當前位置:育文網(wǎng)>教學文檔>說課稿> 高中數(shù)學說課稿

高中數(shù)學說課稿

時間:2024-09-25 04:26:56 說課稿 我要投稿

關(guān)于高中數(shù)學說課稿

  作為一名默默奉獻的教育工作者,通常需要準備好一份說課稿,借助說課稿可以讓教學工作更科學化。那么你有了解過說課稿嗎?下面是小編精心整理的關(guān)于高中數(shù)學說課稿,僅供參考,大家一起來看看吧。

關(guān)于高中數(shù)學說課稿

關(guān)于高中數(shù)學說課稿1

  說課內(nèi)容:普通高中課程標準實驗教科書(人教A版)《數(shù)學必修4》第二章第四節(jié)“平面向量的數(shù)量積”的第一課時---平面向量數(shù)量積的物理背景及其含義。

  下面,我從背景分析、教學目標設(shè)計、課堂結(jié)構(gòu)設(shè)計、教學過程設(shè)計、教學媒體設(shè)計及教學評價設(shè)計六個方面對本節(jié)課的思考進行說明。

  一、 背景分析

  1、學習任務(wù)分析

  平面向量的數(shù)量積是繼向量的線性運算之后的又一重要運算,也是高中數(shù)學的一個重要概念,在數(shù)學、物理等學科中應(yīng)用十分廣泛。本節(jié)內(nèi)容教材共安排兩課時,其中第一課時主要研究數(shù)量積的概念,第二課時主要研究數(shù)量積的坐標運算,本節(jié)課是第一課時。

  本節(jié)課的主要學習任務(wù)是通過物理中“功”的事例抽象出平面向量數(shù)量積的概念,在此基礎(chǔ)上探究數(shù)量積的性質(zhì)與運算律,使學生體會類比的思想方法,進一步培養(yǎng)學生的抽象概括和推理論證的能力。其中數(shù)量積的概念既是對物理背景的抽象,又是研究性質(zhì)和運算律的基礎(chǔ)。同時也因為在這個概念中,既有長度又有角度,既有形又有數(shù),是代數(shù)、幾何與三角的最佳結(jié)合點,不僅應(yīng)用廣泛,而且很好的體現(xiàn)了數(shù)形結(jié)合的數(shù)學思想,使得數(shù)量積的概念成為本節(jié)課的核心概念,自然也是本節(jié)課教學的重點。

  2、學生情況分析

  學生在學習本節(jié)內(nèi)容之前,已熟知了實數(shù)的運算體系,掌握了向量的概念及其線性運算,具備了功等物理知識,并且初步體會了研究向量運算的一般方法:即先由特殊模型(主要是物理模型)抽象出概念,然后再從概念出發(fā),在與實數(shù)運算類比的基礎(chǔ)上研究性質(zhì)和運算律。這為學生學習數(shù)量積做了很好的鋪墊,使學生倍感親切。但也正是這些干擾了學生對數(shù)量積概念的理解,一方面,相對于線性運算而言,數(shù)量積的結(jié)果發(fā)生了本質(zhì)的變化,兩個有形有數(shù)的向量經(jīng)過數(shù)量積運算后,形卻消失了,學生對這一點是很難接受的;另一方面,由于受實數(shù)乘法運算的影響,也會造成學生對數(shù)量積理解上的偏差,特別是對性質(zhì)和運算律的理解。因而本節(jié)課教學的難點數(shù)量積的概念。

  二、 教學目標設(shè)計

  《普通高中數(shù)學課程標準(實驗)》 對本節(jié)課的要求有以下三條:

  (1)通過物理中“功”等事例,理解平面向量數(shù)量積的含義及其物理意義。

  (2)體會平面向量的數(shù)量積與向量投影的關(guān)系。

  (3)能用運數(shù)量積表示兩個向量的夾角,會用數(shù)量積判斷兩個平面向量的垂直關(guān)系。

  從以上的背景分析可以看出,數(shù)量積的概念既是本節(jié)課的重點,也是難點。為了突破這一難點,首先無論是在概念的引入還是應(yīng)用過程中,物理中“功”的實例都發(fā)揮了重要作用。其次,作為數(shù)量積概念延伸的性質(zhì)和運算律,不僅能夠使學生更加全面深刻地理解概念,同時也是進行相關(guān)計算和判斷的理論依據(jù)。最后,無論是數(shù)量積的性質(zhì)還是運算律,都希望學生在類比的基礎(chǔ)上,通過主動探究來發(fā)現(xiàn),因而對培養(yǎng)學生的抽象概括能力、推理論證能力和類比思想都無疑是很好的載體。

  綜上所述,結(jié)合“課標”要求和學生實際,我將本節(jié)課的教學目標定為:

  1、了解平面向量數(shù)量積的物理背景,理解數(shù)量積的含義及其物理意義;

  2、體會平面向量的數(shù)量積與向量投影的關(guān)系,掌握數(shù)量積的性質(zhì)和運算律,

  并能運用性質(zhì)和運算律進行相關(guān)的運算和判斷;

  3、體會類比的數(shù)學思想和方法,進一步培養(yǎng)學生抽象概括、推理論證的能力。

  三、課堂結(jié)構(gòu)設(shè)計

  本節(jié)課從總體上講是一節(jié)概念教學,依據(jù)數(shù)學課程改革應(yīng)關(guān)注知識的發(fā)生和發(fā)展過程的理念,結(jié)合本節(jié)課的知識的邏輯關(guān)系,我按照以下順序安排本節(jié)課的教學:

  即先從數(shù)學和物理兩個角度創(chuàng)設(shè)問題情景,通過歸納和抽象得到數(shù)量積的概念,在此基礎(chǔ)上研究數(shù)量積的性質(zhì)和運算律,使學生進一步加深對概念的理解,然后通過例題和練習使學生鞏固概念,加深印象,最后通過課堂小結(jié)提高學生認識,形成知識體系。

  四、 教學媒體設(shè)計

  和“大綱”教材相比,“課標”教材在本節(jié)課的內(nèi)容安排上,雖然將向量的夾角在“平面向量基本定理”一節(jié)提前做了介紹,但卻將原來分兩節(jié)課完成的內(nèi)容合并成一節(jié),相比較而言本節(jié)課的教學任務(wù)加重了許多。為了保證教學任務(wù)的完成,順利實現(xiàn)本節(jié)課的教學目標,考慮到本節(jié)課的實際特點,在教學媒體的使用上,我的設(shè)想主要有以下兩點:

  1、制作高效實用的電腦多媒體課件,主要作用是改變相關(guān)內(nèi)容的呈現(xiàn)方式,以此來節(jié)約課時,增加課堂容量。

  2、設(shè)計科學合理的板書(見下),一方面使學生加深對主要知識的印象,另一方面使學生清楚本節(jié)內(nèi)容知識間的邏輯關(guān)系,形成知識網(wǎng)絡(luò)。

  平面向量數(shù)量積的物理背景及其含義

  一、 數(shù)量積的概念 二、數(shù)量積的性質(zhì) 四、應(yīng)用與提高

  1、 概念: 例1:

  2、 概念強調(diào) (1)記法 例2:

  (2)“規(guī)定” 三、數(shù)量積的運算律 例3:

  3、幾何意義:

  4、物理意義:

  五、 教學過程設(shè)計

  課標指出:數(shù)學教學過程是教師引導(dǎo)學生進行學習活動的過程,是教師和學生間互動的過程,是師生共同發(fā)展的過程。為有序、有效地進行教學,本節(jié)課我主要安排以下六個活動:

  活動一:創(chuàng)設(shè)問題情景,激發(fā)學習興趣

  正如教材主編寄語所言,數(shù)學是自然的,而不是強加于人的。平面向量的數(shù)量積這一重要概念,和向量的`線性運算一樣,也有其數(shù)學背景和物理背景,為了體現(xiàn)這一點,我設(shè)計以下幾個問題:

  問題1:我們已經(jīng)研究了向量的哪些運算?這些運算的結(jié)果是什么?

  問題2:我們是怎么引入向量的加法運算的?我們又是按照怎樣的順序研究了這種運算的?

  期望學生回答:物理模型→概念→性質(zhì)→運算律→應(yīng)用

  問題3:如圖所示,一物體在力F的作用下產(chǎn)生位移S,

  (1)力F所做的功W= 。

  (2)請同學們分析這個公式的特點:

  W(功)是 量,

  F(力)是 量,

  S(位移)是 量,

  α是 。

  問題1的設(shè)計意圖在于使學生了解數(shù)量積的數(shù)學背景,讓學生明白本節(jié)課所要研究的數(shù)量積與向量的加法、減法及數(shù)乘一樣,都是向量的運算,但與向量的線性運算相比,數(shù)量積運算又有其特殊性,那就是其結(jié)果發(fā)生了本質(zhì)的變化。

  問題2的設(shè)計意圖在于使學生在與向量加法類比的基礎(chǔ)上明了本節(jié)課的研究方法和順序,為教學活動指明方向。

  問題3的設(shè)計意圖在于使學生了解數(shù)量積的物理背景,讓學生知道,我們研究數(shù)量積絕不僅僅是為了數(shù)學自身的完善,而是有其客觀背景和現(xiàn)實意義的,從而產(chǎn)生了進一步研究這種新運算的愿望。同時,也為抽象數(shù)量積的概念做好鋪墊。

  活動二:探究數(shù)量積的概念

  1、概念的抽象

  在分析“功”的計算公式的基礎(chǔ)上提出問題4

  問題4:你能用文字語言來表述功的計算公式嗎?如果我們將公式中的力與位移推廣到一般向量,其結(jié)果又該如何表述?

  學生通過思考不難回答:功是力與位移的大小及其夾角余弦的乘積;兩個向量的大小及其夾角余弦的乘積。這樣,學生事實上已經(jīng)得到數(shù)量積概念的文字表述了,在此基礎(chǔ)上,我進一步明晰數(shù)量積的概念。

  2、概念的明晰

  已知兩個非零向量

  與

  ,它們的夾角為

  ,我們把數(shù)量 ︱

  ︱·︱

  ︱cos

  叫做

  與

  的數(shù)量積(或內(nèi)積),記作:

  ·

  ,即:

  ·

  = ︱

  ︱·︱

  ︱cos

  在強調(diào)記法和“規(guī)定”后 ,為了讓學生進一步認識這一概念,提出問題5

  問題5:向量的數(shù)量積運算與線性運算的結(jié)果有什么不同?影響數(shù)量積大小的因素有哪些?并完成下表:

  角

  的范圍0°≤

  <90°

  =90°0°<

  ≤180°

  ·

  的符號

  通過此環(huán)節(jié)不僅使學生認識到數(shù)量積的結(jié)果與線性運算的結(jié)果有著本質(zhì)的不同,而且認識到向量的夾角是決定數(shù)量積結(jié)果的重要因素,為下面更好地理解數(shù)量積的性質(zhì)和運算律做好鋪墊。

  3、探究數(shù)量積的幾何意義

  這個問題教材是這樣安排的:在給出向量數(shù)量積的概念后,只介紹了向量投影的定義,直到講完例1后,為了證明運算律的第三條才直接以結(jié)論的形式呈現(xiàn)給學生,我覺得這樣安排似乎不太自然,還不如在給出向量投影的概念后,直接由學生自己歸納得出,所以做了調(diào)整。為此,我首先給出給出向量投影的概念,然后提出問題5。

  如圖,我們把│

  │cos

  (│

  │cos

  )叫做向量

  在

  方向上(

  在

  方向上)的投影,記做:OB1=│

  │cos

  問題6:數(shù)量積的幾何意義是什么?

  這樣做不僅讓學生從“形”的角度重新認識數(shù)量積的概念,從中體會數(shù)量積與向量投影的關(guān)系,同時也更符合知識的連貫性,而且也節(jié)約了課時。

  4、研究數(shù)量積的物理意義

  數(shù)量積的概念是由物理中功的概念引出的,學習了數(shù)量積的概念后,學生就會明白功的數(shù)學本質(zhì)就是力與位移的數(shù)量積。為此,我設(shè)計以下問題 一方面使學生嘗試計算數(shù)量積,另一方面使學生理解數(shù)量積的物理意義,同時也為數(shù)量積的性質(zhì)埋下伏筆。

  問題7:

  (1) 請同學們用一句話來概括功的數(shù)學本質(zhì):功是力與位移的數(shù)量積 。

  (2)嘗試練習:一物體質(zhì)量是10千克,分別做以下運動:

  ①、在水平面上位移為10米;

 、凇⒇Q直下降10米;

 、邸⒇Q直向上提升10米;

 、、沿傾角為30度的斜面向上運動10米;

  分別求重力做的功。

  活動三:探究數(shù)量積的運算性質(zhì)

  1、性質(zhì)的發(fā)現(xiàn)

  教材中關(guān)于數(shù)量積的三條性質(zhì)是以探究的形式出現(xiàn)的,為了很好地完成這一探究活動,在完成上述練習后,我不失時機地提出問題8:

  (1)將嘗試練習中的① ② ③的結(jié)論推廣到一般向量,你能得到哪些結(jié)論?

  (2)比較︱

  ·

  ︱與︱

  ︱×︱

  ︱的大小,你有什么結(jié)論?

  在學生討論交流的基礎(chǔ)上,教師進一步明晰數(shù)量積的性質(zhì),然后再由學生利用數(shù)量積的定義給予證明,完成探究活動。

  2、明晰數(shù)量積的性質(zhì)

  3、性質(zhì)的證明

  這樣設(shè)計體現(xiàn)了教師只是教學活動的引領(lǐng)者,而學生才是學習活動的主體,讓學生成為學習的研究者,不斷地體驗到成功的喜悅,激發(fā)學生參與學習活動的熱情,不僅使學生獲得了知識,更培養(yǎng)了學生由特殊到一般的思維品質(zhì)。

  活動四:探究數(shù)量積的運算律

  1、運算律的發(fā)現(xiàn)

  關(guān)于運算律,教材仍然是以探究的形式出現(xiàn),為此,首先提出問題9

  問題9:我們學過了實數(shù)乘法的哪些運算律?這些運算律對向量是否也適用?

  通過此問題主要是想使學生在類比的基礎(chǔ)上,猜測提出數(shù)量積的運算律。

  學生可能會提出以下猜測: ①

  ·

  =

  ·

  ②(

  ·

  )

  =

  (

  ·

  ) ③(

  +

  )·

  =

  ·

  +

  ·

  猜測①的正確性是顯而易見的。

  關(guān)于猜測②的正確性,我提示學生思考下面的問題:

  猜測②的左右兩邊的結(jié)果各是什么?它們一定相等嗎?

  學生通過討論不難發(fā)現(xiàn),猜測②是不正確的。

  這時教師在肯定猜測③的基礎(chǔ)上明晰數(shù)量積的運算律:

  2、明晰數(shù)量積的運算律

  3、證明運算律

  學生獨立證明運算律(2)

  我把運算運算律(2)的證明交給學生完成,在證明時,學生可能只考慮到λ>0的情況,為了幫助學生完善證明,提出以下問題:

  當λ<0時,向量

  與λ

  ,

  與λ

  的方向 的關(guān)系如何?此時,向量λ

  與

  及

  與λ

  的夾角與向量

  與

  的夾角相等嗎?

  師生共同證明運算律(3)

  運算律(3)的證明對學生來說是比較困難的,為了節(jié)約課時,這個證明由師生共同完成,我想這也是教材的本意。

  在這個環(huán)節(jié)中,我仍然是首先為學生創(chuàng)設(shè)情景,讓學生在類比的基礎(chǔ)上進行猜想歸納,然后教師明晰結(jié)論,最后再完成證明,這樣做不僅培養(yǎng)了學生推理論證的能力,同時也增強了學生類比創(chuàng)新的意識,將知識的獲得和能力的培養(yǎng)有機的結(jié)合在一起。

  活動五:應(yīng)用與提高

  例1、(師生共同完成)已知︱

  ︱=6,︱

  ︱=4,

  與

  的夾角為60°,求

  (

  +2

  )·(

  -3

  ),并思考此運算過程類似于哪種運算?

  例2、(學生獨立完成)對任意向量

  ,b是否有以下結(jié)論:

  (1)(

  +

  )2=

  2+2

  ·

  +

  2

  (2)(

  +

  )·(

  -

  )=

  2—

  2

  例3、(師生共同完成)已知︱

  ︱=3,︱

  ︱=4, 且

  與

  不共線,k為何值時,向量

  +k

  與

  -k

  互相垂直?并思考:通過本題你有什么收獲?

  本節(jié)教材共安排了四道例題,我根據(jù)學生實際選擇了其中的三道,并對例1和例3增加了題后反思。例1是數(shù)量積的性質(zhì)和運算律的綜合應(yīng)用,教學時,我重點從對運算原理的分析和運算過程的規(guī)范書寫兩個方面加強示范。完成計算后,進一步提出問題:此運算過程類似于哪種運算?目的是想讓學生在類比多項式乘法的基礎(chǔ)上自己猜測提出例2給出的兩個公式,再由學生獨立完成證明,一方面這并不困難,另一方面培養(yǎng)了學生通過類比這一思維模式達到創(chuàng)新的目的。例3的主要作用是,在繼續(xù)鞏固性質(zhì)和運算律的同時,教給學生如何利用數(shù)量積來判斷兩個向量的垂直,是平面向量數(shù)量積的基本應(yīng)用之一,教學時重點給學生分析數(shù)與形的轉(zhuǎn)化原理。

  為了使學生更好的理解數(shù)量積的含義,熟練掌握性質(zhì)及運算律,并能夠應(yīng)用數(shù)量積解決有關(guān)問題,再安排如下練習:

  1、 下列兩個命題正確嗎?為什么?

  ①、若

  ≠0,則對任一非零向量

  ,有

  ·

  ≠0.

  ②、若

  ≠0,

  ·

  =

  ·

  ,則

  =

  .

  2、已知△ABC中,

  =

  ,

  =

  ,當

  ·

  <0或

  ·

  =0時,試判斷△ABC的形狀。

  安排練習1的主要目的是,使學生在與實數(shù)乘法比較的基礎(chǔ)上全面認識數(shù)量積這一重要運算,

  通過練習2使學生學會用數(shù)量積表示兩個向量的夾角,進一步感受數(shù)量積的應(yīng)用價值。

  活動六:小結(jié)提升與作業(yè)布置

  1、本節(jié)課我們學習的主要內(nèi)容是什么?

  2、平面向量數(shù)量積的兩個基本應(yīng)用是什么?

  3、我們是按照怎樣的思維模式進行概念的歸納和性質(zhì)的探究?在運算律的探究過程中,滲透了哪些數(shù)學思想?

  4、類比向量的線性運算,我們還應(yīng)該怎樣研究數(shù)量積?

  通過上述問題,使學生不僅對本節(jié)課的知識、技能及方法有了更加全面深刻的認識,同時也為下

  一節(jié)做好鋪墊,繼續(xù)激發(fā)學生的求知欲。

  布置作業(yè):

  1、課本P121習題2.4A組1、2、3。

  2、拓展與提高:

  已知

  與

  都是非零向量,且

  +3

  與7

  -5

  垂直,

  -4

  與 7

  -2

  垂直求

  與

  的夾角。

  在這個環(huán)節(jié)中,我首先考慮檢測全體學生是否都達到了“課標”的基本要求,因此安排了一組教材中的習題,目的是讓所有的學生繼續(xù)加深對數(shù)量積概念的理解和應(yīng)用,為后續(xù)學習打好基礎(chǔ)。其次,為了能讓不同的學生在數(shù)學領(lǐng)域得到不同的發(fā)展,我又安排了一道有一定難度的問題供學有余力的同學選做。

  六、教學評價設(shè)計

  評價方式的轉(zhuǎn)變是新課程改革的一大亮點,課標指出:相對于結(jié)果,過程更能反映每個學生的發(fā)展變化,體現(xiàn)出學生成長的歷程。因此,數(shù)學學習的評價既要重視結(jié)果,也要重視過程。結(jié)合“課標”對數(shù)學學習的評價建議,對本節(jié)課的教學我主要通過以下幾種方式進行:

  1、 通過與學生的問答交流,發(fā)現(xiàn)其思維過程,在鼓勵的基礎(chǔ)上,糾正偏差,并對其進行定

  性的評價。

  2、在學生討論、交流、協(xié)作時,教師通過觀察,就個別或整體參與活動的態(tài)度和表現(xiàn)做出評價,以此來調(diào)動學生參與活動的積極性。

  3、 通過練習來檢驗學生學習的效果,并在講評中,肯定優(yōu)點,指出不足。

  4、 通過作業(yè),反饋信息,再次對本節(jié)課做出評價,以便查漏補缺。

關(guān)于高中數(shù)學說課稿2

  一、教材分析:

  《向量的加法》是《必修》4第二章第二單元中“平面向量的線性運算”的第一節(jié)課。本節(jié)內(nèi)容有向量加法的平行四邊形法則、三角形法則及應(yīng)用,向量加法的運算律及應(yīng)用,大約需要1課時。向量的加法是向量的線性運算中最基本的一種運算,向量的加法及其幾何意義為后繼學習向量的減法運算及其幾何意義、向量的數(shù)乘運算及其幾何意義奠定了基礎(chǔ);其中三角形法則適用于求任意多個向量的和,在空間向量與立體幾何中有很普遍的應(yīng)用。所以本課在“平面向量”及“空間向量”中有很重要的地位。

  二、學情分析:

  學生在上節(jié)課中學習了向量的定義及表示,相等向量,平行向量等概念,知道向量可以自由移動,這是學習本節(jié)內(nèi)容的基礎(chǔ)。學生對數(shù)的運算了如指掌,并且在物理中學過力的合成、位移的合成等矢量的加法,所以向量的加法可通過類比數(shù)的加法、以所學的物理模型為背景引入,這樣做有利于學生更好地理解向量加法的意義,準確把握兩個加法法則的特點。

  三、教學目的:

  1、通過對向量加法的探究,使學生掌握向量加法的概念,結(jié)合物理學實際理解向量加法的意義。能正確領(lǐng)會向量加法的平行四邊形法則和三角形法則的幾何意義,并能運用法則作出兩個已知向量的`和向量。

  2、在應(yīng)用活動中,理解向量加法滿足交換律和結(jié)合律以及表述兩個運算律的幾何意義。掌握有特殊位置關(guān)系的兩個向量之和,比如共線向量,共起點向量、共終點向量等。

  3、通過本節(jié)的學習,培養(yǎng)學生類比、遷移、分類、歸納等數(shù)學方面的能力。

  四、教學重、難點

  重點:向量的加法法則。探究向量的加法法則并正確應(yīng)用是本課的重點。兩個加法法則各有特點,聯(lián)系緊密,你中有我,我中有你,實質(zhì)相同,但是三角形法則適用范圍更加廣泛,且簡便易行,所以是詳講內(nèi)容,平行四邊形法則在本課中所占份量略少于三角形法則。

  難點:對三角形法則的理解;方向相反的兩個向量的加法。主要是讓學生認識到三角形法則的實質(zhì)是:將已知向量首尾相接,而不是表示向量的有向線段之間必須構(gòu)成三角形。

  五、教學方法

  本節(jié)采用以下教學方法:1、類比:由數(shù)的加法運算類比向量的加法運算。2、探究:由力的合成引入平行四邊形法則,在法則的運用中觀察圖形得出三角形法則,探求共線向量的加法,發(fā)現(xiàn)三角形法則適用于任意向量相加;通過圖形,觀察得出向量加法滿足交換律、結(jié)合律等,這些都體現(xiàn)探究式教學法的運用。3、講解與練習:對兩個法則特點的分析,例題都采取了引導(dǎo)與講解的方法,學生課堂完成教材中的練習。4、多媒體技術(shù)的運用,能直觀地表現(xiàn)向量的平移,相等向量的意義,更能說清兩個法則的幾何意義及運算律。

  六、數(shù)學思想的體現(xiàn):

  1、分類的思想:總的來說本課中向量的加法分為不共線向量及共線向量兩種形式,共線向量又分為方向相同與方向相反兩種情形,然后專門對零向量與任意向量相加作了規(guī)定,這樣對任意向量的加法都做了討論,線索清楚。

  2、類比思想:使之與數(shù)的加法進行類比,使學生對向量的加法不致于太陌生,既有似曾相識的感覺,又能從對比中看出兩者的不同,效果較好。

  3、歸納思想:主要體現(xiàn)在以下三個環(huán)節(jié)①學完平行四邊形法則和三角形法則后,歸納總結(jié),對不共線向量相加,兩個法則都可以選用。②由共線向量的加法總結(jié)出三角形法則適用于任意兩個向量的相加,而三角形法則僅適用于不共線向量相加。③對向量加法的結(jié)合律和探討中,又使學生發(fā)現(xiàn)了三角形法則還適用于任意多個向量的加法。歸納思想在這三個環(huán)節(jié)中的運用,使得學生對兩個加法法則,尤其是三角形法則的理解,步步深入。

  七、教學過程:

  1、回顧舊知:本節(jié)要進行向量的平移,且對向量加法分共線與不共線兩種情況,所以要復(fù)習向量、相等向量、共線向量等概念,這些都是新課學習中必要的知識鋪墊。

  2、引入新課:

 。1)平行四邊形法則的引入。

  學生在物理學中雖然接觸過位移的合成,但是并沒有形成三角形法則的概念;而對平行四邊形法則學生已學過,很熟悉。所以我決定由力的合成引入向量加法的平行四邊形法則。平行四邊形法則的特點是起點相同,但是物理中力的合成是在有相同的作用點的條件下合成的,引入到數(shù)學中向量加法的平行四邊形法則,所給出的圖形也是現(xiàn)成的平行四邊形,而學生剛學完相等向量,對相等向量的概念還沒有深刻的認識,易產(chǎn)生誤解:表示兩個已知向量的有向線段的起點必須在一起才能用平行四邊形法則,不在一起不能用。這時要通過講解例1,使學生認識到可以通過平移向量,使表示兩個向量的有向線段有共同的起點。這一點對理解及運用法則求兩向量的和很重要。

  設(shè)計意圖:本著從學生最熟悉、離學生最近的知識經(jīng)驗為接入點,用學生熟知的方法來解決新的問題——向量的加法,這樣新中有舊,學生容易接受,也使學科間的滲透發(fā)揮了作用,加深了學生對向量加法的平行四邊形法則的“起點相同”這一特點的認識,例1的講解使學生認識到當表示向量的有向線段的起點不在一起時,須把起點移到一起,至此才能使學生完成對平行四邊形法則理解真正到位。

 。2)三角形法則的引入。三角形法則沒有按照教材中利用位移的合成引入,而是從前面所講的平行四邊形法則的圖形中直接引入(如圖)。

  所以這種把兩個向量相加的方法稱為三角形法則。接下來用幻燈片完整展示三角形法則,同時法則的作法敘述、作圖過程對學生也起到了示例的作用。于是前面的例1還可以利用三角形法則來做。

  這時,總結(jié)出兩個不共線向量求和時,平行四邊形法則與三角形法則都可以用。

  設(shè)計意圖:由平行四邊形法則的圖形引入三角形法則,可以很清楚地使學生從向何意義上認識到兩個法則之間的密切聯(lián)系,理解它們的實質(zhì),而且銜接自然,能夠使學生對比地得出兩個法則的特點與實質(zhì),并對兩個法則的特點有較深刻的印象。

  (3)共線向量的加法

  方向相同的兩個向量相加,對學生來說較易完成,“將它們接在一起,取它們的方向及長度之和,作為和向量的方向與長度!币龑(dǎo)學生分析作法,結(jié)果發(fā)現(xiàn)還是運用了三角形法則:首尾相接,方向由第一個向量的起點指向第二個向量的終點。

  方向相反的兩個向量相加,對學生來說是個難點,首先從作圖上不知道怎樣做。但是學生學過有理數(shù)加法中的異號兩數(shù)相加:“異號兩數(shù)相加,用較大

  的絕對值減去較小的絕對值,符號取絕對值較大的數(shù)的符號!鳖惐犬愄杻蓴(shù)相加,他們會用較長的模減去較短的模,方向取模較長的向量的方向。具體做法由老師引導(dǎo)學生嘗試運用三角形法則去做,發(fā)現(xiàn)結(jié)論正確。

  反思過程,學生自然會想到方向相同的兩個向量相加,類似于同號兩數(shù)相加。這說明兩個共線向量相加依然可用三角形法則 通過以上幾個環(huán)節(jié)的討論,可以作個簡單的小結(jié):兩個不共線向量相加,可采用平行四邊形法則或三角形法則,而兩個共線向量相加在本課所學方法中只能用三角形法則,說明三角形法則適用于任意兩個向量相加。

  設(shè)計意圖:通過對共線向量加法的探討,拓寬了學生對三角形法則的認識,使得不同位置的向量相加都有了依據(jù),并且采用類比的方法,使學生對共線向量的加法,尤其是方向相反的兩個向量的加法更易于理解,可以化解難點。

 。4)向量加法的運算律

 、俳粨Q律:交換律是利用平行四邊形法則的圖形,又結(jié)合三角

  形法則得出,理解起來沒什么困難,再一次強化了學生對兩個法則特點及實質(zhì)的認識。

  ②結(jié)合律:結(jié)合律是通過三個向量首尾相接,先加前兩個再與第三個向量相加,和先加后兩個向量再與第一個向量相加所得結(jié)果相同。

  接下來是對應(yīng)的兩個練習,運用交換律與結(jié)合律計算向量的和。

  設(shè)計意圖:運算律的引入給加法運算帶來方便,從后面的練習中學生能夠體會到這點。由結(jié)合律還使學生發(fā)現(xiàn),多個向量相加,同樣可以運用三角形法則:將所加向量首尾相接,和向量的方向是由第一個向量的起點指向最后一個向量的終點。這樣使學生明白,三角形法則適用于任意多個向量相加。

  3、小結(jié)

  先由學生小結(jié),檢查學生對本課重要知識的認識,也給學生一個概括本節(jié)知識的機會,然后用課件展示小結(jié)內(nèi)容,使學生印象更深。

 。1)平行四邊形法則:起點相同,適用于不共線向量的求和。

  (2)三角形法則首尾相接,適用于任意多個向量的求和。

  (3)運算律

關(guān)于高中數(shù)學說課稿3

  1、本節(jié)教材的地位與作用

  本節(jié)主要研究閉區(qū)間上的連續(xù)函數(shù)最大值和最小值的求法和實際應(yīng)用,分兩課時,這里是第一課時,它是在學生已經(jīng)會求某些函數(shù)的最值,并且已經(jīng)掌握了性質(zhì):“如果f(x)是閉區(qū)間[a,b]上的連續(xù)函數(shù),那么f(x)在閉區(qū)間[a,b]上有最大值和最小值”,以及會求可導(dǎo)函數(shù)的極值之后進行學習的,學好這一節(jié),學生將會求更多的函數(shù)的最值,運用本節(jié)知識可以解決科技、經(jīng)濟、社會中的一些如何使成本最低、產(chǎn)量最高、效益最大等實際問題。這節(jié)課集中體現(xiàn)了數(shù)形結(jié)合、理論聯(lián)系實際等重要的數(shù)學思想方法,學好本節(jié),對于進一步完善學生的知識結(jié)構(gòu),培養(yǎng)學生用數(shù)學的意識都具有極為重要的意義。

  2、教學重點

  會求閉區(qū)間上連續(xù)開區(qū)間上可導(dǎo)的函數(shù)的最值。

  3、教學難點

  高三年級學生雖然已經(jīng)具有一定的知識基礎(chǔ),但由于對求函數(shù)極值還不熟練,特別是對優(yōu)化解題過程依據(jù)的理解會有較大的困難,所以這節(jié)課的難點是理解確定函數(shù)最值的方法。

  4、教學關(guān)鍵

  本節(jié)課突破難點的關(guān)鍵是:理解方程f′(x)=0的解,包含有指定區(qū)間內(nèi)全部可能的極值點。

  【教學目標】

  根據(jù)本節(jié)教材在高中數(shù)學知識體系中的地位和作用,結(jié)合學生已有的認知水平,制定本節(jié)如下的教學目標:

  1、知識和技能目標

  (1)理解函數(shù)的最值與極值的區(qū)別和聯(lián)系。

 。2)進一步明確閉區(qū)間[a,b]上的連續(xù)函數(shù)f(x),在[a,b]上必有最大、最小值。

  (3)掌握用導(dǎo)數(shù)法求上述函數(shù)的.最大值與最小值的方法和步驟。

  2、過程和方法目標

 。1)了解開區(qū)間內(nèi)的連續(xù)函數(shù)或閉區(qū)間上的不連續(xù)函數(shù)不一定有最大、最小值。

 。2)理解閉區(qū)間上的連續(xù)函數(shù)最值存在的可能位置:極值點處或區(qū)間端點處。

 。3)會求閉區(qū)間上連續(xù),開區(qū)間內(nèi)可導(dǎo)的函數(shù)的最大、最小值。

  3、情感和價值目標

 。1)認識事物之間的的區(qū)別和聯(lián)系。

 。2)培養(yǎng)學生觀察事物的能力,能夠自己發(fā)現(xiàn)問題,分析問題并最終解決問題。

  (3)提高學生的數(shù)學能力,培養(yǎng)學生的創(chuàng)新精神、實踐能力和理性精神。

  【教法選擇】

  根據(jù)皮亞杰的建構(gòu)主義認識論,知識是個體在與環(huán)境相互作用的過程中逐漸建構(gòu)的結(jié)果,而認識則是起源于主客體之間的相互作用。

  本節(jié)課在幫助學生回顧肯定了閉區(qū)間上的連續(xù)函數(shù)一定存在最大值和最小值之后,引導(dǎo)學生通過觀察閉區(qū)間內(nèi)的連續(xù)函數(shù)的幾個圖象,自己歸納、總結(jié)出函數(shù)最大值、最小值存在的可能位置,進而探索出函數(shù)最大值、最小值求解的方法與步驟,并優(yōu)化解題過程,讓學生主動地獲得知識,老師只是進行適當?shù)囊龑?dǎo),而不進行全部的灌輸。為突出重點,突破難點,這節(jié)課主要選擇以合作探究式教學法組織教學。

  【學法指導(dǎo)】

  對于求函數(shù)的最值,高三學生已經(jīng)具備了良好的知識基礎(chǔ),剩下的問題就是有沒有一種更一般的方法,能運用于更多更復(fù)雜函數(shù)的求最值問題?教學設(shè)計中注意激發(fā)起學生強烈的求知欲望,使得他們能積極主動地觀察、分析、歸納,以形成認識,參與到課堂活動中,充分發(fā)揮他們作為認知主體的作用。

  【教學過程】

  本節(jié)課的教學,大致按照“創(chuàng)設(shè)情境,鋪墊導(dǎo)入——合作學習,探索新知——指導(dǎo)應(yīng)用,鼓勵創(chuàng)新——歸納小結(jié),反饋回授”四個環(huán)節(jié)進行組織。

關(guān)于高中數(shù)學說課稿4

  一、教材分析

  1、從在教材中的地位與作用來看

  《等比數(shù)列的前n項和》是數(shù)列這一章中的一個重要內(nèi)容,它不僅在現(xiàn)實生活中有著廣泛的實際應(yīng)用,如儲蓄、分期付款的有關(guān)計算等等,而且公式推導(dǎo)過程中所滲透的類比、化歸、分類討論、整體變換和方程等思想方法,都是學生今后學習和工作中必備的數(shù)學素養(yǎng)。

  2、從學生認知角度看

  從學生的思維特點看,很容易把本節(jié)內(nèi)容與等差數(shù)列前n項和從公式的形成、特點等方面進行類比,這是積極因素,應(yīng)因勢利導(dǎo)。不利因素是:本節(jié)公式的推導(dǎo)與等差數(shù)列前n項和公式的推導(dǎo)有著本質(zhì)的不同,這對學生的思維是一個突破,另外,對于q=1這一特殊情況,學生往往容易忽視,尤其是在后面使用的過程中容易出錯。

  3、學情分析

  教學對象是剛進入高中的學生,雖然具有一定的分析問題和解決問題的能力,邏輯思維能力也初步形成,但由于年齡的原因,思維盡管活躍、敏捷,卻缺乏冷靜、深刻,因此片面、不嚴謹。

  4、重點、難點

  教學重點:公式的推導(dǎo)、公式的特點和公式的運用。

  教學難點:公式的推導(dǎo)方法和公式的靈活運用。

  公式推導(dǎo)所使用的"錯位相減法"是高中數(shù)學數(shù)列求和方法中最常用的方法之一,它蘊含了重要的數(shù)學思想,所以既是重點也是難點。

  二、目標分析

  知識與技能目標:

  理解并掌握等比數(shù)列前n項和公式的推導(dǎo)過程、公式的特點,在此基礎(chǔ)上能初步應(yīng)用公式解決與之有關(guān)的問題。

  過程與方法目標:

  通過對公式推導(dǎo)方法的探索與發(fā)現(xiàn),向?qū)W生滲透特殊到一般、類比與轉(zhuǎn)

  化、分類討論等數(shù)學思想,培養(yǎng)學生觀察、比較、抽象、概括等邏輯思維能力和逆向思維的能力。

  情感與態(tài)度價值觀:

  通過對公式推導(dǎo)方法的探索與發(fā)現(xiàn),優(yōu)化學生的思維品質(zhì),滲透事物之間等價轉(zhuǎn)化和理論聯(lián)系實際的辯證唯物主義觀點。

  三、過程分析

  學生是認知的主體,設(shè)計教學過程必須遵循學生的認知規(guī)律,盡可能地讓學生去經(jīng)歷知識的形成與發(fā)展過程,結(jié)合本節(jié)課的特點,我設(shè)計了如下的教學過程:

  1、創(chuàng)設(shè)情境,提出問題

  在古印度,有個名叫西薩的人,發(fā)明了國際象棋,當時的印度國王大為贊賞,對他說:我可以滿足你的任何要求。西薩說:請給我棋盤的64個方格上,第一格放1粒小麥,第二格放2粒,第三格放4粒,往后每一格都是前一格的兩倍,直至第64格。國王令宮廷數(shù)學家計算,結(jié)果出來后,國王大吃一驚。為什么呢?

  設(shè)計意圖:設(shè)計這個情境目的是在引入課題的同時激發(fā)學生的興趣,調(diào)動學習的積極性。故事內(nèi)容緊扣本節(jié)課的主題與重點。

  此時我問:同學們,你們知道西薩要的是多少粒小麥嗎?引導(dǎo)學生寫出麥?倲(shù)。帶著這樣的問題,學生會動手算了起來,他們想到用計算器依次算出各項的值,然后再求和。這時我對他們的這種思路給予肯定。

  設(shè)計意圖:在實際教學中,由于受課堂時間限制,教師舍不得花時間讓學生去做所謂的"無用功",急急忙忙地拋出"錯位相減法",這樣做有悖學生的認知規(guī)律:求和就想到相加,這是合乎邏輯順理成章的事,教師為什么不相加而馬上相減呢?在整個教學關(guān)鍵處學生難以轉(zhuǎn)過彎來,因而在教學中應(yīng)舍得花時間營造知識形成過程的氛圍,突破學生學習的.障礙。同時,形成繁難的情境激起了學生的求知欲,迫使學生急于尋求解決問題的新方法,為后面的教學埋下伏筆、

  2、師生互動,探究問題

  在肯定他們的思路后,我接著問:1,2,22,.....,263是什么數(shù)列?有何特征?應(yīng)歸結(jié)為什么數(shù)學問題呢?

  探討1:,記為(1)式,注意觀察每一項的特征,有何聯(lián)系?(學生會發(fā)現(xiàn),后一項都是前一項的2倍)

  探討2:如果我們把每一項都乘以2,就變成了它的后一項,(1)式兩邊同乘以2則有,記為(2)式。比較(1)(2)兩式,你有什么發(fā)現(xiàn)?

  設(shè)計意圖:留出時間讓學生充分地比較,等比數(shù)列前n項和的公式推導(dǎo)關(guān)鍵是變"加"為"減",在教師看來這是"天經(jīng)地義"的,但在學生看來卻是"不可思議"的,因此教學中應(yīng)著力在這兒做文章,從而抓住培養(yǎng)學生的辯證思維能力的良好契機。

  經(jīng)過比較、研究,學生發(fā)現(xiàn):(1)、(2)兩式有許多相同的項,把兩式相減,相同的項就消去了,得到:。老師指出:這就是錯位相減法,并要求學生縱觀全過程,反思:為什么(1)式兩邊要同乘以2呢?

  設(shè)計意圖:經(jīng)過繁難的計算之苦后,突然發(fā)現(xiàn)上述解法,不禁驚呼:真是太簡潔了!讓學生在探索過程中,充分感受到成功的情感體驗,從而增強學習數(shù)學的興趣和學好數(shù)學的信心。

  3、類比聯(lián)想,解決問題

  這時我再順勢引導(dǎo)學生將結(jié)論一般化,

  這里,讓學生自主完成,并喊一名學生上黑板,然后對個別學生進行指導(dǎo)。

  設(shè)計意圖:在教師的指導(dǎo)下,讓學生從特殊到一般,從已知到未知,步步深入,讓學生自己探究公式,從而體驗到學習的愉快和成就感。

  對不對?這里的q能不能等于1?等比數(shù)列中的公比能不能為1?q=1時是什么數(shù)列?此時sn=?(這里引導(dǎo)學生對q進行分類討論,得出公式,同時為后面的例題教學打下基礎(chǔ)。)

  再次追問:結(jié)合等比數(shù)列的通項公式an=a1qn—1,如何把sn用a1、an、q表示出來?(引導(dǎo)學生得出公式的另一形式)

  設(shè)計意圖:通過反問精講,一方面使學生加深對知識的認識,完善知識結(jié)構(gòu),另一方面使學生由簡單地模仿和接受,變?yōu)閷χR的主動認識,從而進一步提高分析、類比和綜合的能力。這一環(huán)節(jié)非常重要,盡管時間有時比較少,甚至僅僅幾句話,然而卻有畫龍點睛之妙用。

  4、討論交流,延伸拓展

  在此基礎(chǔ)上,我提出:探究等比數(shù)列前n項和公式,還有其它方法嗎?我們知道,

  那么我們能否利用這個關(guān)系而求出sn呢?根據(jù)等比數(shù)列的定義又有,能否聯(lián)想到等比定理從而求出sn呢?

  設(shè)計意圖:以疑導(dǎo)思,激發(fā)學生的探索欲望,營造一個讓學生主動觀察、思考、討論的氛圍、以上兩種方法都可以化歸到,這其實就是關(guān)于的一個遞推式,遞推數(shù)列有非常重要的研究價值,是研究性學習和課外拓展的極佳資源,它源于課本,又高于課本,對學生的思維發(fā)展有促進作用、

  5、變式訓練,深化認識

  首先,學生獨立思考,自主解題,再請學生上臺來幻燈演示他們的解答,其它同學進行評價,然后師生共同進行總結(jié)。

  設(shè)計意圖:采用變式教學設(shè)計題組,深化學生對公式的認識和理解,通過直接套用公式、變式運用公式、研究公式特點這三個層次的問題解決,促進學生新的數(shù)學認知結(jié)構(gòu)的形成。通過以上形式,讓全體學生都參與教學,以此培養(yǎng)學生的參與意識和競爭意識。

  6、例題講解,形成技能

  設(shè)計意圖:解題時,以學生分析為主,教師適時給予點撥,該題有意培養(yǎng)學生對含有參數(shù)的問題進行分類討論的數(shù)學思想。

  7、總結(jié)歸納,加深理解

  以問題的形式出現(xiàn),引導(dǎo)學生回顧公式、推導(dǎo)方法,鼓勵學生積極回答,然后老師再從知識點及數(shù)學思想方法兩方面總結(jié)。

  設(shè)計意圖:以此培養(yǎng)學生的口頭表達能力,歸納概括能力。

  8、故事結(jié)束,首尾呼應(yīng)

  最后我們回到故事中的問題,我們可以計算出國王獎賞的小麥約為1、84×1019粒,大約7000億噸,用這么多小麥能從地球到太陽鋪設(shè)一條寬10米、厚8米的大道,大約是全世界一年糧食產(chǎn)量的459倍,顯然國王兌現(xiàn)不了他的承諾。

  設(shè)計意圖:把引入課題時的懸念給予釋疑,有助于學生克服疲倦、繼續(xù)積極思維。

  9、課后作業(yè),分層練習

  必做:P129練習1、2、3、4

  選作:

 。2)"遠望巍巍塔七層,紅光點點倍加增,共燈三百八十一,請問尖頭幾盞燈?"這首中國古詩的答案是多少?

  設(shè)計意圖:出選作題的目的是注意分層教學和因材施教,讓學有余力的學生有思考的空間。

  四、教法分析

  對公式的教學,要使學生掌握與理解公式的來龍去脈,掌握公式的推導(dǎo)方法,理解公式的成立條件,充分體現(xiàn)公式之間的聯(lián)系。在教學中,我采用"問題――探究"的教學模式,把整個課堂分為呈現(xiàn)問題、探索規(guī)律、總結(jié)規(guī)律、應(yīng)用規(guī)律四個階段。

  利用多媒體輔助教學,直觀地反映了教學內(nèi)容,使學生思維活動得以充分展開,從而優(yōu)化了教學過程,大大提高了課堂教學效率。

  五、評價分析

  本節(jié)課通過三種推導(dǎo)方法的研究,使學生從不同的思維角度掌握了等比數(shù)列前n項和公式。錯位相減:變加為減,等價轉(zhuǎn)化;遞推思想:縱橫聯(lián)系,揭示本質(zhì);等比定理:回歸定義,自然樸實。學生從中深刻地領(lǐng)會到推導(dǎo)過程中所蘊含的數(shù)學思想,培養(yǎng)了學生思維的深刻性、敏銳性、廣闊性、批判性。同時通過精講一題,發(fā)散一串的變式教學,使學生既鞏固了知識,又形成了技能。在此基礎(chǔ)上,通過民主和諧的課堂氛圍,培養(yǎng)了學生自主學習、合作交流的學習習慣,也培養(yǎng)了學生勇于探索、不斷創(chuàng)新的思維品質(zhì)。

關(guān)于高中數(shù)學說課稿5

  一、說教材

  (1)說教材的內(nèi)容和地位

  本次說課的內(nèi)容是人教版高一數(shù)學必修一第一單元第一節(jié)《集合》(第一課時)。集合這一課里,首先從初中代數(shù)與幾何涉及的集合實例入手,引出集合與集合的元素的概念,并且結(jié)合實例對集合的概念作了說明。然后,介紹了集合的常用表示方法,集合元素的特征以及常用集合的表示。把集合的初步知識安排在高中數(shù)學的最開始,是因為在高中數(shù)學中,這些知識與其他內(nèi)容有著密切聯(lián)系,它們是學習、掌握以及使用數(shù)學語言的基礎(chǔ)。從知識結(jié)構(gòu)上來說是為了引入函數(shù)的定義。因此在高中數(shù)學的模塊中,集合就顯得格外的舉足輕重了。

 。2)說教學目標

  根據(jù)教材結(jié)構(gòu)和內(nèi)容以及教材地位和作用,考慮到學生已有的認知結(jié)構(gòu)與心理特征,依據(jù)新課標制定如下教學目標:

  1.知識與技能:掌握集合的基本概念及表示方法。了解"屬于"關(guān)系的意義,掌握集合元素的特征。

  2.過程與方法:通過情景設(shè)置提出問題,揭示課題,培養(yǎng)學生主動探究新知的習慣。并通過"自主、合作與探究"實現(xiàn)"一切以學生為中心"的理念。

  3.情感態(tài)度與價值觀:感受數(shù)學的人文價值,提高學生的學習數(shù)學的興趣,由集合的學習感受數(shù)學的簡潔美與和諧統(tǒng)一美。同時通過自主探究領(lǐng)略獲取新知識的喜悅。

 。3)說教學重點和難點

  依據(jù)課程標準和學生實際,我確定本課的教學重點為

  教學重點:集合的基本概念及元素特征。

  教學難點:掌握集合元素的三個特征,體會元素與集合的屬于關(guān)系。

  二、說教法和學法

  接下來則是說教法、學法

  教法與學法是互相聯(lián)系和統(tǒng)一的,不能孤立去研究。什么樣的教法必帶來相應(yīng)的學法,以遵循啟發(fā)性原則為出發(fā)點,就本節(jié)課而言,我采用"生活實例與數(shù)學實例"相結(jié)合,"師生互動與課堂布白"相輔助的方法。通過不同層次的練習體驗,憑借有趣、實用的`教學手段,突出重點,突破難點。然而,學生是學習的主人,以學生為主體,創(chuàng)造條件讓學生參與探究活動,()不僅提高了學生探究能力,更讓學生獲得學習的技能和激發(fā)學生的學習興趣。因此,本次活動采用的學法有自主探究、觀察發(fā)現(xiàn)、合作交流、歸納總結(jié)等。

  總之,不管采取什么教法和學法,每節(jié)課都應(yīng)不斷研究學生的學習心理機制,不斷優(yōu)化教師本身的教學行為,自始至終以學生為主體,為學生創(chuàng)造和諧的課堂氛圍。

  三、說教學過程

  接著我來說一下最重要的部分,本節(jié)課的教學過程:

  這節(jié)課的流程主要分為六個環(huán)節(jié):創(chuàng)設(shè)情境(引入目標)、自主探究(感知目標)、討論辨析(理解目標)、變式訓練(鞏固目標)、課堂小結(jié)(自我評價)、作業(yè)布置(反饋矯正)。上述六個環(huán)節(jié)由淺入深,層層遞進。 多層次、多角度地加深對概念的理解。 提高學生學習的興趣,以達到良好的教學效果。

  第一環(huán)節(jié):創(chuàng)設(shè)問題情境,引入目標

  課堂開始我將提出兩個問題:

  問題1:班級有20名男生,16名女生,問班級一共多少人?

  問題2:某次運動會上,班級有20人參加田賽,16人參加徑賽,問一共多少人參加比賽?

  這里我會讓學生以小組討論的形式進行討論問題,事實上小組合作的形式是本節(jié)課主要形式。

  待學生討論完畢以后我將作歸納總結(jié):問題2已無法用學過的知識加以解釋,這是與集合有關(guān)的問題,因此需用集合的語言加以描述(同時我將板書標題:集合)。

  安排這一過程的意圖是為了從實際問題引入,讓學生了解數(shù)學來源于實際。從而激發(fā)學生參與課堂學習的欲望。

  很自然地進入到第二環(huán)節(jié):自主探究

  讓學生閱讀教材,并思考下列問題:

 。1)有那些概念?

 。2)有那些符號?

 。3)集合中元素的特性是什么?

  安排這一過程的意圖是給學生提供活動空間,讓主體主動建構(gòu)自己的知識結(jié)構(gòu)。培養(yǎng)學生的探究能力。

  讓學生自主探究之后將進入第三環(huán)節(jié):討論辨析

  小組合作探究(1)

  讓學生觀察下列實例

  (1)1~20以內(nèi)的所有質(zhì)數(shù);

  (2)所有的正方形;

 。3)到直線 的距離等于定長 的所有的點;

 。4)方程 的所有實數(shù)根;

  通過以上實例,辨析概念:

 。1)集合含義:一般地,某些指定的對象集在一起就成為一個集合,也簡稱集。而集合中的每個對象叫做這個集合的元素。

 。2)表示方法:集合通常用大括號{ }或大寫的拉丁字母A,B,C…表示,而元素用小寫的拉丁字母a,b,c…表示。

  小組合作探究(2)——集合元素的特征

  問題3:任意一組對象是否都能組成一個集合?集合中的元素有什么特征?

  問題4:某單位所有的"帥哥"能否構(gòu)成一個集合?由此說明什么?

  集合中的元素必須是確定的

  問題5:在一個給定的集合中能否有相同的元素?由此說明什么?

  集合中的元素是不重復(fù)出現(xiàn)的

  問題6:咱班的全體同學組成一個集合,調(diào)整座位后這個集合有沒有變化?由此說明什么? 集合中的元素是沒有順序的

  我如此設(shè)計的意圖是因為:問題是數(shù)學的心臟,感受問題是學習數(shù)學的根本動力。

  小組合作探究(3)——元素與集合的關(guān)系

  問題7:設(shè)集合A表示"1~20以內(nèi)的所有質(zhì)數(shù)",那么3,4,5,6這四個元素哪些在集合A中?哪些不在集合A中?

  問題8:如果元素a是集合A中的元素,我們?nèi)绾斡脭?shù)學化的語言表達?

  a屬于集合A,記作a∈A

  問題9:如果元素a不是集合A中的元素,我們?nèi)绾斡脭?shù)學化的語言表達?

  a不屬于集合A,記作aA

  小組合作探究(4)——常用數(shù)集及其表示方法

  問題10:自然數(shù)集,正整數(shù)集,整數(shù)集,有理數(shù)集,實數(shù)集等一些常用數(shù)集,分別用什么符號表示?

  自然數(shù)集(非負整數(shù)集):記作 N

  正整數(shù)集:

  整數(shù)集:記作 Z

  有理數(shù)集:記作 Q 實數(shù)集:記作 R

  設(shè)計意圖:由于不同的人對同一問題有不同的體驗和理解。讓學生通過合作交流相互得到啟發(fā),從而不斷完善自己的知識結(jié)構(gòu)。

  第四環(huán)節(jié):理論遷移 變式訓練

  1.下列指定的對象,能構(gòu)成一個集合的是

  ① 很小的數(shù)

 、 不超過30的非負實數(shù)

  ③ 直角坐標平面內(nèi)橫坐標與縱坐標相等的點

 、 π的近似值

  ⑤ 所有無理數(shù)

  A、②③④⑤ B、①②③⑤ C、②③⑤ D、②③④

  第五環(huán)節(jié):課堂小結(jié),自我評價

  1.這節(jié)課學習的主要內(nèi)容是什么?

  2.這節(jié)課主要解釋了什么數(shù)學思想?

  設(shè)計意圖:引導(dǎo)學生對所學知識、思想方法進行小結(jié),形成知識系統(tǒng)。教師用激勵性的語言加一點評,讓學生的思想敞亮的發(fā)揮出來。

  第六環(huán)節(jié):作業(yè)布置,反饋矯正

  1.必做題 課本習題1.1—1、2、3.

  2.選做題 已知集合A={a+2,(a+1)2,a2+3a+3},且1∈A,求實數(shù)a 的值。

  設(shè)計意圖:充分考慮到學生的差異性,讓所有學生都有成功的情感體驗。

  四、板書設(shè)計

  好的板書就像一份微型教案,為了讓學生直觀易懂的看筆記,板書應(yīng)設(shè)計得有條理性、概括性、指導(dǎo)性,所以我設(shè)計的板書如下:

  集 合

  1.集合的概念

  2.集合元素的特征

 。▽W生板演)

  3.常見集合的表示

  4.范例研究

關(guān)于高中數(shù)學說課稿6

  【一】教學背景分析

  1。教材結(jié)構(gòu)分析

  《圓的方程》安排在高中數(shù)學第二冊(上)第七章第六節(jié)。圓作為常見的簡單幾何圖形,在實際生活和生產(chǎn)實踐中有著廣泛的應(yīng)用。圓的方程屬于解析幾何學的基礎(chǔ)知識,是研究二次曲線的開始,對后續(xù)直線與圓的位置關(guān)系、圓錐曲線等內(nèi)容的學習,無論在知識上還是方法上都有著積極的意義,所以本節(jié)內(nèi)容在整個解析幾何中起著承前啟后的作用。

  2。學情分析

  圓的方程是學生在初中學習了圓的概念和基本性質(zhì)后,又掌握了求曲線方程的一般方法的基礎(chǔ)上進行研究的。但由于學生學習解析幾何的時間還不長、學習程度較淺,且對坐標法的運用還不夠熟練,在學習過程中難免會出現(xiàn)困難。另外學生在探究問題的能力,合作交流的意識等方面有待加強。

  根據(jù)上述教材結(jié)構(gòu)與內(nèi)容分析,考慮到學生已有的認知結(jié)構(gòu)和心理特征,我制定如下教學目標:

  3。教學目標

 。1) 知識目標:①掌握圓的標準方程;

 、跁蓤A的標準方程寫出圓的半徑和圓心坐標,能根據(jù)條件寫出圓的標準方程;

 、劾脠A的標準方程解決簡單的實際問題。

 。2) 能力目標:①進一步培養(yǎng)學生用代數(shù)方法研究幾何問題的能力;

  ②加深對數(shù)形結(jié)合思想的理解和加強對待定系數(shù)法的運用;

 、墼鰪妼W生用數(shù)學的意識。

 。3) 情感目標:①培養(yǎng)學生主動探究知識、合作交流的意識;

 、谠隗w驗數(shù)學美的過程中激發(fā)學生的學習興趣。

  根據(jù)以上對教材、教學目標及學情的分析,我確定如下的教學重點和難點:

  4。 教學重點與難點

 。1)重點:圓的標準方程的求法及其應(yīng)用。

 。2)難點: ①會根據(jù)不同的已知條件求圓的標準方程;

  ②選擇恰當?shù)淖鴺讼到鉀Q與圓有關(guān)的實際問題。

  為使學生能達到本節(jié)設(shè)定的教學目標,我再從教法和學法上進行分析:

  好學教育:

  【二】教法學法分析

  1。教法分析 為了充分調(diào)動學生學習的積極性,本節(jié)課采用“啟發(fā)式”問題教學法,用環(huán)環(huán)相扣的問題將探究活動層層深入,使教師總是站在學生思維的最近發(fā)展區(qū)上。另外我恰當?shù)睦枚嗝襟w課件進行輔助教學,借助信息技術(shù)創(chuàng)設(shè)實際問題的情境既能激發(fā)學生的學習興趣,又直觀的引導(dǎo)了學生建模的過程。

  2。學法分析 通過推導(dǎo)圓的標準方程,加深對用坐標法求軌跡方程的理解。通過求圓的標準方程,理解必須具備三個獨立的條件才可以確定一個圓。通過應(yīng)用圓的標準方程,熟悉用待定系數(shù)法求的過程。 下面我就對具體的教學過程和設(shè)計加以說明:

  【三】教學過程與設(shè)計

  整個教學過程是由七個問題組成的問題鏈驅(qū)動的,共分為五個環(huán)節(jié):

  創(chuàng)設(shè)情境 啟迪思維 深入探究 獲得新知 應(yīng)用舉例 鞏固提高

  反饋訓練 形成方法 小結(jié)反思 拓展引申

  下面我從縱橫兩方面敘述我的教學程序與設(shè)計意圖。

  首先:縱向敘述教學過程

 。ㄒ唬﹦(chuàng)設(shè)情境——啟迪思維

  問題一 已知隧道的截面是半徑為4m的半圓,車輛只能在道路中心線一側(cè)行駛,一輛寬為2。7m,高為3m的貨車能不能駛?cè)脒@個隧道?

  通過對這個實際問題的探究,把學生的思維由用勾股定理求線段CD的長度轉(zhuǎn)移為用曲線的方程來解決。一方面幫助學生回顧了舊知——求軌跡方程的一般方法,另一方面,在得到汽車不能通過的結(jié)論的同時學生自己推導(dǎo)出了圓心在原點,半徑為4的圓的標準方程,從而很自然的進入了本課的主題。用實際問題創(chuàng)設(shè)問題情境,讓學生感受到問題來源于實際,應(yīng)用于實際,激發(fā)了學生的學習興趣和學習欲望。這樣獲取的知識,不但易于保持,而且易于遷移。

  通過對問題一的探究,抓住了學生的注意力,把學生的思維引到用坐標法研究圓的方程上來,此時再把問題深入,進入第二環(huán)節(jié)。

 。ǘ┥钊胩骄俊@得新知

  問題二 1。根據(jù)問題一的探究能不能得到圓心在原點,半徑為的圓的方程?

  2。如果圓心在,半徑為時又如何呢?

  好學教育:

  這一環(huán)節(jié)我首先讓學生對問題一進行歸納,得到圓心在原點,半徑為4的圓的標準方程后,引導(dǎo)學生歸納出圓心在原點,半徑為r的圓的標準方程。然后再讓學生對圓心不在原點的情況進行探究。我預(yù)設(shè)了三種方法等待著學生的探究結(jié)果,分別是:坐標法、圖形變換法、向量平移法。

  得到圓的標準方程后,我設(shè)計了由淺入深的三個應(yīng)用平臺,進入第三環(huán)節(jié)。

 。ㄈ⿷(yīng)用舉例——鞏固提高

  I。直接應(yīng)用 內(nèi)化新知

  問題三 1。寫出下列各圓的標準方程:

 。1)圓心在原點,半徑為3;

 。2)經(jīng)過點,圓心在點。

  2。寫出圓的圓心坐標和半徑。

  我設(shè)計了兩個小問題,第一題是直接或間接的給出圓心坐標和半徑求圓的標準方程,第二題是給出圓的標準方程求圓心坐標和半徑,這兩題比較簡單,可以安排學生口答完成,目的是先讓學生熟練掌握圓心坐標、半徑與圓的標準方程之間的關(guān)系,為后面探究圓的.切線問題作準備。

  II。靈活應(yīng)用 提升能力

  問題四 1。求以點為圓心,并且和直線相切的圓的方程。

  2。求過點,圓心在直線上且與軸相切的圓的方程。

  3。已知圓的方程為,求過圓上一點的切線方程。

  你能歸納出具有一般性的結(jié)論嗎?

  已知圓的方程是,經(jīng)過圓上一點的切線的方程是什么?

  我設(shè)計了三個小問題,第一個小題有了剛剛解決問題三的基礎(chǔ),學生會很快求出半徑,根據(jù)圓心坐標寫出圓的標準方程。第二個小題有些困難,需要引導(dǎo)學生應(yīng)用待定系數(shù)法確定圓心坐標和半徑再求解,從而理解必須具備三個獨立的條件才可以確定一個圓。第三個小題解決方法較多,我預(yù)設(shè)了四種方法再一次為學生的發(fā)散思維創(chuàng)設(shè)了空間。最后我讓學生由第三小題的結(jié)論進行歸納、猜想,在論證經(jīng)過圓上一點圓的切線方程的過程中,又一次模擬了真理發(fā)現(xiàn)的過程,使探究氣氛達到高潮。

  III。實際應(yīng)用 回歸自然

  問題五 如圖是某圓拱橋的一孔圓拱的示意圖,該圓拱跨度AB=20m,拱高OP=4m,在建造時每隔4m需用一個支柱支撐,求支柱的長度(精確到0。01m)。

  好學教育:

  我選用了教材的例3,它是待定系數(shù)法求出圓的三個參數(shù)的又一次應(yīng)用,同時也與引例相呼應(yīng),使學生形成解決實際問題的一般方法,培養(yǎng)了學生建模的習慣和用數(shù)學的意識。

 。ㄋ模┓答佊柧殹纬煞椒

  問題六 1。求過原點和點,且圓心在直線上的圓的標準方程。

  2。求圓過點的切線方程。

  3。求圓過點的切線方程。

  接下來是第四環(huán)節(jié)——反饋訓練。這一環(huán)節(jié)中,我設(shè)計三個小題作為鞏固性訓練,給學生一塊“用武”之地,讓每一位同學體驗學習數(shù)學的樂趣,成功的喜悅,找到自信,增強學習數(shù)學的愿望與信心。另外第3題是我特意安排的一道求過圓外一點的圓的切線方程,由于學生剛剛歸納了過圓上一點圓的切線方程,因此很容易產(chǎn)生思維的負遷移,另外這道題目有兩解,學生容易漏掉斜率不存在的情況,這時引導(dǎo)學生用數(shù)形結(jié)合的思想,結(jié)合初中已有的圓的知識進行判斷,這樣的設(shè)計對培養(yǎng)學生思維的嚴謹性具有良好的效果。

 。ㄎ澹┬〗Y(jié)反思——拓展引申

  1。課堂小結(jié)

  把圓的標準方程與過圓上一點圓的切線方程加以小結(jié),提煉數(shù)形結(jié)合的思想和待定系數(shù)的方法 ①圓心為,半徑為r 的圓的標準方程為:

  圓心在原點時,半徑為r 的圓的標準方程為:。

 、谝阎獔A的方程是,經(jīng)過圓上一點的切線的方程是:。

  2。分層作業(yè)

 。ˋ)鞏固型作業(yè):教材P81—82:(習題7。6)1,2,4。(B)思維拓展型作業(yè):試推導(dǎo)過圓上一點的切線方程。

  3。激發(fā)新疑

  問題七 1。把圓的標準方程展開后是什么形式?

  2。方程表示什么圖形?

  在本課的結(jié)尾設(shè)計這兩個問題,作為對這節(jié)課內(nèi)容的鞏固與延伸,讓學生體會知識的起點與終點都蘊涵著問題,舊的問題解決了,新的問題又產(chǎn)生了。在知識的拓展中再次掀起學生探究的熱情。另外它為下節(jié)課研究圓的一般方程作了重要的準備。

  以上是我縱向的教學過程及簡單的設(shè)計意圖,接下來,我從三個方面橫向的進一步闡述我的教學設(shè)計: 橫向闡述教學設(shè)計

 。ㄒ唬┩怀鲋攸c 抓住關(guān)鍵 突破難點

  好學教育:

  求圓的標準方程既是本節(jié)課的教學重點也是難點,為此我布設(shè)了由淺入深的學習環(huán)境,先讓學生熟悉圓心、半徑與圓的標準方程之間的關(guān)系,逐步理解三個參數(shù)的重要性,自然形成待定系數(shù)法的解題思路,在突出重點的同時突破了難點。

  第二個教學難點就是解決實際應(yīng)用問題,這是學生固有的難題,主要是因為應(yīng)用問題的題目冗長,學生很難根據(jù)問題情境構(gòu)建數(shù)學模型,缺乏解決實際問題的信心,為此我首先用一道題目簡潔、貼近生活的實例進行引入,激發(fā)學生的求知欲,同時我借助多媒體課件的演示,引導(dǎo)學生真正走入問題的情境之中,并從中抽象出數(shù)學模型,從而消除畏難情緒,增強了信心。最后再形成應(yīng)用圓的標準方程解決實際問題的一般模式,并嘗試應(yīng)用該模式分析和解決第二個應(yīng)用問題——問題五。這樣的設(shè)計,使學生在解決問題的同時,形成了方法,難點自然突破。

 。ǘ⿲W生主體 教師主導(dǎo) 探究主線

  本節(jié)課的設(shè)計用問題做鏈,環(huán)環(huán)相扣,使學生的探究活動貫穿始終。從圓的標準方程的推導(dǎo)到應(yīng)用都是在問題的指引、我的指導(dǎo)下,由學生探究完成的。另外,我重點設(shè)計了兩次思維發(fā)散點,分別是問題二和問題四的第三問,要求學生分組討論,合作交流,為學生設(shè)立充分的探究空間,學生在交流成果的過程中,既體驗了科學研究和真理發(fā)現(xiàn)的復(fù)雜與艱辛,又在我的適度引導(dǎo)、側(cè)面幫助、不斷肯定下順利完成了探究活動并走向成功,在一個個問題的驅(qū)動下,高效的完成本節(jié)的學習任務(wù)。

 。ㄈ┡囵B(yǎng)思維 提升能力 激勵創(chuàng)新

  為了培養(yǎng)學生的理性思維,我分別在問題一和問題四中,設(shè)計了兩次由特殊到一般的學習思路,培養(yǎng)學生的歸納概括能力。在問題的設(shè)計中,我利用一題多解的探究,縱向挖掘知識深度,橫向加強知識間的聯(lián)系,培養(yǎng)了學生的創(chuàng)新精神,并且使學生的有效思維量加大,隨時對所學知識和方法產(chǎn)生有意注意,使能力與知識的形成相伴而行。

  以上是我對這節(jié)課的教學預(yù)設(shè),具體的教學過程還要根據(jù)學生在課堂中的具體情況適當調(diào)整,向生成性課堂進行轉(zhuǎn)變。最后我以赫爾巴特的一句名言結(jié)束我的說課,發(fā)揮我們的創(chuàng)造性,力爭“使教育過程成為一種藝術(shù)的事業(yè)”。

關(guān)于高中數(shù)學說課稿7

  一、教材分析:

  1、教材的地位與作用:

  線性規(guī)劃是運籌學的一個重要分支,在實際生活中有著廣泛的應(yīng)用。本節(jié)內(nèi)容是在學習了不等式、直線方程的基礎(chǔ)上,利用不等式和直線方程的有關(guān)知識展開的,它是對二元一次不等式的深化和再認識、再理解。通過這一部分的學習,使學生進一步了解數(shù)學在解決實際問題中的應(yīng)用,體驗數(shù)形結(jié)合和轉(zhuǎn)化的思想方法,培養(yǎng)學生學習數(shù)學的.興趣、應(yīng)用數(shù)學的意識和解決實際問題的能力。

  2、教學重點與難點:

  重點:畫可行域;在可行域內(nèi),用圖解法準確求得線性規(guī)劃問題的最優(yōu)解。

  難點:在可行域內(nèi),用圖解法準確求得線性規(guī)劃問題的最優(yōu)解。

  二、目標分析:

  在新課標讓學生經(jīng)歷“學數(shù)學、做數(shù)學、用數(shù)學”的理念指導(dǎo)下,本節(jié)課的教學目標分設(shè)為知識目標、能力目標和情感目標。

  知識目標:

  1、了解線性規(guī)劃的意義,了解線性約束條件、線性目標函數(shù)、可行解、可行

  域和最優(yōu)解等概念;

  2、理解線性規(guī)劃問題的圖解法;

  3、會利用圖解法求線性目標函數(shù)的最優(yōu)解.

  能力目標:

  1、在應(yīng)用圖解法解題的過程中培養(yǎng)學生的觀察能力、理解能力。

  2、在變式訓練的過程中,培養(yǎng)學生的分析能力、探索能力。

  3、在對具體事例的感性認識上升到對線性規(guī)劃的理性認識過程中,培養(yǎng)學生運用數(shù)形結(jié)合思想解題的能力和化歸能力。

  情感目標:

  1、讓學生體驗數(shù)學來源于生活,服務(wù)于生活,體驗數(shù)學在建設(shè)節(jié)約型社會中的作用,品嘗學習數(shù)學的樂趣。

  2、讓學生體驗數(shù)學活動充滿著探索與創(chuàng)造,培養(yǎng)學生勤于思考、勇于探索的精神;

  3、讓學生學會用運動觀點觀察事物,了解事物之間從一般到特殊、從特殊到一般的辨證關(guān)系,滲透辯證唯物主義認識論的思想。

  三、過程分析:

  數(shù)學教學是數(shù)學活動的教學。因此,我將整個教學過程分為以下六個教學環(huán)節(jié):1、創(chuàng)設(shè)情境,提出問題;2、分析問題,形成概念;3、反思過程,提煉方法;4、變式演練,深入探究;5、運用新知,解決問題;6、歸納總結(jié),鞏固提高。

  1、創(chuàng)設(shè)情境,提出問題:

  在課堂教學的開始,我以一組生動的動畫(配圖片)描述出在神奇的數(shù)學王國里,有一種算法廣泛應(yīng)用于工農(nóng)業(yè)、軍事、交通運輸、決策管理與規(guī)劃等領(lǐng)域,應(yīng)用它已節(jié)約了億萬財富,還被列為20世紀對科學發(fā)展和工程實踐影響最大的十大算法之一。它為何有如此大的魅力?它又是怎樣的一種神奇算法呢?我以景激情,以情激思,點燃學生的求知欲,引領(lǐng)學生進入學習情境。

關(guān)于高中數(shù)學說課稿8

  一、說教材:

  1、教材的地位與作用

  導(dǎo)數(shù)是微積分的核心概念之一,它為研究函數(shù)提供了有效的方法. 在前面幾節(jié)課里學生對導(dǎo)數(shù)的概念已經(jīng)有了充分的認識,本節(jié)課教材從形的角度即割線入手,用形象直觀的“逼近”方法定義了切線,獲得導(dǎo)數(shù)的幾何意義,更有利于學生理解導(dǎo)數(shù)概念的本質(zhì)內(nèi)涵. 這節(jié)課可以利用幾何畫板進行動畫演示,讓學生通過觀察、思考、發(fā)現(xiàn)、思維、運用形成完整概念. 通過本節(jié)的學習,可以幫助學生更好的體會導(dǎo)數(shù)是研究函數(shù)的單調(diào)性、變化快慢等性質(zhì)最有效的工具,是本章的關(guān)鍵內(nèi)容。

  2、教學的重點、難點、關(guān)鍵

  教學重點:導(dǎo)數(shù)的幾何意義、切線方程的求法以及“數(shù)形結(jié)合,逼近”的思想方法。

  教學難點:理解導(dǎo)數(shù)的幾何意義的本質(zhì)內(nèi)涵

  1) 從割線到切線的過程中采用的逼近方法;

  2) 理解導(dǎo)數(shù)的概念,將多方面的意義聯(lián)系起來,例如,導(dǎo)數(shù)反映了函數(shù)f(x)在點x附近的變化快慢,導(dǎo)數(shù)是曲線上某點切線的斜率,等等.

  二、說教學目標:

  根據(jù)新課程標準的要求、學生的`認知水平,確定教學目標如下:

  1、知識與技能 :

  通過實驗探求理解導(dǎo)數(shù)的幾何意義,理解曲線在一點的切線的概念,會求簡單函數(shù)在某點的切線方程。

  過程與方法:

  經(jīng)歷切線定義的形成過程,培養(yǎng)學生分析、抽象、概括等思維能力;體會導(dǎo)數(shù)的思想及內(nèi)涵,完善對切線的認識和理解

  通過逼近、數(shù)形結(jié)合思想的具體運用,使學生達到思維方式的遷移,了解科學的思維方法。

  3、情感態(tài)度與價值觀:

  滲透逼近、數(shù)形結(jié)合、以直代曲等數(shù)學思想,激發(fā)學生學習興趣,引導(dǎo)學生領(lǐng)悟特殊與一般、有限與無限,量變與質(zhì)變的辯證關(guān)系,感受數(shù)學的統(tǒng)一美,意識到數(shù)學的應(yīng)用價值

  三、說教法與學法

  對于直線來說它的導(dǎo)數(shù)就是它的斜率,學生會很自然的思考導(dǎo)數(shù)在函數(shù)圖像上是不是有很特殊的幾何意義。而且剛剛學過了圓錐曲線,學生對曲線的切線的概念也有了一些認識,基于以上學情分析,我確定下列教法:

  教法:從圓的切線的定義引入本課,再引導(dǎo)學生討論一般曲線的切線的定義,通過幾何畫板的動畫演示,得出曲線的切線的“逼近”法的定義.同樣通過幾何畫板的實驗觀察得到導(dǎo)數(shù)的幾何意義和直觀感知“逼近”的數(shù)學思想.因此,我采用實驗觀察法、探究性研究教學和信息技術(shù)輔助教學法相結(jié)合,以突出重點和突破難點;

  學法:為了發(fā)揮學生的主觀能動性,提高學生的綜合能力,本節(jié)課采取了

  自主 、合作、探究的學習方法。

  教具: 幾何畫板、幻燈片

  四、說教學程序

  1.創(chuàng)設(shè)情境

  學生活動——問題系列

  問題1 平面幾何中我們是怎樣判斷直線是否是圓的割線或切線的呢?

  問題2 如圖直線l是曲線C的切線嗎?

  (1)與 (2)與 還有直線與雙曲線的位置關(guān)系

  問題3 那么對于一般的曲線,切線該如何定義呢?

  【設(shè)計意圖】:通過類比構(gòu)建認知沖突。

  學生活動——復(fù)習回顧

  導(dǎo)數(shù)的定義

  【設(shè)計意圖】:從理論和知識基礎(chǔ)兩方面為本節(jié)課作鋪墊。

  2.探索求知

  學生活動——試驗探究

  問一;求導(dǎo)數(shù)的步驟是怎樣的?

  第一步:求平均變化率;第二步:當趨近于0時,平均變化率無限趨近于的常數(shù)就是。

  【設(shè)計意圖】:這是從“數(shù)”的角度描述導(dǎo)數(shù),為探究導(dǎo)數(shù)的幾何意義做準備。

  問二;你能借助圖像說說平均變化率表示什么嗎?請在函數(shù)圖像中畫出來。

  【設(shè)計意圖】:通過學生動手實踐得到平均變化率表示割線PQ的斜率。

  問三;在的過程中,你能描述一下割線PQ的變化情況嗎?請在圖像中畫出來。

  【設(shè)計意圖】:分別從“數(shù)”和“形”的角度描述的過程情況。從數(shù)的角度看,,Q();從形的角度看, 的過程中,Q點向P點無限趨近,割線PQ趨近于確定的位置,這個位置的直線叫做曲線在 處的切線。

  探究一:學生通過幾何畫板的演示觀察割線的變化趨勢,教師引導(dǎo)給出一般曲線的切線定義。

  【設(shè)計意圖】: 借助多媒體教學手段引導(dǎo)學生發(fā)現(xiàn)導(dǎo)數(shù)的幾何意義,使問題變得直觀,易于突破難點;學生在過程中,可以體會逼近的思想方法。能夠同時從數(shù)與形兩個角度強化學生對導(dǎo)數(shù)概念的理解。

  問四;你能從上述過程中概括出函數(shù)在處的導(dǎo)數(shù)的幾何意義嗎?

  【設(shè)計意圖】:引導(dǎo)學生發(fā)現(xiàn)并說出:,割線PQ切線PT,所以割線

  PQ的斜率切線PT的斜率。因此,=切線PT的斜率。

  五、教學評價

  1、通過學生參加活動是否積極主動,能否與他人合作探索,對學生的學習過程評價;

  2、通過學生對方法的選擇,對學生的學習能力評價;

  3、通過練習、課后作業(yè),對學生的學習效果評價.

  4、教學中,學生以研究者的身份學習,在問題解決的過程中,通過自身的體驗對知識的認識從模糊到清晰,從直觀感悟到精確掌握;

  5、本節(jié)課設(shè)計目標力求使學生體會微積分的基本思想,感受近似與精確的統(tǒng)一,運動和靜止的統(tǒng)一,感受量變到質(zhì)變的轉(zhuǎn)化。希望利用這節(jié)課滲透辨證法的思想精髓.

關(guān)于高中數(shù)學說課稿9

  一、教學目標

  (一)知識與技能

  1、進一步熟練掌握求動點軌跡方程的基本方法。

  2、體會數(shù)學實驗的直觀性、有效性,提高幾何畫板的操作能力。

  (二)過程與方法

  1、培養(yǎng)學生觀察能力、抽象概括能力及創(chuàng)新能力。

  2、體會感性到理性、形象到抽象的思維過程。

  3、強化類比、聯(lián)想的方法,領(lǐng)會方程、數(shù)形結(jié)合等思想。

  (三)情感態(tài)度

  1、感受動點軌跡的.動態(tài)美、和諧美、對稱美。

  2、樹立競爭意識與合作精神,感受合作交流帶來的成功感,樹立自信心,激發(fā)提出問題和解決問題的勇氣。

  二、教學重點與難點

  教學重點:運用類比、聯(lián)想的方法探究不同條件下的軌跡。

  教學難點:圖形、文字、符號三種語言之間的過渡。

  三、、教學方法和手段

  教學方法:觀察發(fā)現(xiàn)、啟發(fā)引導(dǎo)、合作探究相結(jié)合的教學方法。啟發(fā)引導(dǎo)學生積極思考并對學生的思維進行調(diào)控,幫助學生優(yōu)化思維過程,在此基礎(chǔ)上,提供給學生交流的機會,幫助學生對自己的思維進行組織和澄清,并能清楚地、準確地表達自己的數(shù)學思維。

  教學手段:利用網(wǎng)絡(luò)教室,四人一機,多媒體教學手段。通過上述教學手段,一方面:再現(xiàn)知識產(chǎn)生的過程,通過多媒體動態(tài)演示,突破學生在舊知和新知形成過程中的障礙(靜態(tài)到動態(tài));另一方面:節(jié)省了時間,提高了課堂教學的效率,激發(fā)了學生學習的興趣。

  教學模式:重點中學實施素質(zhì)教育的課堂模式“創(chuàng)設(shè)情境、激發(fā)情感、主動發(fā)現(xiàn)、主動發(fā)展”。

  四、教學過程

  1、創(chuàng)設(shè)情景,引入課題

  生活中我們四處可見軌跡曲線的影子。

  演示:這是美麗的城市夜景圖。

  演示:許多人認為天體運行的軌跡都是圓錐曲線,研究表明,天體數(shù)目越多,軌跡種類也越多。

  演示建筑中也有許多美麗的軌跡曲線。

  設(shè)計意圖:讓學生感受數(shù)學就在我們身邊,感受軌跡,曲線的動態(tài)美、和諧美、對稱美,激發(fā)學習興趣。

  2、激發(fā)情感,引導(dǎo)探索

  靠在墻角的梯子滑落了,如果梯子上站著一個人,我們不禁會想,這個人是直直的摔下去呢?還是劃了一條優(yōu)美的曲線飛出去呢?我們把這個問題轉(zhuǎn)化為數(shù)學問題就是新教材高二上冊88頁20題,也就是這里的例題1。

【高中數(shù)學說課稿】相關(guān)文章:

高中數(shù)學經(jīng)典說課稿優(yōu)秀11-20

高中數(shù)學《向量》說課稿01-06

高中數(shù)學說課稿05-20

高中數(shù)學說課稿優(yōu)秀11-22

(優(yōu))高中數(shù)學說課稿05-20

高中數(shù)學說課稿[精華]07-16

高中數(shù)學說課稿【熱門】07-23

高中數(shù)學教學說課稿06-20

[熱]高中數(shù)學說課稿06-08

高中數(shù)學《圓的標準方程》說課稿02-20