

  在這節(jié)課的教學(xué)過程中,我注重突出重點(diǎn),條理清晰,緊湊合理。各項活動的安排也注重互動、交流,最大限度的調(diào)動學(xué)生參與課堂的積極性、主動性。

 。ㄒ唬⿲(dǎo)入新課

  首先是導(dǎo)入環(huán)節(jié),我會直接讓學(xué)生思考:如果要調(diào)查某校高一學(xué)生的平均身高應(yīng)該怎樣調(diào)查?

  學(xué)生根據(jù)生活經(jīng)驗?zāi)軌蛑溃耗猩砀哂泻艽蟛顒e,簡單隨機(jī)抽樣和系統(tǒng)抽樣都不能夠使樣本具有代表性。

  接下來,我會根據(jù)學(xué)生的疑惑進(jìn)行講解:選擇抽樣方法之前,充分利用事先對總體情況的已有了解是非常重要的,并明確用新的抽樣方法——分層抽樣來解決這個問題。

  通過生活實(shí)例來導(dǎo)入新課,一方面能夠調(diào)動學(xué)生的積極性,另一方面也能夠降低數(shù)學(xué)的難度,便于學(xué)生的理解。

 。ǘ┲v解新知

  接下來是新課講授環(huán)節(jié),我將分為三部分,分別為分層抽樣的探究、分層抽樣的概念及步驟、三種抽樣方法的.辨析。

  首先是第一部分探索分層抽樣。在這里我會出示書上的問題情境:某地區(qū)有高中生2400人,初中生10900人,小學(xué)生11000人。此地區(qū)教育部門為了了解本地區(qū)中小學(xué)生的近視情況及其形成的原因,要從本地區(qū)的中小學(xué)生中抽取1%的學(xué)生進(jìn)行調(diào)查,你認(rèn)為應(yīng)當(dāng)怎樣抽取樣本?并提出問題:你認(rèn)為哪些因素可能影響學(xué)生的視力?設(shè)計抽樣方法時需要考慮這些因素嗎?學(xué)生可能回答:不同年齡階段的近視情況可能存在明顯差異,三個部分的人數(shù)相差較大,我們需要考慮到三個年齡段各自的情況。在此先讓學(xué)生感知用分層抽樣的具體情境,為后面在具體情境中探究分層抽樣的特點(diǎn)和步驟奠定基礎(chǔ)。

  我會向?qū)W生提問:簡單隨機(jī)抽樣、系統(tǒng)抽樣和分層抽樣各有其特點(diǎn)和適用范圍,請對這三種抽樣方法進(jìn)行比較,說說它們各自的優(yōu)點(diǎn)和缺點(diǎn)。

  通過這樣的環(huán)節(jié),加深學(xué)生對三種抽樣方法的理解。

  我之所以設(shè)置這樣由淺入深、層層遞進(jìn)的問題,是為了符合學(xué)生的接受水平,同時在學(xué)習(xí)的過程中也能夠體現(xiàn)學(xué)生的主體性。

  (三)課堂練習(xí)

  當(dāng)然光得出結(jié)論還是不夠的,作為一節(jié)數(shù)學(xué)課要及時對知識進(jìn)行應(yīng)用。我設(shè)計了如下課堂練習(xí):

  練習(xí):某地區(qū)中小學(xué)生人數(shù)的分布情況如下表所示(單位:人)

高中數(shù)學(xué)說課稿6

  一、教材分析

  (一)地位與作用

  《冪函數(shù)》選自高一數(shù)學(xué)新教材必修1第2章第3節(jié)。是基本初等函數(shù)之一,它不僅有著廣泛的實(shí)際應(yīng)用,而且起著承前啟后的作用。從教材的整體安排看,學(xué)習(xí)了解冪函數(shù)是為了讓學(xué)生進(jìn)一步獲得比較系統(tǒng)的函數(shù)知識和研究函數(shù)的方法,為今后學(xué)習(xí)三角函數(shù)等其他函數(shù)打下良好的基礎(chǔ).在初中曾經(jīng)研究過y=x,y=x2,y=x—1三種冪函數(shù)。這節(jié)內(nèi)容,是對初中有關(guān)內(nèi)容的進(jìn)一步的概括、歸納與發(fā)展,是與冪有關(guān)知識的高度升華.本節(jié)內(nèi)容之后, 將把指數(shù)函數(shù),對數(shù)函數(shù),冪函數(shù)科學(xué)的組織起來,體現(xiàn)充滿在整個數(shù)學(xué)中的組織化,系統(tǒng)化的精神。讓學(xué)生了解系統(tǒng)研究一類函數(shù)的方法.這節(jié)課要特別讓學(xué)生去體會研究的方法,以便能將該方法遷移到對其他函數(shù)的研究.

 。ǘ⿲W(xué)情分析

 。1)學(xué)生已經(jīng)接觸的函數(shù),確立利用函數(shù)的定義域、值域、奇偶性、單調(diào)性研究一個函數(shù)的意識 ,已初步形成對數(shù)學(xué)問題的合作探究能力。

 。2)雖然前面學(xué)生已經(jīng)學(xué)會用描點(diǎn)畫圖的方法來繪制指數(shù)函數(shù),對數(shù)函數(shù)圖像,但是對于冪函數(shù)的圖像畫法仍然缺乏感性認(rèn)識。

  (3)學(xué)生層次參差不齊,個體差異比較明顯。

  二、目標(biāo)分析

  新課標(biāo)指出“三維目標(biāo)”是一個密切聯(lián)系的有機(jī)整體。

  (一)教學(xué)目標(biāo)

 。1)知識與技能

  ①使學(xué)生理解冪函數(shù)的概念,會畫冪函數(shù)的圖象。

 、谧寣W(xué)生結(jié)合這幾個冪函數(shù)的圖象,理解冪函圖象的變化情況和性質(zhì)。

  (2)過程與方法

 、僮寣W(xué)生通過觀察、總結(jié)冪函數(shù)的性質(zhì),培養(yǎng)學(xué)生概括抽象和識圖能力。

  ②使學(xué)生領(lǐng)會數(shù)形結(jié)合的數(shù)學(xué)思想方法,培養(yǎng)學(xué)生發(fā)現(xiàn)問題、分析問題、解決問題的能力。

  (3)情感態(tài)度與價值觀

 、偻ㄟ^熟悉的例子讓學(xué)生消除對冪函數(shù)的陌生感從而引出概念,引起學(xué)生注意,激發(fā)學(xué)生的學(xué)習(xí)興趣。

 、诶枚嗝襟w,了解冪函數(shù)圖象的變化規(guī)律,使學(xué)生認(rèn)識到現(xiàn)代技術(shù)在數(shù)學(xué)認(rèn)知過程中的作用,從而激發(fā)學(xué)生的學(xué)習(xí)欲望。

 、叟囵B(yǎng)學(xué)生從特殊歸納出一般的意識,培養(yǎng)學(xué)生利用圖像研究函數(shù)奇偶性的能力。并引導(dǎo)學(xué)生發(fā)現(xiàn)數(shù)學(xué)中的對稱美,讓學(xué)生在畫圖與識圖中獲得學(xué)習(xí)的快樂。

 。ǘ┲攸c(diǎn)難點(diǎn)

  根據(jù)我對本節(jié)課的內(nèi)容的理解,我將重難點(diǎn)定為:

  重點(diǎn):從五個具體的冪函數(shù)中認(rèn)識概念和性質(zhì)

  難點(diǎn):從冪函數(shù)的圖象中概括其性質(zhì)。

  三、教法、學(xué)法分析

  (一)教法

  教學(xué)過程是教師和學(xué)生共同參與的過程,教師要善于啟發(fā)學(xué)生自主性學(xué)習(xí),充分調(diào)動學(xué)生的積極性、主動性,要有效地滲透數(shù)學(xué)思想方法,努力去提高學(xué)生素質(zhì)。根據(jù)這樣的原則和所要完成的教學(xué)目標(biāo),并為激發(fā)學(xué)生的學(xué)習(xí)興趣,我采用如下的教學(xué)方法。

  1、引導(dǎo)發(fā)現(xiàn)比較法

  因為有五個冪函數(shù),所以可先通過學(xué)生動手畫出函數(shù)的圖象,觀察它們的解析式和圖象并從式的角度和形的角度發(fā)現(xiàn)異同,并進(jìn)行比較,從而更深刻地領(lǐng)會冪函數(shù)概念以及五個冪函數(shù)的圖象與性質(zhì)。

  2、借助信息技術(shù)輔助教學(xué)

  由于多媒體信息技術(shù)能具有形象生動易吸引學(xué)生注意的特點(diǎn),故此,可用多媒體制作引入情境,將學(xué)生引到這節(jié)課的學(xué)習(xí)中來。再利用《幾何畫板》畫出五個冪函數(shù)的圖象,為學(xué)生創(chuàng)設(shè)豐富的數(shù)形結(jié)合環(huán)境,幫助學(xué)生更深刻地理解冪函數(shù)概念以及在冪函數(shù)中指數(shù)的變化對函數(shù)圖象形狀和單調(diào)性的影響,并由此歸納冪函數(shù)的性質(zhì)。

  3、練習(xí)鞏固討論學(xué)習(xí)法

  這樣更能突出重點(diǎn),解決難點(diǎn),使學(xué)生既能夠進(jìn)行深入地獨(dú)立思考又能與同學(xué)進(jìn)行廣泛的交流與合作,這樣一來學(xué)生對這五個冪函數(shù)領(lǐng)會得會更加深刻,在這個過程中學(xué)生們分析問題和解決問題的能力得到進(jìn)一步的提高,班級整體學(xué)習(xí)氛氛圍也變得更加濃厚。

 。ǘ⿲W(xué)法

  本節(jié)課主要是通過對冪函數(shù)模型的特征進(jìn)行歸納,動手探索冪函數(shù)的圖像,觀察發(fā)現(xiàn)其有關(guān)性質(zhì),再改變觀察角度發(fā)現(xiàn)奇偶函數(shù)的特征。重在動手操作、觀察發(fā)現(xiàn)和歸納的過程。

  由于冪函數(shù)在第一象限的特征是學(xué)生不容易發(fā)現(xiàn)的問題,因此在教學(xué)過程中引導(dǎo)學(xué)生將抽象問題具體化,借助多媒體進(jìn)行動態(tài)演化,以形成較完整的知識結(jié)構(gòu)。

  四、教學(xué)過程分析

 。ㄒ唬┙虒W(xué)過程設(shè)計

  (1)創(chuàng)設(shè)情境,提出問題。 新課標(biāo)指出:“應(yīng)該讓學(xué)生在具體生動的情境中學(xué)習(xí)數(shù)學(xué)”。在本節(jié)課的教學(xué)中,從我們熟悉的生活情境中提出問題,問題的設(shè)計改變了傳統(tǒng)目的明確的設(shè)計方式,給學(xué)生最大的思考空間,充分體現(xiàn)學(xué)生主體地位。

  問題1:下列問題中的函數(shù)各有什么共同特征?是否為指數(shù)函數(shù)?

  由學(xué)生討論,總結(jié),即可得出:p=w,s=a2,v=a,a=s1/2,v=t—1

  這時學(xué)生觀察可能有些困難,老師提示可以用x表示自變量,用y表示函數(shù)值,上述函數(shù)式變成:

  都是自變量的若干次冪的形式。都是形如

  的函數(shù)。

  揭示課題:今天這節(jié)課,我們就來研究:冪函數(shù)

 。ㄒ唬┱n堂主要內(nèi)容

 。1)冪函數(shù)的概念

 、賰绾瘮(shù)的定義。

  一般地,函數(shù)

  叫做冪函數(shù),其中x 是自變量,a是常數(shù)。

 、趦绾瘮(shù)與指數(shù)函數(shù)之間的區(qū)別。

  冪函數(shù)——底數(shù)是自變量,指數(shù)是常數(shù);

  指數(shù)函數(shù)——指數(shù)是自變量,底數(shù)是常數(shù)。

 。2)幾個常見冪函數(shù)的圖象和性質(zhì)

  由同學(xué)們畫出下列常見的冪函數(shù)的圖象,并根據(jù)圖象將發(fā)現(xiàn)的性質(zhì)填入表格

  根據(jù)上表的內(nèi)容并結(jié)合圖象,總結(jié)函數(shù)的共同性質(zhì)。讓學(xué)生交流,老師結(jié)合學(xué)生的回答組織學(xué)生總結(jié)出性質(zhì)。

  以上問題的設(shè)計意圖:數(shù)形結(jié)合是一個重要的數(shù)學(xué)思想方法,它包含以數(shù)助形,和以形助數(shù)的思想。通過問題設(shè)計讓學(xué)生著手實(shí)際,借助行的生動來闡明冪函數(shù)的性質(zhì)。

  教師講評:冪函數(shù)的性質(zhì).

 、偎械.冪函數(shù)在(0,+∞)上都有定義,并且圖像都過點(diǎn)(1,1).

 、谌绻鸻>0,則冪函數(shù)的圖像通過原點(diǎn),并在區(qū)間〔0,+∞)上是增函數(shù).

  ③如果a<0,則冪函數(shù)在(0,+∞)上是減函數(shù),在第一象限內(nèi),當(dāng)x從右邊趨向于原點(diǎn)時,圖像在y軸右方無限地趨近y軸;當(dāng)x趨向于+∞時,圖像在x軸上方無限地趨近x軸.

 、墚(dāng)a為奇數(shù)時,冪函數(shù)為奇函數(shù);當(dāng)a為偶數(shù)時,冪函數(shù)為偶函數(shù)。

  以問題設(shè)計為主,通過問題,讓學(xué)生由已經(jīng)學(xué)過的指數(shù)函數(shù),對數(shù)函數(shù),描點(diǎn)作圖得到五個冪函數(shù)的圖像,但是我們應(yīng)該知道繪制冪函數(shù)的圖像比繪制指數(shù)函數(shù)和對數(shù)函數(shù)的圖像更為復(fù)雜,因為冪函數(shù)隨著冪指數(shù)的輕微變化會出現(xiàn)較大的變化,因此,在描點(diǎn)作圖之前,應(yīng)引導(dǎo)學(xué)生對幾個特殊的冪函數(shù)的性質(zhì)先進(jìn)行初步的探究,如分析函數(shù)的定義域,奇偶性等,在根據(jù)研究結(jié)果和描點(diǎn)作圖畫出圖像,讓學(xué)生觀察所作圖像特征,并由圖象特征得到相應(yīng)的函數(shù)性質(zhì),讓學(xué)生充分體會系統(tǒng)的研究方法。同時學(xué)生對于歸納性質(zhì)這一環(huán)節(jié)相對指數(shù)函數(shù),對數(shù)函數(shù)的性質(zhì),學(xué)生會有更大的困難。因此,教學(xué)中只須對他們的圖像與基本性質(zhì)進(jìn)行認(rèn)識,而不必在一般冪函數(shù)上作過多的引申和介紹。在教學(xué)中,采用從具體到一般,再從一般到具體的安排。

  通過學(xué)生的主體參與,使學(xué)生深切體會到本節(jié)課的主要內(nèi)容和思想方法,從而實(shí)現(xiàn)對知識識的再次深化。

  (3)當(dāng)堂訓(xùn)練,鞏固深化

  例題和練習(xí)題的選取應(yīng)結(jié)合學(xué)生認(rèn)知探究,鞏固本節(jié)課的重點(diǎn)知識,并能用知識加以運(yùn)用。本節(jié)課選取主要選取了兩道例題。

  例1是課本上的例題:證明f(x)=x1/2在(0,+∞)上是增函數(shù)。這題先從“形”的角度判斷函數(shù)的單調(diào)區(qū)間和單調(diào)性,再用到定義從“數(shù)”的角度對函數(shù)的單調(diào)性進(jìn)行推理論證,培養(yǎng)學(xué)生的數(shù)形結(jié)合的數(shù)學(xué)思想和解決問題的專業(yè)素養(yǎng)。

  例2是補(bǔ)充例題,主要培養(yǎng)學(xué)生根據(jù)體例構(gòu)造出函數(shù),并利用函數(shù)的性質(zhì)來解決問題的能力,從而加深學(xué)生對冪函數(shù)及其性質(zhì)的理解。注意:由于學(xué)生對冪函數(shù)還不是很熟悉,所以在講評中要刻意體現(xiàn)出冪函數(shù)y=x1。3是增函數(shù)與y=x—5/4的圖像的畫法,即再一次讓學(xué)生體會根據(jù)解析式來畫圖像解題這一基本思路

 。4)小結(jié)歸納,回顧反思。 小結(jié)歸納不僅是對知識的簡單回顧,還要發(fā)揮學(xué)生的主體地位,從知識、方法、經(jīng)驗等方面進(jìn)行總結(jié)。我設(shè)計了三個問題:

 。1)通過本節(jié)課的學(xué)習(xí),你學(xué)到了哪些知識?

 。2)通過本節(jié)課的學(xué)習(xí),你最大的體驗是什么?

 。3)通過本節(jié)課的學(xué)習(xí),你掌握了哪些技能?

  (二)作業(yè)設(shè)計 作業(yè)分為必做題和選做題,必做題對本節(jié)課學(xué)生知識水平的反饋,選做題是對本節(jié)課內(nèi)容的延伸與,注重知識的延伸與連貫,強(qiáng)調(diào)學(xué)以致用。通過作業(yè)設(shè)置,使不同層次的學(xué)生都可以獲得成功的喜悅,看到自己的潛能,從而激發(fā)學(xué)生飽滿的學(xué)習(xí)興趣,促進(jìn)學(xué)生自主發(fā)展、合作探究的學(xué)習(xí)氛圍的形成. 我設(shè)計了以下作業(yè):

 。1)必做題

 。2)選做題

  (三)板書設(shè)計

  板書要基本體現(xiàn)整堂課的內(nèi)容與方法,體現(xiàn)課堂進(jìn)程,能簡明扼要反映知識結(jié)構(gòu)及其相互聯(lián)系;能指導(dǎo)教師的教學(xué)進(jìn)程、引導(dǎo)學(xué)生探索知識;通過使用幻燈片輔助板書,節(jié)省課堂時間,使課堂進(jìn)程更加連貫。

  五、評價分析

  學(xué)生學(xué)習(xí)的結(jié)果評價當(dāng)然重要,但是更重要的是學(xué)生學(xué)習(xí)的過程評價。我采用及時點(diǎn)評、延時點(diǎn)評與學(xué)生互評相結(jié)合,全面考查學(xué)生在知識、思想、能力等方面的發(fā)展情況,在質(zhì)疑探究的過程中,評價學(xué)生是否有積極的情感態(tài)度和頑強(qiáng)的理性精神,在概念反思過程中評價學(xué)生的歸納猜想能力是否得到發(fā)展,通過鞏固練習(xí)考查學(xué)生對冪函數(shù)是否有一個完整的集訓(xùn),并進(jìn)行及時的調(diào)整和補(bǔ)充。 以上就是我對本節(jié)課的理解和設(shè)計,敬請各位專家、評委批評指正。

  謝謝!

高中數(shù)學(xué)說課稿7

  一、教材分析

  1、教材所處的地位和作用

  奇偶性是人教A版第一章集合與函數(shù)概念的第3節(jié)函數(shù)的基本性質(zhì)的第2小節(jié)。

  奇偶性是函數(shù)的一條重要性質(zhì),教材從學(xué)生熟悉的及入手,從特殊到一般,從具體到抽象,注重信息技術(shù)的應(yīng)用,比較系統(tǒng)地介紹了函數(shù)的奇偶性。從知識結(jié)構(gòu)看,它既是函數(shù)概念的拓展和深化,又是后續(xù)研究指數(shù)函數(shù)、對數(shù)函數(shù)、冪函數(shù)、三角函數(shù)的基礎(chǔ)。所以,本節(jié)課起著承上啟下的重要作用。

  2、學(xué)情分析

  從學(xué)生的認(rèn)知基礎(chǔ)看,學(xué)生在初中已經(jīng)學(xué)習(xí)了軸對稱圖形和中心對稱圖形,并且有了必須數(shù)量的簡單函數(shù)的儲備。同時,剛剛學(xué)習(xí)了函數(shù)單調(diào)性,已經(jīng)積累了研究函數(shù)的基本方法與初步經(jīng)驗。

  從學(xué)生的思維發(fā)展看,高一學(xué)生思維本事正在由形象經(jīng)驗型向抽象理論型轉(zhuǎn)變,能夠用假設(shè)、推理來思考和解決問題、

  3、教學(xué)目標(biāo)

  基于以上對教材和學(xué)生的分析,以及新課標(biāo)理念,我設(shè)計了這樣的教學(xué)目標(biāo):

  【知識與技能】

  1)能確定一些簡單函數(shù)的奇偶性。

  2)能運(yùn)用函數(shù)奇偶性的代數(shù)特征和幾何意義解決一些簡單的.問題。

  【過程與方法】

  經(jīng)歷奇偶性概念的構(gòu)成過程,提高觀察抽象本事以及從特殊到一般的歸納概括本事。

  【情感、態(tài)度與價值觀】

  經(jīng)過自主探索,體會數(shù)形結(jié)合的思想,感受數(shù)學(xué)的對稱美。

  從課堂反應(yīng)看,基本上到達(dá)了預(yù)期效果。

  4、教學(xué)重點(diǎn)和難點(diǎn)

  重點(diǎn):函數(shù)奇偶性的概念和幾何意義。

  幾年的教學(xué)實(shí)踐證明,雖然函數(shù)奇偶性這一節(jié)知識點(diǎn)并不是很難理解,但知識點(diǎn)掌握不全面的學(xué)生容易出現(xiàn)下頭的錯誤。他們往往流于表面形式,只根據(jù)奇偶性的定義檢驗成立即可,而忽視了研究函數(shù)定義域的問題。所以,在介紹奇、偶函數(shù)的定義時,必須要揭示定義的隱含條件,從正反兩方面講清定義的內(nèi)涵和外延。所以,我把函數(shù)的奇偶性概念設(shè)計為本節(jié)課的重點(diǎn)。在這個問題上我除了注意概念的講解,還特意安排了一道例題,來加強(qiáng)本節(jié)課重點(diǎn)問題的講解。

  難點(diǎn):奇偶性概念的數(shù)學(xué)化提煉過程。

  由于,學(xué)生看待問題還是靜止的、片面的,抽象概括本事比較薄弱,這對建構(gòu)奇偶性的概念造成了必須的困難。所以我把奇偶性概念的數(shù)學(xué)化提煉過程設(shè)計為本節(jié)課的難點(diǎn)。

  二、教法與學(xué)法分析

  1、教法

  根據(jù)本節(jié)教材資料和編排特點(diǎn),為了更有效地突出重點(diǎn),突破難點(diǎn),按照學(xué)生的認(rèn)知規(guī)律,遵循教師為主導(dǎo),學(xué)生為主體,訓(xùn)練為主線的指導(dǎo)思想,采用以引導(dǎo)發(fā)現(xiàn)法為主,直觀演示法、類比法為輔。教學(xué)中,精心設(shè)計一個又一個帶有啟發(fā)性和思考性的問題,創(chuàng)設(shè)問題情景,誘導(dǎo)學(xué)生思考,使學(xué)生始終處于主動探索問題的進(jìn)取狀態(tài),從而培養(yǎng)思維本事。從課堂反應(yīng)看,基本上到達(dá)了預(yù)期效果。

  2、學(xué)法

  讓學(xué)生在觀察一歸納一檢驗一應(yīng)用的學(xué)習(xí)過程中,自主參與知識的發(fā)生、發(fā)展、構(gòu)成的過程,從而使學(xué)生掌握知識。

  三、教學(xué)過程

  具體的教學(xué)過程是師生互動交流的過程,共分六個環(huán)節(jié):設(shè)疑導(dǎo)入、觀圖激趣;指導(dǎo)觀察、構(gòu)成概念;學(xué)生探索、領(lǐng)會定義;知識應(yīng)用,鞏固提高;總結(jié)反饋;分層作業(yè),學(xué)以致用。下頭我對這六個環(huán)節(jié)進(jìn)行說明。

 。ㄒ唬┰O(shè)疑導(dǎo)入、觀圖激趣

  由于本節(jié)資料相對獨(dú)立,專題性較強(qiáng),所以我采用了開門見山導(dǎo)入方式,直接點(diǎn)明要學(xué)的資料,使學(xué)生的思維迅速定向,到達(dá)開始就明確目標(biāo)突出重點(diǎn)的效果。

  用多媒體展示一組圖片,使學(xué)生感受到生活中的對稱美。再讓學(xué)生觀察幾個特殊函數(shù)圖象。經(jīng)過讓學(xué)生觀察圖片導(dǎo)入新課,既激發(fā)了學(xué)生濃厚的學(xué)習(xí)興趣,又為學(xué)習(xí)新知識作好鋪墊。

 。ǘ┲笇(dǎo)觀察、構(gòu)成概念

  在這一環(huán)節(jié)中共設(shè)計了2個探究活動。

  探究1、2數(shù)學(xué)中對稱的形式也很多,這節(jié)課我們就以函數(shù)和=︱x︱以及和為例展開探究。這個探究主要是經(jīng)過學(xué)生的自主探究來實(shí)現(xiàn)的,由于有圖片的鋪墊,絕大多數(shù)學(xué)生很快就說出函數(shù)圖象關(guān)于Y軸(原點(diǎn))對稱。之后學(xué)生填表,從數(shù)值角度研究圖象的這種特征,體此刻自變量與函數(shù)值之間有何規(guī)律引導(dǎo)學(xué)生先把它們具體化,再用數(shù)學(xué)符號表示。借助課件演示(令比較得出等式,再令,得到)讓學(xué)生發(fā)現(xiàn)兩個函數(shù)的對稱性反應(yīng)到函數(shù)值上具有的特性,然后經(jīng)過解析式給出嚴(yán)格證明,進(jìn)一步說明這個特性對定義域內(nèi)任意一個都成立。最終給出偶函數(shù)(奇函數(shù))定義(板書)。

  在這個過程中,學(xué)生把對圖形規(guī)律的感性認(rèn)識,轉(zhuǎn)化成數(shù)量的規(guī)律性,從而上升到了理性認(rèn)識,切實(shí)經(jīng)歷了一次從特殊歸納出一般的過程體驗。

 。ㄈ⿲W(xué)生探索、領(lǐng)會定義

  探究3下列函數(shù)圖象具有奇偶性嗎?

  設(shè)計意圖:深化對奇偶性概念的理解。強(qiáng)調(diào):函數(shù)具有奇偶性的前提條件是--定義域關(guān)于原點(diǎn)對稱。(突破了本節(jié)課的難點(diǎn))

 。ㄋ模┲R應(yīng)用,鞏固提高

  在這一環(huán)節(jié)我設(shè)計了4道題

  例1確定下列函數(shù)的奇偶性

  選例1的第(1)及(3)小題板書來示范解題步驟,其他小題讓學(xué)生在下頭完成。

  例1設(shè)計意圖是歸納出確定奇偶性的步驟:

  (1)先求定義域,看是否關(guān)于原點(diǎn)對稱;

  (2)再確定f(-x)=-f(x)還是f(-x)=f(x)。

  例2確定下列函數(shù)的奇偶性:

  例3確定下列函數(shù)的奇偶性:

  例2、3設(shè)計意圖是探究一個函數(shù)奇偶性的可能情景有幾種類型?

  例4(1)確定函數(shù)的奇偶性。

  (2)如圖給出函數(shù)圖象的一部分,你能根據(jù)函數(shù)的奇偶性畫出它在y軸左邊的圖象嗎?

  例4設(shè)計意圖加強(qiáng)函數(shù)奇偶性的幾何意義的應(yīng)用。

  在這個過程中,我重點(diǎn)關(guān)注了學(xué)生的推理過程的表述。經(jīng)過這些問題的解決,學(xué)生對函數(shù)的奇偶性認(rèn)識、理解和應(yīng)用都能提升很大一個高度,到達(dá)當(dāng)堂消化吸收的效果。

 。ㄎ澹┛偨Y(jié)反饋

  在以上課堂實(shí)錄中充分展示了教法、學(xué)法中的互動模式,問題貫穿于探究過程的始終,切實(shí)體現(xiàn)了啟發(fā)式、問題式教學(xué)法的特色。

  在本節(jié)課的最終對知識點(diǎn)進(jìn)行了簡單回顧,并引導(dǎo)學(xué)生總結(jié)出本節(jié)課應(yīng)積累的解題經(jīng)驗。知識在于積累,而學(xué)習(xí)數(shù)學(xué)更在于知識的應(yīng)用經(jīng)驗的積累。所以提高知識的應(yīng)用本事、增強(qiáng)錯誤的預(yù)見本事是提高數(shù)學(xué)綜合本事的很重要的策略。

 。┓謱幼鳂I(yè),學(xué)以致用

  必做題:課本第36頁練習(xí)第1-2題。

  選做題:課本第39頁習(xí)題1、3A組第6題。

  思考題:課本第39頁習(xí)題1、3B組第3題。

  設(shè)計意圖:面向全體學(xué)生,注重個人差異,加強(qiáng)作業(yè)的針對性,對學(xué)生進(jìn)行分層作業(yè),既使學(xué)生掌握基礎(chǔ)知識,又使學(xué)有余力的學(xué)生有所提高,進(jìn)一步到達(dá)不一樣的人在數(shù)學(xué)上得到不一樣的發(fā)展。

高中數(shù)學(xué)說課稿8

  一、教材分析

  教材的地位和作用:本節(jié)課教學(xué)內(nèi)容是高一(下)第四章4.6節(jié)第一課時(兩角和與差的余弦)。本節(jié)內(nèi)容是三角恒等變形的基礎(chǔ),是正弦線、余弦線和誘導(dǎo)公式等知識的延伸,同時,它又是兩角和、差、倍、半角等公式的“源頭”。兩角和與差的正弦、余弦、正切是本章的重要內(nèi)容,對于三角變換、三角恒等式的證明和三角函數(shù)式的化簡、求值等三角問題的解決有著重要的支撐作用。本課時主要講授平面內(nèi)兩點(diǎn)間距離公式、兩角和與差的余弦公式以及它們的簡單應(yīng)用。這節(jié)內(nèi)容在高考中不但是熱點(diǎn),而且一般都是中、低檔題,是一定要拿到分的題。

  教學(xué)重點(diǎn):兩角和與差的余弦公式的推導(dǎo)與運(yùn)用。

  教學(xué)難點(diǎn):余弦和角公式的推導(dǎo)以及應(yīng)用,學(xué)會恰當(dāng)代換、逆用公式等技能。

  二、教學(xué)目標(biāo)

 。ㄒ唬┲R目標(biāo):

  1、掌握利用平面內(nèi)兩點(diǎn)間的距離公式進(jìn)行C(α+β)公式的推導(dǎo);

  2、能用代換法推導(dǎo)C(α-β)公式;

  3、初步學(xué)會公式的簡單應(yīng)用和逆用公式等基本技能。

 。ǘ┠芰δ繕(biāo):

  1、通過公式的推導(dǎo),在培養(yǎng)學(xué)生三大能力的基礎(chǔ)上,著重培養(yǎng)學(xué)生獲得數(shù)學(xué)知識的能力和數(shù)學(xué)交流的能力;

  2、通過公式的靈活運(yùn)用,培養(yǎng)學(xué)生的轉(zhuǎn)化思想和變換能力。

  (三)情感目標(biāo):

  1、通過觀察、對比體會公式的線形美,對稱美

  2、通過教師啟發(fā)引導(dǎo),培養(yǎng)學(xué)生不怕困難,勇于探索勇于創(chuàng)新的求知精神。

  三、學(xué)情分析:

  根據(jù)現(xiàn)在的學(xué)生知識遷移能力差、計算能力差的特點(diǎn),第一節(jié)課不要太多公式應(yīng)用。

  四、教法分析

  1、創(chuàng)設(shè)情境----提出問題----探索嘗試----啟發(fā)引導(dǎo)----解決問題。

  引導(dǎo)學(xué)生建立一直角坐標(biāo)系xOy,同時在這一坐標(biāo)系內(nèi)作單位圓O,并作出角,使角的始邊為Ox,交圓O于點(diǎn),終邊交圓O于點(diǎn);角的始邊為O,終邊交圓O于,角的始邊為O,終邊交圓O于點(diǎn),并引導(dǎo)學(xué)生用的三角函數(shù)標(biāo)出點(diǎn)的坐標(biāo)。并充分利用單位圓、平面內(nèi)兩點(diǎn)的距離公式,使學(xué)生弄懂由距離等式化得的三角恒等式,并整理成為余弦的和角公式,從而克服本課的難點(diǎn)。

  2、教具:多媒體投影系統(tǒng)。(多媒體系統(tǒng)可以有效增加課堂容量,色彩的.強(qiáng)烈對比可以突出對比效果;動畫的應(yīng)用可以將抽象的問題直觀化,體現(xiàn)直觀性原則。)

  五、學(xué)法指導(dǎo)

  1、能靈活求寫角的終邊與單位圓的交點(diǎn)坐標(biāo),并結(jié)合平面幾何知識推證出公式。

  2、本節(jié)的中心公式是,然后對作不同的特值代換可得其他公式,故靈活適當(dāng)?shù)拇鷵Q是學(xué)好本節(jié)內(nèi)容的基礎(chǔ)。

  3、讓學(xué)生注意觀察、對比兩角和與差的余弦公式中正弦、余弦的順序;角的順序關(guān)系,培養(yǎng)學(xué)生的觀察能力,并通過觀察體會公式的對稱美。

  在教學(xué)過程中,啟動學(xué)生自主性學(xué)習(xí),自得知識,自覓規(guī)律,自悟原理,主動發(fā)展思維和能力。

  六、教學(xué)過程

  (一)新課引入,產(chǎn)生對公式的需求。

  1、學(xué)生先討論“ =cos(450+300)=cos450+cos300是否成立?”。(學(xué)生可能通過計算器、量余弦線的長度、特殊角三角函數(shù)值和余弦函數(shù)的值域三種途徑解決問題)。得出cos(450+300)≠cos450 +cos300。進(jìn)而得出cos(α+β)≠cosα+cosβ這個結(jié)論。那么此時又是多少,75°,15°雖然不是特殊角,但有某種特殊性,即可以表示成特殊角的和與差。那么能不能由特殊角的三角函數(shù)值來表示這種和角與差角的三角函數(shù)值?

  2、如果特殊角可以,對一般的兩個角,當(dāng)它的三角函數(shù)值已知時,能否求出和與差的三角函數(shù)值?即能否用單角的三角函數(shù)來表示復(fù)角的三角函數(shù)呢?提出cos(α+β)又等于什么呢?寫出標(biāo)題。

 。ǘ╊A(yù)備知識

  在解決上面的問題之前,我們先來作一點(diǎn)準(zhǔn)備,解決“平面內(nèi)兩點(diǎn)間距離的公式”這一問題。

  (1)回憶初中學(xué)習(xí)過的數(shù)軸上的兩點(diǎn)間的距離公式

 。2)通過上面的復(fù)習(xí),我們已經(jīng)熟悉了數(shù)軸上兩點(diǎn)間距離公式。那么,平面內(nèi)兩點(diǎn)間距離與這兩點(diǎn)的坐標(biāo)有什么樣的關(guān)系呢?(通過課件演示讓學(xué)生體會平面內(nèi)兩點(diǎn)間距離和同一坐標(biāo)軸上兩點(diǎn)間距離的關(guān)系)

  平面內(nèi)兩點(diǎn)間距離公式推導(dǎo)分析:設(shè)P1(x1,y1),P2(x2,y2)由勾股定理聯(lián)想從P1、P2分別作X、Y軸的垂線,則有:M1(x1,0),M2(x2,0),N1(0,y1),N2(0,y2)。通過演示課件P1Q= M1M2=│x2-x1│ QP2= N1N2=│y2-y1│根據(jù)勾股定理寫出P1P22=P1Q2+QP22=(x2-x1)2+(y2-y1)2。由此得平面內(nèi)P1(x1,y1)、P2(x2,y2)兩點(diǎn)間的距離公式:P1P2= (x2-x1)2+(y2-y1)2

  習(xí):P(3,-1),Q(-3,-9)求PQ(建議這部分不要花太多時間)

 。3)、復(fù)習(xí)單位圓上點(diǎn)的坐標(biāo)表示,為推導(dǎo)公式作鋪墊。

 。ㄈ┕酵茖(dǎo)

  我們要用α、β、α+β的三角函數(shù)來表示α+β的余弦,那么就得作出α、β、α+β的角,構(gòu)造α、β、α+β的角時,聯(lián)想建坐標(biāo)系、作單位圓。(1)分別指出點(diǎn)P1、P2、P3的坐標(biāo)。(2)求出弦P1P3的長。(3)思考構(gòu)造弦P1P3的等量關(guān)系。當(dāng)發(fā)現(xiàn)|P1P3|可以用cos(α+β)表示時,想到應(yīng)該尋找與P1P3相等的弦,從而才想到作出角(-β)。

  在直角坐標(biāo)系內(nèi)做單位圓,并做出任意角α,α+β和-β。它們的終邊分別交單位圓于P2、P3和P4點(diǎn),單位圓與X軸交于P1。則:P1(1,0)、 P2(cosα,sinα)、P3(cos(α+β),sin(α+β))、

  1.根據(jù)“同圓中相等的圓心角所對的弦相等”得到距離等式

  2.將轉(zhuǎn)化為三角恒等式,逐步變形整理成余弦的和角公式。

  [cos(α+β)-1]2+sin2(α+β)=[cos(-β)-cosα]2+[sin(-β)-sinα]2展開,整理得2-2cos(α+β)=2-2cosαcosβ+2sinαsinβ

  所以cos(α+β)=cosαcosβ-sinαsinβ.記作

  注意:(1)公式的結(jié)構(gòu)特征:左邊是兩角和的余弦,右邊是兩兩同名函數(shù)的積。

 。2)公式的記憶口訣:哥哥撿傘傘(用音譯,讓學(xué)生覺得有趣并得以記住公式)

 。3)公式的用途:用單角α、β的三角函數(shù)來表示復(fù)角的α+β余弦

 。4)注意強(qiáng)調(diào)公式中α、β是任意角。因為α、β是任意角,且兩點(diǎn)間的距離公式具有一般性,所以此公式適用于任意角,具有一般性。以后可以用此公式導(dǎo)出其它公式,如用-β去代替β導(dǎo)出C(α-β) 。

 。ㄋ模┕綉(yīng)用

  正因為α、β的任意性,所以賦予C(α+β)公式的強(qiáng)大生命力。

  提問:

  1、請用特殊角分別代替公式中α、β,你會求出哪些非特殊角的值呢?

  讓學(xué)生動筆自由嘗試、主動探索。同學(xué)會求cos15°、cos75°、cos105°等。

  2、若β固定,分別用代替α,你將發(fā)現(xiàn)什么結(jié)論呢?

  用C(α±β)公式得到證明:讓學(xué)生發(fā)現(xiàn)C(α±β)公式是誘導(dǎo)公式的推廣,誘導(dǎo)公式是C(α±β)公式的特殊情況。當(dāng)其中一個角是的整數(shù)倍時用誘導(dǎo)公式較好。

  由P1P3=P2P4(同圓相等的

  圓心角所對弦相等)及兩點(diǎn)

  間距離公式,得:

  [cos(α+β)-1]2+[sin(α+β)-0]2

  =[cos(-β)-cosα]2+[sin(-β)-sinα]2

  展開整理合并得:

  cos(α+β)=cosα cosβ-sinαsinβ這就是兩角和的余弦公式。(其中α,β為任意角)將其中β?lián)Q成-β,公式仍成立:

  cos(α+ β)=cosαcosβ -sinαsinβ

  cos(α+(-β))= cosαcos(-β)-sinαsin(-β)

  化簡得兩角差的余弦公式:

  cos(α-β)= cosαcosβ+sinαsinβ

  求證:(1)cos(-α)= sinα

 。2)sin(-α)= cosα

  證明:

 。1)cos(-α)=cos cosα+sin sinα

  =sinα

 。2)sin(-α)=cos[ -(-α)]

  =cosα

  證明(1)、(2)的結(jié)論即為誘導(dǎo)公式。

  例1、利用和(差)角公式求750、150角的余弦。

  分析:將750可以看成450+300而450和300均為特殊

  角,借助它們即可求出750的余弦。(學(xué)生自己完成)

  解:cos750 = cos(450+300)

  = cos450cos300 -sin450sin300

  = ×- ×

  =cos150

  = cos(450-300)

  = cos450cos300+sin450sin300

高中數(shù)學(xué)說課稿9

  尊敬的各位專家、評委:

  下午好!

  我的抽簽序號是____,今天我說課的課題是《_______》第__課時。 我嘗試?yán)眯抡n標(biāo)的理念來指導(dǎo)教學(xué),對于本節(jié)課,我將以“教什么,怎么教,為什么這樣教”為思路,從教材分析、目標(biāo)分析、教法學(xué)法分析、教學(xué)過程分析和評價分析五個方面來談?wù)勎覍滩牡睦斫夂徒虒W(xué)的設(shè)計,敬請各位專家、評委批評指正。

  一、教材分析

 。ㄒ唬┑匚慌c作用

  數(shù)列是高中數(shù)學(xué)重要內(nèi)容之一,它不僅有著廣泛的實(shí)際應(yīng)用,而且起著承前啟后的作用。一方面數(shù)列作為一種特殊的函數(shù)與函數(shù)思想密不可分;另一方面學(xué)習(xí)數(shù)列也為進(jìn)一步學(xué)習(xí)數(shù)列的極限等內(nèi)容做好準(zhǔn)備。而等差數(shù)列是在學(xué)生學(xué)習(xí)了數(shù)列的有關(guān)概念和給出數(shù)列的兩種方法——通項公式和遞推公式的基礎(chǔ)上,對數(shù)列的知識進(jìn)一步深入和拓廣。同時等差數(shù)列也為今后學(xué)習(xí)等比數(shù)列提供了學(xué)習(xí)對比的依據(jù)。

 。ǘ⿲W(xué)情分析

  (1)學(xué)生已熟練掌握_________________。

 。2)學(xué)生的知識經(jīng)驗較為豐富,具備了教強(qiáng)的抽象思維能力和演繹推理能力。

  (3)學(xué)生思維活潑,積極性高,已初步形成對數(shù)學(xué)問題的合作探究能力。

  (4) 學(xué)生層次參次不齊,個體差異比較明顯。

  二、目標(biāo)分析

  新課標(biāo)指出“三維目標(biāo)”是一個密切聯(lián)系的有機(jī)整體,應(yīng)該以獲得知識與技能的過程,同時成為學(xué)會學(xué)習(xí)和正確價值觀。這要求我們在教學(xué)中以知識技能的培養(yǎng)為主線,透情感態(tài)度與價值觀,并把這兩者充分體現(xiàn)在教學(xué)過程中,新課標(biāo)指出教學(xué)的主體是學(xué)生,因此目標(biāo)的制定和設(shè)計必須從學(xué)生的角度出發(fā),根據(jù)____在教材內(nèi)容中的地位與作用,結(jié)合學(xué)情分析,本節(jié)課教學(xué)應(yīng)實(shí)現(xiàn)如下教學(xué)目標(biāo):

 。ㄒ唬┙虒W(xué)目標(biāo)

  (1)知識與技能

  使學(xué)生理解函數(shù)單調(diào)性的概念,初步掌握判別函數(shù)單調(diào)性的方法;。

 。2)過程與方法

  引導(dǎo)學(xué)生通過觀察、歸納、抽象、概括,自主建構(gòu)單調(diào)增函數(shù)、單調(diào)減函數(shù)等概念;能運(yùn)用函數(shù)單調(diào)性概念解決簡單的問題;使學(xué)生領(lǐng)會數(shù)形結(jié)合的數(shù)學(xué)思想方法,培養(yǎng)學(xué)生發(fā)現(xiàn)問題、分析問題、解決問題的能力。

 。3)情感態(tài)度與價值觀

  在函數(shù)單調(diào)性的學(xué)習(xí)過程中,使學(xué)生體驗數(shù)學(xué)的科學(xué)價值和應(yīng)用價值,培養(yǎng)學(xué)生善于觀察、勇于探索的良好習(xí)慣和嚴(yán)謹(jǐn)?shù)目茖W(xué)態(tài)度。

 。ǘ┲攸c(diǎn)難點(diǎn)

  本節(jié)課的教學(xué)重點(diǎn)是________________________,教學(xué)難點(diǎn)是_____________________。

  三、教法、學(xué)法分析

  (一)教法

  基于本節(jié)課的內(nèi)容特點(diǎn)和高二學(xué)生的年齡特征,按照臨沂市高中數(shù)學(xué)“三五四”課堂教學(xué)策略,采用探究――體驗教學(xué)法為主來完成教學(xué),為了實(shí)現(xiàn)本節(jié)課的教學(xué)目標(biāo),在教法上我采取了:

  1、通過學(xué)生熟悉的實(shí)際生活問題引入課題,為概念學(xué)習(xí)創(chuàng)設(shè)情境,拉近數(shù)學(xué)與現(xiàn)實(shí)的距離,激發(fā)學(xué)生求知欲,調(diào)動學(xué)生主體參與的積極性.

  2、在形成概念的過程中,緊扣概念中的關(guān)鍵語句,通過學(xué)生的主體參與,正確地形成概念.

  3、在鼓勵學(xué)生主體參與的同時,不可忽視教師的主導(dǎo)作用,要教會學(xué)生清晰的思維、嚴(yán)謹(jǐn)?shù)耐评,并順利地完成書面表達(dá).

 。ǘ⿲W(xué)法

  在學(xué)法上我重視了:

  1、讓學(xué)生利用圖形直觀啟迪思維,并通過正、反例的構(gòu)造,來完成從感性認(rèn)識到理性思維的質(zhì)的飛躍。

  2、讓學(xué)生從問題中質(zhì)疑、嘗試、歸納、總結(jié)、運(yùn)用,培養(yǎng)學(xué)生發(fā)現(xiàn)問題、研究問題和分析解決問題的能力。

  四、教學(xué)過程分析

 。ㄒ唬┙虒W(xué)過程設(shè)計

  教學(xué)是一個教師的“導(dǎo)”,學(xué)生的“學(xué)”以及教學(xué)過程中的“悟”構(gòu)成的和諧整體。教師的“導(dǎo)”也就是教師啟發(fā)、誘導(dǎo)、激勵、評價等為學(xué)生的學(xué)習(xí)搭建支架,把學(xué)習(xí)的任務(wù)轉(zhuǎn)移給學(xué)生,學(xué)生就是接受任務(wù),探究問題、完成任務(wù)。如果在教學(xué)過程中把“教與學(xué)”完美的結(jié)合也就是以“問題”為核心,通過對知識的發(fā)生、發(fā)展和運(yùn)用過程的演繹、解釋和探究來組織和推動教學(xué)。

 。1)創(chuàng)設(shè)情境,提出問題。

  新課標(biāo)指出:“應(yīng)該讓學(xué)生在具體生動的情境中學(xué)習(xí)數(shù)學(xué)”。在本節(jié)課的教學(xué)中,從我們熟悉的生活情境中提出問題,問題的設(shè)計改變了傳統(tǒng)目的明確的設(shè)計方式,給學(xué)生最大的思考空間,充分體現(xiàn)學(xué)生主體地位。

 。2)引導(dǎo)探究,建構(gòu)概念。

  數(shù)學(xué)概念的形成來自解決實(shí)際問題和數(shù)學(xué)自身發(fā)展的需要.但概念的`高度抽象,造成了難懂、難教和難學(xué),這就需要讓學(xué)生置身于符合自身實(shí)際的學(xué)習(xí)活動中去,從自己的經(jīng)驗和已有的知識基礎(chǔ)出發(fā),經(jīng)歷“數(shù)學(xué)化”、“再創(chuàng)造”的活動過程.

 。3)自我嘗試,初步應(yīng)用。

  有效的數(shù)學(xué)學(xué)習(xí)過程,不能單純的模仿與記憶,數(shù)學(xué)思想的領(lǐng)悟和學(xué)習(xí)過程更是如此。讓學(xué)生在解題過程中親身經(jīng)歷和實(shí)踐體驗,師生互動學(xué)習(xí),生生合作交流,共同探究.

 。4)當(dāng)堂訓(xùn)練,鞏固深化。

  通過學(xué)生的主體參與,使學(xué)生深切體會到本節(jié)課的主要內(nèi)容和思想方法,從而實(shí)現(xiàn)對知識識的再次深化。

  (5)小結(jié)歸納,回顧反思。

  小結(jié)歸納不僅是對知識的簡單回顧,還要發(fā)揮學(xué)生的主體地位,從知識、方法、經(jīng)驗等方面進(jìn)行總結(jié)。我設(shè)計了三個問題:(1)通過本節(jié)課的學(xué)習(xí),你學(xué)到了哪些知識?(2)通過本節(jié)課的學(xué)習(xí),你最大的體驗是什么?(3)通過本節(jié)課的學(xué)習(xí),你掌握了哪些技能?

 。ǘ┳鳂I(yè)設(shè)計

  作業(yè)分為必做題和選做題,必做題對本節(jié)課學(xué)生知識水平的反饋,選做題是對本

  節(jié)課內(nèi)容的延伸與,注重知識的延伸與連貫,強(qiáng)調(diào)學(xué)以致用。通過作業(yè)設(shè)置,使不同層次的學(xué)生都可以獲得成功的喜悅,看到自己的潛能,從而激發(fā)學(xué)生飽滿的學(xué)習(xí)興趣,促進(jìn)學(xué)生自主發(fā)展、合作探究的學(xué)習(xí)氛圍的形成.

  我設(shè)計了以下作業(yè):

 。1)必做題

 。2)選做題

 。ㄈ┌鍟O(shè)計

  板書要基本體現(xiàn)整堂課的內(nèi)容與方法,體現(xiàn)課堂進(jìn)程,能簡明扼要反映知識結(jié)構(gòu)及其相互聯(lián)系;能指導(dǎo)教師的教學(xué)進(jìn)程、引導(dǎo)學(xué)生探索知識;通過使用幻燈片輔助板書,節(jié)省課堂時間,使課堂進(jìn)程更加連貫。

  五、評價分析

  學(xué)生學(xué)習(xí)的結(jié)果評價當(dāng)然重要,但是更重要的是學(xué)生學(xué)習(xí)的過程評價。我采用及時點(diǎn)評、延時點(diǎn)評與學(xué)生互評相結(jié)合,全面考查學(xué)生在知識、思想、能力等方面的發(fā)展情況,在質(zhì)疑探究的過程中,評價學(xué)生是否有積極的情感態(tài)度和頑強(qiáng)的理性精神,在概念反思過程中評價學(xué)生的歸納猜想能力是否得到發(fā)展,通過鞏固練習(xí)考查學(xué)生對____是否有一個完整的集訓(xùn),并進(jìn)行及時的調(diào)整和補(bǔ)充。 以上就是我對本節(jié)課的理解和設(shè)計,敬請各位專家、評委批評指正。 謝謝!

高中數(shù)學(xué)說課稿10

尊敬的各位考官:

  大家好,我是xx號考生,今天我說課的題目是《等差數(shù)列的前n項和》。

  新課標(biāo)指出:高中教育屬于基礎(chǔ)教育,具有基礎(chǔ)性,且具有多樣性與選擇性,使不同的學(xué)生在數(shù)學(xué)上得到不同的發(fā)展。今天我將貫徹這一理念從教材分析、學(xué)情分析、教學(xué)過程等幾個方面展開我的說課。

  一、說教材

  本節(jié)課選自人教A版高中數(shù)學(xué)必修5第二章。本節(jié)課是等差數(shù)列概念和特點(diǎn)等知識的延續(xù)和深化,也是后面學(xué)習(xí)等比數(shù)列及其前n項和的基礎(chǔ)。本節(jié)課既加深了對數(shù)列相關(guān)概念的理解,又蘊(yùn)含了倒序相加法、特殊到一般的數(shù)學(xué)思想方法。在整個高中教學(xué)中起到承上啟下的重要作用。

  二、說學(xué)情

  接下來談?wù)剬W(xué)生的實(shí)際情況。本階段的學(xué)生已經(jīng)具備了一定的抽象邏輯思維能力,能在教師的引導(dǎo)下獨(dú)立地解決問題。因此在教學(xué)過程中要給學(xué)生留置充分的思考時間和空間。此外要注重在學(xué)生的已有認(rèn)知基礎(chǔ)上建構(gòu)知識。

  三、說教學(xué)目標(biāo)

  根據(jù)以上分析,我制定了如下教學(xué)目標(biāo):

  (一)知識與技能

  掌握等差數(shù)列前n項和公式,理解其推導(dǎo)方法,能用公式解決簡單問題。

  (二)過程與方法

  經(jīng)歷觀察、思考、計算等探究過程,滲透從特殊到一般的數(shù)學(xué)思想方法。

  (三)情感、態(tài)度與價值觀

  在學(xué)習(xí)活動中獲得積極的、成功的情感體驗,激發(fā)學(xué)習(xí)興趣。

  四、說教學(xué)重難點(diǎn)

  在教學(xué)目標(biāo)的實(shí)現(xiàn)過程中,教學(xué)重點(diǎn)是等差數(shù)列前n項和公式,教學(xué)難點(diǎn)是公式的推導(dǎo)過程。

  五、說教法和學(xué)法

  現(xiàn)代教學(xué)理論認(rèn)為,在教學(xué)過程中,學(xué)生是學(xué)習(xí)的主體,教師是學(xué)習(xí)的組織者、引導(dǎo)者,教學(xué)的一切活動都必須以強(qiáng)調(diào)學(xué)生的主動性、積極性為出發(fā)點(diǎn)。根據(jù)這一教學(xué)理念,結(jié)合本節(jié)課的`內(nèi)容特點(diǎn)和學(xué)生的年齡特征,我將采用講授法、練習(xí)法、自主探究、小組討論等教學(xué)方法。

  六、說教學(xué)過程

  下面重點(diǎn)談?wù)勎覍虒W(xué)過程的設(shè)計。

  (一)導(dǎo)入新課

  導(dǎo)入環(huán)節(jié)我會設(shè)置情境。200多年前,高斯的算術(shù)老師提出了下面的問題:1+2+3+…+100=?據(jù)說,當(dāng)時其他同學(xué)忙于把100個數(shù)逐項相加時,10歲的高斯卻用非常巧妙的方法迅速得出了答案。

  然后簡單分析1+2+3+…+100是求一個等差數(shù)列前100項的和。利用這一本質(zhì)引出本節(jié)課學(xué)習(xí)等差數(shù)列的前n項和。

  將著名數(shù)學(xué)家融入課堂,既能激發(fā)學(xué)生的學(xué)習(xí)興趣,也注重了數(shù)學(xué)課堂的文化的學(xué)習(xí)和培養(yǎng)。此外利用數(shù)學(xué)家進(jìn)行導(dǎo)入,滲透數(shù)學(xué)的發(fā)展史。

  (二)探索新知

  新授環(huán)節(jié)主要探究等差數(shù)列前n項和的計算公式,是本課的中心環(huán)節(jié)。

  我會直接提問:你知道高斯是如何計算的嗎?相信大多數(shù)學(xué)生聽過這個故事,想到(1+100)+(2+99)+…+(50+51)=101×50=5050。

  有了本道題目的鋪墊,我會繼續(xù)提問:1,2,3,…n,…這個數(shù)列的前n項和如何求呢?在這里組織同桌討論。并且提示學(xué)生思考:如何使得不管有奇數(shù)個還是偶數(shù)個都能恰好配對不剩余?

高中數(shù)學(xué)說課稿11

  今天我說課的內(nèi)容是高二立體幾何(人教版)第九章第二章節(jié)第八小節(jié)《棱錐》的第一課時:《棱錐的概念和性質(zhì)》。下面我就從教材分析、教法、學(xué)法和教學(xué)程序四個方面對本課的教學(xué)設(shè)計進(jìn)行說明。

  一、說教材

  1、本節(jié)在教材中的地位和作用:

  本節(jié)是棱柱的后續(xù)內(nèi)容,又是學(xué)習(xí)球的必要基礎(chǔ)。第一課時的教學(xué)目的是讓學(xué)生掌握棱錐的一些必要的基礎(chǔ)知識,同時培養(yǎng)學(xué)生猜想、類比、比較、轉(zhuǎn)化的能力。著名的生物學(xué)家達(dá)爾文說:“最有價值的知識是關(guān)于方法和能力的知識”,因此,應(yīng)該利用這節(jié)課培養(yǎng)學(xué)生學(xué)習(xí)方法、提高學(xué)習(xí)能力。

  2. 教學(xué)目標(biāo)確定:

  (1)能力訓(xùn)練要求

 、偈箤W(xué)生了解棱錐及其底面、側(cè)面、側(cè)棱、頂點(diǎn)、高的概念。

 、谑箤W(xué)生掌握截面的性質(zhì)定理,正棱錐的性質(zhì)及各元素間的關(guān)系式。

  (2)德育滲透目標(biāo)

 、倥囵B(yǎng)學(xué)生善于通過觀察分析實(shí)物形狀到歸納其性質(zhì)的能力。

  ②提高學(xué)生對事物的感性認(rèn)識到理性認(rèn)識的能力。

  ③培養(yǎng)學(xué)生“理論源于實(shí)踐,用于實(shí)踐”的觀點(diǎn)。

  3. 教學(xué)重點(diǎn)、難點(diǎn)確定:

  重 點(diǎn):1.棱錐的截面性質(zhì)定理 2.正棱錐的性質(zhì)。

  難 點(diǎn):培養(yǎng)學(xué)生善于比較,從比較中發(fā)現(xiàn)事物與事物的區(qū)別。

  二、說教學(xué)方法和手段

  1、教法:

  “以學(xué)生參與為標(biāo)志,以啟迪學(xué)生思維,培養(yǎng)學(xué)生創(chuàng)新能力為核心”。

  在教學(xué)中根據(jù)高中生心理特點(diǎn)和教學(xué)進(jìn)度需要,設(shè)置一些啟發(fā)性題目,采用啟發(fā)式誘導(dǎo)法,講練結(jié)合,發(fā)揮教師主導(dǎo)作用,體現(xiàn)學(xué)生主體地位。

  2、教學(xué)手段:

  根據(jù)《教學(xué)大綱》中“堅持啟發(fā)式,反對注入式”的教學(xué)要求,針對本節(jié)課概念性強(qiáng),思維量大,整節(jié)課以啟發(fā)學(xué)生觀察思考、分析討論為主,采用“多媒體引導(dǎo)點(diǎn)撥”的教學(xué)方法以多媒體演示為載體,以“引導(dǎo)思考”為核心,設(shè)計課件展示,并引導(dǎo)學(xué)生沿著積極的思維方向,逐步達(dá)到即定的教學(xué)目標(biāo),發(fā)展學(xué)生的邏輯思維能力;學(xué)生在教師營造的“可探索”的環(huán)境里,積極參與,生動活潑地獲取知識,掌握規(guī)律、主動發(fā)現(xiàn)、積極探索。

  三、說學(xué)法:

  這節(jié)課的核心是棱錐的截面性質(zhì)定理,.正棱錐的性質(zhì)。教學(xué)的指導(dǎo)思想是:遵循由已知(棱柱)探究未知(棱錐)、由一般(棱錐)到特殊(正棱錐)的認(rèn)識規(guī)律,啟發(fā)學(xué)生反復(fù)思考,不斷內(nèi)化成為自己的認(rèn)知結(jié)構(gòu)。

  四、 學(xué)程序:

  [復(fù)習(xí)引入新課]

  1.棱柱的性質(zhì):

 。1)側(cè)棱都相等,側(cè)面是平行四邊形

 。2)兩個底面與平行于底面的截面是全等的多邊形

  (3)過不相鄰的兩條側(cè)棱的截面是平行四邊形

  2.幾個重要的四棱柱:

  平行六面體、直平行六面體、長方體、正方體

  思考:如果將棱柱的上底面給縮小成一個點(diǎn),那么我們得到的將會是什么樣的體呢?

  [講授新課]

  1、棱錐的基本概念

 。1).棱錐及其底面、側(cè)面、側(cè)棱、頂點(diǎn)、高、對角面的概念

 。2).棱錐的表示方法、分類

  2、棱錐的性質(zhì)

  (1). 截面性質(zhì)定理:

  如果棱錐被平行于底面的平面所截,那么截面和底面相似,并且它們面積的比等于截得的棱錐的高與已知棱錐的高的平方比

  已知:如圖(略),在棱錐S-AC中,SH是高,截面A’B’C’D’E’平行于底面,并與SH交于H’。

  證明:(略)

  引申:如果棱錐被平行于底面的平面所截,則截得的小棱錐與已知棱錐

  的側(cè)面積比也等于它們對應(yīng)高的平方比、等于它們的底面積之比。

  (2).正棱錐的定義及基本性質(zhì):

  正棱錐的'定義:

 、俚酌媸钦噙呅

 、陧旤c(diǎn)在底面的射影是底面的中心

 、俑鱾(cè)棱相等,各側(cè)面是全等的等腰三角形;各等腰三角形底邊上的高相等,它們叫做正棱錐的斜高;

  ②棱錐的高、斜高和斜高在底面內(nèi)的射影組成一個直角三角形;

  棱錐的高、側(cè)棱和側(cè)棱在底面內(nèi)的射影也組成一個直角三角形

  引申:

 、僬忮F的側(cè)棱與底面所成的角都相等;

  ②正棱錐的側(cè)面與底面所成的二面角相等;

  (3)正棱錐的各元素間的關(guān)系

  下面我們結(jié)合圖形,進(jìn)一步探討正棱錐中各元素間的關(guān)系,為研究方便將課本 圖9-74(略)正棱錐中的棱錐S-OBM從整個圖中拿出來研究。

  引申:

 、儆^察圖中三棱錐S-OBM的側(cè)面三角形狀有何特點(diǎn)?

 。ǹ勺C得∠SOM =∠SOB =∠SMB =∠OMB =900,所以側(cè)面全是直角三角形。)

 、谌舴謩e假設(shè)正棱錐的高SO= h,斜高SM= h’,底面邊長的一半BM= a/2,底面正多邊形外接圓半徑OB=R,內(nèi)切圓半徑OM= r,側(cè)棱SB=L,側(cè)面與底面的二面角∠SMO= α ,側(cè)棱與底面組成的角 ∠SBO= β, ∠BOM=1800/n (n為底面正多邊形的邊數(shù))請試通過三角形得出以上各元素間的關(guān)系式。

 。ㄕn后思考題)

  [例題分析]

  例1.若一個正棱錐每一個側(cè)面的頂角都是600,則這個棱錐一定不是( )

  A.三棱錐 B.四棱錐 C.五棱錐 D.六棱錐

  (答案:D)

  例2.如圖已知正三棱錐S-ABC的高SO=h,斜高SM=L,求經(jīng)過SO的中點(diǎn)且平行于底面的截面△A’B’C’的面積。

  ﹙解析及圖略﹚

  例3.已知正四棱錐的棱長和底面邊長均為a,求:

 。1)側(cè)面與底面所成角α的余弦(2)相鄰兩個側(cè)面所成角β的余弦

  ﹙解析及圖略﹚

  [課堂練習(xí)]

  1、 知一個正六棱錐的高為h,側(cè)棱為L,求它的底面邊長和斜高。

  ﹙解析及圖略﹚

  2、 錐被平行與底面的平面所截,若截面面積與底面面積之比為1∶2,求此棱錐的高被分成的兩段(從頂點(diǎn)到截面和從截面到底面)之比。

  ﹙解析及圖略﹚

  [課堂小結(jié)]

  一:棱錐的基本概念及表示、分類

  二:棱錐的性質(zhì)

  截面性質(zhì)定理:如果棱錐被平行于底面的平面所截,那么截面和底面相似,并且它們面積的比等于截得的棱錐的高與已知棱錐的高的平方比

  引申:如果棱錐被平行于底面的平面所截,則截得的小棱錐與已知棱錐的側(cè)面積比也等于它們對應(yīng)高的平方比、等于它們的底面積之比。

  2.正棱錐的定義及基本性質(zhì)

  正棱錐的定義:

 、俚酌媸钦噙呅

  ②頂點(diǎn)在底面的射影是底面的中心

 。1)各側(cè)棱相等,各側(cè)面是全等的等腰三角形;各等腰三角形底邊上的高

  相等,它們叫做正棱錐的斜高;

 。2)棱錐的高、斜高和斜高在底面內(nèi)的射影組成一個直角三角形;棱錐的高、側(cè)棱和側(cè)棱在底面內(nèi)的射影也組成一個直角三角形

  引申: ①正棱錐的側(cè)棱與底面所成的角都相等;

  ②正棱錐的側(cè)面與底面所成的二面角相等;

  ③正棱錐中各元素間的關(guān)系

  [課后作業(yè)]

  1:課本P52 習(xí)題9.8 : 2、 4

  2:課時訓(xùn)練:訓(xùn)練一

高中數(shù)學(xué)說課稿12

  各位領(lǐng)導(dǎo)、專家、同仁:您們好!

  我說課的內(nèi)容是高中數(shù)學(xué)第二冊(上冊)第七章《直線和圓的方程》中的第六節(jié)“曲線和方程”的第一課時,下面我的說課將從以下幾個方面進(jìn)行闡述:

  一、教材分析

  教材的地位和作用

  “曲線和方程”這節(jié)教材揭示了幾何中的形與代數(shù)中的數(shù)相統(tǒng)一的關(guān)系,為“作形判數(shù)”與“就數(shù)論形”的相互轉(zhuǎn)化開辟了途徑,這正體現(xiàn)了解析幾何這門課的基本思想,對全部解析幾何教學(xué)有著深遠(yuǎn)的影響。學(xué)生只有透徹理解了曲線和方程的意義,才算是尋得了解析幾何學(xué)習(xí)的入門之徑。如果以為學(xué)生不真正領(lǐng)悟曲線和方程的關(guān)系,照樣能求出方程、照樣能計算某些難題,因而可以忽視這個基本概念的教學(xué),這不能不說是一種“舍本逐題”的偏見,應(yīng)該認(rèn)識到這節(jié)“曲線和方程”的開頭課是解析幾何教學(xué)的“重頭戲”!

  根據(jù)以上分析,確立教學(xué)重點(diǎn)是:“曲線的方程”與“方程的曲線”的概念;難點(diǎn)是:怎樣利用定義驗證曲線是方程的曲線,方程是曲線的方程。

  二、教學(xué)目標(biāo)

  根據(jù)教學(xué)大綱的要求以及本教材的地位和作用,結(jié)合高二學(xué)生的認(rèn)知特點(diǎn)確定教學(xué)目標(biāo)如下:

  知識目標(biāo):

  1、了解曲線上的點(diǎn)與方程的解之間的一一對應(yīng)關(guān)系;

  2、初步領(lǐng)會“曲線的方程”與“方程的曲線”的概念;

  3、學(xué)會根據(jù)已有的情景資料找規(guī)律,進(jìn)而分析、判斷、歸納結(jié)論;

  4、強(qiáng)化“形”與“數(shù)”一致并相互轉(zhuǎn)化的思想方法。

  能力目標(biāo):

  1、通過直線方程的引入,加強(qiáng)學(xué)生對方程的解和曲線上的點(diǎn)的一一對應(yīng)關(guān)系的認(rèn)識;

  2、在形成曲線和方程的概念的教學(xué)中,學(xué)生經(jīng)歷觀察、分析、討論等數(shù)學(xué)活動過程,探索出結(jié)論,并能有條理的闡述自己的觀點(diǎn);

  3、能用所學(xué)知識理解新的概念,并能運(yùn)用概念解決實(shí)際問題,從中體會轉(zhuǎn)化化歸的思想方法,提高思維品質(zhì),發(fā)展應(yīng)用意識。

  情感目標(biāo):

  1、通過概念的引入,讓學(xué)生感受從特殊到一般的認(rèn)知規(guī)律;

  2、通過反例辨析和問題解決,培養(yǎng)合作交流、獨(dú)立思考等良好的個性品質(zhì),以及勇于批判、敢于創(chuàng)新的科學(xué)精神。

  三、重難點(diǎn)突破

  “曲線的方程”與“方程的曲線”的概念是本節(jié)的重點(diǎn),這是由于本節(jié)課是由直觀表象上升到抽象概念的過程,學(xué)生容易對定義中為什么要規(guī)定兩個關(guān)系產(chǎn)生困惑,原因是不理解兩者缺一都將擴(kuò)大概念的外延。由于學(xué)生已經(jīng)具備了用方程表示直線、拋物線等實(shí)際模型,積累了感性認(rèn)識的基礎(chǔ),所以可用舉反例的方法來解決困惑,通過反例揭示“兩者缺一”與直覺的矛盾,從而又促使學(xué)生對概念表述的嚴(yán)密性進(jìn)行探索,自然地得出定義。為了強(qiáng)化其認(rèn)識,又決定用集合相等的概念來解釋曲線和方程的對應(yīng)關(guān)系,并以此為工具來分析實(shí)例,這將有助于學(xué)生的理解,有助于學(xué)生通其法,知其理。

  怎樣利用定義驗證曲線是方程的曲線,方程是曲線的方程是本節(jié)的難點(diǎn)。因為學(xué)生在作業(yè)中容易犯想當(dāng)然的`錯誤,通常在由已知曲線建立方程的時候,不驗證方程的解為坐標(biāo)的點(diǎn)在曲線上,就斷然得出所求的是曲線方程。這種現(xiàn)象在高考中也屢見不鮮。為了突破難點(diǎn),本節(jié)課設(shè)計了三種層次的問題,幻燈片9是概念的直接運(yùn)用,幻燈片10是概念的逆向運(yùn)用,幻燈片11是證明曲線的方程。通過這些例題讓學(xué)生再一次體會“二者”缺一不可。

  四、學(xué)情分析

  此前,學(xué)生已知,在建立了直角坐標(biāo)系后平面內(nèi)的點(diǎn)和有序?qū)崝?shù)對之間建立了一一對應(yīng)關(guān)系,已有了用方程(有時以函數(shù)式的形式出現(xiàn))表示曲線的感性認(rèn)識(特別是二元一次方程表示直線),現(xiàn)在要進(jìn)一步研究平面內(nèi)的曲線和含有兩個變數(shù)的方程之間的關(guān)系,是由直觀表象上升到抽象概念的過程,對學(xué)生有相當(dāng)大的難度。學(xué)生在學(xué)習(xí)時容易產(chǎn)生的問題是,不理解“曲線上的點(diǎn)的坐標(biāo)都是方程的解”和“以這個方程的解為坐標(biāo)的點(diǎn)都是曲線上的點(diǎn)”這兩句話在揭示“曲線和方程”關(guān)系時各自所起的作用。本節(jié)課的教學(xué)目標(biāo)也只能是初步領(lǐng)會,要求學(xué)生能答出曲線和方程間必須滿足兩個關(guān)系時才能稱作“曲線的方程”和“方程的曲線”,兩者缺一不可,并能借助實(shí)例指出兩個關(guān)系的區(qū)別。

  五、教法分析

  新課程強(qiáng)調(diào)教師要調(diào)整自己的角色,改變傳統(tǒng)的教育方式,教師要由傳統(tǒng)意義上的知識的傳授者和學(xué)生的管理者,轉(zhuǎn)變?yōu)閷W(xué)生發(fā)展的促進(jìn)者和幫助者,簡單的教書匠轉(zhuǎn)變?yōu)閷?shí)踐的研究者,或研究的實(shí)踐者,在教育方式上,也要體現(xiàn)出以人為本,以學(xué)生為中心,讓學(xué)生真正成為學(xué)習(xí)的主人而不是知識的奴隸,基于此,本節(jié)課遵循了概念學(xué)習(xí)的四個基本步驟,重點(diǎn)采用了問題探究和啟發(fā)式相結(jié)合的教學(xué)方法。

  從實(shí)例、到類比、到推廣的問題探究,它對激發(fā)學(xué)生學(xué)習(xí)興趣,培養(yǎng)學(xué)習(xí)能力都十分有利。啟發(fā)引導(dǎo)學(xué)生得出概念,深化概念,并應(yīng)用它去討論、研究和解決問題。在生生合作,師生互動中解決問題,為提高學(xué)生分析問題、解決問題的能力打下了基礎(chǔ)。

  利用多媒體輔助教學(xué),節(jié)省了時間,增大了信息量,增強(qiáng)了直觀形象性。

  六、學(xué)法分析

  基礎(chǔ)教育課程改革要求加強(qiáng)學(xué)習(xí)方式的改變,提倡學(xué)習(xí)方式的多樣化,各學(xué)科課程通過引導(dǎo)學(xué)生主動參與,親身實(shí)踐,獨(dú)立思考,合作探究,發(fā)展學(xué)生搜集處理信息的能力,獲取新知識的能力,分析和解決問題的能力,以及交流合作的能力,基于此,本節(jié)課從實(shí)例引入→類比→推廣→得概念→概念挖掘深化→具體應(yīng)用→作業(yè)中的研究性問題的思考,始終讓學(xué)生主動參與,親身實(shí)踐,獨(dú)立思考,與合作探究相結(jié)合,在生生合作,師生互動中,使學(xué)生真正成為知識的發(fā)現(xiàn)者和知識的研究者。

  七、教學(xué)過程分析

  1、感性認(rèn)識階段——以舊帶新、提出課題

高中數(shù)學(xué)說課稿13

  一、說設(shè)計理念

  《數(shù)學(xué)課程標(biāo)準(zhǔn)》指出要讓學(xué)生感受生活中處處有數(shù)學(xué),用數(shù)學(xué)知識解決生活中的實(shí)際問題。

  基于這一理念,我在教學(xué)過程中力求聯(lián)系學(xué)生生活實(shí)際和已有的知識經(jīng)驗,從學(xué)生感興趣的素材,設(shè)計新穎的導(dǎo)入與例題教學(xué),給數(shù)學(xué)課富予新的生命力。課堂中力求構(gòu)建一種自主探究、和諧合作的教學(xué)氛圍,讓學(xué)生經(jīng)歷知識的探究過程,培養(yǎng)學(xué)生感受生活中的數(shù)學(xué)和用數(shù)學(xué)知識解決生活問題的能力,體驗數(shù)學(xué)的應(yīng)用價值。

  二、教材分析:

 。ㄒ唬┙滩牡牡匚缓妥饔

  有關(guān)統(tǒng)計圖的認(rèn)識,小學(xué)階段主要認(rèn)識條形統(tǒng)計圖、折線統(tǒng)計圖和扇形統(tǒng)計圖。考慮到扇形統(tǒng)計圖在日常生活中的廣泛應(yīng)用,《標(biāo)準(zhǔn)》把它作為必學(xué)內(nèi)容安排在本單元。本單元是在前面學(xué)習(xí)了條形統(tǒng)計圖和折線統(tǒng)計圖的特點(diǎn)和作用的基礎(chǔ)上進(jìn)行教學(xué)的。主要通過熟悉的事例使學(xué)生體會到扇形統(tǒng)計圖的實(shí)用價值。

 。ǘ┙虒W(xué)目標(biāo)

  1、聯(lián)系生活情境了解扇形統(tǒng)計圖的特點(diǎn)和作用

  2、能讀懂扇形統(tǒng)計圖,從中獲取有效的信息。

  3、讓學(xué)生在觀察、比較、討論和交流中體會扇形統(tǒng)計圖反映的是整體和部分的關(guān)系。

 。ㄈ┙虒W(xué)重點(diǎn):

  1、能讀懂扇形統(tǒng)計圖,理解扇形統(tǒng)計圖的特點(diǎn)和作用,并能從中獲取有效信息。

  2、認(rèn)識折線統(tǒng)計圖,了解折線統(tǒng)計圖的特點(diǎn)。

  (四)教學(xué)難點(diǎn):

  1、能從扇形統(tǒng)計圖中獲得有用信息,并做出合理推斷。

  2、能根據(jù)統(tǒng)計圖和數(shù)據(jù)進(jìn)行數(shù)據(jù)變化趨勢的分析。

  二、學(xué)情分析

  本單元的教學(xué)是在學(xué)生已有統(tǒng)計經(jīng)驗的基礎(chǔ)上,學(xué)習(xí)新知的。六年級的學(xué)生已經(jīng)學(xué)習(xí)了條形統(tǒng)計圖和折線統(tǒng)計圖,知道他們的特點(diǎn),并具有一定的概括、分析能力,在此基礎(chǔ)上,通過新舊知識對比,自然生成新知識點(diǎn)。

  三、設(shè)計理念和教法分析

  1、本堂課力爭做到由“關(guān)注知識”轉(zhuǎn)向“關(guān)注學(xué)生”,由“傳授知識”轉(zhuǎn)向“引導(dǎo)探索”,“教師是組織者、領(lǐng)導(dǎo)者!睂⒄n堂設(shè)置問題給學(xué)生,讓學(xué)生自己獲取信息、分析信息,自主探索、合作交流,參與知識的構(gòu)建。

  2、運(yùn)用探究法。探究學(xué)習(xí)的內(nèi)容以問題的形式出現(xiàn)在教師的`引導(dǎo)下,學(xué)生自主探究,讓學(xué)生在課堂上多活動、多思考,自主構(gòu)建知識體系。引導(dǎo)學(xué)生獲取信息并合作交流。

  四、說學(xué)法

  《數(shù)學(xué)課程標(biāo)準(zhǔn)》指出有效的數(shù)學(xué)學(xué)習(xí)不能單純的依賴模仿和記憶,動手操作、自主探索與合作交流是學(xué)生學(xué)習(xí)數(shù)學(xué)的重要方式。教學(xué)時,我通過學(xué)生感興趣的話題引入,引導(dǎo)學(xué)生關(guān)注身邊的數(shù)學(xué),使學(xué)生體會到觀察、概括、想象、遷移等數(shù)學(xué)學(xué)習(xí)方法,在師生互動中讓每個學(xué)生都動口,動手,動腦。培養(yǎng)學(xué)生學(xué)習(xí)的主動性和積極性。

  五、說教學(xué)程序

  本課分成創(chuàng)設(shè)情境,感知特點(diǎn)——分析數(shù)據(jù),理解特征——嘗試制圖,看圖分析——實(shí)踐應(yīng)用,全課總結(jié)四環(huán)節(jié)。

  六、說教學(xué)過程

 。ㄒ唬⿵(fù)習(xí)引新

  1、復(fù)習(xí)舊知

  提問:我們學(xué)習(xí)過哪些統(tǒng)計方法?其中條形統(tǒng)計圖和折線統(tǒng)計圖各有什么特點(diǎn)?

  2、引入新課

 。ǘ┳灾魈剿,學(xué)習(xí)新知

  新知識教學(xué)分二步教學(xué):第一步整體感知,看懂統(tǒng)計圖,理解特征,這是本節(jié)課的重點(diǎn)。在教學(xué)中,以知識遷移的方式建立新舊知識之間的聯(lián)系,放手讓學(xué)生獨(dú)立思考,互相合作,進(jìn)一步了解統(tǒng)計圖的特征。

  第二步實(shí)踐應(yīng)用環(huán)節(jié)。在教學(xué)中,精心地選取了大量的生活素材,使統(tǒng)計知識與生活建立緊密的聯(lián)系。根據(jù)統(tǒng)計圖回答問題,是讓學(xué)生運(yùn)用到剛才學(xué)習(xí)到的知識來解決生活中的一些問題,并鞏固剛才所學(xué)的知識,為學(xué)生自己發(fā)現(xiàn)問題、提出問題及自己解決問題提供了較大的空間。同時,讓學(xué)生感悟由于數(shù)據(jù)變化帶來的啟示,并能合理地進(jìn)行推理與判斷

  三、課堂總結(jié)

  四、布置作業(yè)。

  五、板書設(shè)計:

高中數(shù)學(xué)說課稿14

  一、教材分析(說教材):

  1. 教材所處的地位和作用:

  本節(jié)內(nèi)容在全書和章節(jié)中的作用是:《 》是 中數(shù)學(xué)教材第 冊第 章第 節(jié)內(nèi)容。在此之前學(xué)生已學(xué)習(xí)了 基礎(chǔ),這為過渡到本節(jié)的學(xué)習(xí)起著鋪墊作用。本節(jié)內(nèi)容是在 中,占據(jù) 的地位。以及為其他學(xué)科和今后的學(xué)習(xí)打下基礎(chǔ)。

  2. 教育教學(xué)目標(biāo):

  根據(jù)上述教材分析,考慮到學(xué)生已有的認(rèn)知結(jié)構(gòu)心理特征,制定如下教學(xué)目標(biāo):

  (1)知識目標(biāo):

  (2)能力目標(biāo):通過教學(xué)初步培養(yǎng)學(xué)生分析問題,解決實(shí)際問題,讀圖分析,收集處理信息,團(tuán)結(jié)協(xié)作,語言表達(dá)能力以及通過師生雙邊活動,初步培養(yǎng)學(xué)生運(yùn)用知識的能力,培養(yǎng)學(xué)生加強(qiáng)理論聯(lián)系實(shí)際的能力,(3)情感目標(biāo):通過 的教學(xué)引導(dǎo)學(xué)生從現(xiàn)實(shí)的生活經(jīng)歷與體驗出發(fā),激發(fā)學(xué)生學(xué)習(xí)興趣。

  3. 重點(diǎn),難點(diǎn)以及確定依據(jù):

  下面,為了講清重難上點(diǎn),使學(xué)生能達(dá)到本節(jié)課設(shè)定的目標(biāo),再從教法和學(xué)法上談?wù)劊?/p>

  二、教學(xué)策略(說教法)

  1. 教學(xué)手段:

  如何突出重點(diǎn),突破難點(diǎn),從而實(shí)現(xiàn)教學(xué)目標(biāo)。在教學(xué)過程中擬計劃進(jìn)行如下操作:教學(xué)方法。基于本節(jié)課的特點(diǎn): 應(yīng)著重采用 的教學(xué)方法。

  2. 教學(xué)方法及其理論依據(jù):堅持“以學(xué)生為主體,以教師為主導(dǎo)”的原則,根據(jù)學(xué)生的心理發(fā)展規(guī)律,采用學(xué)生參與程度高的學(xué)導(dǎo)式討論教學(xué)法。在學(xué)生看書,討論的基礎(chǔ)上,在老師啟發(fā)引導(dǎo)下,運(yùn)用問題解決式教法,師生交談法,圖像信號法,問答式,課堂討論法。在采用問答法時,特別注重不同難度的問題,提問不同層次的學(xué)生,面向全體,使基礎(chǔ)差的學(xué)生也能有表現(xiàn)機(jī)會,培養(yǎng)其自信心,激發(fā)其學(xué)習(xí)熱情。有效的開發(fā)各層次學(xué)生的潛在智能,力求使學(xué)生能在原有的基礎(chǔ)上得到發(fā)展。同時通過課堂練習(xí)和課后作業(yè),啟發(fā)學(xué)生從書本知識回到社會實(shí)踐。提供給學(xué)生與其生活和周圍世界密切相關(guān)的數(shù)學(xué)知識,學(xué)習(xí)基礎(chǔ)性的知識和技能,在教學(xué)中積極培養(yǎng)學(xué)生學(xué)習(xí)興趣和動機(jī),明確的學(xué)習(xí)目的,老師應(yīng)在課堂上充分調(diào)動學(xué)生的學(xué)習(xí)積極性,激發(fā)來自學(xué)生主體的最有力的動力。

  3. 學(xué)情分析:(說學(xué)法)

  (1)學(xué)生特點(diǎn)分析:中學(xué)生心理學(xué)研究指出,高中階段是(查同中學(xué)生心發(fā)展情況)抓住學(xué)生特點(diǎn),積極采用形象生動,形式多樣的教學(xué)方法和學(xué)生廣泛的積極主動參與的學(xué)習(xí)方式,定能激發(fā)學(xué)生興趣,有效地培養(yǎng)學(xué)生能力,促進(jìn)學(xué)生個性發(fā)展。生理上表少年好動,注意力易分散

  (2) 知識障礙上:知識掌握上,學(xué)生原有的知識 ,許多學(xué)生出現(xiàn)知識遺忘,所以應(yīng)全面系統(tǒng)的'去講述;學(xué)生學(xué)習(xí)本節(jié)課的知識障礙, 知識 學(xué)生不易理解,所以教學(xué)中老師應(yīng)予以簡單明白,深入淺出的分析。

  (3)動機(jī)和興趣上:明確的學(xué)習(xí)目的,老師應(yīng)在課堂上充分調(diào)動學(xué)生的學(xué)習(xí)積極性,激發(fā)來自學(xué)生主體的最有力的動力

  最后我來具體談?wù)勥@一堂課的教學(xué)過程:

  4. 教學(xué)程序及設(shè)想:

  (1)由 引入:把教學(xué)內(nèi)容轉(zhuǎn)化為具有潛在意義的問題,讓學(xué)生產(chǎn)生強(qiáng)烈的問題意識,使學(xué)生的整個學(xué)習(xí)過程成為“猜想”繼而緊張的沉思,期待錄找理由和證明過程。在實(shí)際情況下學(xué)習(xí)可以使學(xué)生利用已有的知識與經(jīng)驗,同化和索引出當(dāng)肖學(xué)習(xí)的新知識,這樣獲取知識,不但易于保持,而且易于遷移到陌生的問題情境中。

  (2)由實(shí)例得出本課新的知識點(diǎn)

  (3)講解例題。在講例題時,不僅在于怎樣解,更在于為什么這樣解,而及時對解題方法和規(guī)律進(jìn)行概括,有利于學(xué)生的思維能力。

  (4)能力訓(xùn)練。課后練習(xí)使學(xué)生能鞏固羨慕自覺運(yùn)用所學(xué)知識與解題思想方法。

  (5)總結(jié)結(jié)論,強(qiáng)化認(rèn)識。知識性的內(nèi)容小結(jié),可把課堂教學(xué)傳授的知識盡快化為學(xué)生的素質(zhì),數(shù)學(xué)思想方法的小結(jié),可使學(xué)生更深刻地理解數(shù)學(xué)思想方法在解題中的地位和應(yīng)用,并且逐步培養(yǎng)學(xué)生良好的個性品質(zhì)目標(biāo)。

  (6)變式延伸,進(jìn)行重構(gòu),重視課本例題,適當(dāng)對題目進(jìn)行引申,使例題的作用更加突出,有利于學(xué)生對知識的串聯(lián),累積,加工,從而達(dá)到舉一反三的效果。

  (7)板書

  (8)布置作業(yè)。

  針對學(xué)生素質(zhì)的差異進(jìn)行分層訓(xùn)練,既使學(xué)生掌握基礎(chǔ)知識,又使學(xué)有余力的學(xué)生有所提高,

  教學(xué)程序:

  (一)課堂結(jié)構(gòu):復(fù)習(xí)提問,導(dǎo)入講授課,課堂練習(xí),鞏固新課,布置作業(yè)等五部分

  高中數(shù)學(xué)集合教學(xué)反思

  集合這章內(nèi)容,教學(xué)參考書上安排的課時為五課時,我們的導(dǎo)學(xué)案也是安排五課時,實(shí)際教學(xué)時,由于對學(xué)生的實(shí)際情況估計不足,第一課時的導(dǎo)學(xué)案用了兩課時才完成。集合這一章的特點(diǎn)是概念不多,但這章所涉及到的內(nèi)容很廣,學(xué)生學(xué)習(xí)本章內(nèi)容時,不僅要理解本章的概念,還要理解與本章內(nèi)容相關(guān)聯(lián)的其他內(nèi)容,這些內(nèi)容有初中學(xué)習(xí)過的內(nèi)容、有生活中的方方面面的相關(guān)知識,再加上高中學(xué)習(xí)方法與初中不同,邏輯思維能力要求較高,因此學(xué)生感覺學(xué)起來比較困難。針對這種情況,我在實(shí)際教學(xué)時,首先要求學(xué)生準(zhǔn)確理解概念,如:集合的元素具有三個性質(zhì):確定性、互異性、無序性。集合的關(guān)系、運(yùn)算等都是從元素的角度定義的,所以解集合問題時,教會學(xué)生對元素的性質(zhì)進(jìn)行分析,反復(fù)訓(xùn)練,讓學(xué)生通過實(shí)例體會這三個性質(zhì)。

  第二,掌握相關(guān)的符號語言、venn圖,正確使用列舉法、描述法表示集合,特別要注意用描述法表示集合時,集合中的元素是什么,這是一個教學(xué)難點(diǎn)。第二個難點(diǎn)是集合的運(yùn)算—交集和并集。突破難點(diǎn)充分運(yùn)用數(shù)形結(jié)合思想,集合間的關(guān)系和運(yùn)算,以數(shù)形結(jié)合思想為指導(dǎo),借助圖形思考,可以使各集合間的關(guān)系直觀明了,使抽象的集合運(yùn)算建立在直觀的基礎(chǔ)上,使解題思路清晰明朗,直觀簡捷,有利于問題的解決。

  第三,指導(dǎo)學(xué)生理解并掌握自然語言、符號語言、圖形語言這三種語言,靈活準(zhǔn)確地進(jìn)行語言轉(zhuǎn)換,可以幫助學(xué)生提高分析問題,解決問題的能力。

  第四,集合問題涉及到的其他內(nèi)容,遇到了講透,不拓展。

高中數(shù)學(xué)說課稿15

尊敬的各位考官:

  大家好,我是今天的xx號考生,今天我說課的內(nèi)容是《單調(diào)性與最大(小)值》的第一課時《單調(diào)性》。

  新課標(biāo)指出:高中數(shù)學(xué)課程對于認(rèn)識數(shù)學(xué)與自然界、數(shù)學(xué)與人類社會的關(guān)系,認(rèn)識數(shù)學(xué)的科學(xué)價值、文化價值,提高提出問題、分析和解決問題的能力,形成理性思維,發(fā)展智力和創(chuàng)新意識具有基礎(chǔ)性的作用。今天我將貫徹這一理念從教材分析、學(xué)情分析、教學(xué)過程等幾個方面展開我的說課。

  一、說教材

  本節(jié)課選自人教A版高中數(shù)學(xué)必修1第一章《集合與函數(shù)概念》的第三節(jié)《函數(shù)的基本性質(zhì)》第一小節(jié)《單調(diào)性與最大(小)值》的第一課時。本小節(jié)主要講解的內(nèi)容是函數(shù)的單調(diào)性以及最大、最小值的概念,本節(jié)課主要講解增減函數(shù)的概念以及單調(diào)性。之前學(xué)生對于函數(shù)的概念已經(jīng)進(jìn)行了學(xué)習(xí),本節(jié)課是在原來的基礎(chǔ)上進(jìn)一步鞏固函數(shù)的.概念,但是主要是針對性質(zhì)的學(xué)習(xí)。并且為之后研究函數(shù)的性質(zhì)、用函數(shù)的性質(zhì)解決生活中的問題起到非常關(guān)鍵性的作用。所以本節(jié)課的學(xué)習(xí)對于學(xué)生至關(guān)重要。

  二、說學(xué)情

  接下來談?wù)剬W(xué)生的實(shí)際情況。高中一年級的學(xué)生雖然剛剛步入高中,需要適應(yīng)高中的教學(xué)方式,但是學(xué)生的觀察能力、總結(jié)能力、歸納能力、類比能力、抽象能力等已經(jīng)發(fā)展的比較成熟。所以教學(xué)中,可以將更多的活動交給學(xué)生進(jìn)行探究。還可以進(jìn)行自主學(xué)習(xí),提高各方面的能力。

  三、說教學(xué)目標(biāo)

  根據(jù)以上對教材的分析以及對學(xué)情的把握,我制定了如下三維教學(xué)目標(biāo):

  (一)知識與技能

  認(rèn)識函數(shù)值隨自變量的增大而增大(減小)的規(guī)律,由此得出增(減)函數(shù)的定義。掌握用定義證明函數(shù)單調(diào)性的基本方法與步驟。

  (二)過程與方法

  在研究函數(shù)性質(zhì)的過程中,通過自主探究活動,學(xué)習(xí)數(shù)學(xué)思考的基本方法,提高數(shù)學(xué)思維能力。

  (三)情感態(tài)度價值觀

  感知從具體到抽象、從特殊到一般、從感性到理性的認(rèn)知過程,養(yǎng)成良好的數(shù)學(xué)學(xué)習(xí)習(xí)慣。

  四、說教學(xué)重難點(diǎn)

  我認(rèn)為一節(jié)好的數(shù)學(xué)課,從教學(xué)內(nèi)容上說一定要突出重點(diǎn)、突破難點(diǎn)。而教學(xué)重點(diǎn)的確立與我本節(jié)課的內(nèi)容肯定是密不可分的。那么根據(jù)授課內(nèi)容可以確定本節(jié)課的教學(xué)重點(diǎn)是:增(減)函數(shù)的定義。教學(xué)難點(diǎn)是:從圖象升降的直觀認(rèn)識過渡到函數(shù)增減的數(shù)學(xué)符號語言表述;用定義證明函數(shù)的單調(diào)性。

  五、說教法和學(xué)法

  現(xiàn)代教學(xué)理論認(rèn)為,在教學(xué)過程中,學(xué)生是學(xué)習(xí)的主體,教師是學(xué)習(xí)的組織者、引導(dǎo)者,教學(xué)的一切活動都必須以強(qiáng)調(diào)學(xué)生的主動性、積極性為出發(fā)點(diǎn)。根據(jù)這一教學(xué)理念,結(jié)合本節(jié)課的內(nèi)容特點(diǎn)和學(xué)生的年齡特征,我將采用講授法、練習(xí)法、自主探究等教學(xué)方法。

  六、說教學(xué)過程

  下面我將重點(diǎn)談?wù)勎覍虒W(xué)過程的設(shè)計。

  (一)導(dǎo)入新課

  首先是導(dǎo)入環(huán)節(jié),大屏幕直接展示圖1.3-1,并讓學(xué)生通過對兩個圖象的觀察,總結(jié)圖象具有什么特點(diǎn),根據(jù)學(xué)生對圖象變化特點(diǎn)的表述,引出本節(jié)課研究的內(nèi)容為《單調(diào)性》。

  這樣通過函數(shù)的圖象進(jìn)行引入,既能夠提高學(xué)生的學(xué)習(xí)興趣,還能夠為后面研究增減函數(shù)的抽象定義做鋪墊,讓學(xué)生對于函數(shù)的性質(zhì)有比較直觀的認(rèn)識。

  (二)探索新知

  接下來是教學(xué)中最重要的探索新知環(huán)節(jié),我主要分為以下幾步。

  第一個內(nèi)容是對“上升”、“下降”的直觀認(rèn)識。

【高中數(shù)學(xué)說課稿】相關(guān)文章:

高中數(shù)學(xué)說課稿06-25

高中數(shù)學(xué)說課稿07-09

高中數(shù)學(xué)《集合》說課稿07-22

高中數(shù)學(xué)《向量》說課稿01-06

高中數(shù)學(xué)經(jīng)典說課稿優(yōu)秀11-20

高中數(shù)學(xué)說課稿05-20

關(guān)于高中數(shù)學(xué)說課稿11-26

精選高中數(shù)學(xué)說課稿3篇06-26

高中數(shù)學(xué)說課稿15篇11-05

高中數(shù)學(xué)說課稿 15篇11-14