當(dāng)前位置:育文網(wǎng)>教學(xué)文檔>說課稿> 高中數(shù)學(xué)說課稿

高中數(shù)學(xué)說課稿

時(shí)間:2022-02-23 14:14:50 說課稿 我要投稿

精選高中數(shù)學(xué)說課稿匯總6篇

  作為一位優(yōu)秀的人民教師,常常要根據(jù)教學(xué)需要編寫說課稿,說課稿有助于提高教師理論素養(yǎng)和駕馭教材的能力。說課稿應(yīng)該怎么寫才好呢?以下是小編為大家收集的高中數(shù)學(xué)說課稿6篇,希望對(duì)大家有所幫助。

精選高中數(shù)學(xué)說課稿匯總6篇

高中數(shù)學(xué)說課稿 篇1

  一、教學(xué)目標(biāo)

  1.掌握任意角的正弦、余弦、正切函數(shù)的定義(包括定義域、正負(fù)符號(hào)判斷);了解任意角的余切、正割、余割函數(shù)的定義.

  2.經(jīng)歷從銳角三角函數(shù)定義過度到任意角三角函數(shù)定義的推廣過程,體驗(yàn)三角函數(shù)概念的產(chǎn)生、發(fā)展過程.領(lǐng)悟直角坐標(biāo)系的工具功能,豐富數(shù)形結(jié)合的經(jīng)驗(yàn).

  3.培養(yǎng)學(xué)生通過現(xiàn)象看本質(zhì)的唯物主義認(rèn)識(shí)論觀點(diǎn),滲透事物相互聯(lián)系、相互轉(zhuǎn)化的辯證唯物主義世界觀.

  4.培養(yǎng)學(xué)生求真務(wù)實(shí)、實(shí)事求是的科學(xué)態(tài)度.

  二、重點(diǎn)、難點(diǎn)、關(guān)鍵

  重點(diǎn):任意角的正弦、余弦、正切函數(shù)的定義、定義域、(正負(fù))符號(hào)判斷法.

  難點(diǎn):把三角函數(shù)理解為以實(shí)數(shù)為自變量的函數(shù).

  關(guān)鍵:如何想到建立直角坐標(biāo)系;六個(gè)比值的確定性(α確定,比值也隨之確定)與依賴性(比值隨著α的變化而變化).

  三、教學(xué)理念和方法

  教學(xué)中注意用新課程理念處理傳統(tǒng)教材,學(xué)生的數(shù)學(xué)學(xué)習(xí)活動(dòng)不僅要接受、記憶、模仿和練習(xí),而且要自主探索、動(dòng)手實(shí)踐、合作交流、閱讀自學(xué),師生互動(dòng),教師發(fā)揮組織者、引導(dǎo)者、合作者的作用,引導(dǎo)學(xué)生主體參與、揭示本質(zhì)、經(jīng)歷過程.

  根據(jù)本節(jié)課內(nèi)容、高一學(xué)生認(rèn)知特點(diǎn)和我自己的教學(xué)風(fēng)格,本節(jié)課采用"啟發(fā)探索、講練結(jié)合"的方法組織教學(xué).

  四、教學(xué)過程

  [執(zhí)教線索:

  回想再認(rèn):函數(shù)的概念、銳角三角函數(shù)定義(銳角三角形邊角關(guān)系)--問題情境:能推廣到任意角嗎?--它山之石:建立直角坐標(biāo)系(為何?)--優(yōu)化認(rèn)知:用直角坐標(biāo)系研究銳角三角函數(shù)--探索發(fā)展:對(duì)任意角研究六個(gè)比值(與角之間的關(guān)系:確定性、依賴性,滿足函數(shù)定義嗎?)--自主定義:任意角三角函數(shù)定義--登高望遠(yuǎn):三角函數(shù)的要素分析(對(duì)應(yīng)法則、定義域、值域與正負(fù)符號(hào)判定)--例題與練習(xí)--回顧小結(jié)--布置作業(yè)]

 。ㄒ唬⿵(fù)習(xí)引入、回想再認(rèn)

  開門見山,面對(duì)全體學(xué)生提問:

  在初中我們初步學(xué)習(xí)了銳角三角函數(shù),前幾節(jié)課,我們把銳角推廣到了任意角,學(xué)習(xí)了角度制和弧度制,這節(jié)課該研究什么呢?

  探索任意角的三角函數(shù)(板書課題),請(qǐng)同學(xué)們回想,再明確一下:

  (情景1)什么叫函數(shù)?或者說函數(shù)是怎樣定義的?

  讓學(xué)生回想后再點(diǎn)名回答,投影顯示規(guī)范的定義,教師根據(jù)回答情況進(jìn)行修正、強(qiáng)調(diào):

  傳統(tǒng)定義:設(shè)在一個(gè)變化過程中有兩個(gè)變量x與y,如果對(duì)于x的每一個(gè)值,y都有唯一確定的值和它對(duì)應(yīng),那么就說y是x的函數(shù),x叫做自變量,自變量x的取值范圍叫做函數(shù)的定義域.

  現(xiàn)代定義:設(shè)A、B是非空的數(shù)集,如果按某個(gè)確定的對(duì)應(yīng)關(guān)系f,使對(duì)于集合A中的任意一個(gè)數(shù),在集合B中都有唯一確定的數(shù)f(x)和它對(duì)應(yīng),那么就稱映射?:A→B為從集合A到集合B的一個(gè)函數(shù),記作:y=f(x),x∈A,其中x叫自變量,自變量x的取值范圍A叫做函數(shù)的定義域.

  設(shè)計(jì)意圖:

  函數(shù)和三角函數(shù)是一般和特殊的關(guān)系,是共性和個(gè)性的關(guān)系,學(xué)生已經(jīng)學(xué)習(xí)了函數(shù)的概念,因此對(duì)三角函數(shù)的學(xué)習(xí)就是一個(gè)從一般到特殊的演繹的過程,也是以具體函數(shù)豐富函數(shù)概念的過程.教學(xué)經(jīng)驗(yàn)表明:學(xué)生對(duì)函數(shù)兩種定義的記憶是有一定困難的,容易遺忘,此處讓學(xué)生對(duì)函數(shù)概念進(jìn)行回想再認(rèn),目的在于明確函數(shù)概念的本質(zhì),為演繹學(xué)習(xí)任意角三角函數(shù)概念作好知識(shí)和認(rèn)知準(zhǔn)備.

 。ㄇ榫2)我們?cè)诔踔型ㄟ^銳角三角形的邊角關(guān)系,學(xué)習(xí)了銳角的正弦、余弦、正切等三個(gè)三角函數(shù).請(qǐng)回想:這三個(gè)三角函數(shù)分別是怎樣規(guī)定的?

  學(xué)生口述后再投影展示,教師再根據(jù)投影進(jìn)行強(qiáng)調(diào):

  設(shè)計(jì)意圖:

  學(xué)生在初中學(xué)習(xí)了銳角的三角函數(shù)概念,現(xiàn)在學(xué)習(xí)任意角的三角函數(shù),又是一種推廣和拓展的過程(類似于從有理數(shù)到實(shí)數(shù)的擴(kuò)展).溫故知新,要讓學(xué)生體會(huì)知識(shí)的產(chǎn)生、發(fā)展過程,就要從源頭上開始,從學(xué)生現(xiàn)有認(rèn)知狀況開始,對(duì)銳角三角函數(shù)的復(fù)習(xí)就必不可少.

 。ǘ┮熹亯|、創(chuàng)設(shè)情景

  (情景3)我們已經(jīng)把銳角推廣到了任意角,銳角的三角函數(shù)概念也能推廣到任意角嗎?試試看,可以獨(dú)立思考和探索,也可以互相討論!

  留時(shí)間讓學(xué)生獨(dú)立思考或自由討論,教師參與討論或巡回對(duì)學(xué)困生作啟發(fā)引導(dǎo).

  能推廣嗎?怎樣推廣?針對(duì)剛才的問題點(diǎn)名讓學(xué)生回答.用角的對(duì)邊、臨邊、斜邊比值的說法顯然是受到阻礙了,由于4.1節(jié)已經(jīng)以直角坐標(biāo)系為工具來研究任意角了,學(xué)生一般會(huì)想到(否則教師進(jìn)行提示)繼續(xù)用直角坐標(biāo)系來研究任意角的三角函數(shù).

  設(shè)計(jì)意圖:

  從學(xué)生現(xiàn)有知識(shí)水平和認(rèn)知能力出發(fā),創(chuàng)設(shè)問題情景,讓學(xué)生產(chǎn)生認(rèn)知沖突,進(jìn)行必要的啟發(fā),將學(xué)生思維引上自主探索、合作交流的"再創(chuàng)造"征程.

  教師對(duì)學(xué)生回答情況進(jìn)行點(diǎn)評(píng)后布置任務(wù)情景:請(qǐng)同學(xué)們用直角坐標(biāo)系重新研究銳角三角函數(shù)定義!

  師生共做(學(xué)生口述,教師板書圖形和比值):

  把銳角α安裝(如何安裝?角的頂點(diǎn)與原點(diǎn)重合,角的始邊與x軸非負(fù)半軸重合)在直角坐標(biāo)系中,在角α終邊上任取一點(diǎn)P,作Pm⊥x軸于m,構(gòu)造一個(gè)RtΔomP,則∠moP=α(銳角),設(shè)P(x,y)(x>0、y>0),α的臨邊om=x、對(duì)邊mP=y,斜邊長|oP∣=r.

  根據(jù)銳角三角函數(shù)定義用x、y、r列出銳角α的正弦、余弦、正切三個(gè)比值,并補(bǔ)充對(duì)應(yīng)列出三個(gè)倒數(shù)比值:

  設(shè)計(jì)意圖:

  此處做法簡單,思想重要.為了順利實(shí)現(xiàn)推廣,可以構(gòu)建中間橋梁或公共載體,使之既與初中的定義一致,又能自然地遷移到任意角的情形.由于前一節(jié)已經(jīng)以直角坐標(biāo)系為工具來研究任意角了,學(xué)生自然能想到仍然以直角坐標(biāo)系為工具來研究任意角的三角函數(shù).初中以直角三角形邊角關(guān)系來定義銳角三角函數(shù),現(xiàn)在要用坐標(biāo)系來研究,探索的結(jié)論既要滿足任意角的情形,又要包容初中銳角三角函數(shù)定義.這是一個(gè)認(rèn)識(shí)的飛躍,是理解任意角三角函數(shù)概念的關(guān)鍵之一,也是數(shù)學(xué)發(fā)現(xiàn)的重要思想和方法,屬于策略性知識(shí),能夠形成遷移能力,為學(xué)生在以后學(xué)習(xí)中對(duì)某些知識(shí)進(jìn)行推廣拓展奠定了基礎(chǔ)(譬如從平面向量到空間向量的擴(kuò)展,從實(shí)數(shù)到復(fù)數(shù)的擴(kuò)展等).

 。ㄇ榫4)各個(gè)比值與角之間有怎樣的關(guān)系?比值是角的函數(shù)嗎?

  追問:銳角α大小發(fā)生變化時(shí),比值會(huì)改變嗎?

  先讓學(xué)生想象思考,作出主觀判斷,再用幾何畫板動(dòng)畫演示,同時(shí)作好解釋說明:保持r不變,讓P繞原點(diǎn)o旋轉(zhuǎn)即α在銳角范圍內(nèi)變化,六個(gè)比值隨之變化的直觀形象。結(jié)論是:比值隨α的變化而變化.

  引導(dǎo)學(xué)生觀察圖3,聯(lián)系相似三角形知識(shí),

  探索發(fā)現(xiàn):

  對(duì)于銳角α的每一個(gè)確定值,六個(gè)比值都是

  確定的,不會(huì)隨P在終邊上的移動(dòng)而變化.

  得出結(jié)論(強(qiáng)調(diào)):當(dāng)α為銳角時(shí),六個(gè)比值隨α的變化而變化;但對(duì)于銳角α的每一個(gè)確定值,六個(gè)比值都是確定的,不會(huì)隨P在終邊上的移動(dòng)而變化.所以,六個(gè)比值分別是以角α為自變量、以比值為函數(shù)值的函數(shù).

  設(shè)計(jì)意圖:

  初中學(xué)生對(duì)函數(shù)理解較膚淺,這里在學(xué)生思維的最近發(fā)展區(qū)進(jìn)一步研究初中學(xué)過的銳角三角函數(shù),在思維上更上了一個(gè)層次,扣準(zhǔn)函數(shù)概念的內(nèi)涵,突出變量之間的依賴關(guān)系或?qū)?yīng)關(guān)系,是從函數(shù)知識(shí)演繹到三角函數(shù)知識(shí)的主要依據(jù),是準(zhǔn)確理解三角函數(shù)概念的關(guān)鍵,也是在認(rèn)知上把三角函數(shù)知識(shí)納入函數(shù)知識(shí)結(jié)構(gòu)的關(guān)鍵.這樣做能夠使學(xué)生有效地增強(qiáng)函數(shù)觀念.

 。ㄈ┓治鰵w納、自主定義

 。ㄇ榫5)能將銳角的比值情形推廣到任意角α嗎?

  水到渠成,師生共同進(jìn)行探索和推廣:

  對(duì)于一個(gè)任意角α,它的終邊所在位置包括下列兩類共八種情形(投影展示并作分析):

  終邊分別在四個(gè)象限的情形:終邊分別在四個(gè)半軸上的情形:

 ;

 。ㄖ赋觯翰划嫵鼋堑姆较颍砻鹘蔷哂腥我庑裕

  怎樣刻畫任意角的三角函數(shù)呢?研究它的六個(gè)比值:

  (板書)設(shè)α是一個(gè)任意角,在α終邊上除原點(diǎn)外任意取一點(diǎn)P(x,y),P與原點(diǎn)o之間的距離記作r(r=>0),列出六個(gè)比值:

  α=kππ/2時(shí),x=0,比值y/x、r/x無意義;

  α=kπ時(shí),y=0,比值x/y、r/y無意義.

  追問:α大小發(fā)生變化時(shí),比值會(huì)改變嗎?

  先讓學(xué)生想象思考,作出主觀判斷,再用幾何畫板動(dòng)畫演示,同時(shí)作好解釋說明:使r保持不變,P繞原點(diǎn)o逆時(shí)針、順時(shí)針旋轉(zhuǎn)即角α變化,六個(gè)比值隨之改變的直觀形象。結(jié)論是:各比值隨α的變化而變化.

  再引導(dǎo)學(xué)生利用相似三角形知識(shí),探索發(fā)現(xiàn):對(duì)于任意角α的每一個(gè)確定值,六個(gè)比值都是確定的,不會(huì)隨P在終邊上的移動(dòng)而變化.

  綜上得到(強(qiáng)調(diào)):當(dāng)角α變化時(shí),六個(gè)比值隨之變化;對(duì)于確定的角α,六個(gè)比值(如果存在的話)都不會(huì)隨P在角α終邊上的改變而改變,六個(gè)比值是確定的(對(duì)應(yīng)的多值性即誘導(dǎo)公式一留到下節(jié)課分析).

  因此,六個(gè)比值分別是以角α為自變量、以比值為函數(shù)值的函數(shù).

  根據(jù)歷史上的規(guī)定,對(duì)比值進(jìn)行命名,指出英文記法和讀法,記作(承前作復(fù)合板書):

  =sinα(正弦)=cosα(余弦)=tanα(正切)

  =cscα(余割)=sec(正弦)=cotα(余切)

  教師強(qiáng)調(diào):sinα表示sin與α的乘積嗎?不是,sinα是函數(shù)記號(hào),是一個(gè)整體,相當(dāng)于函數(shù)記號(hào)f(x).其它幾個(gè)三角函數(shù)也如此

  投影顯示圖六,指導(dǎo)學(xué)生分析其對(duì)應(yīng)關(guān)系,進(jìn)一步體會(huì)其函數(shù)內(nèi)涵:

 。▓D六)

  指導(dǎo)學(xué)生識(shí)記六個(gè)比值及函數(shù)名稱.

  教師指出:正弦、余弦、正切、余切、正割、余割六個(gè)函數(shù)統(tǒng)稱為三角函數(shù),三角函數(shù)有非常豐富的知識(shí)和思想方法,我們以后主要學(xué)習(xí)正弦、余弦、正切三個(gè)函數(shù)的相關(guān)知識(shí)和方法,對(duì)于余切、正割、余割,只要同學(xué)們了解它們的定義就夠了(遵循大綱要求).

  引導(dǎo)學(xué)生進(jìn)一步分析理解:

  已知角的集合與實(shí)數(shù)集之間可以建立一一對(duì)應(yīng)關(guān)系,對(duì)于每一個(gè)確定的實(shí)數(shù),把它看成一個(gè)弧度數(shù),就對(duì)應(yīng)著唯一的一個(gè)角,從而分別對(duì)應(yīng)著六個(gè)唯一的三角函數(shù)值.因此,(板書)三角函數(shù)可以看成是以實(shí)數(shù)為自變量的函數(shù),這將為以后的應(yīng)用帶來很多方便.

  設(shè)計(jì)意圖:

  把角的終邊分別在四個(gè)象限、四條半軸上的情形全作出來,有利于對(duì)任意性的全面把握.明確比值存在與否的條件,為確定函數(shù)定義域作準(zhǔn)備.動(dòng)畫演示比值與角之間的依賴性與確定性關(guān)系,深化理解三角函數(shù)內(nèi)涵.引導(dǎo)學(xué)生在理解的基礎(chǔ)上自主地對(duì)三角函數(shù)作出明確定義,是本節(jié)課的中心任務(wù).由于學(xué)生剛學(xué)弧度制,對(duì)弧度制的理解有待于在以后的.學(xué)習(xí)應(yīng)用中逐步感悟,因此部分學(xué)生對(duì)"三角函數(shù)可以看成是以實(shí)數(shù)為自變量的函數(shù)"的理解有半信半疑之感,有待通過后續(xù)的應(yīng)用加深理解.

 。ㄋ模┨剿鞫x域

 。ㄇ榫6)(1)函數(shù)概念的三要素是什么?

  函數(shù)三要素:對(duì)應(yīng)法則、定義域、值域.

  正弦函數(shù)sinα的對(duì)應(yīng)法則是什么?

  正弦函數(shù)sinα的對(duì)應(yīng)法則,實(shí)質(zhì)上就是sinα的定義:對(duì)α的每一個(gè)確定的值,有唯一確定的比值y/r與之對(duì)應(yīng),即α→y/r=sinα.

  (2)布置任務(wù)情景:什么是三角函數(shù)的定義域?請(qǐng)求出六個(gè)三角函數(shù)的定義域,填寫下表:

  三角函數(shù)

  sinα

  cosα

  tanα

  cotα

  cscα

  secα

  定義域

  引導(dǎo)學(xué)生自主探索:

  如果沒有特別說明,那么使解析式有意義的自變量的取值范圍叫做函數(shù)的定義域,三角函數(shù)的定義域自然是指:使比值有意義的角α的取值范圍.

  關(guān)于sinα=y/r、cosα=x/r,對(duì)于任意角α(弧度數(shù)),r>0,y/r、x/r恒有意義,定義域都是實(shí)數(shù)集R.

  對(duì)于tanα=y/x,α=kππ/2時(shí)x=0,y/x無意義,tanα的定義域是:{α|α∈R,且α≠kππ/2}..........

  教師指出:sinα、cosα、tanα的定義域必須緊扣三角函數(shù)定義在理解的基礎(chǔ)上記熟,cotα、cscα、secα的定義域不要求記憶.

 。P(guān)于值域,到后面再學(xué)習(xí)).

  設(shè)計(jì)意圖:

  定義域是函數(shù)三要素之一,研究函數(shù)必須明確定義域.指導(dǎo)學(xué)生根據(jù)定義自主探索確定三角函數(shù)定義域,有利于在理解的基礎(chǔ)上記住它、應(yīng)用它,也增進(jìn)對(duì)三角函數(shù)概念的掌握.

 。ㄎ澹┓(hào)判斷、形象識(shí)記

  (情景7)能判斷三角函數(shù)值的正、負(fù)嗎?試試看!

  引導(dǎo)學(xué)生緊緊抓住三角函數(shù)定義來分析,r>0,三角函數(shù)值的符號(hào)決定于x、y值的正負(fù),根據(jù)終邊所在位置總結(jié)出形象的識(shí)記口訣:

  (同好得正、異號(hào)得負(fù))

  sinα=y/r:上正下負(fù)橫為0cosα=x/r:左負(fù)右正縱為0tanα=y/x:交叉正負(fù)

  設(shè)計(jì)意圖:

  判斷三角函數(shù)值的正負(fù)符號(hào),是本章教材的一項(xiàng)重要的知識(shí)、技能要求.要引導(dǎo)學(xué)生抓住定義、數(shù)形結(jié)合判斷和記憶三角函數(shù)值的正負(fù)符號(hào),并總結(jié)出形象的識(shí)記口訣,這也是理解和記憶的關(guān)鍵.

 。┚毩(xí)鞏固、理解記憶

  1、自學(xué)例1:已知角α的終邊經(jīng)過點(diǎn)P(2,-3),求α的六個(gè)三角函數(shù)值.

  要求:讀完題目,思考:計(jì)算什么?需要準(zhǔn)備什么?閉目心算,對(duì)照解答,模仿書面表達(dá)格式,鞏固定義.

  課堂練習(xí):

  p19題1:已知角α的終邊經(jīng)過點(diǎn)P(-3,-1),求α的六個(gè)三角函數(shù)值.

  要求心算,并提問中下學(xué)生檢驗(yàn),--------

  點(diǎn)評(píng):角α終邊上有無窮多個(gè)點(diǎn),根據(jù)三角函數(shù)的定義,只要知道α終邊上任意一個(gè)點(diǎn)的坐標(biāo),就可以計(jì)算這個(gè)角的三角函數(shù)值(或判斷其無意義).

  補(bǔ)充例題:已知角α的終邊經(jīng)過點(diǎn)P(x,-3),cosα=4/5,求α的其它五個(gè)三角函數(shù)值.

  師生探索:已知y=-3,要求其它五個(gè)三角函數(shù)值,須知r=?,x=?.根據(jù)定義得=(方程思想),x>0,解得x=4,從而--------.解答略.

  2、自學(xué)例2:求下列各角的六個(gè)三角函數(shù)值:(1)0;(2)π/2;(3)3π/2.

  提問,據(jù)反饋信息作點(diǎn)評(píng)、修正.

  師生探索:緊扣三角函數(shù)定義求解,首先要在終邊上取定一點(diǎn)。終邊在哪兒呢?取定哪一點(diǎn)呢?任意點(diǎn)、還是特殊點(diǎn)?要靈活,只要能夠算出三角函數(shù)值,都可以。

  取特殊點(diǎn)能使計(jì)算更簡明。課堂練習(xí):p19題2.(改編)填表:

  角α(角度)

  0°

  90°

  180°

  270°

  360°

  角α(弧度)

  sinα

  cosα

  tanα

  處理:要求取點(diǎn)用定義求解,針對(duì)計(jì)算過程提問、點(diǎn)評(píng),理解鞏固定義.

  強(qiáng)調(diào):終邊在坐標(biāo)軸上的角叫軸線角,如0、π/2、π、3π/2等,今后經(jīng)常用到軸線角的三角函數(shù)值,要結(jié)合三角函數(shù)定義記熟這些值.

  設(shè)計(jì)意圖:

  及時(shí)安排自學(xué)例題、自做教材練習(xí)題,一般性與特殊性相結(jié)合,進(jìn)行適量的變式練習(xí),以鞏固和加深對(duì)三角函數(shù)概念的理解,通過課堂積極主動(dòng)的練習(xí)活動(dòng)進(jìn)行思維訓(xùn)練,把"培養(yǎng)學(xué)生分析解決問題的能力"貫穿在每一節(jié)課的課堂教學(xué)始終.

 。ㄆ撸┗仡櫺〗Y(jié)、建構(gòu)網(wǎng)絡(luò)

  要求全體學(xué)生根據(jù)教師所提問題進(jìn)行總結(jié)識(shí)記,提問檢查并強(qiáng)調(diào):

  1.你是怎樣把銳角三角函數(shù)定義推廣到任意角的?或者說任意角三角函數(shù)具體是怎樣定義的?(建立直角坐標(biāo)系,使角的頂點(diǎn)與坐標(biāo)原點(diǎn)重合,---,在終邊上任意取定一點(diǎn)P,---)

  2.你如何判斷和記憶正弦、余弦、正切函數(shù)的定義域?(根據(jù)定義,------)

  3.你如何記憶正弦、余弦、正切函數(shù)值的符號(hào)?(根據(jù)定義,想象坐標(biāo)位置,-----)

  設(shè)計(jì)意圖:

  遺忘的規(guī)律是先快后慢,回顧再現(xiàn)是記憶的重要途徑,在課堂內(nèi)及時(shí)總結(jié)識(shí)記主要內(nèi)容是上策.此處以問題形式讓學(xué)生自己歸納識(shí)記本節(jié)課的主體內(nèi)容,抓住要害,人人參與,及時(shí)建構(gòu)知識(shí)網(wǎng)絡(luò),優(yōu)化知識(shí)結(jié)構(gòu),培養(yǎng)認(rèn)知能力.

  (八)布置課外作業(yè)

  1.書面作業(yè):習(xí)題4.3第3、4、5題.

  2.認(rèn)真閱讀p22"閱讀材料:三角函數(shù)與歐拉",了解歐拉的生平和貢獻(xiàn),特別學(xué)習(xí)他對(duì)科學(xué)的摯著精神和堅(jiān)忍不拔的頑強(qiáng)毅力!有興趣的同學(xué)可以上網(wǎng)查閱歐拉的相關(guān)情況.

  教學(xué)設(shè)計(jì)說明

  一、對(duì)本節(jié)教材的理解

  三角函數(shù)是描述周期運(yùn)動(dòng)現(xiàn)象的重要的數(shù)學(xué)模型,有非常廣泛的應(yīng)用.

  星星之火,可以燎原.

  直角三角形簡單樸素的邊角關(guān)系,以直角坐標(biāo)系為工具進(jìn)行自然地推廣而得到簡明的任意角的三角函數(shù)定義,緊緊扣住三角函數(shù)定義這個(gè)寶貴的源泉,自然地導(dǎo)出三角函數(shù)線、定義域、符號(hào)判斷、值域、同角三角函數(shù)關(guān)系、多組誘導(dǎo)公式、多組變換公式、輔助角公式、圖象和性質(zhì),本章教材就是這些內(nèi)容的具體安排.定義直接用于解析幾何(如直線斜率公式、極坐標(biāo)、部分曲線的參數(shù)方程等),定義還是直接解決某些問題的工具,三角函數(shù)知識(shí)是物理學(xué)、高等數(shù)學(xué)、測(cè)量學(xué)、天文學(xué)的重要基礎(chǔ).

  三角函數(shù)定義必然是學(xué)好全章內(nèi)容的關(guān)鍵,如果學(xué)生掌握不好,將直接影響到后續(xù)內(nèi)容的學(xué)習(xí),由三角函數(shù)定義的基礎(chǔ)性和應(yīng)用的廣泛性決定了本節(jié)教材的重點(diǎn)就是定義本身.

  二、教學(xué)法加工

  數(shù)學(xué)教材通常用抽象概括的形式化的數(shù)學(xué)書面語言闡述其知識(shí)和方法,教師只有通過教學(xué)法加工,始終貫徹"以學(xué)生的發(fā)展為本"的科學(xué)教育觀,"將數(shù)學(xué)的學(xué)術(shù)形態(tài)轉(zhuǎn)化為教育形態(tài)"(張奠宙語),引導(dǎo)學(xué)生積極主動(dòng)地進(jìn)行思考活動(dòng),直接參與體驗(yàn)數(shù)學(xué)知識(shí)產(chǎn)生發(fā)展的背景、過程,返璞歸真,揭示本質(zhì),體會(huì)其中的思想和方法,學(xué)生只有這樣才能真正理解掌握數(shù)學(xué)知識(shí)和方法,有效地發(fā)展智力、培養(yǎng)能力.

  在本節(jié)教材中,三角函數(shù)定義是重點(diǎn),三角函數(shù)線是難點(diǎn),為了較好地突出重點(diǎn)和突破難點(diǎn),分散重點(diǎn)和難點(diǎn),同時(shí)兼顧例題、課堂練習(xí)的協(xié)調(diào)匹配,將不按教材順序來進(jìn)行教學(xué),第一課時(shí)安排三角函數(shù)的定義(突出重點(diǎn))、定義域、符號(hào)判斷、例題1、2及p19課堂練習(xí)1、2、3,第二課時(shí)安排三角函數(shù)線、p15練習(xí)(突破難點(diǎn))、誘導(dǎo)公式一及課本例題3、4和其它練習(xí).本課例屬第一課時(shí).

  教學(xué)經(jīng)驗(yàn)表明,三角函數(shù)定義"簡單易記",學(xué)生很容易輕視它,不少學(xué)生機(jī)械記憶、一知半解.本課例堅(jiān)持"教師主導(dǎo)、學(xué)生主體"的原則,采用"啟發(fā)探索、講練結(jié)合"的常規(guī)教學(xué)方法,在學(xué)生的最近發(fā)展區(qū)圍繞學(xué)生的學(xué)習(xí)目標(biāo)設(shè)計(jì)了一系列符合學(xué)生認(rèn)知規(guī)律的程序,通過多媒體輔助教學(xué)動(dòng)畫演示比值與角之間的依賴關(guān)系,拓展思維活動(dòng)時(shí)空,力求使學(xué)生全員主動(dòng)參與,積極思考,體會(huì)定義產(chǎn)生、發(fā)展的過程,通過思維過程來理解知識(shí)、培養(yǎng)能力.

  將六個(gè)比值放在一起來研究,同時(shí)給出六個(gè)三角函數(shù)的定義,能夠增強(qiáng)對(duì)比感和整體感,至于大綱對(duì)兩組函數(shù)掌握與了解的不同要求,在下一步的教學(xué)中注意區(qū)分就行了.

  教學(xué)中關(guān)于符號(hào)sinα、cosα、tanα的出場(chǎng)安排,教材首先對(duì)比值取名并給出英文記法,再研究它們與α的函數(shù)關(guān)系;另外可以先研究六個(gè)比值與α之間的函數(shù)關(guān)系,然后再對(duì)六個(gè)比值取名給出記法.后者更能突出函數(shù)內(nèi)涵,揭示三角函數(shù)本質(zhì).本課例采用后者組織教學(xué).

  三、教學(xué)過程分析(見穿插在教案中的設(shè)計(jì)意圖).

高中數(shù)學(xué)說課稿 篇2

  一、教材分析:

  1、教材的地位與作用。

  本節(jié)內(nèi)容是在學(xué)生學(xué)習(xí)了“事件的可能性的基礎(chǔ)上來學(xué)習(xí)如何預(yù)測(cè)不確定事件(隨機(jī)事件)發(fā)生的可能性的大小!庇酶怕暑A(yù)測(cè)隨機(jī)發(fā)生的可能性大小,在日常生活、自然、科技領(lǐng)域有著廣泛的應(yīng)用,學(xué)習(xí)本單元知識(shí),無論是今后繼續(xù)深造(高中學(xué)習(xí)概率的乘法定理)還是參加社會(huì)實(shí)踐活動(dòng)都是十分必要的。概率的概念比較抽象,概率的定義學(xué)生較難理解。

  在教材的處理上,采取小單元教學(xué),本節(jié)課安排讓學(xué)生了解求隨機(jī)事件概率的兩種方法,目的是讓學(xué)生能夠比較系統(tǒng)地理解概率的意義及求概率的`方法,為下面學(xué)習(xí)求比較復(fù)雜的情況的概率打下基礎(chǔ)。

  2、重點(diǎn)與難點(diǎn)。

  重點(diǎn):對(duì)概率意義的理解,通過多次重復(fù)實(shí)驗(yàn),用頻率預(yù)測(cè)概率的方法,以及用列舉法求概率的方法。

  難點(diǎn):對(duì)概率意義的理解和用列舉法求概率過程中在各種可能性相同條件下某一事件可能發(fā)生的總數(shù)及總的結(jié)果數(shù)的分析。

  二、目的分析:

  知識(shí)與技能:掌握用頻率預(yù)測(cè)概率和用列舉法求概率方法。

  過程與方法:組織學(xué)生自主探究,合作交流,引導(dǎo)學(xué)生觀察試驗(yàn)和統(tǒng)計(jì)的結(jié)果,進(jìn)而進(jìn)行分析、歸納、總結(jié),了解并感受概率的定義的過程,引導(dǎo)學(xué)生從數(shù)學(xué)的視角觀察客觀世界,用數(shù)學(xué)的思維思考客觀世界,以數(shù)學(xué)的語言描述客觀世界。

  情感態(tài)度價(jià)值觀:學(xué)生經(jīng)歷觀察、分析、歸納、確認(rèn)等數(shù)學(xué)活動(dòng),感受數(shù)學(xué)活動(dòng)充滿了探索性與創(chuàng)造性,感受量變與質(zhì)變的對(duì)立統(tǒng)一規(guī)律,同時(shí)為概率的精準(zhǔn)、新穎、獨(dú)特的思維方法所震撼,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的熱情,增強(qiáng)對(duì)數(shù)學(xué)價(jià)值觀的認(rèn)識(shí)。

  三、教法、學(xué)法分析:

  引導(dǎo)學(xué)生自主探究、合作交流、觀察分析、歸納總結(jié),讓學(xué)生經(jīng)歷知識(shí)(概率定義計(jì)算公式)的產(chǎn)生和發(fā)展過程,讓學(xué)生在數(shù)學(xué)活動(dòng)中學(xué)習(xí)數(shù)學(xué)、掌握數(shù)學(xué),并能應(yīng)用數(shù)學(xué)解決現(xiàn)實(shí)生活中的實(shí)際問題,教師是學(xué)生學(xué)習(xí)的組織者、合作者和指導(dǎo)者,精心設(shè)計(jì)教學(xué)情境,有序組織學(xué)生活動(dòng),讓課堂充滿生機(jī)活力,體現(xiàn)“教” 為“學(xué)”服務(wù)這一宗旨。

  四、教學(xué)過程分析:

  1、引導(dǎo)學(xué)生探究

  精心設(shè)計(jì)問題一,學(xué)生通過對(duì)問題一的探究,一方面復(fù)習(xí)前面學(xué)過的“確定事件和不確定事件”的知識(shí),為學(xué)好本節(jié)內(nèi)容理清知識(shí)障礙,二是讓學(xué)生明確為什么要學(xué)習(xí)概率(如何預(yù)測(cè)隨機(jī)事件可能性發(fā)生大小)。引導(dǎo)學(xué)生對(duì)問題二的探究與觀察實(shí)驗(yàn)數(shù)據(jù),使學(xué)生了解概率這一重要概念的實(shí)際背景,感受并相信隨機(jī)事件的發(fā)生中存在著統(tǒng)計(jì)規(guī)律性,感受數(shù)學(xué)規(guī)律的真實(shí)的發(fā)現(xiàn)過程。

  2、歸納概括

  學(xué)生從試驗(yàn)中得到的統(tǒng)計(jì)數(shù)字及概率呈現(xiàn)穩(wěn)定在某一數(shù)值附近這一規(guī)律,讓學(xué)生明確概率定義的由來。

  引導(dǎo)學(xué)生重新對(duì)問題一和問題二的探究,分析某事件發(fā)生的各種可能性在全部可能發(fā)生結(jié)果中所占比例,得到用列舉法求概率的公式,引導(dǎo)學(xué)生進(jìn)行理性思維,邏輯分析,既培養(yǎng)學(xué)生的分析問題能力,又讓學(xué)生明確用列舉法求概率這一簡便快捷方法的合理性。

  P(A)= = = (m

  3、舉例應(yīng)用

 、乓龑(dǎo)學(xué)生對(duì)教材書例題、問題一、問題二中問題的進(jìn)一步分析與探究,讓學(xué)生掌握用列舉法求概率的方法。

 、埔龑(dǎo)學(xué)生對(duì)練習(xí)中的問題思考與探究,鞏固對(duì)概率公式的應(yīng)用及加深對(duì)概率意義的理解。

  深化發(fā)展

 、旁O(shè)置3個(gè)小題目,引導(dǎo)學(xué)生歸納、分析、總結(jié),加深對(duì)知識(shí)與方法的理解,并學(xué)會(huì)靈活運(yùn)用。

 、谱寣W(xué)生設(shè)計(jì)活動(dòng)內(nèi)容,對(duì)知識(shí)進(jìn)行升華和拓展,引導(dǎo)學(xué)生創(chuàng)造性地運(yùn)用知識(shí)思考問題和解決問題,從而培養(yǎng)學(xué)生的創(chuàng)新意識(shí)和創(chuàng)新能力。

高中數(shù)學(xué)說課稿 篇3

  一、教材分析

  1、教材內(nèi)容

  本節(jié)課是蘇教版第二章《函數(shù)概念和基本初等函數(shù)Ⅰ》§2。1。3函數(shù)簡單性質(zhì)的第一課時(shí),該課時(shí)主要學(xué)習(xí)增函數(shù)、減函數(shù)的定義,以及應(yīng)用定義解決一些簡單問題。

  2、教材所處地位、作用

  函數(shù)的性質(zhì)是研究函數(shù)的基石,函數(shù)的單調(diào)性是首先研究的一個(gè)性質(zhì)。通過對(duì)本節(jié)課的學(xué)習(xí),讓學(xué)生領(lǐng)會(huì)函數(shù)單調(diào)性的概念、掌握證明函數(shù)單調(diào)性的步驟,并能運(yùn)用單調(diào)性知識(shí)解決一些簡單的實(shí)際問題。通過上述活動(dòng),加深對(duì)函數(shù)本質(zhì)的認(rèn)識(shí)。函數(shù)的單調(diào)性既是學(xué)生學(xué)過的函數(shù)概念的延續(xù)和拓展,又是后續(xù)研究指數(shù)函數(shù)、對(duì)數(shù)函數(shù)、三角函數(shù)的單調(diào)性的基礎(chǔ)。此外在比較數(shù)的大小、函數(shù)的定性分析以及相關(guān)的數(shù)學(xué)綜合問題中也有廣泛的應(yīng)用,它是整個(gè)高中數(shù)學(xué)中起著承上啟下作用的核心知識(shí)之一。從方法論的角度分析,本節(jié)教學(xué)過程中還滲透了探索發(fā)現(xiàn)、數(shù)形結(jié)合、歸納轉(zhuǎn)化等數(shù)學(xué)思想方法。

  3、教學(xué)目標(biāo)

 。1)知識(shí)與技能:使學(xué)生理解函數(shù)單調(diào)性的概念,掌握判別函數(shù)單調(diào)性

  的方法;

  (2)過程與方法:從實(shí)際生活問題出發(fā),引導(dǎo)學(xué)生自主探索函數(shù)單調(diào)性的概念,應(yīng)用圖象和單調(diào)性的定義解決函數(shù)單調(diào)性問題,讓學(xué)生領(lǐng)會(huì)數(shù)形結(jié)合的數(shù)學(xué)思想方法,培養(yǎng)學(xué)生發(fā)現(xiàn)問題、分析問題、解決問題的能力。

  (3)情感態(tài)度價(jià)值觀:讓學(xué)生體驗(yàn)數(shù)學(xué)的科學(xué)功能、符號(hào)功能和工具功能,培養(yǎng)學(xué)生直覺觀察、探索發(fā)現(xiàn)、科學(xué)論證的良好的數(shù)學(xué)思維品質(zhì)。

  4、重點(diǎn)與難點(diǎn)

  教學(xué)重點(diǎn)(1)函數(shù)單調(diào)性的概念;

 。2)運(yùn)用函數(shù)單調(diào)性的定義判斷一些函數(shù)的單調(diào)性。

  教學(xué)難點(diǎn)(1)函數(shù)單調(diào)性的知識(shí)形成;

 。2)利用函數(shù)圖象、單調(diào)性的定義判斷和證明函數(shù)的單調(diào)性。

  二、教法分析與學(xué)法指導(dǎo)

  本節(jié)課是一節(jié)較為抽象的數(shù)學(xué)概念課,因此,教法上要注意:

  1、通過學(xué)生熟悉的實(shí)際生活問題引入課題,為概念學(xué)習(xí)創(chuàng)設(shè)情境,拉近數(shù)學(xué)與現(xiàn)實(shí)的距離,激發(fā)了學(xué)生求知欲,調(diào)動(dòng)了學(xué)生主體參與的積極性。

  2、在運(yùn)用定義解題的過程中,緊扣定義中的關(guān)鍵語句,通過學(xué)生的主體參與,逐個(gè)完成對(duì)各個(gè)難點(diǎn)的突破,以獲得各類問題的解決。

  3、在鼓勵(lì)學(xué)生主體參與的同時(shí),不可忽視教師的主導(dǎo)作用。具體體現(xiàn)在設(shè)問、講評(píng)和規(guī)范書寫等方面,要教會(huì)學(xué)生清晰的思維、嚴(yán)謹(jǐn)?shù)耐评,并成功地完成書面表達(dá)。

  4、采用投影儀、多媒體等現(xiàn)代教學(xué)手段,增大教學(xué)容量和直觀性。

  在學(xué)法上:

  1、讓學(xué)生從問題中質(zhì)疑、嘗試、歸納、總結(jié)、運(yùn)用,培養(yǎng)學(xué)生發(fā)現(xiàn)問題、研究問題和解決問題的'能力。

  2、讓學(xué)生利用圖形直觀啟迪思維,并通過正、反例的構(gòu)造,來完成從感性認(rèn)識(shí)到理性思維的一個(gè)飛躍。

  三、 教學(xué)過程

  教學(xué)

  環(huán)節(jié)

  教 學(xué) 過 程

  設(shè) 計(jì) 意 圖

  問題

  情境

  (播放中央電視臺(tái)天氣預(yù)報(bào)的音樂)

  滿足在定義域上的單調(diào)性的討論。

  2、重視學(xué)生發(fā)現(xiàn)的過程。如:充分暴露學(xué)生將函數(shù)圖象(形)的特征轉(zhuǎn)化為函數(shù)值(數(shù))的特征的思維過程;充分暴露在正、反兩個(gè)方面探討活動(dòng)中,學(xué)生認(rèn)知結(jié)構(gòu)升華、發(fā)現(xiàn)的過程。

  3、重視學(xué)生的動(dòng)手實(shí)踐過程。通過對(duì)定義的解讀、鞏固,讓學(xué)生動(dòng)手去實(shí)踐運(yùn)用定義。

  4、重視課堂問題的設(shè)計(jì)。通過對(duì)問題的設(shè)計(jì),引導(dǎo)學(xué)生解決問題。

高中數(shù)學(xué)說課稿 篇4

  【一】教學(xué)背景分析

  1.教材結(jié)構(gòu)分析

  《圓的方程》安排在高中數(shù)學(xué)第二冊(cè)(上)第七章第六節(jié).圓作為常見的簡單幾何圖形,在實(shí)際生活和生產(chǎn)實(shí)踐中有著廣泛的應(yīng)用.圓的方程屬于解析幾何學(xué)的基礎(chǔ)知識(shí),是研究二次曲線的開始,對(duì)后續(xù)直線與圓的位置關(guān)系、圓錐曲線等內(nèi)容的學(xué)習(xí),無論在知識(shí)上還是方法上都有著積極的意義,所以本節(jié)內(nèi)容在整個(gè)解析幾何中起著承前啟后的作用.

  2.學(xué)情分析

  圓的方程是學(xué)生在初中學(xué)習(xí)了圓的概念和基本性質(zhì)后,又掌握了求曲線方程的一般方法的基礎(chǔ)上進(jìn)行研究的.但由于學(xué)生學(xué)習(xí)解析幾何的時(shí)間還不長、學(xué)習(xí)程度較淺,且對(duì)坐標(biāo)法的運(yùn)用還不夠熟練,在學(xué)習(xí)過程中難免會(huì)出現(xiàn)困難.另外學(xué)生在探究問題的能力,合作交流的意識(shí)等方面有待加強(qiáng).

  根據(jù)上述教材結(jié)構(gòu)與內(nèi)容分析,考慮到學(xué)生已有的認(rèn)知結(jié)構(gòu)和心理特征,我制定如下教學(xué)目標(biāo):

  3.教學(xué)目標(biāo)

  (1) 知識(shí)目標(biāo):①掌握?qǐng)A的標(biāo)準(zhǔn)方程;

 、跁(huì)由圓的標(biāo)準(zhǔn)方程寫出圓的半徑和圓心坐標(biāo),能根據(jù)條件寫出圓的標(biāo)準(zhǔn)方程;

 、劾脠A的標(biāo)準(zhǔn)方程解決簡單的實(shí)際問題.

  (2) 能力目標(biāo):①進(jìn)一步培養(yǎng)學(xué)生用代數(shù)方法研究幾何問題的能力;

 、诩由顚(duì)數(shù)形結(jié)合思想的理解和加強(qiáng)對(duì)待定系數(shù)法的運(yùn)用;

 、墼鰪(qiáng)學(xué)生用數(shù)學(xué)的意識(shí).

  (3) 情感目標(biāo):①培養(yǎng)學(xué)生主動(dòng)探究知識(shí)、合作交流的意識(shí);

 、谠隗w驗(yàn)數(shù)學(xué)美的過程中激發(fā)學(xué)生的學(xué)習(xí)興趣.

  根據(jù)以上對(duì)教材、教學(xué)目標(biāo)及學(xué)情的分析,我確定如下的教學(xué)重點(diǎn)和難點(diǎn):

  4. 教學(xué)重點(diǎn)與難點(diǎn)

  (1)重點(diǎn):圓的標(biāo)準(zhǔn)方程的求法及其應(yīng)用.

  (2)難點(diǎn): ①會(huì)根據(jù)不同的已知條件求圓的標(biāo)準(zhǔn)方程;

 、谶x擇恰當(dāng)?shù)淖鴺?biāo)系解決與圓有關(guān)的實(shí)際問題.

  為使學(xué)生能達(dá)到本節(jié)設(shè)定的教學(xué)目標(biāo),我再從教法和學(xué)法上進(jìn)行分析:

  好學(xué)教育:

  【二】教法學(xué)法分析

  1.教法分析 為了充分調(diào)動(dòng)學(xué)生學(xué)習(xí)的積極性,本節(jié)課采用“啟發(fā)式”問題教學(xué)法,用環(huán)環(huán)相扣的問題將探究活動(dòng)層層深入,使教師總是站在學(xué)生思維的最近發(fā)展區(qū)上.另外我恰當(dāng)?shù)睦枚嗝襟w課件進(jìn)行輔助教學(xué),借助信息技術(shù)創(chuàng)設(shè)實(shí)際問題的情境既能激發(fā)學(xué)生的學(xué)習(xí)興趣,又直觀的引導(dǎo)了學(xué)生建模的過程.

  2.學(xué)法分析 通過推導(dǎo)圓的標(biāo)準(zhǔn)方程,加深對(duì)用坐標(biāo)法求軌跡方程的理解.通過求圓的標(biāo)準(zhǔn)方程,理解必須具備三個(gè)獨(dú)立的條件才可以確定一個(gè)圓.通過應(yīng)用圓的標(biāo)準(zhǔn)方程,熟悉用待定系數(shù)法求的過程. 下面我就對(duì)具體的教學(xué)過程和設(shè)計(jì)加以說明:

  【三】教學(xué)過程與設(shè)計(jì)

  整個(gè)教學(xué)過程是由七個(gè)問題組成的問題鏈驅(qū)動(dòng)的,共分為五個(gè)環(huán)節(jié):

  創(chuàng)設(shè)情境 啟迪思維 深入探究 獲得新知 應(yīng)用舉例 鞏固提高

  反饋訓(xùn)練 形成方法 小結(jié)反思 拓展引申

  下面我從縱橫兩方面敘述我的教學(xué)程序與設(shè)計(jì)意圖.

  首先:縱向敘述教學(xué)過程

  (一)創(chuàng)設(shè)情境——啟迪思維

  問題一 已知隧道的截面是半徑為4m的半圓,車輛只能在道路中心線一側(cè)行駛,一輛寬為2.7m,高為3m的貨車能不能駛?cè)脒@個(gè)隧道?

  通過對(duì)這個(gè)實(shí)際問題的探究,把學(xué)生的思維由用勾股定理求線段CD的長度轉(zhuǎn)移為用曲線的方程來解決.一方面幫助學(xué)生回顧了舊知——求軌跡方程的一般方法,另一方面,在得到汽車不能通過的結(jié)論的同時(shí)學(xué)生自己推導(dǎo)出了圓心在原點(diǎn),半徑為4的圓的標(biāo)準(zhǔn)方程,從而很自然的進(jìn)入了本課的主題.用實(shí)際問題創(chuàng)設(shè)問題情境,讓學(xué)生感受到問題來源于實(shí)際,應(yīng)用于實(shí)際,激發(fā)了學(xué)生的學(xué)習(xí)興趣和學(xué)習(xí)欲望.這樣獲取的'知識(shí),不但易于保持,而且易于遷移.

  通過對(duì)問題一的探究,抓住了學(xué)生的注意力,把學(xué)生的思維引到用坐標(biāo)法研究圓的方程上來,此時(shí)再把問題深入,進(jìn)入第二環(huán)節(jié).

  (二)深入探究——獲得新知

  問題二 1.根據(jù)問題一的探究能不能得到圓心在原點(diǎn),半徑為的圓的方程?

  2.如果圓心在,半徑為時(shí)又如何呢?

  好學(xué)教育:

  這一環(huán)節(jié)我首先讓學(xué)生對(duì)問題一進(jìn)行歸納,得到圓心在原點(diǎn),半徑為4的圓的標(biāo)準(zhǔn)方程后,引導(dǎo)學(xué)生歸納出圓心在原點(diǎn),半徑為r的圓的標(biāo)準(zhǔn)方程.然后再讓學(xué)生對(duì)圓心不在原點(diǎn)的情況進(jìn)行探究.我預(yù)設(shè)了三種方法等待著學(xué)生的探究結(jié)果,分別是:坐標(biāo)法、圖形變換法、向量平移法.

  得到圓的標(biāo)準(zhǔn)方程后,我設(shè)計(jì)了由淺入深的三個(gè)應(yīng)用平臺(tái),進(jìn)入第三環(huán)節(jié).

  (三)應(yīng)用舉例——鞏固提高

  I.直接應(yīng)用 內(nèi)化新知

  問題三 1.寫出下列各圓的標(biāo)準(zhǔn)方程:

  (1)圓心在原點(diǎn),半徑為3;

  (2)經(jīng)過點(diǎn),圓心在點(diǎn).

  2.寫出圓的圓心坐標(biāo)和半徑.

  我設(shè)計(jì)了兩個(gè)小問題,第一題是直接或間接的給出圓心坐標(biāo)和半徑求圓的標(biāo)準(zhǔn)方程,第二題是給出圓的標(biāo)準(zhǔn)方程求圓心坐標(biāo)和半徑,這兩題比較簡單,可以安排學(xué)生口答完成,目的是先讓學(xué)生熟練掌握?qǐng)A心坐標(biāo)、半徑與圓的標(biāo)準(zhǔn)方程之間的關(guān)系,為后面探究圓的切線問題作準(zhǔn)備.

  II.靈活應(yīng)用 提升能力

  問題四 1.求以點(diǎn)為圓心,并且和直線相切的圓的方程.

  2.求過點(diǎn),圓心在直線上且與軸相切的圓的方程.

  3.已知圓的方程為,求過圓上一點(diǎn)的切線方程.

  你能歸納出具有一般性的結(jié)論嗎?

  已知圓的方程是,經(jīng)過圓上一點(diǎn)的切線的方程是什么?

  我設(shè)計(jì)了三個(gè)小問題,第一個(gè)小題有了剛剛解決問題三的基礎(chǔ),學(xué)生會(huì)很快求出半徑,根據(jù)圓心坐標(biāo)寫出圓的標(biāo)準(zhǔn)方程.第二個(gè)小題有些困難,需要引導(dǎo)學(xué)生應(yīng)用待定系數(shù)法確定圓心坐標(biāo)和半徑再求解,從而理解必須具備三個(gè)獨(dú)立的條件才可以確定一個(gè)圓.第三個(gè)小題解決方法較多,我預(yù)設(shè)了四種方法再一次為學(xué)生的發(fā)散思維創(chuàng)設(shè)了空間.最后我讓學(xué)生由第三小題的結(jié)論進(jìn)行歸納、猜想,在論證經(jīng)過圓上一點(diǎn)圓的切線方程的過程中,又一次模擬了真理發(fā)現(xiàn)的過程,使探究氣氛達(dá)到高潮.

  III.實(shí)際應(yīng)用 回歸自然

  問題五 如圖是某圓拱橋的一孔圓拱的示意圖,該圓拱跨度AB=20m,拱高OP=4m,在建造時(shí)每隔4m需用一個(gè)支柱支撐,求支柱的長度(精確到0.01m).

  好學(xué)教育:

  我選用了教材的例3,它是待定系數(shù)法求出圓的三個(gè)參數(shù)的又一次應(yīng)用,同時(shí)也與引例相呼應(yīng),使學(xué)生形成解決實(shí)際問題的一般方法,培養(yǎng)了學(xué)生建模的習(xí)慣和用數(shù)學(xué)的意識(shí).

  (四)反饋訓(xùn)練——形成方法

  問題六 1.求過原點(diǎn)和點(diǎn),且圓心在直線上的圓的標(biāo)準(zhǔn)方程.

  2.求圓過點(diǎn)的切線方程.

  3.求圓過點(diǎn)的切線方程.

  接下來是第四環(huán)節(jié)——反饋訓(xùn)練.這一環(huán)節(jié)中,我設(shè)計(jì)三個(gè)小題作為鞏固性訓(xùn)練,給學(xué)生一塊“用武”之地,讓每一位同學(xué)體驗(yàn)學(xué)習(xí)數(shù)學(xué)的樂趣,成功的喜悅,找到自信,增強(qiáng)學(xué)習(xí)數(shù)學(xué)的愿望與信心.另外第3題是我特意安排的一道求過圓外一點(diǎn)的圓的切線方程,由于學(xué)生剛剛歸納了過圓上一點(diǎn)圓的切線方程,因此很容易產(chǎn)生思維的負(fù)遷移,另外這道題目有兩解,學(xué)生容易漏掉斜率不存在的情況,這時(shí)引導(dǎo)學(xué)生用數(shù)形結(jié)合的思想,結(jié)合初中已有的圓的知識(shí)進(jìn)行判斷,這樣的設(shè)計(jì)對(duì)培養(yǎng)學(xué)生思維的嚴(yán)謹(jǐn)性具有良好的效果.

  (五)小結(jié)反思——拓展引申

  1.課堂小結(jié)

  把圓的標(biāo)準(zhǔn)方程與過圓上一點(diǎn)圓的切線方程加以小結(jié),提煉數(shù)形結(jié)合的思想和待定系數(shù)的方法 ①圓心為,半徑為r 的圓的標(biāo)準(zhǔn)方程為:

  圓心在原點(diǎn)時(shí),半徑為r 的圓的標(biāo)準(zhǔn)方程為:.

 、谝阎獔A的方程是,經(jīng)過圓上一點(diǎn)的切線的方程是:.

  2.分層作業(yè)

  (A)鞏固型作業(yè):教材P81-82:(習(xí)題7.6)1,2,4.(B)思維拓展型作業(yè):試推導(dǎo)過圓上一點(diǎn)的切線方程.

  3.激發(fā)新疑

  問題七 1.把圓的標(biāo)準(zhǔn)方程展開后是什么形式?

  2.方程表示什么圖形?

  在本課的結(jié)尾設(shè)計(jì)這兩個(gè)問題,作為對(duì)這節(jié)課內(nèi)容的鞏固與延伸,讓學(xué)生體會(huì)知識(shí)的起點(diǎn)與終點(diǎn)都蘊(yùn)涵著問題,舊的問題解決了,新的問題又產(chǎn)生了.在知識(shí)的拓展中再次掀起學(xué)生探究的熱情.另外它為下節(jié)課研究圓的一般方程作了重要的準(zhǔn)備.

  以上是我縱向的教學(xué)過程及簡單的設(shè)計(jì)意圖,接下來,我從三個(gè)方面橫向的進(jìn)一步闡述我的教學(xué)設(shè)計(jì): 橫向闡述教學(xué)設(shè)計(jì)

  (一)突出重點(diǎn) 抓住關(guān)鍵 突破難點(diǎn)

  好學(xué)教育:

  求圓的標(biāo)準(zhǔn)方程既是本節(jié)課的教學(xué)重點(diǎn)也是難點(diǎn),為此我布設(shè)了由淺入深的學(xué)習(xí)環(huán)境,先讓學(xué)生熟悉圓心、半徑與圓的標(biāo)準(zhǔn)方程之間的關(guān)系,逐步理解三個(gè)參數(shù)的重要性,自然形成待定系數(shù)法的解題思路,在突出重點(diǎn)的同時(shí)突破了難點(diǎn).

  第二個(gè)教學(xué)難點(diǎn)就是解決實(shí)際應(yīng)用問題,這是學(xué)生固有的難題,主要是因?yàn)閼?yīng)用問題的題目冗長,學(xué)生很難根據(jù)問題情境構(gòu)建數(shù)學(xué)模型,缺乏解決實(shí)際問題的信心,為此我首先用一道題目簡潔、貼近生活的實(shí)例進(jìn)行引入,激發(fā)學(xué)生的求知欲,同時(shí)我借助多媒體課件的演示,引導(dǎo)學(xué)生真正走入問題的情境之中,并從中抽象出數(shù)學(xué)模型,從而消除畏難情緒,增強(qiáng)了信心.最后再形成應(yīng)用圓的標(biāo)準(zhǔn)方程解決實(shí)際問題的一般模式,并嘗試應(yīng)用該模式分析和解決第二個(gè)應(yīng)用問題——問題五.這樣的設(shè)計(jì),使學(xué)生在解決問題的同時(shí),形成了方法,難點(diǎn)自然突破.

  (二)學(xué)生主體 教師主導(dǎo) 探究主線

  本節(jié)課的設(shè)計(jì)用問題做鏈,環(huán)環(huán)相扣,使學(xué)生的探究活動(dòng)貫穿始終.從圓的標(biāo)準(zhǔn)方程的推導(dǎo)到應(yīng)用都是在問題的指引、我的指導(dǎo)下,由學(xué)生探究完成的.另外,我重點(diǎn)設(shè)計(jì)了兩次思維發(fā)散點(diǎn),分別是問題二和問題四的第三問,要求學(xué)生分組討論,合作交流,為學(xué)生設(shè)立充分的探究空間,學(xué)生在交流成果的過程中,既體驗(yàn)了科學(xué)研究和真理發(fā)現(xiàn)的復(fù)雜與艱辛,又在我的適度引導(dǎo)、側(cè)面幫助、不斷肯定下順利完成了探究活動(dòng)并走向成功,在一個(gè)個(gè)問題的驅(qū)動(dòng)下,高效的完成本節(jié)的學(xué)習(xí)任務(wù).

  (三)培養(yǎng)思維 提升能力 激勵(lì)創(chuàng)新

  為了培養(yǎng)學(xué)生的理性思維,我分別在問題一和問題四中,設(shè)計(jì)了兩次由特殊到一般的學(xué)習(xí)思路,培養(yǎng)學(xué)生的歸納概括能力.在問題的設(shè)計(jì)中,我利用一題多解的探究,縱向挖掘知識(shí)深度,橫向加強(qiáng)知識(shí)間的聯(lián)系,培養(yǎng)了學(xué)生的創(chuàng)新精神,并且使學(xué)生的有效思維量加大,隨時(shí)對(duì)所學(xué)知識(shí)和方法產(chǎn)生有意注意,使能力與知識(shí)的形成相伴而行.

  以上是我對(duì)這節(jié)課的教學(xué)預(yù)設(shè),具體的教學(xué)過程還要根據(jù)學(xué)生在課堂中的具體情況適當(dāng)調(diào)整,向生成性課堂進(jìn)行轉(zhuǎn)變.最后我以赫爾巴特的一句名言結(jié)束我的說課,發(fā)揮我們的創(chuàng)造性,力爭(zhēng)“使教育過程成為一種藝術(shù)的事業(yè)”.

高中數(shù)學(xué)說課稿 篇5

  尊敬的各位專家,評(píng)委:

  上午好!

  根據(jù)新課改的理論標(biāo)準(zhǔn),我將從教材分析,學(xué)情分析,教學(xué)目標(biāo)分析,學(xué)法、教法分析,教學(xué)過程分析,以及板書設(shè)計(jì)這六個(gè)方面來談?wù)勎覍?duì)教材的理解和教學(xué)的設(shè)計(jì)。

  一、教材分析

  地位和作用:

  《______________________》是北師大版高中數(shù)學(xué)必修二的第______章“__________”的第________節(jié)內(nèi)容。

  本節(jié)是在學(xué)習(xí)了________________________________________之后編排的。通過本節(jié)課的學(xué)習(xí),既可以對(duì)_________________________________的知識(shí)進(jìn)一步鞏固和深化,又可以為后面學(xué)習(xí)_________________________打下基礎(chǔ),所以_________________是本章的重要內(nèi)容。此外,《________________________》的知識(shí)與我們?nèi)粘I、生產(chǎn)、科學(xué)研究有著密切的聯(lián)系,因此學(xué)習(xí)這部分有著廣泛的現(xiàn)實(shí)意義。

  二、學(xué)情分析

  1、學(xué)生已熟悉掌握______

  2、學(xué)生的認(rèn)知規(guī)律,是由整體到局部,具體到抽象發(fā)展的。

  3、學(xué)生思維活躍,積極性高,已初步形成對(duì)數(shù)學(xué)問題的合作探究能力

  4、學(xué)生層次參差不齊,個(gè)體差異還比較明顯

  三、教學(xué)目標(biāo)分析

  根據(jù)《教學(xué)大綱》的要求和學(xué)生已有的知識(shí)基礎(chǔ)和認(rèn)知能力,確定以下教學(xué)目標(biāo):

  1、知識(shí)與技能:

  2、過程與方法:通過___學(xué)習(xí),體會(huì)__的思想,培養(yǎng)學(xué)生提出問題,分析問題,解決問題的能力,提高交流表達(dá)能力,提高獨(dú)立獲取知識(shí)的能力。

  3、情感態(tài)度與價(jià)值觀:培養(yǎng)把握空間圖形的能力,欣賞空間圖形所反應(yīng)的數(shù)學(xué)美(認(rèn)識(shí)數(shù)學(xué)內(nèi)容之間的內(nèi)在聯(lián)系,加強(qiáng)數(shù)形結(jié)合的思想,形成正確的數(shù)學(xué)觀)。

  教學(xué)重點(diǎn):

  難點(diǎn):

  四、學(xué)法、教法分析

 。ㄒ唬⿲W(xué)法

  首先,通過自學(xué)探究,培養(yǎng)學(xué)生的分析、歸納能力,提高學(xué)生合作學(xué)習(xí)的能力,學(xué)生課堂中體現(xiàn)自我,學(xué)會(huì)尋找問題的突破口,在探究中學(xué)會(huì)思考,在合作中學(xué)會(huì)推進(jìn),在觀察中學(xué)會(huì)比較,進(jìn)而推進(jìn)整個(gè)教學(xué)程序的展開。

  其次,教學(xué)過程中,我想適時(shí)地根據(jù)學(xué)生的“最近發(fā)展區(qū)”搭建平臺(tái),充分發(fā)揮“教師的'主導(dǎo)作用和學(xué)生的主體地位相統(tǒng)一的教學(xué)規(guī)律”,

  從學(xué)生原有的知識(shí)和能力出發(fā),指導(dǎo)學(xué)生學(xué)會(huì)觀察、分析、歸納問題的能力。

  學(xué)生只有不斷地解決問題、產(chǎn)生成就感的過程中,才能真正地提高學(xué)習(xí)的興趣,也只有這樣才能“學(xué)”有新“思”,“思”有新“得”。

 。ǘ┙谭

  數(shù)學(xué)教育家波利亞曾經(jīng)說過:“學(xué)習(xí)任何知識(shí)的最佳途徑即是由自己去發(fā)現(xiàn),因?yàn)檫@種發(fā)現(xiàn)理解最深刻,也最容易掌握其中的發(fā)展規(guī)律、性質(zhì)和聯(lián)系!备鶕(jù)學(xué)生的認(rèn)知特點(diǎn)和知識(shí)水平,為落實(shí)重點(diǎn)、突破難點(diǎn),本著以人為本,以學(xué)為中心的思想,本節(jié)課我將采用啟發(fā)式、合作探究的方式來進(jìn)行教學(xué)。運(yùn)用多媒體演示輔助教學(xué)的一種手段,以激發(fā)學(xué)生的求知欲,使學(xué)生主動(dòng)參與數(shù)學(xué)實(shí)踐活動(dòng),以獨(dú)立思考和相互交流的形式,在教師的指導(dǎo)下發(fā)現(xiàn)問題、分析問題和解決問題。

  五、教學(xué)過程分析

  1、創(chuàng)設(shè)情境,引入問題。

  新課標(biāo)指出:“應(yīng)該讓學(xué)生在具體生動(dòng)的情境中學(xué)習(xí)數(shù)學(xué)”。在本節(jié)課的教學(xué)中,從我們熟悉的生活情境中提出問題,問題的設(shè)計(jì)改變了傳統(tǒng)目的明確的設(shè)計(jì)方式,給學(xué)生最大的思考空間,充分體現(xiàn)學(xué)生主體地位。

  2、發(fā)現(xiàn)問題,探究新知。

  數(shù)學(xué)概念的形成來自解決實(shí)際問題和數(shù)學(xué)自身發(fā)展的需要.但概念的高度抽象,造成了難懂、難教和難學(xué),這就需要讓學(xué)生置身于符合自身實(shí)際的學(xué)習(xí)活動(dòng)中去,從自己的經(jīng)驗(yàn)和已有的知識(shí)基礎(chǔ)出發(fā),經(jīng)歷

  “數(shù)學(xué)化”、“再創(chuàng)造”的活動(dòng)過程.

  3、深入探究,加深理解。

  有效的數(shù)學(xué)學(xué)習(xí)過程,不能單純的模仿與記憶,數(shù)學(xué)思想的領(lǐng)悟和學(xué)習(xí)過程更是如此。讓學(xué)生在解題過程中親身經(jīng)歷和實(shí)踐體驗(yàn),師生互動(dòng)學(xué)習(xí),生生合作交流,共同探究.

  4、當(dāng)堂訓(xùn)練,鞏固提高。

  通過學(xué)生的主體參與,使學(xué)生深切體會(huì)到本節(jié)課的主要內(nèi)容和思想方法,從而實(shí)現(xiàn)對(duì)知識(shí)識(shí)的再次深化。

  5、小結(jié)歸納,拓展深化。

  小結(jié)歸納不僅是對(duì)知識(shí)的簡單回顧,還要發(fā)揮學(xué)生的主體地位,從知識(shí)、方法、經(jīng)驗(yàn)等方面進(jìn)行總結(jié)。

  6、作業(yè)設(shè)計(jì)

  作業(yè)分為必做題和選做題。

  針對(duì)學(xué)生能力和水平的差異,進(jìn)行分層訓(xùn)練,在所有學(xué)生獲得共同知識(shí)基礎(chǔ)和基本能力的同時(shí),讓學(xué)有余力的學(xué)生將學(xué)習(xí)從課堂延伸到課外,獲得更大的能力提升,這體現(xiàn)新課改理念,也是因材施教的教學(xué)原則的具體運(yùn)用。

  現(xiàn)代數(shù)學(xué)教學(xué)觀和新課改要求教學(xué)能從“讓學(xué)生學(xué)會(huì)”向“讓學(xué)生會(huì)學(xué)”轉(zhuǎn)變,使數(shù)學(xué)教學(xué)真正成為數(shù)學(xué)活動(dòng)的教學(xué)。所以,本節(jié)課我們不僅僅是單純的傳授知識(shí),而更應(yīng)該重視對(duì)數(shù)學(xué)方法的滲透。從熟悉的知識(shí)出發(fā),學(xué)生自主探索、合作交流激發(fā)學(xué)生的學(xué)習(xí)興趣,突破難點(diǎn),培養(yǎng)學(xué)生發(fā)現(xiàn)問題、解決問題的能力

  六、板書設(shè)計(jì)

  板書要基本體現(xiàn)整堂課的內(nèi)容與方法,體現(xiàn)課堂進(jìn)程,能簡明扼要反映知識(shí)結(jié)構(gòu)及其相互聯(lián)系;突出本節(jié)重難點(diǎn),能指導(dǎo)教師的教學(xué)進(jìn)程、引導(dǎo)學(xué)生探索知識(shí),啟迪學(xué)生思維。

  我的說課到此結(jié)束,敬請(qǐng)各位專家、評(píng)委批評(píng)指正。

  謝謝!

高中數(shù)學(xué)說課稿 篇6

  各位評(píng)委:下午好!

  我叫 ,來自 。今天我說課的課題《 》(第 課時(shí))。下面我將圍繞本節(jié)課“教什么?”、“怎樣教?”以及“為什么這樣教?”三個(gè)問題,從教材分析、教學(xué)目標(biāo)分析、教學(xué)重難點(diǎn)分析、教法與學(xué)法、課堂設(shè)計(jì)五方面逐一加以分析和說明。

  一、教材分析

 。ㄒ唬┙滩牡牡匚缓妥饔

  《 》是人教版出版社 第 冊(cè)、第 單元的內(nèi)容!丁芳仁 在知識(shí)上的延伸和發(fā)展,又是本章 的運(yùn)用與鞏固,也為下一章 教學(xué)作鋪墊,起著鏈條的作用。同時(shí),這部分內(nèi)容較好地反映了 的內(nèi)在聯(lián)系和相互轉(zhuǎn)化,蘊(yùn)含著歸納、轉(zhuǎn)化、數(shù)形結(jié)合等豐富的數(shù)學(xué)思想方法,能較好地培養(yǎng)學(xué)生的觀察能力、概括能力、探究能力及創(chuàng)新意識(shí)。

  概括地講,本節(jié)課內(nèi)容的地位體現(xiàn)在它的基礎(chǔ)性,作用體現(xiàn)在它的工具性。

 。ǘ、學(xué)情分析

  通過前一階段的教學(xué),學(xué)生對(duì) 的認(rèn)識(shí)已有了一定的'認(rèn)知結(jié)構(gòu),主要體現(xiàn)在三個(gè)層面:

  知識(shí)層面:學(xué)生在已初步掌握了 。

  能力層面:學(xué)生在初步已經(jīng)掌握了用

  初步具備了 思想。 情感層面:學(xué)生對(duì)數(shù)學(xué)新內(nèi)容的學(xué)習(xí)有相當(dāng)?shù)呐d趣和積極性。但探究問題的能力以及合作交流等方面發(fā)展不夠均衡.

 。ㄈ┙虒W(xué)課時(shí)

  本節(jié)內(nèi)容分 課時(shí)學(xué)習(xí)。(本課時(shí),品味數(shù)學(xué)中的和諧美,體驗(yàn)成功的樂趣。)

  二、教學(xué)目標(biāo)分析

  根據(jù)教學(xué)大綱的要求、本節(jié)教材的特點(diǎn)和高中生的認(rèn)知規(guī)律,本節(jié)課的教學(xué)目標(biāo)確定為:

  知識(shí)與技能:

  過程與方法:

  情感態(tài)度:

 。ɡ纾簞(chuàng)設(shè)問題情景,激發(fā)學(xué)生觀察、分析、探求的學(xué)習(xí)激情、強(qiáng)化學(xué)生參與意識(shí)及主體作用。在自主探究與討論交流過程中,培養(yǎng)學(xué)生的合作意識(shí)和創(chuàng)新精神. 通過 對(duì)立統(tǒng)一關(guān)系的認(rèn)識(shí),對(duì)學(xué)生進(jìn)行辨證唯物主義教育)

  在探索過程中,培養(yǎng)獨(dú)立獲取數(shù)學(xué)知識(shí)的能力。在解決問題的過程中,讓學(xué)生感受到成功的喜悅,樹立學(xué)好數(shù)學(xué)的信心。在解答數(shù)學(xué)問題時(shí),讓學(xué)生養(yǎng)成理性思維的品質(zhì)。

  三、重難點(diǎn)分析

  重點(diǎn)確定為:

  要把握這個(gè)重點(diǎn)。關(guān)鍵在于理解

  其本質(zhì)就是

  本節(jié)課的難點(diǎn)確定為:

  要突破這個(gè)難點(diǎn),讓學(xué)生歸納

  作鋪墊。

  四、教法與學(xué)法分析

 。ㄒ唬⿲W(xué)法指導(dǎo)

  教學(xué)矛盾的主要方面是學(xué)生的學(xué)。學(xué)是中心,會(huì)學(xué)是目的。因此在教學(xué)中要不斷指導(dǎo)學(xué)生學(xué)會(huì)學(xué)習(xí)。本節(jié)課主要是教給學(xué)生“動(dòng)手畫、動(dòng)眼看、動(dòng)腦想、動(dòng)口說、善提煉、勤鉆研”的研討式學(xué)習(xí)方法,這樣做增加了學(xué)生自主參與,合作交流的機(jī)會(huì),教給了學(xué)生獲取知識(shí)的途徑、思考問題的方法,使學(xué)生真正成了教學(xué)的主體;只有這樣做,才能使學(xué)生“學(xué)”有新“思”,“思”有新“得”,“練”有新“獲”,學(xué)生也才會(huì)逐步感受到數(shù)學(xué)的美,會(huì)產(chǎn)生一種成功感,從而提高學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣;也只有這樣做,課堂教學(xué)才富有時(shí)代特色,才能適應(yīng)素質(zhì)教育下培養(yǎng)“創(chuàng)新型”人才的需要。

 。ǘ┙谭ǚ治

  本節(jié)課設(shè)計(jì)的指導(dǎo)思想是:現(xiàn)代認(rèn)知心理學(xué)--建構(gòu)主義學(xué)習(xí)理論。

  建構(gòu)主義學(xué)習(xí)理論認(rèn)為:應(yīng)把學(xué)習(xí)看成是學(xué)生主動(dòng)的建構(gòu)活動(dòng),學(xué)生應(yīng)與一定的知識(shí)背景即情景相聯(lián)系,在實(shí)際情景下進(jìn)行學(xué)習(xí),可以使學(xué)生利用已有知識(shí)與經(jīng)驗(yàn)同化和索引出當(dāng)前要學(xué)習(xí)的新知識(shí),這樣獲取的知識(shí),不但便于保持,而且易于遷移到陌生的問題情景中。

  本節(jié)課采用“誘思探究教學(xué)法”( 陜西師范大學(xué)教育研究所張熊飛教授)。在課堂教學(xué)中凸顯學(xué)生主體地位的重要性,不再是以教師為中心去設(shè)計(jì)教學(xué)過程,而是以學(xué)生為主體去組織教學(xué)進(jìn)程。把課堂真正地交給了學(xué)生,學(xué)生主體地位得以實(shí)現(xiàn)。

  五、說教學(xué)過程

  本節(jié)課的教學(xué)設(shè)計(jì)充分體現(xiàn)以學(xué)生發(fā)展為本,培養(yǎng)學(xué)生的觀察、概括和探究能力,遵循學(xué)生的認(rèn)知規(guī)律,體現(xiàn)理論聯(lián)系實(shí)際、循序漸進(jìn)和因材施教的教學(xué)原則,通過問題情境的創(chuàng)設(shè),激發(fā)興趣,使學(xué)生在問題解決的探索過程中,由學(xué)會(huì)走向會(huì)學(xué),由被動(dòng)答題走向主動(dòng)探究。

  (一)創(chuàng)設(shè)情景………………….

  (二)比舊悟新………………….

 。ㄈw納提煉…………………

  (四)應(yīng)用新知,熟練掌握 …………………

 。ㄎ澹┛偨Y(jié)…………………

 。┳鳂I(yè)布置…………………

 。ㄆ撸┌鍟O(shè)計(jì)…………………

  以上是我對(duì)本節(jié)課的一些粗淺的認(rèn)識(shí)和構(gòu)想,如有不妥之處,懇請(qǐng)各位專家批評(píng)指正。謝謝

  著名美國數(shù)學(xué)家和數(shù)學(xué)教育家波利亞 包括“弄清問題”、“擬定計(jì)劃”、“實(shí)現(xiàn)計(jì)劃”和“回顧反思”四大步驟的解題全過程,它們就好比是尋找和發(fā)現(xiàn)解法的思維過程進(jìn)行分解,使我們對(duì)解題的思維過程看得見,摸得著,易于操作。精髓是啟發(fā)你去聯(lián)想。聯(lián)想什么?怎樣聯(lián)想?

【高中數(shù)學(xué)說課稿】相關(guān)文章:

高中數(shù)學(xué)說課稿07-09

高中數(shù)學(xué)《集合》說課稿07-22

高中數(shù)學(xué)說課稿范文11-02

關(guān)于高中數(shù)學(xué)說課稿11-26

高中數(shù)學(xué)《向量》說課稿范文02-15

高中數(shù)學(xué)說課稿15篇11-05

高中數(shù)學(xué)說課稿 15篇11-14

高中數(shù)學(xué)說課稿(15篇)02-17

高中數(shù)學(xué)說課稿4篇01-09

高中數(shù)學(xué)說課稿三篇01-09