當(dāng)前位置:育文網(wǎng)>教學(xué)文檔>說課稿> 高中數(shù)學(xué)說課稿

高中數(shù)學(xué)說課稿

時(shí)間:2022-02-15 18:49:52 說課稿 我要投稿

高中數(shù)學(xué)說課稿15篇

  作為一位杰出的教職工,時(shí)常需要編寫說課稿,是說課取得成功的前提。說課稿應(yīng)該怎么寫呢?下面是小編收集整理的高中數(shù)學(xué)說課稿,供大家參考借鑒,希望可以幫助到有需要的朋友。

高中數(shù)學(xué)說課稿15篇

高中數(shù)學(xué)說課稿1

  本節(jié)課講述的是人教版高一數(shù)學(xué)(上)3.2等差數(shù)列(第一課時(shí))的內(nèi)容。

  一、教材分析

  1、教材的地位和作用:

  數(shù)列是高中數(shù)學(xué)重要內(nèi)容之一,它不僅有著廣泛的實(shí)際應(yīng)用,而且起著承前啟后的作用。一方面,數(shù)列作為一種特殊的函數(shù)與函數(shù)思想密不可分;另一方面,學(xué)習(xí)數(shù)列也為進(jìn)一步學(xué)習(xí)數(shù)列的極限等內(nèi)容做好準(zhǔn)備。而等差數(shù)列是在學(xué)生學(xué)習(xí)了數(shù)列的有關(guān)概念和給出數(shù)列的兩種方法——通項(xiàng)公式和遞推公式的基礎(chǔ)上,對數(shù)列的知識(shí)進(jìn)一步深入和拓廣。同時(shí)等差數(shù)列也為今后學(xué)習(xí)等比數(shù)列提供了學(xué)習(xí)對比的依據(jù)。

  2、教學(xué)目標(biāo)

  根據(jù)教學(xué)大綱的要求和學(xué)生的實(shí)際水平,確定了本次課的教學(xué)目標(biāo)

  a在知識(shí)上:理解并掌握等差數(shù)列的概念;了解等差數(shù)列的通項(xiàng)公式的推導(dǎo)過程及思想;初步引入“數(shù)學(xué)建!钡乃枷敕椒ú⒛苓\(yùn)用。

  b在能力上:培養(yǎng)學(xué)生觀察、分析、歸納、推理的能力;在領(lǐng)會(huì)函數(shù)與數(shù)列關(guān)系的前提下,把研究函數(shù)的方法遷移來研究數(shù)列,培養(yǎng)學(xué)生的知識(shí)、方法遷移能力;通過階梯性練習(xí),提高學(xué)生分析問題和解決問題的能力。

  c在情感上:通過對等差數(shù)列的研究,培養(yǎng)學(xué)生主動(dòng)探索、勇于發(fā)現(xiàn)的求知精神;養(yǎng)成細(xì)心觀察、認(rèn)真分析、善于總結(jié)的良好思維習(xí)慣。

  3、教學(xué)重點(diǎn)和難點(diǎn)

  根據(jù)教學(xué)大綱的要求我確定本節(jié)課的教學(xué)重點(diǎn)為:

 、俚炔顢(shù)列的概念。

 、诘炔顢(shù)列的通項(xiàng)公式的推導(dǎo)過程及應(yīng)用。

  由于學(xué)生第一次接觸不完全歸納法,對此并不熟悉因此用不完全歸納法推導(dǎo)等差數(shù)列的同項(xiàng)公式是這節(jié)課的一個(gè)難點(diǎn)。同時(shí),學(xué)生對“數(shù)學(xué)建!钡乃枷敕椒ㄝ^為陌生,因此用數(shù)學(xué)思想解決實(shí)際問題是本節(jié)課的另一個(gè)難點(diǎn)。

  二、學(xué)情教法分析:

  對于三中的高一學(xué)生,知識(shí)經(jīng)驗(yàn)已較為豐富,他們的智力發(fā)展已到了形式運(yùn)演階段,具備了教強(qiáng)的抽象思維能力和演繹推理能力,所以我在授課時(shí)注重引導(dǎo)、啟發(fā)、研究和探討以符合

  這類學(xué)生的心理發(fā)展特點(diǎn),從而促進(jìn)思維能力的進(jìn)一步發(fā)展。

  針對高中生這一思維特點(diǎn)和心理特征,本節(jié)課我采用啟發(fā)式、討論式以及講練結(jié)合的教學(xué)方法,通過問題激發(fā)學(xué)生求知欲,使學(xué)生主動(dòng)參與數(shù)學(xué)實(shí)踐活動(dòng),以獨(dú)立思考和相互交流的形式,在教師的指導(dǎo)下發(fā)現(xiàn)、分析和解決問題。

  三、學(xué)法指導(dǎo):

  在引導(dǎo)分析時(shí),留出學(xué)生的思考空間,讓學(xué)生去聯(lián)想、探索,同時(shí)鼓勵(lì)學(xué)生大膽質(zhì)疑,圍繞中心各抒己見,把思路方法和需要解決的問題弄清。

  四、教學(xué)程序

  本節(jié)課的教學(xué)過程由(一)復(fù)習(xí)引入(二)新課探究(三)應(yīng)用舉例(四)反饋練習(xí)(五)歸納小結(jié)(六)布置作業(yè),六個(gè)教學(xué)環(huán)節(jié)構(gòu)成。

  (一)復(fù)習(xí)引入:

  1.從函數(shù)觀點(diǎn)看,數(shù)列可看作是定義域?yàn)開_________對應(yīng)的一列函數(shù)值,從而數(shù)列的通項(xiàng)公式也就是相應(yīng)函數(shù)的______。(N﹡;解析式)

  通過練習(xí)1復(fù)習(xí)上節(jié)內(nèi)容,為本節(jié)課用函數(shù)思想研究數(shù)列問題作準(zhǔn)備。

  2.小明目前會(huì)100個(gè)單詞,他她打算從今天起不再背單詞了,結(jié)果不知不覺地每天忘掉2個(gè)單詞,那么在今后的五天內(nèi)他的單詞量逐日依次遞減為:100,98,96,94,92 ①

  3. 小芳只會(huì)5個(gè)單詞,他決定從今天起每天背記10個(gè)單詞,那么在今后的五天內(nèi)他的單詞量逐日依次遞增為5,10,15,20,25 ②

  通過練習(xí)2和3引出兩個(gè)具體的等差數(shù)列,初步認(rèn)識(shí)等差數(shù)列的特征,為后面的概念學(xué)習(xí)建立基礎(chǔ),為學(xué)習(xí)新知識(shí)創(chuàng)設(shè)問題情境,激發(fā)學(xué)生的求知欲。由學(xué)生觀察兩個(gè)數(shù)列特點(diǎn),引出等差數(shù)列的概念,對問題的總結(jié)又培養(yǎng)學(xué)生由具體到抽象、由特殊到一般的認(rèn)知能力。

  (二) 新課探究

  1、由引入自然的給出等差數(shù)列的概念:

  如果一個(gè)數(shù)列,從第二項(xiàng)開始它的每一項(xiàng)與前一項(xiàng)之差都等于同一常數(shù),這個(gè)數(shù)列就叫等差數(shù)列,

  這個(gè)常數(shù)叫做等差數(shù)列的公差,通常用字母d來表示。強(qiáng)調(diào):

  ① “從第二項(xiàng)起”滿足條件;

 、诠頳一定是由后項(xiàng)減前項(xiàng)所得;

 、勖恳豁(xiàng)與它的前一項(xiàng)的差必須是同一個(gè)常數(shù)(強(qiáng)調(diào)“同一個(gè)常數(shù)” );

  在理解概念的基礎(chǔ)上,由學(xué)生將等差數(shù)列的文字語言轉(zhuǎn)化為數(shù)學(xué)語言,歸納出數(shù)學(xué)表達(dá)式:

  an+1-an=d (n≥1)同時(shí)為了配合概念的理解,我找了5組數(shù)列,由學(xué)生判斷是否為等差數(shù)列,是等差數(shù)列的找出公差。

  1. 9 ,8,7,6,5,4,??;√ d=-1

  2. 0.70,0.71,0.72,0.73,0.74??;√ d=0.01

  3. 0,0,0,0,0,0,??.; √ d=0

  4. 1,2,3,2,3,4,??;×

  5. 1,0,1,0,1,??×

  其中第一個(gè)數(shù)列公差<0,>0,第三個(gè)數(shù)列公差=0

  由此強(qiáng)調(diào):公差可以是正數(shù)、負(fù)數(shù),也可以是0

  2、第二個(gè)重點(diǎn)部分為等差數(shù)列的通項(xiàng)公式

  在歸納等差數(shù)列通項(xiàng)公式中,我采用討論式的教學(xué)方法。給出等差數(shù)列的`首項(xiàng),公差d,由學(xué)生研究分組討論a4的通項(xiàng)公式。通過總結(jié)a4的通項(xiàng)公式由學(xué)生猜想a40的通項(xiàng)公式,進(jìn)而歸納an的通項(xiàng)公式。整個(gè)過程由學(xué)生完成,通過互相討論的方式既培養(yǎng)了學(xué)生的協(xié)作意識(shí)又化解了教學(xué)難點(diǎn)。

  若一等差數(shù)列{an }的首項(xiàng)是a1,公差是d,則據(jù)其定義可得:

  a2 - a1 =d 即: a2 =a1 +d

  a3 – a2 =d 即: a3 =a2 +d = a1 +2d

  a4 – a3 =d 即: a4 =a3 +d = a1 +3d

  ??

  猜想: a40 = a1 +39d,進(jìn)而歸納出等差數(shù)列的通項(xiàng)公式:

  an=a1+(n-1)d

  此時(shí)指出:這種求通項(xiàng)公式的辦法叫不完全歸納法,這種導(dǎo)出公式的方法不夠嚴(yán)密,為了培養(yǎng)學(xué)生嚴(yán)謹(jǐn)?shù)膶W(xué)習(xí)態(tài)度,在這里向?qū)W生介紹另外一種求數(shù)列通項(xiàng)公式的辦法------迭加法:

  a2 – a1 =d

  a3 – a2 =d

  a4 – a3 =d

  ??

  an – an-1=d

  將這(n-1)個(gè)等式左右兩邊分別相加,就可以得到 an– a1= (n-1) d即 an= a1+(n-1) d

  (1)

  當(dāng)n=1時(shí),(1)也成立,

  所以對一切n∈N﹡,上面的公式都成立

  因此它就是等差數(shù)列{an}的通項(xiàng)公式。

  在迭加法的證明過程中,我采用啟發(fā)式教學(xué)方法。

  利用等差數(shù)列概念啟發(fā)學(xué)生寫出n-1個(gè)等式。

  對照已歸納出的通項(xiàng)公式啟發(fā)學(xué)生想出將n-1個(gè)等式相加。證出通項(xiàng)公式。

  在這里通過該知識(shí)點(diǎn)引入迭加法這一數(shù)學(xué)思想,逐步達(dá)到“注重方法,凸現(xiàn)思想” 的教學(xué)要求

  接著舉例說明:若一個(gè)等差數(shù)列{an}的首項(xiàng)是1,公差是2,得出這個(gè)數(shù)列的通項(xiàng)公式是:an=1+(n-1)×2 ,

  即an=2n-1 以此來鞏固等差數(shù)列通項(xiàng)公式運(yùn)用

  同時(shí)要求畫出該數(shù)列圖象,由此說明等差數(shù)列是關(guān)于正整數(shù)n一次函數(shù),其圖像是均勻排開的無窮多個(gè)孤立點(diǎn)。用函數(shù)的思想來研究數(shù)列,使數(shù)列的性質(zhì)顯現(xiàn)得更加清楚。

 。ㄈ⿷(yīng)用舉例

  這一環(huán)節(jié)是使學(xué)生通過例題和練習(xí),增強(qiáng)對通項(xiàng)公式含義的理解以及對通項(xiàng)公式的運(yùn)用,提高解決實(shí)際問題的能力。通過例1和例2向?qū)W生表明:要用運(yùn)動(dòng)變化的觀點(diǎn)看等差數(shù)列通項(xiàng)公式中的a1、d、n、an這4個(gè)量之間的關(guān)系。當(dāng)其中的部分量已知時(shí),可根據(jù)該公式求出另

  一部分量。

  例1 (1)求等差數(shù)列8,5,2,?的第20項(xiàng);第30項(xiàng);第40項(xiàng)

 。2)-401是不是等差數(shù)列-5,-9,-13,?的項(xiàng)?如果是,是第幾項(xiàng)?

  在第一問中我添加了計(jì)算第30項(xiàng)和第40項(xiàng)以加強(qiáng)鞏固等差數(shù)列通項(xiàng)公式;第二問實(shí)際上是求正整數(shù)解的問題,而關(guān)鍵是求出數(shù)列的通項(xiàng)公式an.

  例2 在等差數(shù)列{an}中,已知a5=10,a12 =31,求首項(xiàng)a1與公差d。

  在前面例1的基礎(chǔ)上將例2當(dāng)作練習(xí)作為對通項(xiàng)公式的鞏固

  例3 是一個(gè)實(shí)際建模問題

  建造房屋時(shí)要設(shè)計(jì)樓梯,已知某大樓第2層的樓底離地面的高度為3米,第三層離地面5.8米,若樓梯設(shè)計(jì)為等高的16級臺(tái)階,問每級臺(tái)階高為多少米?

  這道題我采用啟發(fā)式和討論式相結(jié)合的教學(xué)方法。啟發(fā)學(xué)生注意每級臺(tái)階“等高”使學(xué)生想到每級臺(tái)階離地面的高度構(gòu)成等差數(shù)列,引導(dǎo)學(xué)生將該實(shí)際問題轉(zhuǎn)化為數(shù)學(xué)模型------等差數(shù)列:(學(xué)生討論分析,分別演板,教師評析問題。問題可能出現(xiàn)在:項(xiàng)數(shù)學(xué)生認(rèn)為是16項(xiàng),應(yīng)明確a1為第2層的樓底離地面的高度,a2表示第一級臺(tái)階離地面的高度而第16級臺(tái)階離地面高度為a17,可用課件展示實(shí)際樓梯圖以化解難點(diǎn))。

  設(shè)置此題的目的:1.加強(qiáng)同學(xué)們對應(yīng)用題的綜合分析能力,2.通過數(shù)學(xué)實(shí)際問題引出等差數(shù)列問題,激發(fā)了學(xué)生的興趣;3.再者通過數(shù)學(xué)實(shí)例展示了“從實(shí)際問題出發(fā)經(jīng)抽象概括建立數(shù)學(xué)模型,最后還原說明實(shí)際問題的“數(shù)學(xué)建!钡臄(shù)學(xué)思想方法

  (四)反饋練習(xí)

  1、小節(jié)后的練習(xí)中的第1題和第2題(要求學(xué)生在規(guī)定時(shí)間內(nèi)完成)。目的:使學(xué)生熟悉通項(xiàng)公式,對學(xué)生進(jìn)行基本技能訓(xùn)練。

  2、書上例3)梯子的最高一級寬33cm,最低一級寬110cm,中間還有10級,各級的寬度成等差數(shù)列。計(jì)算中間各級的寬度。

  目的:對學(xué)生加強(qiáng)建模思想訓(xùn)練。

  3、若數(shù)例{an} 是等差數(shù)列,若 bn = k an ,(k為常數(shù))試證明:數(shù)列{bn}是等差數(shù)列

  此題是對學(xué)生進(jìn)行數(shù)列問題提高訓(xùn)練,學(xué)習(xí)如何用定義證明數(shù)列問題同時(shí)強(qiáng)化了等差數(shù)列的概念。

 。ㄎ澹w納小結(jié)(由學(xué)生總結(jié)這節(jié)課的收獲)

  1.等差數(shù)列的概念及數(shù)學(xué)表達(dá)式.

  強(qiáng)調(diào)關(guān)鍵字:從第二項(xiàng)開始它的每一項(xiàng)與前一項(xiàng)之差都等于同一常數(shù)

  2.等差數(shù)列的通項(xiàng)公式 an= a1+(n-1) d會(huì)知三求一

  3.用“數(shù)學(xué)建!彼枷敕椒ń鉀Q實(shí)際問題

  (六)布置作業(yè)

  必做題:課本P114 習(xí)題3.2第2,6 題

  選做題:已知等差數(shù)列{an}的首項(xiàng)a1=-24,從第10項(xiàng)開始為正數(shù),求公差d的取值范圍。

 。康模和ㄟ^分層作業(yè),提高同學(xué)們的求知欲和滿足不同層次的學(xué)生需求)

  五、板書設(shè)計(jì)

  在板書中突出本節(jié)重點(diǎn),將強(qiáng)調(diào)的地方如定義中,“從第二項(xiàng)起”及“同一常數(shù)”等幾個(gè)字用紅色粉筆標(biāo)注,同時(shí)給學(xué)生留有作題的地方,整個(gè)板書充分體現(xiàn)了精講多練的教學(xué)方法。

高中數(shù)學(xué)說課稿2

  一、說設(shè)計(jì)理念

  《數(shù)學(xué)課程標(biāo)準(zhǔn)》指出要讓學(xué)生感受生活中處處有數(shù)學(xué),用數(shù)學(xué)知識(shí)解決生活中的實(shí)際問題。

  基于這一理念,我在教學(xué)過程中力求聯(lián)系學(xué)生生活實(shí)際和已有的知識(shí)經(jīng)驗(yàn),從學(xué)生感興趣的素材,設(shè)計(jì)新穎的導(dǎo)入與例題教學(xué),給數(shù)學(xué)課富予新的生命力。課堂中力求構(gòu)建一種自主探究、和諧合作的教學(xué)氛圍,讓學(xué)生經(jīng)歷知識(shí)的探究過程,培養(yǎng)學(xué)生感受生活中的數(shù)學(xué)和用數(shù)學(xué)知識(shí)解決生活問題的能力,體驗(yàn)數(shù)學(xué)的應(yīng)用價(jià)值。

  二、教材分析:

 。ㄒ唬┙滩牡牡匚缓妥饔

  有關(guān)統(tǒng)計(jì)圖的認(rèn)識(shí),小學(xué)階段主要認(rèn)識(shí)條形統(tǒng)計(jì)圖、折線統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖。考慮到扇形統(tǒng)計(jì)圖在日常生活中的廣泛應(yīng)用,《標(biāo)準(zhǔn)》把它作為必學(xué)內(nèi)容安排在本單元。本單元是在前面學(xué)習(xí)了條形統(tǒng)計(jì)圖和折線統(tǒng)計(jì)圖的特點(diǎn)和作用的基礎(chǔ)上進(jìn)行教學(xué)的。主要通過熟悉的事例使學(xué)生體會(huì)到扇形統(tǒng)計(jì)圖的實(shí)用價(jià)值。

 。ǘ┙虒W(xué)目標(biāo)

  1、聯(lián)系生活情境了解扇形統(tǒng)計(jì)圖的特點(diǎn)和作用

  2、能讀懂扇形統(tǒng)計(jì)圖,從中獲取有效的信息。

  3、讓學(xué)生在觀察、比較、討論和交流中體會(huì)扇形統(tǒng)計(jì)圖反映的是整體和部分的關(guān)系。

 。ㄈ┙虒W(xué)重點(diǎn):

  1、能讀懂扇形統(tǒng)計(jì)圖,理解扇形統(tǒng)計(jì)圖的特點(diǎn)和作用,并能從中獲取有效信息。

  2、認(rèn)識(shí)折線統(tǒng)計(jì)圖,了解折線統(tǒng)計(jì)圖的特點(diǎn)。

 。ㄋ模┙虒W(xué)難點(diǎn):

  1、能從扇形統(tǒng)計(jì)圖中獲得有用信息,并做出合理推斷。

  2、能根據(jù)統(tǒng)計(jì)圖和數(shù)據(jù)進(jìn)行數(shù)據(jù)變化趨勢的分析。

  二、學(xué)情分析

  本單元的教學(xué)是在學(xué)生已有統(tǒng)計(jì)經(jīng)驗(yàn)的基礎(chǔ)上,學(xué)習(xí)新知的。六年級的學(xué)生已經(jīng)學(xué)習(xí)了條形統(tǒng)計(jì)圖和折線統(tǒng)計(jì)圖,知道他們的特點(diǎn),并具有一定的概括、分析能力,在此基礎(chǔ)上,通過新舊知識(shí)對比,自然生成新知識(shí)點(diǎn)。

  三、設(shè)計(jì)理念和教法分析

  1、本堂課力爭做到由“關(guān)注知識(shí)”轉(zhuǎn)向“關(guān)注學(xué)生”,由“傳授知識(shí)”轉(zhuǎn)向“引導(dǎo)探索”,“教師是組織者、領(lǐng)導(dǎo)者!睂⒄n堂設(shè)置問題給學(xué)生,讓學(xué)生自己獲取信息、分析信息,自主探索、合作交流,參與知識(shí)的構(gòu)建。

  2、運(yùn)用探究法。探究學(xué)習(xí)的內(nèi)容以問題的.形式出現(xiàn)在教師的引導(dǎo)下,學(xué)生自主探究,讓學(xué)生在課堂上多活動(dòng)、多思考,自主構(gòu)建知識(shí)體系。引導(dǎo)學(xué)生獲取信息并合作交流。

  四、說學(xué)法

  《數(shù)學(xué)課程標(biāo)準(zhǔn)》指出有效的數(shù)學(xué)學(xué)習(xí)不能單純的依賴模仿和記憶,動(dòng)手操作、自主探索與合作交流是學(xué)生學(xué)習(xí)數(shù)學(xué)的重要方式。教學(xué)時(shí),我通過學(xué)生感興趣的話題引入,引導(dǎo)學(xué)生關(guān)注身邊的數(shù)學(xué),使學(xué)生體會(huì)到觀察、概括、想象、遷移等數(shù)學(xué)學(xué)習(xí)方法,在師生互動(dòng)中讓每個(gè)學(xué)生都動(dòng)口,動(dòng)手,動(dòng)腦。培養(yǎng)學(xué)生學(xué)習(xí)的主動(dòng)性和積極性。

  五、說教學(xué)程序

  本課分成創(chuàng)設(shè)情境,感知特點(diǎn)——分析數(shù)據(jù),理解特征——嘗試制圖,看圖分析——實(shí)踐應(yīng)用,全課總結(jié)四環(huán)節(jié)。

  六、說教學(xué)過程

 。ㄒ唬⿵(fù)習(xí)引新

  1、復(fù)習(xí)舊知

  提問:我們學(xué)習(xí)過哪些統(tǒng)計(jì)方法?其中條形統(tǒng)計(jì)圖和折線統(tǒng)計(jì)圖各有什么特點(diǎn)?

  2、引入新課

 。ǘ┳灾魈剿,學(xué)習(xí)新知

  新知識(shí)教學(xué)分二步教學(xué):第一步整體感知,看懂統(tǒng)計(jì)圖,理解特征,這是本節(jié)課的重點(diǎn)。在教學(xué)中,以知識(shí)遷移的方式建立新舊知識(shí)之間的聯(lián)系,放手讓學(xué)生獨(dú)立思考,互相合作,進(jìn)一步了解統(tǒng)計(jì)圖的特征。

  第二步實(shí)踐應(yīng)用環(huán)節(jié)。在教學(xué)中,精心地選取了大量的生活素材,使統(tǒng)計(jì)知識(shí)與生活建立緊密的聯(lián)系。根據(jù)統(tǒng)計(jì)圖回答問題,是讓學(xué)生運(yùn)用到剛才學(xué)習(xí)到的知識(shí)來解決生活中的一些問題,并鞏固剛才所學(xué)的知識(shí),為學(xué)生自己發(fā)現(xiàn)問題、提出問題及自己解決問題提供了較大的空間。同時(shí),讓學(xué)生感悟由于數(shù)據(jù)變化帶來的啟示,并能合理地進(jìn)行推理與判斷

  三、課堂總結(jié)

  四、布置作業(yè)。

  五、板書設(shè)計(jì):

高中數(shù)學(xué)說課稿3

  【教材分析】

  1、本節(jié)教材的地位與作用

  本節(jié)主要研究閉區(qū)間上的連續(xù)函數(shù)最大值和最小值的求法和實(shí)際應(yīng)用,分兩課時(shí),這里是第一課時(shí),它是在學(xué)生已經(jīng)會(huì)求某些函數(shù)的最值,并且已經(jīng)掌握了性質(zhì):“如果f(x)是閉區(qū)間[a,b]上的連續(xù)函數(shù),那么f(x)在閉區(qū)間[a,b]上有最大值和最小值”,以及會(huì)求可導(dǎo)函數(shù)的極值之后進(jìn)行學(xué)習(xí)的,學(xué)好這一節(jié),學(xué)生將會(huì)求更多的函數(shù)的最值,運(yùn)用本節(jié)知識(shí)可以解決科技、經(jīng)濟(jì)、社會(huì)中的一些如何使成本最低、產(chǎn)量最高、效益最大等實(shí)際問題。這節(jié)課集中體現(xiàn)了數(shù)形結(jié)合、理論聯(lián)系實(shí)際等重要的數(shù)學(xué)思想方法,學(xué)好本節(jié),對于進(jìn)一步完善學(xué)生的知識(shí)結(jié)構(gòu),培養(yǎng)學(xué)生用數(shù)學(xué)的意識(shí)都具有極為重要的意義。

  2、教學(xué)重點(diǎn)

  會(huì)求閉區(qū)間上連續(xù)開區(qū)間上可導(dǎo)的函數(shù)的最值。

  3、教學(xué)難點(diǎn)

  高三年級學(xué)生雖然已經(jīng)具有一定的知識(shí)基礎(chǔ),但由于對求函數(shù)極值還不熟練,特別是對優(yōu)化解題過程依據(jù)的理解會(huì)有較大的困難,所以這節(jié)課的難點(diǎn)是理解確定函數(shù)最值的方法。

  4、教學(xué)關(guān)鍵

  本節(jié)課突破難點(diǎn)的關(guān)鍵是:理解方程f′(x)=0的'解,包含有指定區(qū)間內(nèi)全部可能的極值點(diǎn)。

  【教學(xué)目標(biāo)】

  根據(jù)本節(jié)教材在高中數(shù)學(xué)知識(shí)體系中的地位和作用,結(jié)合學(xué)生已有的認(rèn)知水平,制定本節(jié)如下的教學(xué)目標(biāo):

  1、知識(shí)和技能目標(biāo)

 。1)理解函數(shù)的最值與極值的區(qū)別和聯(lián)系。

 。2)進(jìn)一步明確閉區(qū)間[a,b]上的連續(xù)函數(shù)f(x),在[a,b]上必有最大、最小值。

 。3)掌握用導(dǎo)數(shù)法求上述函數(shù)的最大值與最小值的方法和步驟。

  2、過程和方法目標(biāo)

 。1)了解開區(qū)間內(nèi)的連續(xù)函數(shù)或閉區(qū)間上的不連續(xù)函數(shù)不一定有最大、最小值。

 。2)理解閉區(qū)間上的連續(xù)函數(shù)最值存在的可能位置:極值點(diǎn)處或區(qū)間端點(diǎn)處。

 。3)會(huì)求閉區(qū)間上連續(xù),開區(qū)間內(nèi)可導(dǎo)的函數(shù)的最大、最小值。

  3、情感和價(jià)值目標(biāo)

  (1)認(rèn)識(shí)事物之間的的區(qū)別和聯(lián)系。

 。2)培養(yǎng)學(xué)生觀察事物的能力,能夠自己發(fā)現(xiàn)問題,分析問題并最終解決問題。

  (3)提高學(xué)生的數(shù)學(xué)能力,培養(yǎng)學(xué)生的創(chuàng)新精神、實(shí)踐能力和理性精神。

  【教法選擇】

  根據(jù)皮亞杰的建構(gòu)主義認(rèn)識(shí)論,知識(shí)是個(gè)體在與環(huán)境相互作用的過程中逐漸建構(gòu)的結(jié)果,而認(rèn)識(shí)則是起源于主客體之間的相互作用。

  本節(jié)課在幫助學(xué)生回顧肯定了閉區(qū)間上的連續(xù)函數(shù)一定存在最大值和最小值之后,引導(dǎo)學(xué)生通過觀察閉區(qū)間內(nèi)的連續(xù)函數(shù)的幾個(gè)圖象,自己歸納、總結(jié)出函數(shù)最大值、最小值存在的可能位置,進(jìn)而探索出函數(shù)最大值、最小值求解的方法與步驟,并優(yōu)化解題過程,讓學(xué)生主動(dòng)地獲得知識(shí),老師只是進(jìn)行適當(dāng)?shù)囊龑?dǎo),而不進(jìn)行全部的灌輸。為突出重點(diǎn),突破難點(diǎn),這節(jié)課主要選擇以合作探究式教學(xué)法組織教學(xué)。

  【學(xué)法指導(dǎo)】

  對于求函數(shù)的最值,高三學(xué)生已經(jīng)具備了良好的知識(shí)基礎(chǔ),剩下的問題就是有沒有一種更一般的方法,能運(yùn)用于更多更復(fù)雜函數(shù)的求最值問題?教學(xué)設(shè)計(jì)中注意激發(fā)起學(xué)生強(qiáng)烈的求知欲望,使得他們能積極主動(dòng)地觀察、分析、歸納,以形成認(rèn)識(shí),參與到課堂活動(dòng)中,充分發(fā)揮他們作為認(rèn)知主體的作用。

  【教學(xué)過程】

  本節(jié)課的教學(xué),大致按照“創(chuàng)設(shè)情境,鋪墊導(dǎo)入——合作學(xué)習(xí),探索新知——指導(dǎo)應(yīng)用,鼓勵(lì)創(chuàng)新——?dú)w納小結(jié),反饋回授”四個(gè)環(huán)節(jié)進(jìn)行組織。

高中數(shù)學(xué)說課稿4

各位老師:

  大家好!

  我叫xxx,來自xx。我說課的題目是《用樣本的數(shù)字特征估計(jì)總體的數(shù)字特征》,內(nèi)容選自于高中教材新課程人教A版必修3第二章第二節(jié),課時(shí)安排為三個(gè)課時(shí),本節(jié)課內(nèi)容為第一課時(shí)。下面我將從教材分析、教學(xué)目標(biāo)分析、教學(xué)方法與手段分析、教學(xué)過程分析四大方面來闡述我對這節(jié)課的分析和設(shè)計(jì):

  一、教材分析

  1、教材所處的地位和作用

  在上一節(jié)我們已經(jīng)學(xué)習(xí)了用圖、表來組織樣本數(shù)據(jù),并且學(xué)習(xí)了如何通過圖、表所提供的信息,用樣本的頻率分布估計(jì)總體的分布情況。本節(jié)課是在前面所學(xué)內(nèi)容的基礎(chǔ)上,進(jìn)一步學(xué)習(xí)如何通過樣本的情況來估計(jì)總體,從而使我們能從整體上更好地把握總體的規(guī)律,為現(xiàn)實(shí)問題的解決提供更多的幫助。

  2教學(xué)的重點(diǎn)和難點(diǎn)

  重點(diǎn):⑴能利用頻率頒布直方圖估計(jì)總體的眾數(shù),中位數(shù),平均數(shù)。

 、企w會(huì)樣本數(shù)字特征具有隨機(jī)性

  難點(diǎn):能應(yīng)用相關(guān)知識(shí)解決簡單的實(shí)際問題。

  二、教學(xué)目標(biāo)分析

  1、知識(shí)與技能目標(biāo)

 。1)能利用頻率頒布直方圖估計(jì)總體的眾數(shù),中位數(shù),平均數(shù)。

 。2)能用樣本的眾數(shù),中位數(shù),平均數(shù)估計(jì)總體的眾數(shù),中位數(shù),平均數(shù),并結(jié)合實(shí)際,對問題作出合理判斷,制定解決問題的有效方法。

  2、過程與方法目標(biāo):

  通過對本節(jié)課知識(shí)的學(xué)習(xí),初步體會(huì)、領(lǐng)悟"用數(shù)據(jù)說話"的統(tǒng)計(jì)思想方法。

  3、情感態(tài)度與價(jià)值觀目標(biāo):

  通過對有關(guān)數(shù)據(jù)的搜集、整理、分析、判斷培養(yǎng)學(xué)生"實(shí)事求是"的科學(xué)態(tài)度和嚴(yán)謹(jǐn)?shù)墓ぷ髯黠L(fēng)。

  三、教學(xué)方法與手段分析

  1、教學(xué)方法:結(jié)合本節(jié)課的教學(xué)內(nèi)容和學(xué)生的認(rèn)知水平,在教法上,我采用"問答探究"式的教學(xué)方法,層層深入。充分發(fā)揮教師的主導(dǎo)作用,讓學(xué)生真正成為教學(xué)活動(dòng)的主體。

  2、教學(xué)手段:通過多媒體輔助教學(xué),充分調(diào)動(dòng)學(xué)生參與課堂教學(xué)的主動(dòng)性與積極性。

  四、教學(xué)過程分析

  1、復(fù)習(xí)回顧,問題引入

  「屏幕顯示」

  〈問題1〉在日常生活中,我們往往并不需要了解總體的分布形態(tài),而是更關(guān)心總體的某一數(shù)字特征,例如:買燈泡時(shí),我們希望知道燈泡的平均使用壽命,我們怎樣了解燈泡的的使用壽命呢?當(dāng)然不能把所有燈泡一一測試,因?yàn)闇y試后燈泡則報(bào)廢了。于是,需要通過隨機(jī)抽樣,把這批燈泡的壽命看作總體,從中隨機(jī)取出若干個(gè)個(gè)體作為樣本,算出樣本的數(shù)字特征,用樣本的數(shù)字特征來估計(jì)總體的數(shù)字特征。

  提出問題:什么是平均數(shù),眾數(shù),中位數(shù)?

 。ń處熖釂,鋪墊復(fù)習(xí),學(xué)生思考、積極回答。根據(jù)學(xué)生回答,給出補(bǔ)充總結(jié),借助用多媒體分別給出他們的定義)

  「設(shè)計(jì)意圖」使學(xué)生對本節(jié)課的學(xué)習(xí)做好知識(shí)準(zhǔn)備。

 。ㄟM(jìn)一步提出實(shí)例、導(dǎo)入新課。)

  「屏幕顯示」

  〈問題2〉選擇薪水高的職業(yè)是人之常情,假如你大學(xué)畢業(yè)有兩個(gè)工作相當(dāng)?shù)膯挝豢晒┻x擇,現(xiàn)各從甲乙兩單位分別隨機(jī)抽取了50名員工的月工資資料如下(單位:元)

  分組計(jì)算這兩組50名員工的月工資平均數(shù),眾數(shù),中位數(shù)并估計(jì)這兩個(gè)公司員工的平均工資。你選擇哪一個(gè)公司,并說明你的理由。

  (學(xué)生分組分別求兩組數(shù)據(jù)的平均工資。

  學(xué)生:甲、乙平均工資分別為:甲:1320元,乙:1530元。

  所以我選乙公司。

  學(xué)生乙:甲、乙兩公司的眾數(shù)分別為甲:1200,乙:1000,所以我選擇甲公司。

  學(xué)生丙:我要根據(jù)我的能力選擇。)

  「設(shè)計(jì)意圖」學(xué)生按"常理"做出選擇,教師指出只憑平均工資做出判斷的依據(jù)并不可靠,從而引導(dǎo)學(xué)生進(jìn)一步深入問題。

  2講授新課,深入認(rèn)識(shí)

  ⑴「屏幕顯示」

  例如,在上一節(jié)抽樣調(diào)查的100位居民的月均用水量的數(shù)據(jù)中,我們畫出了這組數(shù)據(jù)的頻率分布直方圖,F(xiàn)在,觀察這組數(shù)據(jù)的頻率分布直方圖,能否得出這組數(shù)據(jù)的眾數(shù)、中位數(shù)和平均數(shù)?

 。ò褜W(xué)生分成若干小組,分別計(jì)算平均數(shù)、中位數(shù)、眾數(shù),或估計(jì)平均數(shù)、中位數(shù)、眾數(shù)。然后比較結(jié)果,會(huì)發(fā)現(xiàn)通過計(jì)算的結(jié)果和通過估計(jì)的結(jié)果出現(xiàn)了一定的誤差。引導(dǎo)學(xué)生分析產(chǎn)生誤差的原因。原因是由于樣本數(shù)據(jù)的頻率分布直方圖把原始的一些數(shù)據(jù)給遺失了。讓學(xué)生明白產(chǎn)生這樣的誤差對總體的估計(jì)沒有大的影響,因?yàn)闃颖颈旧硪灿须S機(jī)性。)

  「設(shè)計(jì)意圖」讓學(xué)生懂得如何根據(jù)頻率分布直方圖估計(jì)樣本的平均數(shù)、中位數(shù)和眾數(shù)。使學(xué)生明白從直方圖中估計(jì)樣本的數(shù)字特征雖然會(huì)有一些誤差,但直觀、快速、可避免繁瑣的`計(jì)算和閱讀數(shù)據(jù)的過程。

 、啤刺岢鰡栴}〉根據(jù)樣本的眾數(shù)、中位數(shù)、平均數(shù)估計(jì)總體平均數(shù)的基本數(shù)據(jù),并對上一節(jié)的探究問題制定一個(gè)合理平價(jià)用水量的的標(biāo)準(zhǔn)。

 。◣熒ㄟ^共同交流探討得知僅以平均數(shù)或只使用中位數(shù)或眾數(shù)制定出平價(jià)用水標(biāo)準(zhǔn)都是不合理的,必須綜合考慮才能做出合理的選擇)

  「設(shè)計(jì)意圖」使學(xué)生會(huì)依據(jù)眾數(shù)、中位數(shù)、平均數(shù)對數(shù)據(jù)進(jìn)行綜合判斷,并做出合理選擇。也為接下來對他們優(yōu)缺點(diǎn)的總結(jié)打下基礎(chǔ)。

 、强偨Y(jié)出眾數(shù)、中位數(shù)、平均數(shù)三種數(shù)字特征的優(yōu)缺點(diǎn)。

 。ㄏ扔蓪W(xué)生思考,然后再老師的引導(dǎo)下做出總結(jié))

  「設(shè)計(jì)意圖」使學(xué)生能更準(zhǔn)確更全面地依據(jù)樣本的眾數(shù)、中位數(shù)、平均數(shù)對數(shù)據(jù)進(jìn)行綜合判斷,并做出合理選擇,使實(shí)際問題得到正確的解決。

  3、反思小結(jié)、培養(yǎng)能力

  ①學(xué)習(xí)利用頻率直方圖估計(jì)總體的眾數(shù)、中位數(shù)和平均數(shù)的方法。

 、诮榻B眾數(shù)、中位數(shù)和平均數(shù)這三個(gè)特征數(shù)的優(yōu)點(diǎn)和缺點(diǎn)。

 、蹖W(xué)習(xí)如何利用眾數(shù)、中位數(shù)和平均數(shù)的特征去分析解決實(shí)際問題。

  「設(shè)計(jì)意圖」小節(jié)是一堂課的概括和總結(jié),有利于優(yōu)化學(xué)生的認(rèn)知結(jié)構(gòu),把課堂教學(xué)傳授的知識(shí)較快轉(zhuǎn)化為學(xué)生的素質(zhì),也更進(jìn)一步培養(yǎng)學(xué)生的歸納概括能力

  4、課后作業(yè),自主學(xué)習(xí)

  課本練習(xí)

  [設(shè)計(jì)意圖]課后作業(yè)的布置是為了檢驗(yàn)學(xué)生對本節(jié)課內(nèi)容的理解和運(yùn)用程度,并促使學(xué)生進(jìn)一步鞏固和掌握所學(xué)內(nèi)容。

  5、板書設(shè)計(jì)

高中數(shù)學(xué)說課稿5

  一、本節(jié)內(nèi)容的地位與重要性

  "分類計(jì)數(shù)原理與分步計(jì)數(shù)原理"是《高中數(shù)學(xué)》一節(jié)獨(dú)特內(nèi)容。這一節(jié)課與排列、組合的基本概念有著緊密的聯(lián)系,通過對這一節(jié)課的學(xué)習(xí),既可以讓學(xué)生接受、理解分類計(jì)數(shù)原理與分步計(jì)數(shù)原理,還為日后排列、組合和二項(xiàng)式定理的教學(xué)做好準(zhǔn)備,起到奠基的重要作用。

  二、關(guān)于教學(xué)目標(biāo)的確定

  根據(jù)兩個(gè)基本原理的地位和作用,我認(rèn)為本節(jié)課的教學(xué)目標(biāo)是:

 。1)使學(xué)生正確理解兩個(gè)基本原理的概念;

 。2)使學(xué)生能夠正確運(yùn)用兩個(gè)基本原理分析、解決一些簡單問題;

 。3)提高分析、解決問題的能力

 。4)使學(xué)生樹立"由個(gè)別到一般,由一般到個(gè)別"的認(rèn)識(shí)事物的辯證唯物主義哲學(xué)思想觀點(diǎn)。

  三、關(guān)于教學(xué)重點(diǎn)、難點(diǎn)的選擇和處理

  中學(xué)數(shù)學(xué)課程中引進(jìn)的關(guān)于排列、組合的計(jì)算公式都是以兩個(gè)計(jì)數(shù)原理為基礎(chǔ)的,而一些較復(fù)雜的排列、組合應(yīng)用題的求解,更是離不開兩個(gè)基本原理,所以正確理解兩個(gè)基本原理并能解決實(shí)際問題是學(xué)習(xí)本章的重點(diǎn)內(nèi)容。

  正確使用兩個(gè)基本原理的前提是要學(xué)生清楚兩個(gè)基本原理使用的條件。而原理中提到的分步和分類,學(xué)生不是一下子就能理解深刻的,面對復(fù)雜的事物和現(xiàn)象學(xué)生對分類和分步的選擇容易產(chǎn)生錯(cuò)誤的認(rèn)識(shí),所以分類計(jì)數(shù)原理和分步計(jì)數(shù)原理的準(zhǔn)確應(yīng)用是本節(jié)課的教學(xué)難點(diǎn)。必需使學(xué)生認(rèn)清兩個(gè)基本原理的實(shí)質(zhì)就是完成一件事需要分類還是分步,才能使學(xué)生接受概念并對如何運(yùn)用這兩個(gè)基本原理有正確清楚的認(rèn)識(shí)。教學(xué)中兩個(gè)基本問題的引用及引伸,就是為突破難點(diǎn)做準(zhǔn)備。

  四、關(guān)于教學(xué)方法和教學(xué)手段的選用

  根據(jù)本節(jié)課的內(nèi)容及學(xué)生的實(shí)際水平,我采取啟發(fā)引導(dǎo)式教學(xué)方法并充分發(fā)揮電腦多媒體的輔助教學(xué)作用。

  啟發(fā)引導(dǎo)式作為一種啟發(fā)式教學(xué)方法,體現(xiàn)了認(rèn)知心理學(xué)的基本理論。符合教學(xué)論中的自覺性和積極性、鞏固性、可接受性、教學(xué)與發(fā)展相結(jié)合、教師的主導(dǎo)作用與學(xué)生的主體地位相統(tǒng)一等原則,教學(xué)過程中,教師采用點(diǎn)撥的方法,啟發(fā)學(xué)生通過主動(dòng)思考、動(dòng)手操作來達(dá)到對知識(shí)的"發(fā)現(xiàn)"和接受,進(jìn)而完成知識(shí)的內(nèi)化,使書本的知識(shí)成為自己的知識(shí)。

  電腦多媒體以聲音、動(dòng)畫、影像等多種形式強(qiáng)化對學(xué)生感觀的刺激,這一點(diǎn)是粉筆和黑板所不能比擬的,采取這種形式,可以極大提高學(xué)生的學(xué)習(xí)興趣,加大一堂課的信息容量,使教學(xué)目標(biāo)更完美地體現(xiàn)。另外,電腦軟件具有良好的交互性,可以將教師的思路和策略以軟件的形式來體現(xiàn),更好地為教學(xué)服務(wù)。

  五、關(guān)于學(xué)法的指導(dǎo)

  "授人以魚,不如授人以漁",在教學(xué)過程中,不但要傳授學(xué)生課本知識(shí),還要培養(yǎng)學(xué)生主動(dòng)觀察、主動(dòng)思考、自我發(fā)現(xiàn)的學(xué)習(xí)能力,增強(qiáng)學(xué)生的綜合素質(zhì),從而達(dá)到教學(xué)的目標(biāo)。教學(xué)中,教師創(chuàng)設(shè)疑問,學(xué)生想辦法解決疑問,通過教師的啟發(fā)點(diǎn)撥,類比推理,在積極的雙邊活動(dòng)中,學(xué)生找到了解決疑難的方法。整個(gè)過程貫穿"設(shè)疑"——"思索"——"發(fā)現(xiàn)"——"解惑"四個(gè)環(huán)節(jié),學(xué)生隨時(shí)對所學(xué)知識(shí)產(chǎn)生有意注意,思想上經(jīng)歷了從肯定到否定、又從否定到肯定的辨證思維過程,符合學(xué)生認(rèn)知水平,培養(yǎng)了學(xué)習(xí)能力。

  六、關(guān)于教學(xué)程序的設(shè)計(jì)

 。ㄒ唬┱n題導(dǎo)入

  這是本章的第一節(jié)課,是起始課,講起始課時(shí),把這一學(xué)科的內(nèi)容作一個(gè)大概的介紹,能使學(xué)生從一開始就對將要學(xué)習(xí)的知識(shí)有一個(gè)初步的了解,并為下面的學(xué)習(xí)打下思想基礎(chǔ)。所以,首先閱讀引言,明確任務(wù),激發(fā)興趣。由學(xué)生感興趣的乒乓球比賽提出問題,引出學(xué)習(xí)本節(jié)的必要性,明確研究計(jì)數(shù)方法是本章內(nèi)容的獨(dú)特性,從應(yīng)用的廣泛看學(xué)習(xí)本章內(nèi)容的重要性。同時(shí)板書課題(分類計(jì)數(shù)原理與分步計(jì)數(shù)原理)

  這樣做,能使學(xué)生明白本節(jié)內(nèi)容的地位和作用,激發(fā)其學(xué)習(xí)新知識(shí)的欲望,為順利完成教學(xué)任務(wù)做好思維上的準(zhǔn)備。

 。ǘ┬抡n講授

  通過幻燈片給出問題,配圖分析,講清坐火車與坐汽車兩類方法均可,每類中任一種辦法都可以獨(dú)立地把從甲地到乙地這件事辦好。

  緊跟著給出:

  引申1:若甲地到乙地一天中還有4班輪船可乘,那么一天中,坐這些交通工具從甲地到一點(diǎn)共有多少種不同的走法?

  引伸2:若完成一件事,有 類辦法。在第1類辦法中有 種不同方法,在第2類辦法中有 種不同的方法,……,在第 類辦法中有 種不同方法,每一類中的每一種方法均可完成這件事,那么完成這件事共有多少種不同方法?

  這個(gè)問題的兩個(gè)引申由漸入深、循序漸進(jìn)為學(xué)生接受分類計(jì)數(shù)原理做好了準(zhǔn)備。

  板書分類計(jì)數(shù)原理內(nèi)容:

  完成一件事,有 類辦法。在第1類辦法中有 種不同方法,在第2類辦法中有 種不同的方法,……,在第 類辦法中有 種不同方法,那么完成這件事共有 種不同的方法。(也稱加法原理)

  此時(shí),趁學(xué)生對于原理有了一個(gè)較清晰的認(rèn)識(shí),引導(dǎo)學(xué)生分析分類計(jì)數(shù)原理內(nèi)容,啟發(fā)總結(jié)得下面三點(diǎn)注意:(出示幻燈片)

 。1)各分類之間相互獨(dú)立,都能完成這件事;

 。2)根據(jù)問題的特點(diǎn)在確定的分類標(biāo)準(zhǔn)下進(jìn)行分類;

 。3)完成這件事的任何一種方法必屬于某一類,并且分別屬于不同兩類的兩種方法都是不同的方法。

  這樣做加深學(xué)生對分類計(jì)數(shù)原理的正確理解,突出了重點(diǎn),突破了難點(diǎn)。

  接下來給出問題2:(出示幻燈片)

  由A村去B村的道路有3條,由B村去C村的道路有2條(見圖9-1),從A村經(jīng)B村去C村,共有多少種不同的走法?

  提出問題:問題1與問題2同是研究從甲地到乙地的不同走法,請找出這兩個(gè)問題的不之處?學(xué)生會(huì)發(fā)現(xiàn)問題1中采用乘火車或乘汽車都可以從甲地到乙地,而問題2中必須經(jīng)過先乘火車后乘汽車兩個(gè)步驟才能完成從甲地到乙地這件事。

  問題2的講授采用給出問題,配圖分析,組織討論,強(qiáng)調(diào)分步。用多媒體配不同的顏色閃現(xiàn)出六種不同的走法,讓學(xué)生列式求出不同走法數(shù),并列舉所有走法。

  歸納得出:分步計(jì)數(shù)原理(板書原理內(nèi)容)

  分步計(jì)數(shù)原理:做一件事,完成它需要分成n個(gè)步驟,做第一步有m1種不同的方法,做第二步有m2種不同的方法,……,做第n步有mn種不同的方法。那么,完成這件事共有

  N=m1×m2×…×mn

  種不同的'方法。

  同樣趁學(xué)生對定理有一定的認(rèn)識(shí),引導(dǎo)學(xué)生分析分步計(jì)數(shù)原理內(nèi)容,啟發(fā)總結(jié)得下面三點(diǎn)注意:(出示幻燈片)

 。1) 各步驟相互依存,只有各個(gè)步驟完成了,這件事才算完成;

 。2) 根據(jù)問題的特點(diǎn)在確定的分步標(biāo)準(zhǔn)下分步;

  (3) 分步時(shí)要注意滿足完成一件事必須并且只需連續(xù)完成這N個(gè)步驟這件事才算完成。

 。ㄈ⿷(yīng)用舉例

  教材例1:(書架取書問題)引導(dǎo)學(xué)生分析解答,注意區(qū)分是分類還是分步。

  例2:由數(shù)字0,1,2,3,4可以組成多少個(gè)三位整數(shù)(各位上的數(shù)字允許重復(fù))?本題設(shè)置了4個(gè)問題:

 。1) 每一個(gè)三位數(shù)是由什么構(gòu)成的?(三個(gè)整數(shù)字)

 。2) 023是一個(gè)三位數(shù)嗎?(百位上不能是0)

 。3) 組成一個(gè)三位數(shù)需要怎么做?(分成三個(gè)步驟來完成:第一步確定百位上的數(shù)字;第二步確定十位上的數(shù)字;第三步確定個(gè)位上的數(shù)字)

 。4) 怎樣表述?

  教師巡視指導(dǎo)、并歸納

  解:要組成一個(gè)三位數(shù),需要分成三個(gè)步驟:第一步確定百位上的數(shù)字,從1~4這4個(gè)數(shù)字中任選一個(gè)數(shù)字,有4種選法;第二步確定十位上的數(shù)字,由于數(shù)字允許重復(fù),共有5種選法;第三步確定個(gè)位上的數(shù)字,仍有5種選法。根據(jù)分步計(jì)數(shù)原理,得到可以組成的三位整數(shù)的個(gè)數(shù)是N=4×5×5=100.

  答:可以組成100個(gè)三位整數(shù)。

 。ń處煹倪B續(xù)發(fā)問、啟發(fā)、引導(dǎo),幫助學(xué)生找到正確的解題思路和計(jì)算方法,使學(xué)生的分析問題能力有所提高。

  教師在第二個(gè)例題中給出板書示范,能幫助學(xué)生進(jìn)一步加深對兩個(gè)基本原理實(shí)質(zhì)的理解,周密的考慮,準(zhǔn)確的表達(dá)、規(guī)范的書寫,對于學(xué)生周密思考、準(zhǔn)確表達(dá)、規(guī)范書寫良好習(xí)慣的形成有著積極的促進(jìn)作用,也可以為學(xué)生后面應(yīng)用兩個(gè)基本原理解排列、組合綜合題打下基礎(chǔ))

 。ㄋ模w納小結(jié)

  師:什么時(shí)候用分類計(jì)數(shù)原理、什么時(shí)候用分步計(jì)數(shù)原理呢?

  生:分類時(shí)用分類計(jì)數(shù)原理,分步時(shí)用分步計(jì)數(shù)原理。

  師:應(yīng)用兩個(gè)基本原理時(shí)需要注意什么呢?

  生:分類時(shí)要求各類辦法彼此之間相互排斥;分步時(shí)要求各步是相互獨(dú)立的。

 。ㄎ澹┱n堂練習(xí)

  P222:練習(xí)1~4.學(xué)生板演第4題

 。▽τ陬}4,教師有必要對三個(gè)多項(xiàng)式乘積展開后各項(xiàng)的構(gòu)成給以提示)

 。┎贾米鳂I(yè)

  P222:練習(xí)5,6,7.

  補(bǔ)充題:

  1.在所有的兩位數(shù)中,個(gè)位數(shù)字小于十位數(shù)字的共有多少個(gè)?

 。ㄌ崾荆喊词簧蠑(shù)字的大小可以分為9類,共有9+8+7+…+2+1=45個(gè)個(gè)位數(shù)字小于十位數(shù)字的兩位數(shù))

  2.某學(xué)生填報(bào)高考志愿,有m個(gè)不同的志愿可供選擇,若只能按第一、二、三志愿依次填寫3個(gè)不同的志愿,求該生填寫志愿的方式的種數(shù)。

 。ㄌ崾荆盒枰慈齻(gè)志愿分成三步。共有m(m-1)(m-2)種填寫方式)

  3.在所有的三位數(shù)中,有且只有兩個(gè)數(shù)字相同的三位數(shù)共有多少個(gè)?

 。ㄌ崾荆嚎梢杂孟旅娣椒▉砬蠼猓海1)△△□,(2)△□△,(3)□△□,(1),(2),(3)類中每類都是9×9種,共有9×9+9×9+9×9=3×9×9=243個(gè)只有兩個(gè)數(shù)字相同的三位數(shù))

  4.某小組有10人,每人至少會(huì)英語和日語中的一門,其中8人會(huì)英語,5人會(huì)日語,(1)從中任選一個(gè)會(huì)外語的人,有多少種選法?(2)從中選出會(huì)英語與會(huì)日語的各1人,有多少種不同的選法?

  (提示:由于8+5=13>10,所以10人中必有3人既會(huì)英語又會(huì)日語。(1)N=5+2+3;(2)N=5×2+5×3+2×3)

  只要大家用心學(xué)習(xí),認(rèn)真復(fù)習(xí),就有可能在高中的戰(zhàn)場上考取自己理想的成績。

高中數(shù)學(xué)說課稿6

  函數(shù)的單調(diào)性

  今天我說課的題目是《函數(shù)的單調(diào)性》,下面我將圍繞本節(jié)課“教什么?”、“怎樣教?”以及“為什么這樣教?”三個(gè)問題,從教材分析、教學(xué)目標(biāo)分析、教學(xué)重難點(diǎn)分析、教法與學(xué)法、教學(xué)過程五方面逐一加以分析和說明。

  一、說教材

  1、教材的地位和作用

  本節(jié)內(nèi)容選自北師大版高中數(shù)學(xué)必修1,第二章第3節(jié)。函數(shù)是高中數(shù)學(xué)的課程,它是描述事物運(yùn)動(dòng)變化的模型,而函數(shù)的單調(diào)性是函數(shù)的一大特征,它為我們之后的學(xué)習(xí)奠定重要基礎(chǔ)。

  2、學(xué)情分析

  本節(jié)課的學(xué)生是高一學(xué)生,他們在初中階段,通過一次函數(shù)、二次函數(shù)、反比例函數(shù)的學(xué)習(xí)已經(jīng)對函數(shù)的增減性有了初步的感性認(rèn)識(shí)。在高中階段,用符號語言刻畫圖形語言,用定量分析解釋定性結(jié)果,有利于培養(yǎng)學(xué)生的理性思維,為后續(xù)函數(shù)的學(xué)習(xí)作準(zhǔn)備,也為利用倒數(shù)研究單調(diào)性的相關(guān)知識(shí)奠定了基礎(chǔ)。

  教學(xué)目標(biāo)分析

  基于以上對教材和學(xué)情的分析以及新課標(biāo)教學(xué)理念,我將教學(xué)目標(biāo)分為以下三個(gè)部分:

  1.知識(shí)與技能(1)理解函數(shù)的單調(diào)性和單調(diào)函數(shù)的意義;

  (2)會(huì)判斷和證明簡單函數(shù)的單調(diào)性。

  2.過程與方法

 。1)培養(yǎng)從概念出發(fā),進(jìn)一步研究性質(zhì)的意識(shí)及能力;

 。2)體會(huì)數(shù)形結(jié)合、分類討論的數(shù)學(xué)思想。

  3.情感態(tài)度與價(jià)值觀

  由合適的例子引發(fā)學(xué)生探求數(shù)學(xué)知識(shí)的欲望,突出學(xué)生的主觀能動(dòng)性,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣。

  三、教學(xué)重難點(diǎn)分析

  通過以上對教材和學(xué)生的分析以及教學(xué)目標(biāo),我將本節(jié)課的重難點(diǎn)

  重點(diǎn):

  函數(shù)單調(diào)性的概念,判斷和證明簡單函數(shù)的單調(diào)性。

  難點(diǎn):

  1.函數(shù)單調(diào)性概念的認(rèn)知

 。1)自然語言到符號語言的轉(zhuǎn)化;

  (2)常量到變量的轉(zhuǎn)化。

  2.應(yīng)用定義證明單調(diào)性的代數(shù)推理論證。

  四、教法與學(xué)法分析

  1、教法分析

  基于以上對教材、學(xué)情的分析以及新課標(biāo)的教學(xué)理念,本節(jié)課我采用啟發(fā)式教學(xué)、多媒體輔助教學(xué)和討論法。學(xué)生可以在多媒體中感受到數(shù)學(xué)在生活中的應(yīng)用,啟發(fā)式教學(xué)和討論法發(fā)散學(xué)生思維,培養(yǎng)學(xué)生善于思考的能力。

  2、學(xué)法分析

  新課改理念告訴我們,學(xué)生不僅要學(xué)知識(shí),更重要的是要學(xué)會(huì)怎樣學(xué)習(xí),為終生學(xué)習(xí)奠定扎實(shí)的基礎(chǔ)。所以本節(jié)課我將引導(dǎo)學(xué)生通過合作交流、自主探索的方法理解函數(shù)的單調(diào)性及特征。

  五、教學(xué)過程

  為了更好的實(shí)現(xiàn)本課的三維目標(biāo),并突破重難點(diǎn),我設(shè)計(jì)以下五個(gè)環(huán)節(jié)來進(jìn)行我的教學(xué)。

  (一)知識(shí)導(dǎo)入

  溫故而知新,我將先從之前學(xué)習(xí)的知識(shí)引入,給出一些函數(shù),比如y=x、y=-x、y=|x|,讓學(xué)生作出這些函數(shù)的圖像,然后讓學(xué)生討論這些函數(shù)圖像是上升的還是下降的,由此引入到我的新課。在這個(gè)過程中不僅可以檢查學(xué)生掌握基本初等函數(shù)圖像的情況,而且符合學(xué)生的認(rèn)知結(jié)構(gòu),通過學(xué)生自主探究,從知識(shí)產(chǎn)生、發(fā)展的過程中構(gòu)建新概念,有利于激發(fā)學(xué)生的思維和學(xué)習(xí)的積極主動(dòng)性。

 。ǘ┲v授新課

  1.問題:分別做出函數(shù)y=x2,y=x+2的圖像,指出上面的函數(shù)圖象在哪個(gè)區(qū)間是上升的,在哪個(gè)區(qū)間是下降的?

  通過學(xué)生熟悉的圖像,及時(shí)引導(dǎo)學(xué)生觀察,函數(shù)圖像上A點(diǎn)的運(yùn)動(dòng)情況,引導(dǎo)學(xué)生能用自然語言描述出,隨著x增大時(shí)圖像變化規(guī)律。讓學(xué)生大膽的去說,老師逐步修正、完善學(xué)生的說法,最后給出正確答案。

  2.觀察函數(shù)y=x2隨自變量x變化的情況,設(shè)置啟發(fā)式問題:

 。1)在y軸的右側(cè)部分圖象具有什么特點(diǎn)?

 。2)如果在y軸右側(cè)部分取兩個(gè)點(diǎn)(x1,y1),(x2,y2),當(dāng)x1

 。3)如何用數(shù)學(xué)符號語言來描述這個(gè)規(guī)律?

  教師補(bǔ)充:這時(shí)我們就說函數(shù)y=x2在(0,+∞)上是增函數(shù)。

 。4)反過來,如果y=f(x)在(0,+∞)上是增函數(shù),我們能不能得到自變量與函數(shù)值的變化規(guī)律呢?

  類似地分析圖象在y軸的左側(cè)部分。

  通過對以上問題的分析,從正、反兩方面領(lǐng)會(huì)函數(shù)單調(diào)性。師生共同總結(jié)出單調(diào)增函數(shù)的定義,并解讀定義中的關(guān)鍵詞,如:區(qū)間內(nèi),任意,當(dāng)x1

  仿照單調(diào)增函數(shù)定義,由學(xué)生說出單調(diào)減函數(shù)的定義。

  教師總結(jié)歸納單調(diào)性和單調(diào)區(qū)間的'定義。注意強(qiáng)調(diào):函數(shù)的單調(diào)性是函數(shù)在定義域某個(gè)區(qū)間上的局部性質(zhì),也就是說,一個(gè)函數(shù)在不同的區(qū)間上可以有不同的單調(diào)性。

  (我將給出函數(shù)y=x2,并畫出這個(gè)函數(shù)的圖像,讓學(xué)生觀察函數(shù)圖像的特點(diǎn),讓他們描述函數(shù)圖像的增減性,慢慢得到函數(shù)單調(diào)性的概念。在這個(gè)過程中,學(xué)生把對圖像的感性認(rèn)識(shí)轉(zhuǎn)化為了數(shù)學(xué)關(guān)系,這種從特殊到一般的學(xué)習(xí)過程有利于學(xué)生對概念的理解)

 。ㄈ╈柟叹毩(xí)

  1練習(xí)1:說出函數(shù)f(x)=的單調(diào)區(qū)間,并指明在該區(qū)間上的單調(diào)性。x

  練習(xí)2:練習(xí)2:判斷下列說法是否正確

  ①定義在R上的函數(shù)f(x)滿足f(2)>f(1),則函數(shù)是R上的增函數(shù)。

 、诙x在R上的函數(shù)f(x)滿足f(2)>f(1),則函數(shù)是R上不是減函數(shù)。

  1③已知函數(shù)y=,因?yàn)閒(-1)

  1我將給出一些具體的函數(shù),如y=,f(x)=3x+2讓學(xué)生說出函數(shù)的單調(diào)區(qū)間,并指明在該區(qū)間x

  上的單調(diào)性。通過這種練習(xí)的方式,幫助學(xué)生鞏固對知識(shí)的掌握。

 。ㄋ模w納總結(jié)

  我先讓學(xué)生進(jìn)行小結(jié),函數(shù)單調(diào)性定義,判斷函數(shù)單調(diào)性的方法(圖像、定義),然后教師進(jìn)行補(bǔ)充,在這樣一個(gè)過程中既有利于學(xué)生鞏固知識(shí),也有利于教師對學(xué)生的學(xué)習(xí)情況有一定的了解,為下一節(jié)課的教學(xué)過程做好準(zhǔn)備。

 。ㄎ澹┎贾米鳂I(yè)

  必做題:習(xí)題2-3A組第2,4,5題。

  選做題:習(xí)題2-3B組第2題。

  新課程理念告訴我們,不同的人在數(shù)學(xué)上可以獲得不同的發(fā)展,因此要設(shè)計(jì)不同程度要求的習(xí)題。

  篇二:高一數(shù)學(xué)必修一說課稿

  二次函數(shù)的圖像說課稿

  今天我說課的題目是《二次函數(shù)的圖像》,下面我將圍繞本節(jié)課“教什么?”、“怎樣教?”以及“為什么這樣教?”三個(gè)問題,從教材分析、教學(xué)目標(biāo)分析、教學(xué)重難點(diǎn)分析、教法與學(xué)法、課堂設(shè)計(jì)五方面逐一加以分析和說明。

  一、教材分析

  教材的地位和作用

  本節(jié)內(nèi)容選自北師大版高中數(shù)學(xué)必修1,第二章第4.1節(jié)。二次函數(shù)的圖像在教材中起著承上啟下的作用。

  學(xué)情分析

  本節(jié)課的學(xué)生是高一學(xué)生,他們在初中的時(shí)候已經(jīng)學(xué)習(xí)過有關(guān)內(nèi)容,為本節(jié)課的學(xué)習(xí)打下了基礎(chǔ),另一方面,二次函數(shù)解析式中的系數(shù)由常數(shù)轉(zhuǎn)變?yōu)閰?shù),使學(xué)生對二次函數(shù)的圖像由感性認(rèn)識(shí)上升到理性認(rèn)識(shí),能培養(yǎng)學(xué)生利用數(shù)形結(jié)合思想解決問題的能力。

  二、教學(xué)目標(biāo)分析

  基于以上對教材和學(xué)情的分析以及新課標(biāo)教學(xué)理念,我將教學(xué)目標(biāo)分為以下三個(gè)部分:

  1.知識(shí)與技能

  理解二次函數(shù)中參數(shù)a,b,c,h,k對其圖像的影響;

  2.過程與方法

  通過體驗(yàn)對二次函數(shù)圖像平移的研究方法,能遷移到其他函數(shù)圖像的研究。

  3.情感態(tài)度與價(jià)值觀

  通過本節(jié)的`學(xué)習(xí),進(jìn)一步體會(huì)數(shù)形結(jié)合思想的作用,感受到數(shù)學(xué)中數(shù)與形的辯證統(tǒng)一。

  三、教學(xué)重難點(diǎn)分析

  通過以上對教材和學(xué)生的分析以及教學(xué)目標(biāo),我將本節(jié)課的重難點(diǎn)確定如下

  重點(diǎn):

  二次函數(shù)圖像的平移變換規(guī)律及應(yīng)用。

  難點(diǎn):

  探索平移對函數(shù)解析式的影響及如何利用平移變換規(guī)律求函數(shù)解析式,并能把平移變換規(guī)律遷移到其他函數(shù)。

  四、教法與學(xué)法分析

  1、教法分析

  基于以上對教材、學(xué)情的分析以及新課改的要求,本節(jié)課我采用啟發(fā)式教學(xué)、多媒體輔助教學(xué)和討論法。學(xué)生可以在多媒體中感受到數(shù)學(xué)在生活中的應(yīng)用,啟發(fā)式教學(xué)和討論法發(fā)散學(xué)生思維,培養(yǎng)學(xué)生善于思考的能力。

  2、學(xué)法分析

  新課改理念告訴我們,學(xué)生不僅要學(xué)知識(shí),更重要的是要學(xué)會(huì)怎樣學(xué)習(xí),為終生學(xué)習(xí)奠定扎實(shí)的基礎(chǔ)。所以本節(jié)課我將引導(dǎo)學(xué)生通過合作交流、自主探索的方法進(jìn)行學(xué)習(xí)。

  五、教學(xué)過程

  為了更好的實(shí)現(xiàn)本課的三維目標(biāo),并突破重難點(diǎn),我將設(shè)計(jì)以下五個(gè)環(huán)節(jié)來進(jìn)行我的教學(xué)。

  (1)知識(shí)導(dǎo)入

  溫故而知新,我將先從之前學(xué)習(xí)的知識(shí)引入,給出一些函數(shù),比如y=x2、y=2x2,讓學(xué)生作出這些函數(shù)的圖像,然后讓學(xué)生比較這些函數(shù)圖像的相同點(diǎn)和不同點(diǎn),由此引入我的新課。一方面讓學(xué)生總結(jié)復(fù)習(xí)已有知識(shí),為后面的學(xué)習(xí)做好鋪墊,另一方面,使學(xué)生在自己熟悉的問題中首先獲得解題成功的快樂體驗(yàn)。

 。2)講授新課

  例1:畫出函數(shù)y=2x2,y=2(x+1)2,y=2(x+1)2+3的圖像

  讓學(xué)生畫出他們的圖像并觀察函數(shù)圖像的特點(diǎn),再讓學(xué)生與多媒體課件展示的圖像進(jìn)行對比,得出結(jié)論:若二次函數(shù)的解析式為y=ax2+bx+c,先將其化成y=a(x+h)2+k的形式,從而判斷出y=ax2+bx+c是如何由y=ax2變換得到的。

  前面的練習(xí)和例題,基本涵蓋了二次函數(shù)圖像平移變換的各種情況,啟發(fā)并引導(dǎo)了學(xué)生將實(shí)例的結(jié)論進(jìn)行總結(jié),得出y=x2到y(tǒng)=ax2,y=ax2到y(tǒng)=a(x+h)2+k,y=ax2到y(tǒng)=ax2+bx+c(其中,a均不為0)的圖像變化過程,即a>0開口向上,a<0開口向下;h正左移,h負(fù)右移;k正上移,k負(fù)下移。在這個(gè)過程中,學(xué)生把對圖像的感性認(rèn)識(shí)轉(zhuǎn)化為了數(shù)學(xué)關(guān)系,這種從特殊到一般的學(xué)習(xí)過程有利于學(xué)生對概念的理解,

  (3)鞏固練習(xí)

  我將組織學(xué)生進(jìn)行練習(xí),完成課本44頁1-3題。通過這種練習(xí)的方式,幫助學(xué)生鞏固和加深二次函數(shù)中參數(shù)對圖像的影響。

 。4)歸納總結(jié)

  我先讓學(xué)生進(jìn)行小結(jié),然后教師進(jìn)行補(bǔ)充,在這樣一個(gè)過程中既有利于學(xué)生鞏固知識(shí),也有利于教師對學(xué)生的學(xué)習(xí)情況有一定的了解,可以進(jìn)行適當(dāng)反思,為下一節(jié)課的教學(xué)過程做好準(zhǔn)備。

 。5)布置作業(yè)

  略

高中數(shù)學(xué)說課稿7

  各位老師,大家好!

  我是08數(shù)學(xué)本科(2)班的xx,我今天說課的題目是集合的含義與表示.下面我先對教材進(jìn)行分析.

  一、教材分析

  集合的含義與表示是選自高中新課標(biāo)A版教材必修1第一章第一節(jié)內(nèi)容。在此之前,學(xué)生已經(jīng)接觸過集合的一些相關(guān)概念,如自然數(shù)的集合、有理數(shù)的集合.集合是一個(gè)基礎(chǔ)性概念,是數(shù)學(xué)以至所有科學(xué)的基礎(chǔ),應(yīng)用廣泛. 集合是高考的對象,在高考中以選擇題或填空題的形式出現(xiàn),在高考中具有不可忽視的地位.本節(jié)內(nèi)容能夠培養(yǎng)學(xué)生的探索精神和數(shù)學(xué)素養(yǎng).

  二、教學(xué)目標(biāo)

  根據(jù)上述對教材的分析,我確定本節(jié)課的教學(xué)目標(biāo)為 1. 知識(shí)與技能目標(biāo) 理解集合的含義,集合的元素的特征,元素與集合的關(guān)系. 掌握集合的表示方法. 了解常用的數(shù)集.培養(yǎng)學(xué)生的抽象思維能力、分析能力、判斷能力.

  2. 過程與方法目標(biāo)

  應(yīng)用自然語言與集合語言描述不同的具體問題,與學(xué)生一道歸納出集合的含義. 掌握從具體到抽象,從特殊到一般的研究方法.

  3. 情感態(tài)度價(jià)值觀目標(biāo)

  使得學(xué)生感受數(shù)學(xué)的簡潔美與和諧統(tǒng)一美. 培養(yǎng)學(xué)生正確的、高尚的、唯物的價(jià)值觀.培養(yǎng)學(xué)生獨(dú)立思考、敢于創(chuàng)新、勇于探索的科學(xué)精神,激發(fā)同學(xué)們學(xué)習(xí)數(shù)學(xué)的興趣. 三、重點(diǎn)和難點(diǎn)

  重點(diǎn):根據(jù)上述對教材的分析,確定的教學(xué)目標(biāo),我確定本節(jié)課的教學(xué)重點(diǎn)為:集合的含義,集合的表示方法.

  難點(diǎn):考慮到學(xué)生已有的知識(shí)基礎(chǔ)與認(rèn)知能力,我認(rèn)為教學(xué)難點(diǎn)是集合的表示方法. 關(guān)鍵:學(xué)好本節(jié)課的關(guān)鍵是理解集合的含義,掌握集合的表示方法. 四、教學(xué)方法 1.學(xué)情分析

 。1)生理特點(diǎn):高中階段是智力發(fā)展的關(guān)鍵年齡,學(xué)生邏輯思維從經(jīng)驗(yàn)型逐步走向理論型發(fā)展,觀察能力、記憶能力和想象能力也隨之迅速發(fā)展.

 。2)心理特點(diǎn):高中學(xué)生雖有好奇,好表現(xiàn)的因素,更有知道原理、明白方法的理性愿望,希望平等交流研討,厭煩空洞的說教.

 。3)認(rèn)知障礙:有的學(xué)生遺忘了學(xué)過的知識(shí),有的學(xué)生想象能力與歸納能力較差. 2.教法學(xué)法

  根據(jù)上面的分析,從高中生的心理特點(diǎn)和認(rèn)知水平出發(fā),結(jié)合學(xué)生的實(shí)際情況與認(rèn)知障礙,按照突出重點(diǎn),突破難點(diǎn),本節(jié)課采用學(xué)生廣泛參與,師生共同探討的啟發(fā)式教學(xué)法. 五、教學(xué)過程(用描述性語言,不要具體化。

  根據(jù)以上分析,我對本節(jié)課的教學(xué)過程作如下安排:

  1.引入課題

  先引導(dǎo)學(xué)生回顧自然數(shù)的集合,有理數(shù)的集合,再提出問題:集合的含義是什么呢? 2.新課講解

 。1)分析自然數(shù)的集合,有理數(shù)的集合,不等式的解集,歸納出它們的共同特征:都是由一些確定的、互不相同的對象組成的整體.

 。2)根據(jù)上面的分析與討論,以及歸納出的共同特征,講解集合的含義,元素與集合的關(guān)系,一些常見的數(shù)集.

  (3)為了化解教學(xué)難點(diǎn),我將結(jié)合具體的例子,講解列舉法與描述法.

  (4)為了加強(qiáng)學(xué)生對集合的含義的理解,我將與學(xué)生一起歸納出集合的元素的特征. (5)為了提高學(xué)生解決實(shí)際問題的能力,我將講解三個(gè)不同題型、不同難度的例題. 3.課堂練習(xí)

  為了使得學(xué)生掌握等差數(shù)列的定義與通項(xiàng)公式,提高解題技能,我將在課堂上布置3道不同類型、不同難度的練習(xí)題.

  4.歸納小結(jié)

  完成以上的教學(xué)內(nèi)容后,我將組織學(xué)生對本節(jié)課的內(nèi)容做一個(gè)總結(jié),強(qiáng)調(diào)重點(diǎn). 5.布置作業(yè)

  為了鞏固所學(xué)知識(shí),激發(fā)學(xué)生的求知欲,我將布置3道不同類型、不同難度的作業(yè)題. 六、板書設(shè)計(jì)

  結(jié)合中學(xué)黑板的特點(diǎn),我將如下板書本節(jié)教學(xué)內(nèi)容: 集合的含義與表示 實(shí)例 1. 2. 3. 集合的含義 常見數(shù)集 元素與集合的關(guān)系 集合的表示方法 集合的元素的特征 例1 例2 例3 練習(xí) 作業(yè) 各位老師,以上只是我的一種預(yù)設(shè)方案,但課堂千變?nèi)f化,我將根據(jù)實(shí)際情況靈活掌握,隨機(jī)發(fā)揮.本說課一定存在諸多不足,懇請各位老師提出寶貴意見,謝謝! 1.1.2集合間的基本關(guān)系

  數(shù)學(xué)必修1第一章第二節(jié)第1小節(jié)《集合間的基本關(guān)系》說課稿.

  一 、教學(xué)內(nèi)容分析

  集合概念及其理論是近代數(shù)學(xué)的基石,集合語言是現(xiàn)代數(shù)學(xué)的基本語言,通過學(xué)習(xí)、使用集合語言,有利于學(xué)生簡潔、準(zhǔn)確地表達(dá)數(shù)學(xué)內(nèi)容,高中課程只將集合作為一種語言來學(xué)

  習(xí),學(xué)生將學(xué)會(huì)使用最基本的集合語言表示有關(guān)的數(shù)學(xué)對象,發(fā)展運(yùn)用數(shù)學(xué)語言進(jìn)行交流的.能力.

  本章集合的初步知識(shí)是學(xué)生學(xué)習(xí)、掌握和使用數(shù)學(xué)語言的基礎(chǔ),是高中數(shù)學(xué)學(xué)習(xí)的出發(fā)點(diǎn)。本小節(jié)內(nèi)容是在學(xué)習(xí)了集合的概念以及集合的表示方法、元素與集合的從屬關(guān)系的基礎(chǔ)上,進(jìn)一步學(xué)習(xí)集合與集合之間的關(guān)系,同時(shí)也是下一節(jié)學(xué)習(xí)集合之間的運(yùn)算的基礎(chǔ),因此本小節(jié)起著承上啟下的重要作用.

  本節(jié)課的教學(xué)重視過程的教學(xué),因此我選擇了啟發(fā)式教學(xué)的教學(xué)方式。通過問題情境的設(shè)置,層層深入,由具體到抽象,由特殊到一般,幫助學(xué)生的逐步提升數(shù)學(xué)思維。

  二、學(xué)情分析

  本節(jié)課是學(xué)生進(jìn)入高中學(xué)習(xí)的第3節(jié)數(shù)學(xué)課,也是學(xué)生正式學(xué)習(xí)集合語言的第3節(jié)課。由于一切對于學(xué)生來說都是新的,所以學(xué)生的學(xué)習(xí)興趣相對來說比較濃厚,有利于學(xué)習(xí)活動(dòng)的展開。而集合對于學(xué)生來說既熟悉又陌生,熟悉的是在初中就已經(jīng)使用數(shù)軸求簡單不等式(組)的解,用圖示法表示四邊形之間的關(guān)系,陌生的是使用集合的語言來描述集合之間的關(guān)系。而從具體的實(shí)例中抽象出集合之間的包含關(guān)系的本質(zhì),對于學(xué)生是一個(gè)挑戰(zhàn)。

  根據(jù)上面對教材的分析,并結(jié)合學(xué)生的認(rèn)知水平和思維特點(diǎn),確定本節(jié)課的教學(xué)目標(biāo)和教學(xué)重、難點(diǎn)如下:

  三、教學(xué)目標(biāo): 知識(shí)與技能目標(biāo):

 。1)理解集合之間包含和相等的含義; (2)能識(shí)別給定集合的子集;

 。3)能使用Venn圖表達(dá)集合之間的包含關(guān)系 過程與方法目標(biāo):

 。1)通過復(fù)習(xí)元素與集合之間的關(guān)系,對照實(shí)數(shù)的相等與不相等的關(guān)系聯(lián)系元素與集合之間的從屬關(guān)系,探究集合之間的包含和相等關(guān)系;

  (2)初步經(jīng)歷使用最基本的集合語言表示有關(guān)的數(shù)學(xué)對象的過程,體會(huì)集合語言,發(fā)展運(yùn)用數(shù)學(xué)語言進(jìn)行交流的能力;

  情感、態(tài)度、價(jià)值觀目標(biāo):

 。1)了解集合的包含、相等關(guān)系的含義,感受集合語言在描述客觀現(xiàn)實(shí)和數(shù)學(xué)問題中的意義;

 。2)探索利用直觀圖示(Venn圖)理解抽象概念,體會(huì)數(shù)形結(jié)合的思想。

  四、本節(jié)課教學(xué)的重、難點(diǎn):

  重點(diǎn):(1)幫助學(xué)生由具體到抽象地認(rèn)識(shí)集合與集合之間的關(guān)系——子集; (2)如何確定集合之間的關(guān)系; 難點(diǎn):集合關(guān)系與其特征性質(zhì)之間的關(guān)系 五、教學(xué)過程設(shè)計(jì)

  1.新課的引入——設(shè)置問題情境,激發(fā)學(xué)習(xí)興趣

  我們的教學(xué)方式,要服務(wù)于學(xué)生的學(xué)習(xí)方式。那我們來思考一下,在何種情況下,學(xué)生學(xué)得最好?我想,當(dāng)學(xué)生感興趣時(shí);當(dāng)學(xué)生智力遭遇到挑戰(zhàn)時(shí);當(dāng)學(xué)生能自主地參與探索和創(chuàng)新時(shí);當(dāng)學(xué)生能夠?qū)W以致用時(shí);當(dāng)學(xué)生得到鼓勵(lì)與信任時(shí),他們學(xué)得最好。數(shù)學(xué)教學(xué)活動(dòng)必須建立在學(xué)生的認(rèn)知發(fā)展水平和已有的知識(shí)經(jīng)驗(yàn)基礎(chǔ)之上,這樣才能讓學(xué)生體驗(yàn)到成就感,保持積極的興奮狀態(tài)。而集合的語言對于學(xué)生來說是陌生的,雖然比較容易理解,但是由于概念多,符號多,學(xué)生容易產(chǎn)生厭煩心理,如何讓學(xué)生長時(shí)間興趣盎然地投入到集合關(guān)系的學(xué)習(xí)中呢?我在整個(gè)教學(xué)過程中層層設(shè)問,不斷地向?qū)W生提出挑戰(zhàn),以激發(fā)學(xué)生的學(xué)習(xí)興趣。在引入的環(huán)節(jié),我設(shè)計(jì)了下面的問題情境1:元素與集合有“屬于”、“不屬于”的關(guān)系;數(shù)與數(shù)之間有“相等”、“不相等”的關(guān)系;那么集合與集合之間有什么樣的關(guān)系呢?問題的拋出猶如一石激起千層浪,在這兒,答案并不重要,重要的是學(xué)生迫切尋求答案的愿望,激發(fā)學(xué)生的求知欲。在學(xué)生討論的基礎(chǔ)上提出這一節(jié)課我們來共同探討集合之間的基本關(guān)系。(板書課題)

  2.概念的形成——從特殊到一般、從具體到抽象,從已知到未知 問題情境1的探究:

  具體實(shí)例1: (1)A={1,2,3}; B={1,2,3,4,5}; (2)A={菱形}, B={平行四邊形} (3)A={x| x>2}, B={x| x>1};

  此環(huán)節(jié)設(shè)置了三個(gè)具體實(shí)例,包含了有限集、無限集、數(shù)集(包括不等式)、圖形的集合。第一個(gè)例子為有限集數(shù)集,最為簡單直觀,對學(xué)生初步認(rèn)識(shí)子集,理解子集的概念很有幫助;第二個(gè)例子是圖形集合且是無限集,需要通過探究圖形的性質(zhì)之間的關(guān)系找出集合間的關(guān)系;第三個(gè)例子是無限數(shù)集,基于學(xué)生初中階段已經(jīng)學(xué)習(xí)了用數(shù)軸表示不等式的解集,啟發(fā)學(xué)生可以通過數(shù)形結(jié)合的方式來研究集合之間的關(guān)系,從而引出Venn圖。對第一個(gè)例子,借助多媒體演示動(dòng)畫,幫助學(xué)生體會(huì)“任意”性。使學(xué)生在經(jīng)歷直觀感知、觀察發(fā)現(xiàn)的基礎(chǔ)上建構(gòu)子集的概念,并且我在教學(xué)的過程中特別注重讓學(xué)生說,借此來學(xué)習(xí)運(yùn)用集合語言進(jìn)行交流,對于學(xué)生的創(chuàng)新意識(shí)和創(chuàng)新結(jié)果我都給予積極的評價(jià)。

  3、概念的剖析

 。1)A中的元素x與集合B的關(guān)系決定了集合A與集合B之間的關(guān)系,

  (2)符號的表示,Venn圖的引入及其用Venn圖表示集合的方法。

  這里引入了許多新的符號,對初學(xué)者來說容易混淆,是一個(gè)易錯(cuò)點(diǎn),因此我在這里設(shè)置了一個(gè)填空小練習(xí):

  0 {0}, {正方形} {矩形},三角形 {等邊三角形} {梯形} {平行四邊形},{x|-1

  并引導(dǎo)學(xué)生類比數(shù)與數(shù)之間的“≤”“≥”符號來記憶“?”“?”符號。

  4、概念的深化——集合的相等與真子集

  問題情境2:如果集合A是集合B的子集,那么對于任意的x?A,有x?B;那么對于集合B中的任何一個(gè)元素,它與集合A之間又可能是什么關(guān)系呢?

高中數(shù)學(xué)說課稿8

  一、說教材

 。1)說教材的內(nèi)容和地位

  本次說課的內(nèi)容是人教版高一數(shù)學(xué)必修一第一單元第一節(jié)《集合》(第一課時(shí))。集合這一課里,首先從初中代數(shù)與幾何涉及的集合實(shí)例入手,引出集合與集合的元素的概念,并且結(jié)合實(shí)例對集合的概念作了說明。然后,介紹了集合的常用表示方法,集合元素的特征以及常用集合的表示。把集合的初步知識(shí)安排在高中數(shù)學(xué)的最開始,是因?yàn)樵诟咧袛?shù)學(xué)中,這些知識(shí)與其他內(nèi)容有著密切聯(lián)系,它們是學(xué)習(xí)、掌握以及使用數(shù)學(xué)語言的基礎(chǔ)。從知識(shí)結(jié)構(gòu)上來說是為了引入函數(shù)的定義。因此在高中數(shù)學(xué)的模塊中,集合就顯得格外的舉足輕重了。

 。2)說教學(xué)目標(biāo)

  根據(jù)教材結(jié)構(gòu)和內(nèi)容以及教材地位和作用,考慮到學(xué)生已有的認(rèn)知結(jié)構(gòu)與心理特征,依據(jù)新課標(biāo)制定如下教學(xué)目標(biāo):

  1.知識(shí)與技能:掌握集合的基本概念及表示方法。了解"屬于"關(guān)系的意義,掌握集合元素的特征。

  2.過程與方法:通過情景設(shè)置提出問題,揭示課題,培養(yǎng)學(xué)生主動(dòng)探究新知的習(xí)慣。并通過"自主、合作與探究"實(shí)現(xiàn)"一切以學(xué)生為中心"的理念。

  3.情感態(tài)度與價(jià)值觀:感受數(shù)學(xué)的人文價(jià)值,提高學(xué)生的學(xué)習(xí)數(shù)學(xué)的興趣,由集合的學(xué)習(xí)感受數(shù)學(xué)的簡潔美與和諧統(tǒng)一美。同時(shí)通過自主探究領(lǐng)略獲取新知識(shí)的喜悅。

 。3)說教學(xué)重點(diǎn)和難點(diǎn)

  依據(jù)課程標(biāo)準(zhǔn)和學(xué)生實(shí)際,我確定本課的教學(xué)重點(diǎn)為

  教學(xué)重點(diǎn):集合的基本概念及元素特征。

  教學(xué)難點(diǎn):掌握集合元素的三個(gè)特征,體會(huì)元素與集合的屬于關(guān)系。

  二、說教法和學(xué)法

  接下來則是說教法、學(xué)法

  教法與學(xué)法是互相聯(lián)系和統(tǒng)一的,不能孤立去研究。什么樣的教法必帶來相應(yīng)的學(xué)法,以遵循啟發(fā)性原則為出發(fā)點(diǎn),就本節(jié)課而言,我采用"生活實(shí)例與數(shù)學(xué)實(shí)例"相結(jié)合,"師生互動(dòng)與課堂布白"相輔助的方法。通過不同層次的練習(xí)體驗(yàn),憑借有趣、實(shí)用的教學(xué)手段,突出重點(diǎn),突破難點(diǎn)。然而,學(xué)生是學(xué)習(xí)的主人,以學(xué)生為主體,創(chuàng)造條件讓學(xué)生參與探究活動(dòng),()不僅提高了學(xué)生探究能力,更讓學(xué)生獲得學(xué)習(xí)的技能和激發(fā)學(xué)生的.學(xué)習(xí)興趣。因此,本次活動(dòng)采用的學(xué)法有自主探究、觀察發(fā)現(xiàn)、合作交流、歸納總結(jié)等。

  總之,不管采取什么教法和學(xué)法,每節(jié)課都應(yīng)不斷研究學(xué)生的學(xué)習(xí)心理機(jī)制,不斷優(yōu)化教師本身的教學(xué)行為,自始至終以學(xué)生為主體,為學(xué)生創(chuàng)造和諧的課堂氛圍。

  三、說教學(xué)過程

  接著我來說一下最重要的部分,本節(jié)課的教學(xué)過程:

  這節(jié)課的流程主要分為六個(gè)環(huán)節(jié):創(chuàng)設(shè)情境(引入目標(biāo))、自主探究(感知目標(biāo))、討論辨析(理解目標(biāo))、變式訓(xùn)練(鞏固目標(biāo))、課堂小結(jié)(自我評價(jià))、作業(yè)布置(反饋矯正)。上述六個(gè)環(huán)節(jié)由淺入深,層層遞進(jìn)。 多層次、多角度地加深對概念的理解。 提高學(xué)生學(xué)習(xí)的興趣,以達(dá)到良好的教學(xué)效果。

  第一環(huán)節(jié):創(chuàng)設(shè)問題情境,引入目標(biāo)

  課堂開始我將提出兩個(gè)問題:

  問題1:班級有20名男生,16名女生,問班級一共多少人?

  問題2:某次運(yùn)動(dòng)會(huì)上,班級有20人參加田賽,16人參加徑賽,問一共多少人參加比賽?

  這里我會(huì)讓學(xué)生以小組討論的形式進(jìn)行討論問題,事實(shí)上小組合作的形式是本節(jié)課主要形式。

  待學(xué)生討論完畢以后我將作歸納總結(jié):問題2已無法用學(xué)過的知識(shí)加以解釋,這是與集合有關(guān)的問題,因此需用集合的語言加以描述(同時(shí)我將板書標(biāo)題:集合)。

  安排這一過程的意圖是為了從實(shí)際問題引入,讓學(xué)生了解數(shù)學(xué)來源于實(shí)際。從而激發(fā)學(xué)生參與課堂學(xué)習(xí)的欲望。

  很自然地進(jìn)入到第二環(huán)節(jié):自主探究

  讓學(xué)生閱讀教材,并思考下列問題:

  (1)有那些概念?

 。2)有那些符號?

 。3)集合中元素的特性是什么?

  安排這一過程的意圖是給學(xué)生提供活動(dòng)空間,讓主體主動(dòng)建構(gòu)自己的知識(shí)結(jié)構(gòu)。培養(yǎng)學(xué)生的探究能力。

  讓學(xué)生自主探究之后將進(jìn)入第三環(huán)節(jié):討論辨析

  小組合作探究(1)

  讓學(xué)生觀察下列實(shí)例

 。1)1~20以內(nèi)的所有質(zhì)數(shù);

  (2)所有的正方形;

  (3)到直線 的距離等于定長 的所有的點(diǎn);

 。4)方程 的所有實(shí)數(shù)根;

  通過以上實(shí)例,辨析概念:

 。1)集合含義:一般地,某些指定的對象集在一起就成為一個(gè)集合,也簡稱集。而集合中的每個(gè)對象叫做這個(gè)集合的元素。

 。2)表示方法:集合通常用大括號{ }或大寫的拉丁字母A,B,C…表示,而元素用小寫的拉丁字母a,b,c…表示。

  小組合作探究(2)——集合元素的特征

  問題3:任意一組對象是否都能組成一個(gè)集合?集合中的元素有什么特征?

  問題4:某單位所有的"帥哥"能否構(gòu)成一個(gè)集合?由此說明什么?

  集合中的元素必須是確定的

  問題5:在一個(gè)給定的集合中能否有相同的元素?由此說明什么?

  集合中的元素是不重復(fù)出現(xiàn)的

  問題6:咱班的全體同學(xué)組成一個(gè)集合,調(diào)整座位后這個(gè)集合有沒有變化?由此說明什么? 集合中的元素是沒有順序的

  我如此設(shè)計(jì)的意圖是因?yàn)椋簡栴}是數(shù)學(xué)的心臟,感受問題是學(xué)習(xí)數(shù)學(xué)的根本動(dòng)力。

  小組合作探究(3)——元素與集合的關(guān)系

  問題7:設(shè)集合A表示"1~20以內(nèi)的所有質(zhì)數(shù)",那么3,4,5,6這四個(gè)元素哪些在集合A中?哪些不在集合A中?

  問題8:如果元素a是集合A中的元素,我們?nèi)绾斡脭?shù)學(xué)化的語言表達(dá)?

  a屬于集合A,記作a∈A

  問題9:如果元素a不是集合A中的元素,我們?nèi)绾斡脭?shù)學(xué)化的語言表達(dá)?

  a不屬于集合A,記作aA

  小組合作探究(4)——常用數(shù)集及其表示方法

  問題10:自然數(shù)集,正整數(shù)集,整數(shù)集,有理數(shù)集,實(shí)數(shù)集等一些常用數(shù)集,分別用什么符號表示?

  自然數(shù)集(非負(fù)整數(shù)集):記作 N

  正整數(shù)集:

  整數(shù)集:記作 Z

  有理數(shù)集:記作 Q 實(shí)數(shù)集:記作 R

  設(shè)計(jì)意圖:由于不同的人對同一問題有不同的體驗(yàn)和理解。讓學(xué)生通過合作交流相互得到啟發(fā),從而不斷完善自己的知識(shí)結(jié)構(gòu)。

  第四環(huán)節(jié):理論遷移 變式訓(xùn)練

  1.下列指定的對象,能構(gòu)成一個(gè)集合的是

 、 很小的數(shù)

 、 不超過30的非負(fù)實(shí)數(shù)

 、 直角坐標(biāo)平面內(nèi)橫坐標(biāo)與縱坐標(biāo)相等的點(diǎn)

 、 π的近似值

 、 所有無理數(shù)

  A、②③④⑤ B、①②③⑤ C、②③⑤ D、②③④

  第五環(huán)節(jié):課堂小結(jié),自我評價(jià)

  1.這節(jié)課學(xué)習(xí)的主要內(nèi)容是什么?

  2.這節(jié)課主要解釋了什么數(shù)學(xué)思想?

  設(shè)計(jì)意圖:引導(dǎo)學(xué)生對所學(xué)知識(shí)、思想方法進(jìn)行小結(jié),形成知識(shí)系統(tǒng)。教師用激勵(lì)性的語言加一點(diǎn)評,讓學(xué)生的思想敞亮的發(fā)揮出來。

  第六環(huán)節(jié):作業(yè)布置,反饋矯正

  1.必做題 課本習(xí)題1.1—1、2、3.

  2.選做題 已知集合A={a+2,(a+1)2,a2+3a+3},且1∈A,求實(shí)數(shù)a 的值。

  設(shè)計(jì)意圖:充分考慮到學(xué)生的差異性,讓所有學(xué)生都有成功的情感體驗(yàn)。

  四、板書設(shè)計(jì)

  好的板書就像一份微型教案,為了讓學(xué)生直觀易懂的看筆記,板書應(yīng)設(shè)計(jì)得有條理性、概括性、指導(dǎo)性,所以我設(shè)計(jì)的板書如下:

  集 合

  1.集合的概念

  2.集合元素的特征

 。▽W(xué)生板演)

  3.常見集合的表示

  4.范例研究

高中數(shù)學(xué)說課稿9

  一、教材分析

  1。《指數(shù)函數(shù)》在教材中的地位、作用和特點(diǎn)

  《指數(shù)函數(shù)》是人教版高中數(shù)學(xué)(必修)第一冊第二章“函數(shù)”的第六節(jié)內(nèi)容,是在學(xué)習(xí)了《指數(shù)》一節(jié)內(nèi)容之后編排的。通過本節(jié)課的學(xué)習(xí),既可以對指數(shù)和函數(shù)的概念等知識(shí)進(jìn)一步鞏固和深化,又可以為后面進(jìn)一步學(xué)習(xí)對數(shù)、對數(shù)函數(shù)尤其是利用互為反函數(shù)的圖象間的關(guān)系來研究對數(shù)函數(shù)的性質(zhì)打下堅(jiān)實(shí)的概念和圖象基礎(chǔ),又因?yàn)椤吨笖?shù)函數(shù)》是進(jìn)入高中以后學(xué)生遇到的第一個(gè)系統(tǒng)研究的函數(shù),對高中階段研究對數(shù)函數(shù)、三角函數(shù)等完整的函數(shù)知識(shí),初步培養(yǎng)函數(shù)的應(yīng)用意識(shí)打下了良好的學(xué)習(xí)基礎(chǔ),所以《指數(shù)函數(shù)》不僅是本章《函數(shù)》的重點(diǎn)內(nèi)容,也是高中學(xué)段的主要研究內(nèi)容之一,有著不可替代的重要作用。

  此外,《指數(shù)函數(shù)》的知識(shí)與我們的日常生產(chǎn)、生活和科學(xué)研究有著緊密的聯(lián)系,尤其體現(xiàn)在細(xì)胞分裂、貸款利率的計(jì)算和考古中的年代測算等方面,因此學(xué)習(xí)這部分知識(shí)還有著廣泛的現(xiàn)實(shí)意義。本節(jié)內(nèi)容的特點(diǎn)之一是概念性強(qiáng),特點(diǎn)之二是凸顯了數(shù)學(xué)圖形在研究函數(shù)性質(zhì)時(shí)的重要作用。

  2。教學(xué)目標(biāo)、重點(diǎn)和難點(diǎn)

  通過初中學(xué)段的學(xué)習(xí)和高中對集合、函數(shù)等知識(shí)的系統(tǒng)學(xué)習(xí),學(xué)生對函數(shù)和圖象的關(guān)系已經(jīng)構(gòu)建了一定的認(rèn)知結(jié)構(gòu),主要體現(xiàn)在三個(gè)方面:

  知識(shí)維度:對正比例函數(shù)、反比例函數(shù)、一次函數(shù),二次函數(shù)等最簡單的函數(shù)概念和性質(zhì)已有了初步認(rèn)識(shí),能夠從初中運(yùn)動(dòng)變化的角度認(rèn)識(shí)函數(shù)初步轉(zhuǎn)化到從集合與對應(yīng)的觀點(diǎn)來認(rèn)識(shí)函數(shù)。

  技能維度:學(xué)生對采用“描點(diǎn)法”描繪函數(shù)圖象的方法已基本掌握,能夠?yàn)檠芯俊吨笖?shù)函數(shù)》的性質(zhì)做好準(zhǔn)備。

  素質(zhì)維度:由觀察到抽象的數(shù)學(xué)活動(dòng)過程已有一定的體會(huì),已初步了解了數(shù)形結(jié)合的思想。

  鑒于對學(xué)生已有的知識(shí)基礎(chǔ)和認(rèn)知能力的分析,根據(jù)《教學(xué)大綱》的要求,我確定本節(jié)課的教學(xué)目標(biāo)、教學(xué)重點(diǎn)和難點(diǎn)如下:

 。1)知識(shí)目標(biāo):①掌握指數(shù)函數(shù)的概念;②掌握指數(shù)函數(shù)的圖象和性質(zhì);③能初步利用指數(shù)函數(shù)的概念解決實(shí)際問題;

 。2)技能目標(biāo):①滲透數(shù)形結(jié)合的基本數(shù)學(xué)思想方法②培養(yǎng)學(xué)生觀察、聯(lián)想、類比、猜測、歸納的能力;

 。3)情感目標(biāo):①體驗(yàn)從特殊到一般的學(xué)習(xí)規(guī)律,認(rèn)識(shí)事物之間的普遍聯(lián)系與相互轉(zhuǎn)化,培養(yǎng)學(xué)生用聯(lián)系的觀點(diǎn)看問題②通過教學(xué)互動(dòng)促進(jìn)師生情感,激發(fā)學(xué)生的學(xué)習(xí)興趣,提高學(xué)生抽象、概括、分析、綜合的能力③領(lǐng)會(huì)數(shù)學(xué)科學(xué)的應(yīng)用價(jià)值。

  (4)教學(xué)重點(diǎn):指數(shù)函數(shù)的圖象和性質(zhì)。

  (5)教學(xué)難點(diǎn):指數(shù)函數(shù)的圖象性質(zhì)與底數(shù)a的關(guān)系。

  突破難點(diǎn)的關(guān)鍵:尋找新知生長點(diǎn),建立新舊知識(shí)的聯(lián)系,在理解概念的基礎(chǔ)上充分結(jié)合圖象,利用數(shù)形結(jié)合來掃清障礙。

  二、教法設(shè)計(jì)

  由于《指數(shù)函數(shù)》這節(jié)課的特殊地位,在本節(jié)課的教法設(shè)計(jì)中,我力圖通過這一節(jié)課的教學(xué)達(dá)到不僅使學(xué)生初步理解并能簡單應(yīng)用指數(shù)函數(shù)的知識(shí),更期望能引領(lǐng)學(xué)生掌握研究初等函數(shù)圖象性質(zhì)的.一般思路和方法,為今后研究其它的函數(shù)做好準(zhǔn)備,從而達(dá)到培養(yǎng)學(xué)生學(xué)習(xí)能力的目的,我根據(jù)自己對“誘思探究”教學(xué)模式和“情景式”教學(xué)模式的認(rèn)識(shí),將二者結(jié)合起來,主要突出了幾個(gè)方面:

  1。創(chuàng)設(shè)問題情景。按照指數(shù)函數(shù)的在生活中的實(shí)際背景給出兩個(gè)實(shí)例,充分調(diào)動(dòng)學(xué)生的學(xué)習(xí)興趣,激發(fā)學(xué)生的探究心理,順利引入課題,而這兩個(gè)例子又恰好為研究指數(shù)函數(shù)中底數(shù)大于1和底數(shù)大于0小于1的圖象做好了準(zhǔn)備。

  2。強(qiáng)化“指數(shù)函數(shù)”概念。引導(dǎo)學(xué)生結(jié)合指數(shù)的有關(guān)概念來歸納出指數(shù)函數(shù)的定義,并向?qū)W生指出指數(shù)函數(shù)的形式特點(diǎn),請學(xué)生思考對于底數(shù)a是否需要限制,如不限制會(huì)有什么問題出現(xiàn),這樣避免了學(xué)生對于底數(shù)a范圍分類的不清楚,也為研究指數(shù)函數(shù)的圖象做了“分類討論”的鋪墊。

  3。突出圖象的作用。在數(shù)學(xué)學(xué)習(xí)過程中,圖形始終使我們需要借助的重要輔助手段。一位數(shù)學(xué)家曾經(jīng)說過“數(shù)離形時(shí)少直觀,形離數(shù)時(shí)難入微”,而在研究指數(shù)函數(shù)的性質(zhì)時(shí),更是直接由圖象觀察得出性質(zhì),因此圖象發(fā)揮了主要的作用。

  4。注意數(shù)學(xué)與生活和實(shí)踐的聯(lián)系。數(shù)學(xué)的本質(zhì)是來源于生活,服務(wù)于實(shí)踐。在課堂教學(xué)的引入、例題的講解和課外知識(shí)的拓展部分,都介紹了與指數(shù)函數(shù)息息相關(guān)的生活問題,力圖使學(xué)生了解到數(shù)學(xué)的基礎(chǔ)學(xué)科作用,培養(yǎng)學(xué)生的數(shù)學(xué)應(yīng)用意識(shí)。

  三、學(xué)法指導(dǎo)

  本節(jié)課是在學(xué)習(xí)完“指數(shù)”的概念和運(yùn)算后編排的,針對學(xué)生實(shí)際情況,我主要在以下幾個(gè)方面做了嘗試:

  1。再現(xiàn)原有認(rèn)知結(jié)構(gòu)。在引入兩個(gè)生活實(shí)例后,請學(xué)生回憶有關(guān)指數(shù)的概念,幫助學(xué)生再現(xiàn)原有認(rèn)知結(jié)構(gòu),為理解指數(shù)函數(shù)的概念做好準(zhǔn)備。

  2。領(lǐng)會(huì)常見數(shù)學(xué)思想方法。在借助圖象研究指數(shù)函數(shù)的性質(zhì)時(shí)會(huì)遇到分類討論、數(shù)形結(jié)合等基本數(shù)學(xué)思想方法,這些方法將會(huì)貫穿整個(gè)高中的數(shù)學(xué)學(xué)習(xí)。

  3。在互相交流和自主探

高中數(shù)學(xué)說課稿10

  一、說教材:

  1、地位、作用和特點(diǎn):

  《 》是高中數(shù)學(xué)課本第 冊( 修)的第 章“ ”的第 節(jié)內(nèi)容,高中數(shù)學(xué)課本說課稿。

  本節(jié)是在學(xué)習(xí)了 之后編排的。通過本節(jié)課的學(xué)習(xí),既可以對 的知識(shí)進(jìn)一步鞏固和深化,又可以為后面學(xué)習(xí) 打下基礎(chǔ),所以

  是本章的重要內(nèi)容。此外,《 》的知識(shí)與我們?nèi)粘I睢⑸a(chǎn)、科學(xué)研究 有著密切的聯(lián)系,因此學(xué)習(xí)這部分有著廣泛的現(xiàn)實(shí)意義。本節(jié)的特點(diǎn)之一是;

  特點(diǎn)之二是: 。

  教學(xué)目標(biāo):

  根據(jù)《教學(xué)大綱》的要求和學(xué)生已有的知識(shí)基礎(chǔ)和認(rèn)知能力,確定以下教學(xué)目標(biāo):

 。1)知識(shí)目標(biāo):A、B、C

 。2)能力目標(biāo):A、B、C

  (3)德育目標(biāo):A、B

  教學(xué)的重點(diǎn)和難點(diǎn):

 。1)教學(xué)重點(diǎn):

 。2)教學(xué)難點(diǎn):

  二、說教法:

  基于上面的教材分析,我根據(jù)自己對研究性學(xué)習(xí)“啟發(fā)式”教學(xué)模式和新課程改革的理論認(rèn)識(shí),結(jié)合本校學(xué)生實(shí)際,主要突出了幾個(gè)方面:一是創(chuàng)設(shè)問題情景,充分調(diào)動(dòng)學(xué)生求知欲,并以此來激發(fā)學(xué)生的探究心理。二是運(yùn)用啟發(fā)式教學(xué)方法,就是把教和學(xué)的各種方法綜合起來統(tǒng)一組織運(yùn)用于教學(xué)過程,以求獲得最佳效果。另外還注意獲得和交換信息渠道的綜合、教學(xué)手段的綜合和課堂內(nèi)外的綜合。并且在整個(gè)教學(xué)設(shè)計(jì)盡量做到注意學(xué)生的心理特點(diǎn)和認(rèn)知規(guī)律,觸發(fā)學(xué)生的思維,使教學(xué)過程真正成為學(xué)生的學(xué)習(xí)過程,以思維教學(xué)代替單純的記憶教學(xué)。三是注重滲透數(shù)學(xué)思考方法(聯(lián)想法、類比法、數(shù)形結(jié)合等一般科學(xué)方法)。讓學(xué)生在探索學(xué)習(xí)知識(shí)的過程中,領(lǐng)會(huì)常見數(shù)學(xué)思想方法,培養(yǎng)學(xué)生的探索能力和創(chuàng)造性素質(zhì)。四是注意在探究問題時(shí)留給學(xué)生充分的時(shí)間,以利于開放學(xué)生的思維。當(dāng)然這就應(yīng)在處理教學(xué)內(nèi)容時(shí)能夠做到葉老師所說“教就是為了不教”。因此,擬對本節(jié)課設(shè)計(jì)如下教學(xué)程序:

  導(dǎo)入新課 新課教學(xué)

  反饋發(fā)展

  三、說學(xué)法:

  學(xué)生學(xué)習(xí)的過程實(shí)際上就是學(xué)生主動(dòng)獲取、整理、貯存、運(yùn)用知識(shí)和獲得學(xué)習(xí)能力的過程,因此,我覺得在教學(xué)中,指導(dǎo)學(xué)生學(xué)習(xí)時(shí),應(yīng)盡量避免單純地、直露地向?qū)W生灌輸某種學(xué)習(xí)方法。有效的能被學(xué)生接受的學(xué)法指導(dǎo)應(yīng)是滲透在教學(xué)過程中進(jìn)行的,是通過優(yōu)化教學(xué)程序來增強(qiáng)學(xué)法指導(dǎo)的目的性和實(shí)效性。在本節(jié)課的教學(xué)中主要滲透以下幾個(gè)方面的學(xué)法指導(dǎo)。

  1、培養(yǎng)學(xué)生學(xué)會(huì)通過自學(xué)、觀察、實(shí)驗(yàn)等方法獲取相關(guān)知識(shí),使學(xué)生在探索研究過程中分析、歸納、推理能力得到提高。

  本節(jié)教師通過列舉具體事例來進(jìn)行分析,歸納出 ,并依

  據(jù)此知識(shí)與具體事例結(jié)合、推導(dǎo)出 ,這正是一個(gè)分析和推理的全過程。

  2、讓學(xué)生親自經(jīng)歷運(yùn)用科學(xué)方法探索的過程。 主要是努力創(chuàng)設(shè)應(yīng)用科學(xué)方法探索、解決問題情境,讓學(xué)生在探索中體會(huì)科學(xué)方法,如在講授 時(shí),可通過

  演示,創(chuàng)設(shè)探索 規(guī)律的情境,引導(dǎo)學(xué)生以可靠的事實(shí)為基礎(chǔ),經(jīng)過抽象思維揭示內(nèi)在規(guī)律,從而使學(xué)生領(lǐng)悟到把可靠的事實(shí)和深刻的理論思維結(jié)合起來的特點(diǎn)。

  3、讓學(xué)生在探索性實(shí)驗(yàn)中自己摸索方法,觀察和分析現(xiàn)象,從而發(fā)現(xiàn)“新”的問題或探索出“新”的規(guī)律。從而培養(yǎng)學(xué)生的發(fā)散思維和收斂思維能力,激發(fā)學(xué)生的創(chuàng)造動(dòng)力。在實(shí)踐中要盡可能讓學(xué)生多動(dòng)腦、多動(dòng)手、多觀察、多交流、多分析;老師要給學(xué)生多點(diǎn)撥、多啟發(fā)、多激勵(lì),不斷地尋找學(xué)生思維和操作上的閃光點(diǎn),及時(shí)總結(jié)和推廣。

  4、在指導(dǎo)學(xué)生解決問題時(shí),引導(dǎo)學(xué)生通過比較、猜測、嘗試、質(zhì)疑、發(fā)現(xiàn)等探究環(huán)節(jié)選擇合適的概念、規(guī)律和解決問題方法,從而克服思維定勢的消極影響,促進(jìn)知識(shí)的正向遷移。如教師引導(dǎo)學(xué)生對比中,蘊(yùn)含的本質(zhì)差異,從而擺脫知識(shí)遷移的負(fù)面影響。這樣,既有利于學(xué)生養(yǎng)成認(rèn)真分析過程、善于比較的好習(xí)慣,又有利于培養(yǎng)學(xué)生通過現(xiàn)象發(fā)掘知識(shí)內(nèi)在本質(zhì)的能力。

  四、教學(xué)過程:

  (一)、課題引入:

  教師創(chuàng)設(shè)問題情景(創(chuàng)設(shè)情景:A、教師演示實(shí)驗(yàn)。B、使用多媒體模擬一些比較有趣、與生活實(shí)踐比較有關(guān)的事例,教案《高中數(shù)學(xué)課本說課稿》。C、講述數(shù)學(xué)科學(xué)史上的.有關(guān)情況。)激發(fā)學(xué)生的探究欲望,引導(dǎo)學(xué)生提出接下去要研究的問題。

 。ǘ、新課教學(xué):

  1、針對上面提出的問題,設(shè)計(jì)學(xué)生動(dòng)手實(shí)踐,讓學(xué)生通過動(dòng)手探索有關(guān)的知識(shí),并引導(dǎo)學(xué)生進(jìn)行交流、討論得出新知,并進(jìn)一步提出下面的問題。

  2、組織學(xué)生進(jìn)行新問題的實(shí)驗(yàn)方法設(shè)計(jì)—這時(shí)在設(shè)計(jì)上最好是有對比性、數(shù)學(xué)方法性的設(shè)計(jì)實(shí)驗(yàn),指導(dǎo)學(xué)生實(shí)驗(yàn)、通過多媒體的輔助,顯示學(xué)生的實(shí)驗(yàn)數(shù)據(jù),模擬強(qiáng)化出實(shí)驗(yàn)情況,由學(xué)生分析比較,歸納總結(jié)出知識(shí)的結(jié)構(gòu)。

 。ㄈ、實(shí)施反饋:

  1、課堂反饋,遷移知識(shí)(最好遷移到與生活有關(guān)的例子)。讓學(xué)生分析有關(guān)的問題,實(shí)現(xiàn)知識(shí)的升華、實(shí)現(xiàn)學(xué)生的再次創(chuàng)新。

  2、課后反饋,延續(xù)創(chuàng)新。通過課后練習(xí),學(xué)生互改作業(yè),課后研實(shí)驗(yàn),實(shí)現(xiàn)課堂內(nèi)外的綜合,實(shí)現(xiàn)創(chuàng)新精神的延續(xù)。

  五、板書設(shè)計(jì):

  在教學(xué)中我把黑板分為三部分,把知識(shí)要點(diǎn)寫在左側(cè),中間知識(shí)推導(dǎo)過程,右邊實(shí)例應(yīng)用。

  六、說課綜述:

  以上是我對《 》這節(jié)教材的認(rèn)識(shí)和對教學(xué)過程的設(shè)計(jì)。在整個(gè)課堂中,我引導(dǎo)學(xué)生回顧前面學(xué)過的 知識(shí),并把它運(yùn)用到對

  的認(rèn)識(shí),使學(xué)生的認(rèn)知活動(dòng)逐步深化,既掌握了知識(shí),又學(xué)會(huì)了方法。

  總之,對課堂的設(shè)計(jì),我始終在努力貫徹以教師為主導(dǎo),以學(xué)生為主體,以問題為基礎(chǔ),以能力、方法為主線,有計(jì)劃培養(yǎng)學(xué)生的自學(xué)能力、觀察和實(shí)踐能力、思維能力、應(yīng)用知識(shí)解決實(shí)際問題的能力和創(chuàng)造能力為指導(dǎo)思想。并且能從各種實(shí)際出發(fā),充分利用各種教學(xué)手段來激發(fā)學(xué)生的學(xué)習(xí)興趣,體現(xiàn)了對學(xué)生創(chuàng)新意識(shí)的培養(yǎng)。

高中數(shù)學(xué)說課稿11

  高中數(shù)學(xué)第三冊(選修)Ⅱ第一章第2節(jié)第一課時(shí)

  一、教材分析

  教材的地位和作用

  期望是概率論和數(shù)理統(tǒng)計(jì)的重要概念之一,是反映隨機(jī)變量取值分布的特征數(shù),學(xué)習(xí)期望將為今后學(xué)習(xí)概率統(tǒng)計(jì)知識(shí)做鋪墊。同時(shí),它在市場預(yù)測,經(jīng)濟(jì)統(tǒng)計(jì),風(fēng)險(xiǎn)與決策等領(lǐng)域有著廣泛的應(yīng)用,為今后學(xué)習(xí)數(shù)學(xué)及相關(guān)學(xué)科產(chǎn)生深遠(yuǎn)的影響。

  教學(xué)重點(diǎn)與難點(diǎn)

  重點(diǎn):離散型隨機(jī)變量期望的概念及其實(shí)際含義。

  難點(diǎn):離散型隨機(jī)變量期望的實(shí)際應(yīng)用。

  [理論依據(jù)]本課是一節(jié)概念新授課,而概念本身具有一定的抽象性,學(xué)生難以理解,因此把對離散性隨機(jī)變量期望的概念的教學(xué)作為本節(jié)課的'教學(xué)重點(diǎn)。此外,學(xué)生初次應(yīng)用概念解決實(shí)際問題也較為困難,故把其作為本節(jié)課的教學(xué)難點(diǎn)。

  二、教學(xué)目標(biāo)

  [知識(shí)與技能目標(biāo)]

  通過實(shí)例,讓學(xué)生理解離散型隨機(jī)變量期望的概念,了解其實(shí)際含義。

  會(huì)計(jì)算簡單的離散型隨機(jī)變量的期望,并解決一些實(shí)際問題。

  [過程與方法目標(biāo)]

  經(jīng)歷概念的建構(gòu)這一過程,讓學(xué)生進(jìn)一步體會(huì)從特殊到一般的思想,培養(yǎng)學(xué)生歸納、概括等合情推理能力。

  通過實(shí)際應(yīng)用,培養(yǎng)學(xué)生把實(shí)際問題抽象成數(shù)學(xué)問題的能力和學(xué)以致用的數(shù)學(xué)應(yīng)用意識(shí)。

  [情感與態(tài)度目標(biāo)]

  通過創(chuàng)設(shè)情境激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的情感,培養(yǎng)其嚴(yán)謹(jǐn)治學(xué)的態(tài)度。在學(xué)生分析問題、解決問題的過程中培養(yǎng)其積極探索的精神,從而實(shí)現(xiàn)自我的價(jià)值。

  三、教法選擇

  引導(dǎo)發(fā)現(xiàn)法

  四、學(xué)法指導(dǎo)

  “授之以魚,不如授之以漁”,注重發(fā)揮學(xué)生的主體性,讓學(xué)生在學(xué)習(xí)中學(xué)會(huì)怎樣發(fā)現(xiàn)問題、分析問題、解決問題。

  五、教學(xué)的基本流程設(shè)計(jì)

  高中數(shù)學(xué)第三冊《離散型隨機(jī)變量的期望》說課教案.rar

高中數(shù)學(xué)說課稿12

  【一】教學(xué)背景分析

  1。教材結(jié)構(gòu)分析

  《圓的方程》安排在高中數(shù)學(xué)第二冊(上)第七章第六節(jié)。圓作為常見的簡單幾何圖形,在實(shí)際生活和生產(chǎn)實(shí)踐中有著廣泛的應(yīng)用。圓的方程屬于解析幾何學(xué)的基礎(chǔ)知識(shí),是研究二次曲線的開始,對后續(xù)直線與圓的位置關(guān)系、圓錐曲線等內(nèi)容的學(xué)習(xí),無論在知識(shí)上還是方法上都有著積極的意義,所以本節(jié)內(nèi)容在整個(gè)解析幾何中起著承前啟后的作用。

  2。學(xué)情分析

  圓的方程是學(xué)生在初中學(xué)習(xí)了圓的概念和基本性質(zhì)后,又掌握了求曲線方程的一般方法的基礎(chǔ)上進(jìn)行研究的。但由于學(xué)生學(xué)習(xí)解析幾何的時(shí)間還不長、學(xué)習(xí)程度較淺,且對坐標(biāo)法的運(yùn)用還不夠熟練,在學(xué)習(xí)過程中難免會(huì)出現(xiàn)困難。另外學(xué)生在探究問題的能力,合作交流的意識(shí)等方面有待加強(qiáng)。

  根據(jù)上述教材結(jié)構(gòu)與內(nèi)容分析,考慮到學(xué)生已有的認(rèn)知結(jié)構(gòu)和心理特征,我制定如下教學(xué)目標(biāo):

  3。教學(xué)目標(biāo)

 。1) 知識(shí)目標(biāo):①掌握圓的標(biāo)準(zhǔn)方程;

 、跁(huì)由圓的標(biāo)準(zhǔn)方程寫出圓的半徑和圓心坐標(biāo),能根據(jù)條件寫出圓的標(biāo)準(zhǔn)方程;

 、劾脠A的標(biāo)準(zhǔn)方程解決簡單的實(shí)際問題。

 。2) 能力目標(biāo):①進(jìn)一步培養(yǎng)學(xué)生用代數(shù)方法研究幾何問題的能力;

  ②加深對數(shù)形結(jié)合思想的理解和加強(qiáng)對待定系數(shù)法的運(yùn)用;

 、墼鰪(qiáng)學(xué)生用數(shù)學(xué)的意識(shí)。

 。3) 情感目標(biāo):①培養(yǎng)學(xué)生主動(dòng)探究知識(shí)、合作交流的意識(shí);

 、谠隗w驗(yàn)數(shù)學(xué)美的過程中激發(fā)學(xué)生的學(xué)習(xí)興趣。

  根據(jù)以上對教材、教學(xué)目標(biāo)及學(xué)情的分析,我確定如下的教學(xué)重點(diǎn)和難點(diǎn):

  4。 教學(xué)重點(diǎn)與難點(diǎn)

 。1)重點(diǎn):圓的標(biāo)準(zhǔn)方程的求法及其應(yīng)用。

 。2)難點(diǎn): ①會(huì)根據(jù)不同的已知條件求圓的標(biāo)準(zhǔn)方程;

  ②選擇恰當(dāng)?shù)淖鴺?biāo)系解決與圓有關(guān)的實(shí)際問題。

  為使學(xué)生能達(dá)到本節(jié)設(shè)定的教學(xué)目標(biāo),我再從教法和學(xué)法上進(jìn)行分析:

  好學(xué)教育:

  【二】教法學(xué)法分析

  1。教法分析 為了充分調(diào)動(dòng)學(xué)生學(xué)習(xí)的積極性,本節(jié)課采用“啟發(fā)式”問題教學(xué)法,用環(huán)環(huán)相扣的問題將探究活動(dòng)層層深入,使教師總是站在學(xué)生思維的最近發(fā)展區(qū)上。另外我恰當(dāng)?shù)睦枚嗝襟w課件進(jìn)行輔助教學(xué),借助信息技術(shù)創(chuàng)設(shè)實(shí)際問題的情境既能激發(fā)學(xué)生的學(xué)習(xí)興趣,又直觀的引導(dǎo)了學(xué)生建模的過程。

  2。學(xué)法分析 通過推導(dǎo)圓的標(biāo)準(zhǔn)方程,加深對用坐標(biāo)法求軌跡方程的理解。通過求圓的標(biāo)準(zhǔn)方程,理解必須具備三個(gè)獨(dú)立的條件才可以確定一個(gè)圓。通過應(yīng)用圓的標(biāo)準(zhǔn)方程,熟悉用待定系數(shù)法求的過程。 下面我就對具體的教學(xué)過程和設(shè)計(jì)加以說明:

  【三】教學(xué)過程與設(shè)計(jì)

  整個(gè)教學(xué)過程是由七個(gè)問題組成的問題鏈驅(qū)動(dòng)的,共分為五個(gè)環(huán)節(jié):

  創(chuàng)設(shè)情境 啟迪思維 深入探究 獲得新知 應(yīng)用舉例 鞏固提高

  反饋訓(xùn)練 形成方法 小結(jié)反思 拓展引申

  下面我從縱橫兩方面敘述我的教學(xué)程序與設(shè)計(jì)意圖。

  首先:縱向敘述教學(xué)過程

 。ㄒ唬﹦(chuàng)設(shè)情境——啟迪思維

  問題一 已知隧道的截面是半徑為4m的半圓,車輛只能在道路中心線一側(cè)行駛,一輛寬為2。7m,高為3m的貨車能不能駛?cè)脒@個(gè)隧道?

  通過對這個(gè)實(shí)際問題的探究,把學(xué)生的思維由用勾股定理求線段CD的長度轉(zhuǎn)移為用曲線的方程來解決。一方面幫助學(xué)生回顧了舊知——求軌跡方程的一般方法,另一方面,在得到汽車不能通過的結(jié)論的同時(shí)學(xué)生自己推導(dǎo)出了圓心在原點(diǎn),半徑為4的圓的標(biāo)準(zhǔn)方程,從而很自然的進(jìn)入了本課的主題。用實(shí)際問題創(chuàng)設(shè)問題情境,讓學(xué)生感受到問題來源于實(shí)際,應(yīng)用于實(shí)際,激發(fā)了學(xué)生的學(xué)習(xí)興趣和學(xué)習(xí)欲望。這樣獲取的知識(shí),不但易于保持,而且易于遷移。

  通過對問題一的探究,抓住了學(xué)生的注意力,把學(xué)生的思維引到用坐標(biāo)法研究圓的'方程上來,此時(shí)再把問題深入,進(jìn)入第二環(huán)節(jié)。

 。ǘ┥钊胩骄俊@得新知

  問題二 1。根據(jù)問題一的探究能不能得到圓心在原點(diǎn),半徑為的圓的方程?

  2。如果圓心在,半徑為時(shí)又如何呢?

  好學(xué)教育:

  這一環(huán)節(jié)我首先讓學(xué)生對問題一進(jìn)行歸納,得到圓心在原點(diǎn),半徑為4的圓的標(biāo)準(zhǔn)方程后,引導(dǎo)學(xué)生歸納出圓心在原點(diǎn),半徑為r的圓的標(biāo)準(zhǔn)方程。然后再讓學(xué)生對圓心不在原點(diǎn)的情況進(jìn)行探究。我預(yù)設(shè)了三種方法等待著學(xué)生的探究結(jié)果,分別是:坐標(biāo)法、圖形變換法、向量平移法。

  得到圓的標(biāo)準(zhǔn)方程后,我設(shè)計(jì)了由淺入深的三個(gè)應(yīng)用平臺(tái),進(jìn)入第三環(huán)節(jié)。

 。ㄈ⿷(yīng)用舉例——鞏固提高

  I。直接應(yīng)用 內(nèi)化新知

  問題三 1。寫出下列各圓的標(biāo)準(zhǔn)方程:

  (1)圓心在原點(diǎn),半徑為3;

 。2)經(jīng)過點(diǎn),圓心在點(diǎn)。

  2。寫出圓的圓心坐標(biāo)和半徑。

  我設(shè)計(jì)了兩個(gè)小問題,第一題是直接或間接的給出圓心坐標(biāo)和半徑求圓的標(biāo)準(zhǔn)方程,第二題是給出圓的標(biāo)準(zhǔn)方程求圓心坐標(biāo)和半徑,這兩題比較簡單,可以安排學(xué)生口答完成,目的是先讓學(xué)生熟練掌握圓心坐標(biāo)、半徑與圓的標(biāo)準(zhǔn)方程之間的關(guān)系,為后面探究圓的切線問題作準(zhǔn)備。

  II。靈活應(yīng)用 提升能力

  問題四 1。求以點(diǎn)為圓心,并且和直線相切的圓的方程。

  2。求過點(diǎn),圓心在直線上且與軸相切的圓的方程。

  3。已知圓的方程為,求過圓上一點(diǎn)的切線方程。

  你能歸納出具有一般性的結(jié)論嗎?

  已知圓的方程是,經(jīng)過圓上一點(diǎn)的切線的方程是什么?

  我設(shè)計(jì)了三個(gè)小問題,第一個(gè)小題有了剛剛解決問題三的基礎(chǔ),學(xué)生會(huì)很快求出半徑,根據(jù)圓心坐標(biāo)寫出圓的標(biāo)準(zhǔn)方程。第二個(gè)小題有些困難,需要引導(dǎo)學(xué)生應(yīng)用待定系數(shù)法確定圓心坐標(biāo)和半徑再求解,從而理解必須具備三個(gè)獨(dú)立的條件才可以確定一個(gè)圓。第三個(gè)小題解決方法較多,我預(yù)設(shè)了四種方法再一次為學(xué)生的發(fā)散思維創(chuàng)設(shè)了空間。最后我讓學(xué)生由第三小題的結(jié)論進(jìn)行歸納、猜想,在論證經(jīng)過圓上一點(diǎn)圓的切線方程的過程中,又一次模擬了真理發(fā)現(xiàn)的過程,使探究氣氛達(dá)到高潮。

  III。實(shí)際應(yīng)用 回歸自然

  問題五 如圖是某圓拱橋的一孔圓拱的示意圖,該圓拱跨度AB=20m,拱高OP=4m,在建造時(shí)每隔4m需用一個(gè)支柱支撐,求支柱的長度(精確到0。01m)。

  好學(xué)教育:

  我選用了教材的例3,它是待定系數(shù)法求出圓的三個(gè)參數(shù)的又一次應(yīng)用,同時(shí)也與引例相呼應(yīng),使學(xué)生形成解決實(shí)際問題的一般方法,培養(yǎng)了學(xué)生建模的習(xí)慣和用數(shù)學(xué)的意識(shí)。

 。ㄋ模┓答佊(xùn)練——形成方法

  問題六 1。求過原點(diǎn)和點(diǎn),且圓心在直線上的圓的標(biāo)準(zhǔn)方程。

  2。求圓過點(diǎn)的切線方程。

  3。求圓過點(diǎn)的切線方程。

  接下來是第四環(huán)節(jié)——反饋訓(xùn)練。這一環(huán)節(jié)中,我設(shè)計(jì)三個(gè)小題作為鞏固性訓(xùn)練,給學(xué)生一塊“用武”之地,讓每一位同學(xué)體驗(yàn)學(xué)習(xí)數(shù)學(xué)的樂趣,成功的喜悅,找到自信,增強(qiáng)學(xué)習(xí)數(shù)學(xué)的愿望與信心。另外第3題是我特意安排的一道求過圓外一點(diǎn)的圓的切線方程,由于學(xué)生剛剛歸納了過圓上一點(diǎn)圓的切線方程,因此很容易產(chǎn)生思維的負(fù)遷移,另外這道題目有兩解,學(xué)生容易漏掉斜率不存在的情況,這時(shí)引導(dǎo)學(xué)生用數(shù)形結(jié)合的思想,結(jié)合初中已有的圓的知識(shí)進(jìn)行判斷,這樣的設(shè)計(jì)對培養(yǎng)學(xué)生思維的嚴(yán)謹(jǐn)性具有良好的效果。

 。ㄎ澹┬〗Y(jié)反思——拓展引申

  1。課堂小結(jié)

  把圓的標(biāo)準(zhǔn)方程與過圓上一點(diǎn)圓的切線方程加以小結(jié),提煉數(shù)形結(jié)合的思想和待定系數(shù)的方法 ①圓心為,半徑為r 的圓的標(biāo)準(zhǔn)方程為:

  圓心在原點(diǎn)時(shí),半徑為r 的圓的標(biāo)準(zhǔn)方程為:。

 、谝阎獔A的方程是,經(jīng)過圓上一點(diǎn)的切線的方程是:。

  2。分層作業(yè)

  (A)鞏固型作業(yè):教材P81—82:(習(xí)題7。6)1,2,4。(B)思維拓展型作業(yè):試推導(dǎo)過圓上一點(diǎn)的切線方程。

  3。激發(fā)新疑

  問題七 1。把圓的標(biāo)準(zhǔn)方程展開后是什么形式?

  2。方程表示什么圖形?

  在本課的結(jié)尾設(shè)計(jì)這兩個(gè)問題,作為對這節(jié)課內(nèi)容的鞏固與延伸,讓學(xué)生體會(huì)知識(shí)的起點(diǎn)與終點(diǎn)都蘊(yùn)涵著問題,舊的問題解決了,新的問題又產(chǎn)生了。在知識(shí)的拓展中再次掀起學(xué)生探究的熱情。另外它為下節(jié)課研究圓的一般方程作了重要的準(zhǔn)備。

  以上是我縱向的教學(xué)過程及簡單的設(shè)計(jì)意圖,接下來,我從三個(gè)方面橫向的進(jìn)一步闡述我的教學(xué)設(shè)計(jì): 橫向闡述教學(xué)設(shè)計(jì)

  (一)突出重點(diǎn) 抓住關(guān)鍵 突破難點(diǎn)

  好學(xué)教育:

  求圓的標(biāo)準(zhǔn)方程既是本節(jié)課的教學(xué)重點(diǎn)也是難點(diǎn),為此我布設(shè)了由淺入深的學(xué)習(xí)環(huán)境,先讓學(xué)生熟悉圓心、半徑與圓的標(biāo)準(zhǔn)方程之間的關(guān)系,逐步理解三個(gè)參數(shù)的重要性,自然形成待定系數(shù)法的解題思路,在突出重點(diǎn)的同時(shí)突破了難點(diǎn)。

  第二個(gè)教學(xué)難點(diǎn)就是解決實(shí)際應(yīng)用問題,這是學(xué)生固有的難題,主要是因?yàn)閼?yīng)用問題的題目冗長,學(xué)生很難根據(jù)問題情境構(gòu)建數(shù)學(xué)模型,缺乏解決實(shí)際問題的信心,為此我首先用一道題目簡潔、貼近生活的實(shí)例進(jìn)行引入,激發(fā)學(xué)生的求知欲,同時(shí)我借助多媒體課件的演示,引導(dǎo)學(xué)生真正走入問題的情境之中,并從中抽象出數(shù)學(xué)模型,從而消除畏難情緒,增強(qiáng)了信心。最后再形成應(yīng)用圓的標(biāo)準(zhǔn)方程解決實(shí)際問題的一般模式,并嘗試應(yīng)用該模式分析和解決第二個(gè)應(yīng)用問題——問題五。這樣的設(shè)計(jì),使學(xué)生在解決問題的同時(shí),形成了方法,難點(diǎn)自然突破。

 。ǘ⿲W(xué)生主體 教師主導(dǎo) 探究主線

  本節(jié)課的設(shè)計(jì)用問題做鏈,環(huán)環(huán)相扣,使學(xué)生的探究活動(dòng)貫穿始終。從圓的標(biāo)準(zhǔn)方程的推導(dǎo)到應(yīng)用都是在問題的指引、我的指導(dǎo)下,由學(xué)生探究完成的。另外,我重點(diǎn)設(shè)計(jì)了兩次思維發(fā)散點(diǎn),分別是問題二和問題四的第三問,要求學(xué)生分組討論,合作交流,為學(xué)生設(shè)立充分的探究空間,學(xué)生在交流成果的過程中,既體驗(yàn)了科學(xué)研究和真理發(fā)現(xiàn)的復(fù)雜與艱辛,又在我的適度引導(dǎo)、側(cè)面幫助、不斷肯定下順利完成了探究活動(dòng)并走向成功,在一個(gè)個(gè)問題的驅(qū)動(dòng)下,高效的完成本節(jié)的學(xué)習(xí)任務(wù)。

 。ㄈ┡囵B(yǎng)思維 提升能力 激勵(lì)創(chuàng)新

  為了培養(yǎng)學(xué)生的理性思維,我分別在問題一和問題四中,設(shè)計(jì)了兩次由特殊到一般的學(xué)習(xí)思路,培養(yǎng)學(xué)生的歸納概括能力。在問題的設(shè)計(jì)中,我利用一題多解的探究,縱向挖掘知識(shí)深度,橫向加強(qiáng)知識(shí)間的聯(lián)系,培養(yǎng)了學(xué)生的創(chuàng)新精神,并且使學(xué)生的有效思維量加大,隨時(shí)對所學(xué)知識(shí)和方法產(chǎn)生有意注意,使能力與知識(shí)的形成相伴而行。

  以上是我對這節(jié)課的教學(xué)預(yù)設(shè),具體的教學(xué)過程還要根據(jù)學(xué)生在課堂中的具體情況適當(dāng)調(diào)整,向生成性課堂進(jìn)行轉(zhuǎn)變。最后我以赫爾巴特的一句名言結(jié)束我的說課,發(fā)揮我們的創(chuàng)造性,力爭“使教育過程成為一種藝術(shù)的事業(yè)”。

高中數(shù)學(xué)說課稿13

  各位領(lǐng)導(dǎo)、專家、同仁:您們好!

  我說課的內(nèi)容是高中數(shù)學(xué)第二冊(上冊)第七章《直線和圓的方程》中的第六節(jié)“曲線和方程”的第一課時(shí),下面我的說課將從以下幾個(gè)方面進(jìn)行闡述:

  一、教材分析

  教材的地位和作用

  “曲線和方程”這節(jié)教材揭示了幾何中的形與代數(shù)中的數(shù)相統(tǒng)一的關(guān)系,為“作形判數(shù)”與“就數(shù)論形”的相互轉(zhuǎn)化開辟了途徑,這正體現(xiàn)了解析幾何這門課的基本思想,對全部解析幾何教學(xué)有著深遠(yuǎn)的影響。學(xué)生只有透徹理解了曲線和方程的意義,才算是尋得了解析幾何學(xué)習(xí)的入門之徑。如果以為學(xué)生不真正領(lǐng)悟曲線和方程的關(guān)系,照樣能求出方程、照樣能計(jì)算某些難題,因而可以忽視這個(gè)基本概念的教學(xué),這不能不說是一種“舍本逐題”的偏見,應(yīng)該認(rèn)識(shí)到這節(jié)“曲線和方程”的開頭課是解析幾何教學(xué)的“重頭戲”!

  根據(jù)以上分析,確立教學(xué)重點(diǎn)是:“曲線的方程”與“方程的曲線”的概念;難點(diǎn)是:怎樣利用定義驗(yàn)證曲線是方程的曲線,方程是曲線的方程。

  二、教學(xué)目標(biāo)

  根據(jù)教學(xué)大綱的要求以及本教材的地位和作用,結(jié)合高二學(xué)生的認(rèn)知特點(diǎn)確定教學(xué)目標(biāo)如下:

  知識(shí)目標(biāo):

  1、了解曲線上的點(diǎn)與方程的解之間的一一對應(yīng)關(guān)系;

  2、初步領(lǐng)會(huì)“曲線的方程”與“方程的曲線”的概念;

  3、學(xué)會(huì)根據(jù)已有的情景資料找規(guī)律,進(jìn)而分析、判斷、歸納結(jié)論;

  4、強(qiáng)化“形”與“數(shù)”一致并相互轉(zhuǎn)化的思想方法。

  能力目標(biāo):

  1、通過直線方程的引入,加強(qiáng)學(xué)生對方程的解和曲線上的點(diǎn)的一一對應(yīng)關(guān)系的認(rèn)識(shí);

  2、在形成曲線和方程的概念的教學(xué)中,學(xué)生經(jīng)歷觀察、分析、討論等數(shù)學(xué)活動(dòng)過程,探索出結(jié)論,并能有條理的'闡述自己的觀點(diǎn);

  3、能用所學(xué)知識(shí)理解新的概念,并能運(yùn)用概念解決實(shí)際問題,從中體會(huì)轉(zhuǎn)化化歸的思想方法,提高思維品質(zhì),發(fā)展應(yīng)用意識(shí)。

  情感目標(biāo):

  1、通過概念的引入,讓學(xué)生感受從特殊到一般的認(rèn)知規(guī)律;

  2、通過反例辨析和問題解決,培養(yǎng)合作交流、獨(dú)立思考等良好的個(gè)性品質(zhì),以及勇于批判、敢于創(chuàng)新的科學(xué)精神。

  三、重難點(diǎn)突破

  “曲線的方程”與“方程的曲線”的概念是本節(jié)的重點(diǎn),這是由于本節(jié)課是由直觀表象上升到抽象概念的過程,學(xué)生容易對定義中為什么要規(guī)定兩個(gè)關(guān)系產(chǎn)生困惑,原因是不理解兩者缺一都將擴(kuò)大概念的外延。由于學(xué)生已經(jīng)具備了用方程表示直線、拋物線等實(shí)際模型,積累了感性認(rèn)識(shí)的基礎(chǔ),所以可用舉反例的方法來解決困惑,通過反例揭示“兩者缺一”與直覺的矛盾,從而又促使學(xué)生對概念表述的嚴(yán)密性進(jìn)行探索,自然地得出定義。為了強(qiáng)化其認(rèn)識(shí),又決定用集合相等的概念來解釋曲線和方程的對應(yīng)關(guān)系,并以此為工具來分析實(shí)例,這將有助于學(xué)生的理解,有助于學(xué)生通其法,知其理。

  怎樣利用定義驗(yàn)證曲線是方程的曲線,方程是曲線的方程是本節(jié)的難點(diǎn)。因?yàn)閷W(xué)生在作業(yè)中容易犯想當(dāng)然的錯(cuò)誤,通常在由已知曲線建立方程的時(shí)候,不驗(yàn)證方程的解為坐標(biāo)的點(diǎn)在曲線上,就斷然得出所求的是曲線方程。這種現(xiàn)象在高考中也屢見不鮮。為了突破難點(diǎn),本節(jié)課設(shè)計(jì)了三種層次的問題,幻燈片9是概念的直接運(yùn)用,幻燈片10是概念的逆向運(yùn)用,幻燈片11是證明曲線的方程。通過這些例題讓學(xué)生再一次體會(huì)“二者”缺一不可。

  四、學(xué)情分析

  此前,學(xué)生已知,在建立了直角坐標(biāo)系后平面內(nèi)的點(diǎn)和有序?qū)崝?shù)對之間建立了一一對應(yīng)關(guān)系,已有了用方程(有時(shí)以函數(shù)式的形式出現(xiàn))表示曲線的感性認(rèn)識(shí)(特別是二元一次方程表示直線),現(xiàn)在要進(jìn)一步研究平面內(nèi)的曲線和含有兩個(gè)變數(shù)的方程之間的關(guān)系,是由直觀表象上升到抽象概念的過程,對學(xué)生有相當(dāng)大的難度。學(xué)生在學(xué)習(xí)時(shí)容易產(chǎn)生的問題是,不理解“曲線上的點(diǎn)的坐標(biāo)都是方程的解”和“以這個(gè)方程的解為坐標(biāo)的點(diǎn)都是曲線上的點(diǎn)”這兩句話在揭示“曲線和方程”關(guān)系時(shí)各自所起的作用。本節(jié)課的教學(xué)目標(biāo)也只能是初步領(lǐng)會(huì),要求學(xué)生能答出曲線和方程間必須滿足兩個(gè)關(guān)系時(shí)才能稱作“曲線的方程”和“方程的曲線”,兩者缺一不可,并能借助實(shí)例指出兩個(gè)關(guān)系的區(qū)別。

  五、教法分析

  新課程強(qiáng)調(diào)教師要調(diào)整自己的角色,改變傳統(tǒng)的教育方式,教師要由傳統(tǒng)意義上的知識(shí)的傳授者和學(xué)生的管理者,轉(zhuǎn)變?yōu)閷W(xué)生發(fā)展的促進(jìn)者和幫助者,簡單的教書匠轉(zhuǎn)變?yōu)閷?shí)踐的研究者,或研究的實(shí)踐者,在教育方式上,也要體現(xiàn)出以人為本,以學(xué)生為中心,讓學(xué)生真正成為學(xué)習(xí)的主人而不是知識(shí)的奴隸,基于此,本節(jié)課遵循了概念學(xué)習(xí)的四個(gè)基本步驟,重點(diǎn)采用了問題探究和啟發(fā)式相結(jié)合的教學(xué)方法。

  從實(shí)例、到類比、到推廣的問題探究,它對激發(fā)學(xué)生學(xué)習(xí)興趣,培養(yǎng)學(xué)習(xí)能力都十分有利。啟發(fā)引導(dǎo)學(xué)生得出概念,深化概念,并應(yīng)用它去討論、研究和解決問題。在生生合作,師生互動(dòng)中解決問題,為提高學(xué)生分析問題、解決問題的能力打下了基礎(chǔ)。

  利用多媒體輔助教學(xué),節(jié)省了時(shí)間,增大了信息量,增強(qiáng)了直觀形象性。

  六、學(xué)法分析

  基礎(chǔ)教育課程改革要求加強(qiáng)學(xué)習(xí)方式的改變,提倡學(xué)習(xí)方式的多樣化,各學(xué)科課程通過引導(dǎo)學(xué)生主動(dòng)參與,親身實(shí)踐,獨(dú)立思考,合作探究,發(fā)展學(xué)生搜集處理信息的能力,獲取新知識(shí)的能力,分析和解決問題的能力,以及交流合作的能力,基于此,本節(jié)課從實(shí)例引入→類比→推廣→得概念→概念挖掘深化→具體應(yīng)用→作業(yè)中的研究性問題的思考,始終讓學(xué)生主動(dòng)參與,親身實(shí)踐,獨(dú)立思考,與合作探究相結(jié)合,在生生合作,師生互動(dòng)中,使學(xué)生真正成為知識(shí)的發(fā)現(xiàn)者和知識(shí)的研究者。

  七、教學(xué)過程分析

  1、感性認(rèn)識(shí)階段——以舊帶新、提出課題

高中數(shù)學(xué)說課稿14

  課題:棱錐的概念和性質(zhì)(第一課時(shí)說課設(shè)計(jì)

  今天我說課的內(nèi)容是高二立體幾何(人教版)第九章第二章節(jié)第八小節(jié)《棱錐》的第一課時(shí):《棱錐的概念和性質(zhì)》。下面我就從教材分析、教法、學(xué)法和教學(xué)程序四個(gè)方面對本課的教學(xué)設(shè)計(jì)進(jìn)行說明。

  一、說教材

  1、本節(jié)在教材中的地位和作用:

  本節(jié)是棱柱的后續(xù)內(nèi)容,又是學(xué)習(xí)球的必要基礎(chǔ)。第一課時(shí)的教學(xué)目的是讓學(xué)生掌握棱錐的一些必要的基礎(chǔ)知識(shí),同時(shí)培養(yǎng)學(xué)生猜想、類比、比較、轉(zhuǎn)化的能力。著名的生物學(xué)家達(dá)爾文說:“最有價(jià)值的知識(shí)是關(guān)于方法和能力的知識(shí)”,因此,應(yīng)該利用這節(jié)課培養(yǎng)學(xué)生學(xué)習(xí)方法、提高學(xué)習(xí)能力。

  2.教學(xué)目標(biāo)確定:

  (1)能力訓(xùn)練要求

 、偈箤W(xué)生了解棱錐及其底面、側(cè)面、側(cè)棱、頂點(diǎn)、高的概念。

 、谑箤W(xué)生掌握截面的性質(zhì)定理,正棱錐的性質(zhì)及各元素間的關(guān)系式。

  (2)德育滲透目標(biāo)

 、倥囵B(yǎng)學(xué)生善于通過觀察分析實(shí)物形狀到歸納其性質(zhì)的能力。

 、谔岣邔W(xué)生對事物的感性認(rèn)識(shí)到理性認(rèn)識(shí)的能力。

  ③培養(yǎng)學(xué)生“理論源于實(shí)踐,用于實(shí)踐”的觀點(diǎn)。

  3.教學(xué)重點(diǎn)、難點(diǎn)確定:

  點(diǎn):1.棱錐的截面性質(zhì)定理2.正棱錐的性質(zhì)。

  點(diǎn):培養(yǎng)學(xué)生善于比較,從比較中發(fā)現(xiàn)事物與事物的區(qū)別。

  二、說教學(xué)方法和手段

  1、教法:

  “以學(xué)生參與為標(biāo)志,以啟迪學(xué)生思維,培養(yǎng)學(xué)生創(chuàng)新能力為核心”。

  在教學(xué)中根據(jù)高中生心理特點(diǎn)和教學(xué)進(jìn)度需要,設(shè)置一些啟發(fā)性題目,采用啟發(fā)式誘導(dǎo)法,講

  練結(jié)合,發(fā)揮教師主導(dǎo)作用,體現(xiàn)學(xué)生主體地位。

  2、教學(xué)手段:

  根據(jù)《教學(xué)大綱》中“堅(jiān)持啟發(fā)式,反對注入式”的教學(xué)要求,針對本節(jié)課概念性強(qiáng),思維量大,整節(jié)課以啟發(fā)學(xué)生觀察思考、分析討論為主,采用“多媒體引導(dǎo)點(diǎn)撥”的教學(xué)方法以多媒體演示為載體,以“引導(dǎo)思考”為核心,設(shè)計(jì)課件展示,并引導(dǎo)學(xué)生沿著積極的思維方向,逐步達(dá)到即定的教學(xué)目標(biāo),發(fā)展學(xué)生的邏輯思維能力;學(xué)生在教師營造的“可探索”的環(huán)境里,積極參與,生動(dòng)活潑地獲取知識(shí),掌握規(guī)律、主動(dòng)發(fā)現(xiàn)、積極探索。

  三、說學(xué)法:

  這節(jié)課的核心是棱錐的截面性質(zhì)定理,.正棱錐的性質(zhì)。教學(xué)的指導(dǎo)思想是:遵循由已知(棱柱)探究未知(棱錐)、由一般(棱錐)到特殊(正棱錐)的認(rèn)識(shí)規(guī)律,啟發(fā)學(xué)生反復(fù)思考,不斷內(nèi)化成為自己的認(rèn)知結(jié)構(gòu)。

  四、學(xué)程序:

  [復(fù)習(xí)引入新課]

  1.棱柱的性質(zhì):(1)側(cè)棱都相等,側(cè)面是平行四邊形

 。2)兩個(gè)底面與平行于底面的截面是全等的多邊形

 。3)過不相鄰的兩條側(cè)棱的截面是平行四邊形

  2.幾個(gè)重要的四棱柱:平行六面體、直平行六面體、長方體、正方體

  思考:如果將棱柱的上底面給縮小成一個(gè)點(diǎn),那么我們得到的將會(huì)是什么樣的體呢?

  [講授新課]

  1、棱錐的基本概念

 。1).棱錐及其底面、側(cè)面、側(cè)棱、頂點(diǎn)、高、對角面的`概念

 。2).棱錐的表示方法、分類

  2、棱錐的性質(zhì)

  (1).截面性質(zhì)定理:如果棱錐被平行于底面的平面所截,那么截面和底面相似,并且它們面積的比等于截得的棱錐的高與已知棱錐的高的平方比

  已知:如圖(略),在棱錐S-AC中,SH是高,截面A’B’C’D’E’平行于底面,并與SH交于H’。

  證明:(略)

  引申:如果棱錐被平行于底面的平面所截,則截得的小棱錐與已知棱錐

  的側(cè)面積比也等于它們對應(yīng)高的平方比、等于它們的底面積之比。

  (2).正棱錐的定義及基本性質(zhì):

  正棱錐的定義:①底面是正多邊形

 、陧旤c(diǎn)在底面的射影是底面的中心

 、俑鱾(cè)棱相等,各側(cè)面是全等的等腰三角形;各等腰三角形底邊上的高相等,它們叫做正棱錐的斜高;

 、诶忮F的高、斜高和斜高在底面內(nèi)的射影組成一個(gè)直角三角形;

  棱錐的高、側(cè)棱和側(cè)棱在底面內(nèi)的射影也組成一個(gè)直角三角形

  引申:①正棱錐的側(cè)棱與底面所成的角都相等;

 、谡忮F的側(cè)面與底面所成的二面角相等;

  (3)正棱錐的各元素間的關(guān)系

  下面我們結(jié)合圖形,進(jìn)一步探討正棱錐中各元素間的關(guān)系,為研究方便將課本圖9-74(略)正棱錐中的棱錐S-OBM從整個(gè)圖中拿出來研究。

  引申:

 、儆^察圖中三棱錐S-OBM的側(cè)面三角形狀有何特點(diǎn)?

 。ǹ勺C得∠SOM=∠SOB=∠SMB=∠OMB=900,所

  以側(cè)面全是直角三角形。)

 、谌舴謩e假設(shè)正棱錐的高SO=h,斜高SM=h’,底面邊長的一半BM=a/2,底面正多邊形外接圓半徑OB=R,內(nèi)切圓半徑OM=r,側(cè)棱SB=L,側(cè)面與底面的二面角∠SMO=α,側(cè)棱與底面組成的角∠SBO=β,∠BOM=1800/n(n為底面正多邊形的邊數(shù))請?jiān)囃ㄟ^三角形得出以上各元素間的關(guān)系式。

 。ㄕn后思考題)

  [例題分析]

  例1.若一個(gè)正棱錐每一個(gè)側(cè)面的頂角都是600,則這個(gè)棱錐一定不是()

  A.三棱錐B.四棱錐C.五棱錐D.六棱錐

 。ù鸢福篋)

  例2如圖已知正三棱錐S-ABC的高SO=h,斜高SM=L,求經(jīng)過SO的中點(diǎn)且平行于底面的截面△A’B’C’的面積。

  ﹙解析及圖略﹚

  3已知正四棱錐的棱長和底面邊長均為a,求:

 。1)側(cè)面與底面所成角α的余弦(2)相鄰兩個(gè)側(cè)面所成角β的余弦

  ﹙解析及圖略﹚

  [課堂練習(xí)]

  1、知一個(gè)正六棱錐的高為h,側(cè)棱為L,求它的底面邊長和斜高。

  ﹙解析及圖略﹚

  2、錐被平行與底面的平面所截,若截面面積與底面面積之比為1∶2,求此棱錐的高被分成的兩段(從頂點(diǎn)到截面和從截面到底面)之比。

  ﹙解析及圖略﹚

  [課堂小結(jié)]

  一:棱錐的基本概念及表示、分類

  二:棱錐的性質(zhì)

高中數(shù)學(xué)說課稿15

  一、說教材:

  1、教材的地位與作用

  導(dǎo)數(shù)是微積分的核心概念之一,它為研究函數(shù)提供了有效的方法. 在前面幾節(jié)課里學(xué)生對導(dǎo)數(shù)的概念已經(jīng)有了充分的認(rèn)識(shí),本節(jié)課教材從形的角度即割線入手,用形象直觀的“逼近”方法定義了切線,獲得導(dǎo)數(shù)的幾何意義,更有利于學(xué)生理解導(dǎo)數(shù)概念的本質(zhì)內(nèi)涵. 這節(jié)課可以利用幾何畫板進(jìn)行動(dòng)畫演示,讓學(xué)生通過觀察、思考、發(fā)現(xiàn)、思維、運(yùn)用形成完整概念. 通過本節(jié)的學(xué)習(xí),可以幫助學(xué)生更好的體會(huì)導(dǎo)數(shù)是研究函數(shù)的單調(diào)性、變化快慢等性質(zhì)最有效的工具,是本章的關(guān)鍵內(nèi)容。

  2、教學(xué)的重點(diǎn)、難點(diǎn)、關(guān)鍵

  教學(xué)重點(diǎn):導(dǎo)數(shù)的幾何意義、切線方程的求法以及“數(shù)形結(jié)合,逼近”的思想方法。

  教學(xué)難點(diǎn):理解導(dǎo)數(shù)的幾何意義的本質(zhì)內(nèi)涵

  1) 從割線到切線的過程中采用的逼近方法;

  2) 理解導(dǎo)數(shù)的概念,將多方面的意義聯(lián)系起來,例如,導(dǎo)數(shù)反映了函數(shù)f(x)在點(diǎn)x附近的變化快慢,導(dǎo)數(shù)是曲線上某點(diǎn)切線的斜率,等等.

  二、說教學(xué)目標(biāo):

  根據(jù)新課程標(biāo)準(zhǔn)的要求、學(xué)生的認(rèn)知水平,確定教學(xué)目標(biāo)如下:

  1、知識(shí)與技能 :

  通過實(shí)驗(yàn)探求理解導(dǎo)數(shù)的幾何意義,理解曲線在一點(diǎn)的切線的概念,會(huì)求簡單函數(shù)在某點(diǎn)的切線方程。

  過程與方法:

  經(jīng)歷切線定義的形成過程,培養(yǎng)學(xué)生分析、抽象、概括等思維能力;體會(huì)導(dǎo)數(shù)的思想及內(nèi)涵,完善對切線的認(rèn)識(shí)和理解

  通過逼近、數(shù)形結(jié)合思想的具體運(yùn)用,使學(xué)生達(dá)到思維方式的遷移,了解科學(xué)的思維方法。

  3、情感態(tài)度與價(jià)值觀:

  滲透逼近、數(shù)形結(jié)合、以直代曲等數(shù)學(xué)思想,激發(fā)學(xué)生學(xué)習(xí)興趣,引導(dǎo)學(xué)生領(lǐng)悟特殊與一般、有限與無限,量變與質(zhì)變的辯證關(guān)系,感受數(shù)學(xué)的統(tǒng)一美,意識(shí)到數(shù)學(xué)的應(yīng)用價(jià)值

  三、說教法與學(xué)法

  對于直線來說它的導(dǎo)數(shù)就是它的`斜率,學(xué)生會(huì)很自然的思考導(dǎo)數(shù)在函數(shù)圖像上是不是有很特殊的幾何意義。而且剛剛學(xué)過了圓錐曲線,學(xué)生對曲線的切線的概念也有了一些認(rèn)識(shí),基于以上學(xué)情分析,我確定下列教法:

  教法:從圓的切線的定義引入本課,再引導(dǎo)學(xué)生討論一般曲線的切線的定義,通過幾何畫板的動(dòng)畫演示,得出曲線的切線的“逼近”法的定義.同樣通過幾何畫板的實(shí)驗(yàn)觀察得到導(dǎo)數(shù)的幾何意義和直觀感知“逼近”的數(shù)學(xué)思想.因此,我采用實(shí)驗(yàn)觀察法、探究性研究教學(xué)和信息技術(shù)輔助教學(xué)法相結(jié)合,以突出重點(diǎn)和突破難點(diǎn);

  學(xué)法:為了發(fā)揮學(xué)生的主觀能動(dòng)性,提高學(xué)生的綜合能力,本節(jié)課采取了

  自主 、合作、探究的學(xué)習(xí)方法。

  教具: 幾何畫板、幻燈片

  四、說教學(xué)程序

  1.創(chuàng)設(shè)情境

  學(xué)生活動(dòng)——問題系列

  問題1 平面幾何中我們是怎樣判斷直線是否是圓的割線或切線的呢?

  問題2 如圖直線l是曲線C的切線嗎?

  (1)與 (2)與 還有直線與雙曲線的位置關(guān)系

  問題3 那么對于一般的曲線,切線該如何定義呢?

  【設(shè)計(jì)意圖】:通過類比構(gòu)建認(rèn)知沖突。

  學(xué)生活動(dòng)——復(fù)習(xí)回顧

  導(dǎo)數(shù)的定義

  【設(shè)計(jì)意圖】:從理論和知識(shí)基礎(chǔ)兩方面為本節(jié)課作鋪墊。

  2.探索求知

  學(xué)生活動(dòng)——試驗(yàn)探究

  問一;求導(dǎo)數(shù)的步驟是怎樣的?

  第一步:求平均變化率;第二步:當(dāng)趨近于0時(shí),平均變化率無限趨近于的常數(shù)就是。

  【設(shè)計(jì)意圖】:這是從“數(shù)”的角度描述導(dǎo)數(shù),為探究導(dǎo)數(shù)的幾何意義做準(zhǔn)備。

  問二;你能借助圖像說說平均變化率表示什么嗎?請?jiān)诤瘮?shù)圖像中畫出來。

  【設(shè)計(jì)意圖】:通過學(xué)生動(dòng)手實(shí)踐得到平均變化率表示割線PQ的斜率。

  問三;在的過程中,你能描述一下割線PQ的變化情況嗎?請?jiān)趫D像中畫出來。

  【設(shè)計(jì)意圖】:分別從“數(shù)”和“形”的角度描述的過程情況。從數(shù)的角度看,,Q();從形的角度看, 的過程中,Q點(diǎn)向P點(diǎn)無限趨近,割線PQ趨近于確定的位置,這個(gè)位置的直線叫做曲線在 處的切線。

  探究一:學(xué)生通過幾何畫板的演示觀察割線的變化趨勢,教師引導(dǎo)給出一般曲線的切線定義。

  【設(shè)計(jì)意圖】: 借助多媒體教學(xué)手段引導(dǎo)學(xué)生發(fā)現(xiàn)導(dǎo)數(shù)的幾何意義,使問題變得直觀,易于突破難點(diǎn);學(xué)生在過程中,可以體會(huì)逼近的思想方法。能夠同時(shí)從數(shù)與形兩個(gè)角度強(qiáng)化學(xué)生對導(dǎo)數(shù)概念的理解。

  問四;你能從上述過程中概括出函數(shù)在處的導(dǎo)數(shù)的幾何意義嗎?

  【設(shè)計(jì)意圖】:引導(dǎo)學(xué)生發(fā)現(xiàn)并說出:,割線PQ切線PT,所以割線

  PQ的斜率切線PT的斜率。因此,=切線PT的斜率。

  五、教學(xué)評價(jià)

  1、通過學(xué)生參加活動(dòng)是否積極主動(dòng),能否與他人合作探索,對學(xué)生的學(xué)習(xí)過程評價(jià);

  2、通過學(xué)生對方法的選擇,對學(xué)生的學(xué)習(xí)能力評價(jià);

  3、通過練習(xí)、課后作業(yè),對學(xué)生的學(xué)習(xí)效果評價(jià).

  4、教學(xué)中,學(xué)生以研究者的身份學(xué)習(xí),在問題解決的過程中,通過自身的體驗(yàn)對知識(shí)的認(rèn)識(shí)從模糊到清晰,從直觀感悟到精確掌握;

  5、本節(jié)課設(shè)計(jì)目標(biāo)力求使學(xué)生體會(huì)微積分的基本思想,感受近似與精確的統(tǒng)一,運(yùn)動(dòng)和靜止的統(tǒng)一,感受量變到質(zhì)變的轉(zhuǎn)化。希望利用這節(jié)課滲透辨證法的思想精髓.

【高中數(shù)學(xué)說課稿】相關(guān)文章:

高中數(shù)學(xué)《集合》說課稿07-22

高中數(shù)學(xué)說課稿07-09

高中數(shù)學(xué)說課稿范文11-02

高中數(shù)學(xué)《向量》說課稿范文02-15

關(guān)于高中數(shù)學(xué)說課稿11-26

精選高中數(shù)學(xué)說課稿四篇01-15

高中數(shù)學(xué)說課稿六篇01-23

高中數(shù)學(xué)說課稿4篇01-09

高中數(shù)學(xué)說課稿三篇01-09

【精選】高中數(shù)學(xué)說課稿四篇01-14