初中數(shù)學(xué)知識點
在日復(fù)一日的學(xué)習(xí)中,說起知識點,應(yīng)該沒有人不熟悉吧?知識點在教育實踐中,是指對某一個知識的泛稱。哪些知識點能夠真正幫助到我們呢?以下是小編收集整理的初中數(shù)學(xué)知識點,供大家參考借鑒,希望可以幫助到有需要的朋友。
初中數(shù)學(xué)知識點 篇1
平面直角坐標系
下面是對平面直角坐標系的內(nèi)容學(xué)習(xí),希望同學(xué)們很好的掌握下面的內(nèi)容。
平面直角坐標系:
在平面內(nèi)畫兩條互相垂直、原點重合的數(shù)軸,組成平面直角坐標系。
水平的數(shù)軸稱為x軸或橫軸,豎直的數(shù)軸稱為y軸或縱軸,兩坐標軸的交點為平面直角坐標系的原點。
平面直角坐標系的要素:①在同一平面②兩條數(shù)軸③互相垂直④原點重合
三個規(guī)定:
、僬较虻囊(guī)定橫軸取向右為正方向,縱軸取向上為正方向
、趩挝婚L度的規(guī)定;一般情況,橫軸、縱軸單位長度相同;實際有時也可不同,但同一數(shù)軸上必須相同。
、巯笙薜囊(guī)定:右上為第一象限、左上為第二象限、左下為第三象限、右下為第四象限。
相信上面對平面直角坐標系知識的講解學(xué)習(xí),同學(xué)們已經(jīng)能很好的掌握了吧,希望同學(xué)們都能考試成功。
初中數(shù)學(xué)知識點:平面直角坐標系的構(gòu)成
對于平面直角坐標系的構(gòu)成內(nèi)容,下面我們一起來學(xué)習(xí)哦。
平面直角坐標系的構(gòu)成
在同一個平面上互相垂直且有公共原點的兩條數(shù)軸構(gòu)成平面直角坐標系,簡稱為直角坐標系。通常,兩條數(shù)軸分別置于水平位置與鉛直位置,取向右與向上的方向分別為兩條數(shù)軸的正方向。水平的數(shù)軸叫做X軸或橫軸,鉛直的數(shù)軸叫做Y軸或縱軸,X軸或Y軸統(tǒng)稱為坐標軸,它們的公共原點O稱為直角坐標系的原點。
通過上面對平面直角坐標系的構(gòu)成知識的講解學(xué)習(xí),希望同學(xué)們對上面的內(nèi)容都能很好的掌握,同學(xué)們認真學(xué)習(xí)吧。
初中數(shù)學(xué)知識點:點的坐標的性質(zhì)
下面是對數(shù)學(xué)中點的坐標的性質(zhì)知識學(xué)習(xí),同學(xué)們認真看看哦。
點的坐標的性質(zhì)
建立了平面直角坐標系后,對于坐標系平面內(nèi)的任何一點,我們可以確定它的坐標。反過來,對于任何一個坐標,我們可以在坐標平面內(nèi)確定它所表示的一個點。
對于平面內(nèi)任意一點C,過點C分別向X軸、Y軸作垂線,垂足在X軸、Y軸上的對應(yīng)點a,b分別叫做點C的橫坐標、縱坐標,有序?qū)崝?shù)對(a,b)叫做點C的坐標。
一個點在不同的象限或坐標軸上,點的坐標不一樣。
希望上面對點的坐標的性質(zhì)知識講解學(xué)習(xí),同學(xué)們都能很好的掌握,相信同學(xué)們會在考試中取得優(yōu)異成績的。
初中數(shù)學(xué)知識點:因式分解的一般步驟
關(guān)于數(shù)學(xué)中因式分解的.一般步驟內(nèi)容學(xué)習(xí),我們做下面的知識講解。
因式分解的一般步驟
如果多項式有公因式就先提公因式,沒有公因式的多項式就考慮運用公式法;若是四項或四項以上的多項式,
通常采用分組分解法,最后運用十字相乘法分解因式。因此,可以概括為:“一提”、“二套”、“三分組”、“四十字”。
注意:因式分解一定要分解到每一個因式都不能再分解為止,否則就是不完全的因式分解,若題目沒有明確指出在哪個范圍內(nèi)因式分解,應(yīng)該是指在有理數(shù)范圍內(nèi)因式分解,因此分解因式的結(jié)果,必須是幾個整式的積的形式。
相信上面對因式分解的一般步驟知識的內(nèi)容講解學(xué)習(xí),同學(xué)們已經(jīng)能很好的掌握了吧,希望同學(xué)們會考出好成績。
初中數(shù)學(xué)知識點:因式分解
下面是對數(shù)學(xué)中因式分解內(nèi)容的知識講解,希望同學(xué)們認真學(xué)習(xí)。
因式分解定義:
把一個多項式化成幾個整式的積的形式的變形叫把這個多項式因式分解。
因式分解要素:
、俳Y(jié)果必須是整式
、诮Y(jié)果必須是積的形式
、劢Y(jié)果是等式
④因式分解與整式乘法的關(guān)系:m(a+b+c)
公因式:
一個多項式每項都含有的公共的因式,叫做這個多項式各項的公因式。
公因式確定方法:
、傧禂(shù)是整數(shù)時取各項最大公約數(shù)。
、谙嗤帜溉∽畹痛蝺
、巯禂(shù)最大公約數(shù)與相同字母取最低次冪的積就是這個多項式各項的公因式。
提取公因式步驟:
、俅_定公因式。
②確定商式
、酃蚴脚c商式寫成積的形式。
分解因式注意;
、俨粶蕘G字母
、诓粶蕘G常數(shù)項注意查項數(shù)
、垭p重括號化成單括號
④結(jié)果按數(shù)單字母單項式多項式順序排列
、菹嗤蚴綄懗蓛绲男问
、奘醉椮撎柗爬ㄌ柾
⑦括號內(nèi)同類項合并。
通過上面對因式分解內(nèi)容知識的講解學(xué)習(xí),相信同學(xué)們已經(jīng)能很好的掌握了吧,希望上面的內(nèi)容給同學(xué)們的學(xué)習(xí)很好的幫助。
初中數(shù)學(xué)知識點 篇2
一、一次函數(shù)圖象 y=kx+b
一次函數(shù)的圖象可以由k、b的正負來決定:
k大于零是一撇(由左下至右上,增函數(shù))
k小于零是一捺(由右上至左下,減函數(shù))
b等于零必過原點;
b大于零交點(指圖象與y軸的交點)在上方(指x軸上方)
b小于零交點(指圖象與y軸的交點)在下方(指x軸下方)
其圖象經(jīng)過(0,b) 和 (-b/k , 0) 這兩點(兩點就可以決定一條直線),且(0,b) 在 y軸上, (-b/k , 0) 在x軸上。
b的數(shù)值就是一次函數(shù)在y軸上的截距(不是距離,有正、負、零之分)。
二、不等式組的解集
1、步驟:去分母(后分子應(yīng)加上括號)、去括號、移項、合并同類項、系數(shù)化為1 。
2、解一元一次不等式組時,先求出各個不等式的'解集,然后按不等式組解集的四種類型所反映的規(guī)律,寫出不等式組的解集:不等式組解集的確定方法,若a
A 的解集是 解集 小小的取小
B 的解集是 解集 大大的取大
C 的解集是 解集 大小的 小大的取中間
D 的解集是空集 解集 大大的 小小的無解
另需注意等于的問題。
三、零的描述
1、零既不是正數(shù)也不是負數(shù),是介于正數(shù)和負數(shù)之間的數(shù)。零是自然數(shù),是整數(shù),是偶數(shù)。
A、零是表示具有相反意義的量的基準數(shù)。
B、零是判定正、負數(shù)的界限。
C、在一切非負數(shù)中有一個最小值是0;在一切非正數(shù)中有一個最大值是0。
初中數(shù)學(xué)知識點 篇3
第一章 有理數(shù)
一、有理數(shù)的分類
(1)按正負分,分為正有理數(shù)、零、負有理數(shù);
(2)按整數(shù)和分數(shù)分,分為整數(shù)和分數(shù);
二、有關(guān)概念
(1)相反數(shù):代數(shù)意義和幾何意義相結(jié)合,(2)絕對值:
(3)倒數(shù)
(4)數(shù)軸
三、有理數(shù)大小的比較
主要分為利用數(shù)軸比較和利用絕對值比較
四、有理數(shù)的運算
(1)運算法則
①加法法則
、跍p法法則
、鄢朔ǚ▌t
、艹ǚ▌t
⑤乘方法則
(2)運算律
、 交換律:a、加法交換律 a+b=b+a
b、乘法交換律 a×b=b×a
② 結(jié)合律:a、加法結(jié)合律 a+b+c=(a+b)+c
b、乘法結(jié)合律 a×c+b×c=(a+b)×c ③分配律: (a+b)×c=a×c+b×c
五、科學(xué)記數(shù)法的概念
六、近似數(shù)的概念
示例:
例1 某食品包裝袋上標有“凈含量386克 4克”,則這包食品的合格凈含量范圍是( )克——390克。
根據(jù)正數(shù)、負數(shù)的意義可知,這包食品的合格凈含量范圍是(386-4)克——(386+4)克,即382克——390克。
382
例2 (1)如果a與-2互為相反數(shù),那么a等于( )
A、-2 B、2 C、- D、
根據(jù)相反數(shù)的特點,即“絕對值相等,符號相反”,可知-2的相反數(shù)為2.故正確答案為B。
(2)-5的絕對值是( )
A、5 B、-5 C、 D、-
有絕對值的概念可知,表示-5的點到原點的距離為5,故-5的絕對值為5。
(3)- 的倒數(shù)是( )
A、 B、 C、- D、-
根據(jù)倒數(shù)的定義知- 的倒數(shù)為1÷(- )=-
例3 比較大。- 與-
這是兩個負數(shù)比較大小,應(yīng)先比較它們的絕對值的大小。
= = , = = 。
例4 計算:
有理數(shù)加減乘除混合運算順序:先乘除,后加減,有括號應(yīng)先算括號里的。
例5 我國第六次全國人口普查數(shù)據(jù)顯示,居住在城鎮(zhèn)的`人口總數(shù)達到665 575 306人,將665 575 306用科學(xué)記數(shù)法表示(精確到百萬位)約為( )
A、66.6×10 B、0.666×10 C、6.66×10 D、6.66×10
665 575 306=6.655 753 06×10 ≈6.66×10 故選C
C
例6用四舍五入法,按括號里的要求對下列各數(shù)取近似值。
(1)0.069 99(精確到千分位)
(2)826 750(精確到千位)
(3)28 736(精確到千位)
精確到個位以下的數(shù),用四舍五入或科學(xué)記數(shù)法取近似數(shù)都可以;精確到個位以上的數(shù),應(yīng)用科學(xué)記數(shù)法取近似數(shù),對于較大的數(shù),應(yīng)該用科學(xué)記數(shù)法或表示時在后面加一個表示數(shù)位的漢字。
(1)0.069 99≈0.070
(2)826 750≈8.27×10 或表示為82.7萬
(3)28 736≈2.9×10 或表示為2.9萬
第二章 整式的加減
一、整式
1、單項式:有數(shù)字或字母的積組成的代數(shù)式叫做單項式。單獨的一個數(shù)或一個字母也是單
項式。如: ab, m , -x
單項式的系數(shù)是指單項式中的數(shù)字因數(shù);單項式的次數(shù)是指單項式中所有字母的指數(shù)和。
2、多項式:幾個單項式的和叫做多項式。在多項式中,每個單項式叫做多項式的項。在多項式中,不含字母的項叫做常數(shù)項。多項式中次數(shù)最高的項的次數(shù),就是這個多項式的次數(shù)。多項式的次數(shù)是n次,有m個單項式,我們就把這個多項式稱為n次m項式。
3、整式:單項式和多項式統(tǒng)稱為整式。
二、整式的加減
1、同類項:所含字母相同,并且相同字母的指數(shù)也相同的項叫做同類項。所有的常數(shù)項都是同類項。
2、合并同類項:把多項式中的同類項合并成一項,叫做合并同類項。
3、去括號法則:括號前面是“+”,把括號和它前面的“+”去掉后,原括號里各項的符號都不改變;括號前面是“—”,把括號和它前面的“—”號去掉后,原括號里各項的符號都要改變。
4、添括號法則:添括號后,括號前面是“+”,括號內(nèi)各項的符號都不改變;添括號后,括號前面是“—”,括號內(nèi)各項的符號都要改變。
5、整式的加減運算法則:幾個整式相加減,通常用括號把每一個整式括起來,再用加、減號連接,然后去括號,合并同類項。
※ 正式加減的一般步驟:
(1)如果有括號,那么先去括號;
(2)如果有同類項,那么先去括號;
(3)易錯音難點:
a、確定單項式的系數(shù)時,應(yīng)先把單項式寫成數(shù)字因數(shù)與字母因數(shù)的積的形式,再確定。 b、多項式的項應(yīng)包括它前面的符號,多項式的次數(shù)是多項式中次數(shù)最高項的次數(shù),而不是所有項的次數(shù)之和。
c、判斷兩項是否為同類項時,不僅要看兩項所含字母是否相同,還要看相同字母的指數(shù)是否相同,與所含字母的順序無關(guān)。
d、合并同類項時,只是系數(shù)相加減,所得結(jié)果作為系數(shù),字母及字母的指數(shù)保持不變。 e、去括號時,如果括號前面是“—”,那么括號里各項都應(yīng)變號;如果括號前有數(shù)字因數(shù),那么應(yīng)把數(shù)字因數(shù)乘到括號里,再去括號。
f、整式相加減時應(yīng)加括號,把整式括起來,再加減。
示例
例1 判斷下列代數(shù)式是不是單項式,如果不是,說明理由;如果是,指出它的系數(shù)與次數(shù)。
初中數(shù)學(xué)知識點 篇4
一、線段的比
※1、如果選用同一個長度單位量得兩條線段AB,CD的長度分別是m、n,那么就說這兩條線段的比AB:CD=m:n,或?qū)懗?
※2、四條線段a、b、c、d中,如果a與b的比等于c與d的比,即,那么這四條線段a、b、c、d叫做成比例線段,簡稱比例線段.
※3、注意點:
①a:b=k,說明a是b的k倍;
、谟捎诰段a、b的長度都是正數(shù),所以k是正數(shù);
、郾扰c所選線段的長度單位無關(guān),求出時兩條線段的長度單位要一致;
、艹薬=b之外,a:b≠b:a,與互為倒數(shù);
⑤比例的基本性質(zhì):若,則ad=bc;若ad=bc,則
二、黃金分割
※1、如圖1,點C把線段AB分成兩條線段AC和BC,如果,那么稱線段AB被點C黃金分割,點C叫做線段AB的黃金分割點,AC與AB的比叫做黃金比.
※2、黃金分割點是最優(yōu)美、最令人賞心悅目的點.
四、相似多邊形
¤1、一般地,形狀相同的圖形稱為相似圖形.
※2、對應(yīng)角相等、對應(yīng)邊成比例的兩個多邊形叫做相似多邊形.相似多邊形對應(yīng)邊的比叫做相似比.
五、相似三角形
※1、在相似多邊形中,最為簡簡單的就是相似三角形.
※2.對應(yīng)角相等、對應(yīng)邊成比例的三角形叫做相似三角形.相似三角形對應(yīng)邊的比叫做相似比.
※3、全等三角形是相似三角的特例,這時相似比等于1.注意:證兩個相似三角形,與證兩個全等三角形一樣,應(yīng)把表示對應(yīng)頂點的字母寫在對應(yīng)的位置上.
※4、相似三角形對應(yīng)高的比,對應(yīng)中線的比與對應(yīng)角平分線的比都等于相似比.
※5、相似三角形周長的比等于相似比.
※6、相似三角形面積的比等于相似比的平方.
六、探索三角形相似的條件
※1、相似三角形的判定方法:
一般三角形直角三角形
基本定理:平行于三角形的一邊且和其他兩邊(或兩邊的延長線)相交的直線,所截得的三角形與原三角形相似.
、賰山菍(yīng)相等;
、趦蛇厡(yīng)成比例,且夾角相等;
、廴厡(yīng)成比例.①一個銳角對應(yīng)相等;
、趦蓷l邊對應(yīng)成比例:
a.兩直角邊對應(yīng)成比例;
b.斜邊和一直角邊對應(yīng)成比例.
※2、平行線分線段成比例定理:三條平行線截兩條直線,所得的對應(yīng)線段成比例.
※3、平行于三角形一邊的直線與其他兩邊(或兩邊的.延長線)相交,所構(gòu)成的三角形與原三角形相似.
八、相似的多邊形的性質(zhì)
※相似多邊形的周長等于相似比;面積比等于相似比的平方.
九、圖形的放大與縮小
※1.如果兩個圖形不僅是相似圖形,而且每組對應(yīng)點所在的直線都經(jīng)過同一點,那么這樣的兩個圖形叫做位似圖形;這個點叫做位似中心;這時的相似比又稱為位似比.
※2.位似圖形上任意一對對應(yīng)點到位似中心的距離之比等于位似比.
◎3.位似變換:
、僮儞Q后的圖形,不僅與原圖相似,而且對應(yīng)頂點的連線相交于一點,并且對應(yīng)點到這一交點的距離成比例.像這種特殊的相似變換叫做位似變換.這個交點叫做位似中心.
②一個圖形經(jīng)過位似變換后得到另一個圖形,這兩個圖形就叫做位似形.
、劾梦凰频姆椒,可以把一個圖形放大或縮小.
提高數(shù)學(xué)思維的方法
轉(zhuǎn)化思維
轉(zhuǎn)化思維,既是一種方法,也是一種思維。轉(zhuǎn)化思維,是指在解決問題的過程中遇到障礙時,通過改變問題的方向,從不同的角度,把問題由一種形式轉(zhuǎn)換成另一種形式,尋求最佳方法,使問題變得更簡單、清晰。
創(chuàng)新思維
創(chuàng)新思維是指以新穎獨創(chuàng)的方法解決問題的思維過程,通過這種思維能突破常規(guī)思維的界限,以超常規(guī)甚至反常規(guī)的方法、視角去思考問題,得出與眾不同的解
要培養(yǎng)質(zhì)疑的習(xí)慣
在家庭教育中,家長要經(jīng)常引導(dǎo)孩子主動提問,學(xué)會質(zhì)疑、反省,并逐步養(yǎng)成習(xí)慣。
在孩子放學(xué)回家后,讓孩子回顧當天所學(xué)的知識:老師如何講解的,同學(xué)是如何回答的?當孩子回答出來之后,接著追問:“為什么?”“你是怎樣想的?”啟發(fā)孩子講出思維的過程并盡量讓他自己作出評價。
有時,可以故意制造一些錯誤讓孩子去發(fā)現(xiàn)、評價、思考。通過這樣的訓(xùn)練,孩子會在思維上逐步形成獨立見解,養(yǎng)成一種質(zhì)疑的習(xí)慣。
建立錯題本,培養(yǎng)正確的思維習(xí)慣
每上第一次課,我所講的課程內(nèi)容都和學(xué)生的錯題有關(guān)。我通常把試卷中的錯題摘抄出幾個典型題,作為課堂的例題再講一遍。而學(xué)生的反應(yīng),或是像沒有見過,或是對題目非常熟悉,但沒有思路。
這些現(xiàn)象的發(fā)生,都是學(xué)生沒有及時總結(jié)的原因。所以第一次課后我都建議我的學(xué)生做一個錯題本,像寫日記一樣,記錄下自己的錯題和感想。
初中數(shù)學(xué)最簡二次根式知識點
若二次根式滿足:被開方數(shù)的因數(shù)是整數(shù),因式是整式;被開方數(shù)中不含能開得盡方的因數(shù)或因式,這樣的二次根式叫做最簡二次根式。
化二次根式為最簡二次根式的方法和步驟:
(1)如果被開方數(shù)是分數(shù)(包括小數(shù))或分式,先利用商的算數(shù)平方根的性質(zhì)把它寫成分式的形式,然后利用分母有理化進行化簡。
(2)如果被開方數(shù)是整數(shù)或整式,先將他們分解因數(shù)或因式,然后把能開得盡方的因數(shù)或因式開出來。
初中數(shù)學(xué)知識點 篇5
初中數(shù)學(xué)長方形的中考知識點集錦
長方形也就是我們所說的矩形,是基礎(chǔ)的平面圖形。
長方形
有一個角是直角的平行四邊形叫做長方形 (rectangle)。又叫矩形。
長方形長與寬的定義:
第一種意見:長方形長的那條邊叫長,短的.那條邊叫寬。
第二種意見:和水平面同方向的叫做長,反之就叫做寬。長方形的長和寬是相對的,不能絕對的說“長比寬長”,但習(xí)慣地講,長的為長,短的為寬。
長方形的性質(zhì)
、賰蓷l對角線相等;
、趦蓷l對角線互相平分;
③兩組對邊分別平行;
、軆山M對邊分別相等 ;
、菟膫角都是直角;
、抻2條對稱軸(正方形有4條)。
以上的內(nèi)容是長方形的性質(zhì)及定義,請大家做好筆記了。
初中數(shù)學(xué)知識點 篇6
初中數(shù)學(xué)知識點回顧
三角形中位線定理 三角形的中位線平行于第三邊,并且等于它的一半
梯形中位線定理 梯形的中位線平行于兩底,并且等于兩底和的一半 L=(a+b)2 S=Lh
(1)比例的基本性質(zhì) 如果a:b=c:d,那么ad=bc如果ad=bc,那么a:b=c:d
(2)合比性質(zhì) 如果a/b=c/d,那么(ab)/b=(cd)/d
(3)等比性質(zhì) 如果a/b=c/d==m/n(b+d++n0),那么(a+c++m)/(b+d++n)=a/b
平行線分線段成比例定理 三條平行線截兩條直線,所得的對應(yīng)線段成比例
推論 平行于三角形一邊的直線截其他兩邊(或兩邊的延長線),所得的對應(yīng)線段成比例
定理 如果一條直線截三角形的兩邊(或兩邊的延長線)所得的對應(yīng)線段成比例,那么這條直線平行于三角形的第三邊
平行于三角形的一邊,并且和其他兩邊相交的直線,所截得的三角形的三邊與原三角形三邊對應(yīng)成比例
定理 平行于三角形一邊的直線和其他兩邊(或兩邊的延長線)相交,所構(gòu)成的三角形與原三角形相似
相似三角形判定定理1 兩角對應(yīng)相等,兩三角形相似(ASA)
直角三角形被斜邊上的高分成的兩個直角三角形和原三角形相似
判定定理2 兩邊對應(yīng)成比例且夾角相等,兩三角形相似(SAS)
判定定理3 三邊對應(yīng)成比例,兩三角形相似(SSS)
定理 如果一個直角三角形的斜邊和一條直角邊與另一個直角三角形的斜邊和一條直角邊對應(yīng)成比例,那么這兩個直角三角形相似
性質(zhì)定理1 相似三角形對應(yīng)高的比,對應(yīng)中線的比與對應(yīng)角平分線的比都等于相似比
性質(zhì)定理2 相似三角形周長的比等于相似比
性質(zhì)定理3 相似三角形面積的比等于相似比的平方
任意銳角的正弦值等于它的余角的.余弦值,任意銳角的余弦值等于它的余角的正弦值
任意銳角的正切值等于它的余角的余切值,任意銳角的余切值等于它的余角的正切值
初中數(shù)學(xué)知識點 篇7
光陰似箭,日月如梭,轉(zhuǎn)眼間,20xx——20xx學(xué)年第二學(xué)期又將結(jié)束了。本學(xué)期來,隨著學(xué)校的發(fā)展,我的工作又有了新的變化,除了一個星期6節(jié)的信息課教學(xué),在教導(dǎo)處方面我的工作內(nèi)容是負責網(wǎng)站空間的更新、維護以及多媒體室的管理,教師教學(xué)影像資料的保管,以及教導(dǎo)處臨時安排的任務(wù);另外,由于學(xué)校在未來三年里評省一級學(xué)校,在這方面我工作就是負責:
1、近三年多媒體、功能室使用情況登記表;
2、教師課件制作、使用情況登記表;
3、學(xué)校網(wǎng)絡(luò)管理的有關(guān)材料;
4、多媒體教室使用登記表;
5、近一年專任教師運用多媒體計算機技術(shù)進行教學(xué)課時統(tǒng)計表;
6、高中畢業(yè)生制作的多媒體作品;
7、近三年信息技術(shù)測試成績登記表、合格率統(tǒng)計表。
回顧本學(xué)期,本人努力工作,認真完成學(xué)校安排的各項工作,參與教學(xué)管理和教育教學(xué)。經(jīng)過一個學(xué)期的努力,對學(xué)校教學(xué)管理、教育思想和觀念的感悟和理解,首先是教學(xué)方面,以促進教學(xué)內(nèi)容、教學(xué)方法的實施、全面提高教學(xué)質(zhì)量和效益,根據(jù)實際制定各項計劃,備好課,寫好教案,并能夠根據(jù)學(xué)生的特點來設(shè)計上課的形式和內(nèi)容,難易結(jié)合,使不同水平的學(xué)生都學(xué)得愉快、學(xué)得好。其次是在教導(dǎo)處的工作,作為一名管理學(xué)校教學(xué)必備的多媒體課室的工作人員,首先是清楚自己責任的,對每個登記使用多媒體課室的老師都認真的負責,去解決他們多遇到的問題;在清楚自身責任的情況下,認真的為每一節(jié)課負責,做到課前和課后都對多媒體課室的檢查,確保課室的正常使用,發(fā)現(xiàn)破損情況時及時上報學(xué)?倓(wù)處。由于學(xué)校的安排,我負責了學(xué)校網(wǎng)站的建設(shè),經(jīng)過兩個學(xué)期的努力,終于把學(xué)校的網(wǎng)站建設(shè)完成,接下來是對網(wǎng)站的管理和維護,保持學(xué)校網(wǎng)站的正常運作。
在本學(xué)期的教學(xué)歷程中,由于課時比較少,從教學(xué)中去培養(yǎng)學(xué)生信息的深刻認識,同時建立起學(xué)生掌握信息,挖掘信息,如何處理信息利用信息的學(xué)習(xí)思維。更重要的是讓學(xué)生懂得去辨認什么是有用有益信息,什么是有害信息,從而達到對信息安全意識的建立,防范計算機犯罪!缎畔⒓夹g(shù)》不同于一般的學(xué)科,而是一門實踐性很強的學(xué)科,因此在教學(xué)中要以講為輔,以練為主,以用為目的,使學(xué)生在練習(xí)中、實踐中或“玩”中學(xué)會如何使用電腦,改變過去以課堂講授為主的呆板教學(xué)方法,利用《信息技術(shù)》課程自身的特點提高學(xué)生學(xué)習(xí)電腦的興趣。經(jīng)過上述的教學(xué),讓學(xué)生從實質(zhì)上了解了信息技術(shù)、計算機技術(shù)及其中的一系列問題,基本上打破了信息技術(shù)的神秘感,并且激發(fā)了學(xué)生的興趣。下一步就要真正接觸到怎樣使用計算機這個先進的工具了。
信息技術(shù)領(lǐng)域發(fā)展迅速、更新很快,新知識、新產(chǎn)品、新術(shù)語幾乎天天出現(xiàn)。
作為信息技術(shù)教師,只有不斷地更新自己的知識,不斷地提高自身的素質(zhì),不斷地自我加壓,才能將信息知識更流暢地、輕松地、完整地講授給學(xué)生,才能讓學(xué)生始終走在信息技術(shù)知識的前端,跟上不斷發(fā)展的時代的步伐。
如何高質(zhì)量的完成信息技術(shù)課的教學(xué),我認為,除了教師在教學(xué)中不懈地努力之外,更重要的莫過于教學(xué)環(huán)境的改善。
一個良好的學(xué)校環(huán)境,對于開好這門課是至關(guān)重要的。在一個學(xué)校里,如果從學(xué)校領(lǐng)導(dǎo)到各科教師都不關(guān)心支持,甚至排斥這門課的話,教師怎能去盡力工作,怎能順暢地完成這門課的教學(xué)。建立一個良好的學(xué)習(xí)環(huán)境,為學(xué)生創(chuàng)造一個學(xué)習(xí)計算機所必須的環(huán)境,是目前信息技術(shù)課最為迫切的任務(wù)。有了這樣好的學(xué)校環(huán)境的支持,信息技術(shù)課的教學(xué)才能日益走向正規(guī)化、系統(tǒng)化。
一個好的學(xué)校環(huán)境是重要的,一個良好的社會環(huán)境也不可缺少。對于一個新生的事物,只有得到社會各界的支持和幫助,才能更好地向前發(fā)展。如果一個社會對信息技術(shù)的接受程度過慢或者說排斥的話,整個社會的信息化程度肯度會受到限制,甚至非常落后。在一個落后的環(huán)境下中的信息技術(shù)的發(fā)展是可想而知的。
教好這門課,我們需要借助于一些先進的手段、設(shè)備,才能不斷地提高這門課的教學(xué)水平和教學(xué)質(zhì)量。但是,一個學(xué)校的財力、技術(shù)等畢竟是有限的,這就需要社會各界的不斷支持幫助,能夠為信息技術(shù)課的教學(xué)提供更好的條件。
還記得上大學(xué)期間我總會擠出一些時間去參加一些培訓(xùn),讓自己跟上時代的潮流。作為剛出來工作時間不長的青年教師,在工作了兩年后的暑假迎來了新課程新課標方面的第二次培訓(xùn),對我無疑是錦上添花。所以,我告訴自己一定要以一種歸零的心態(tài),讓這次培訓(xùn)收獲最大化。
首先最大的收獲是對新課標新課程的認識。一共五天的集中培訓(xùn)都是圍繞這個主題進行,觀看了專家講座的視頻,不同的專家講座從不同的角度加以闡釋。我及時的做了筆記,當然,最重要的還是要將筆記上的內(nèi)容結(jié)合自己的實際情況內(nèi)化為自己的東西才稱得上真正的收獲,除此之外還有幾點收獲很大:
一、分班合作討論
學(xué)校把我們分成了兩個班,然后分班進行討論交流。當時我就在想,在課堂教學(xué)中我最初也經(jīng)常讓學(xué)生合作討論,但幾次下來我發(fā)現(xiàn)效果都不是很好,慢慢就很少讓學(xué)生討論了,結(jié)果是學(xué)生的合作探究能力與臺上的語言表達能力越來越弱。通過自己親身體驗,我似乎有所感悟:
、賹W(xué)生最初的幾次合作探究不積極是很正常的現(xiàn)象,因為他們需要一個適應(yīng)的過程。
、诮處熥鳛閷W(xué)生合作討論的組織者,在調(diào)動學(xué)生積極性,組織引導(dǎo)學(xué)生討論上面需要花大功夫,這關(guān)系到能否有效討論的成敗。
、垡嘈琶總人尤其是學(xué)生都有想展示自己的愿望,我們要做的就是把學(xué)生的這種愿望激發(fā)出來。
④相信堅持就是勝利。可能短期內(nèi)看不到什么效果,但只要相信這種方法是好的,就應(yīng)該堅持下去。
二、觀看專家的講座、課堂實錄
我特別喜歡魏書生說過的一句話:要牢牢守住自己教學(xué)的長處。因為我堅信每個人都有自己的長處,每個教師也都有自己教學(xué)的長處或風格。但從小的習(xí)慣就是不斷去挖自己的`缺點,然后費勁地去改正,結(jié)果缺點還是一大堆,優(yōu)點數(shù)不出幾個。觀看了專家的講座、課堂實錄,他們上課的風格我很值得借鑒。因為自我感覺我們有很多特質(zhì)相似,所以他們的一些方法對我更具有借鑒意義。總結(jié)起來就是:發(fā)揮自己的親切優(yōu)勢,主動與學(xué)生對話似地教學(xué),多給學(xué)生說話的機會,多讓學(xué)生上臺的習(xí)慣。
三、培訓(xùn)引發(fā)反思
在這五天的培訓(xùn)中,除去知識的學(xué)習(xí)和吸收,更多的是自我的反思。反思自己的教學(xué),反思自己的課堂,反思自己的專業(yè)成長。愿這次培訓(xùn)引發(fā)的反思能成為我不斷前進的動力,能成為成功的敲門石,能成為我堅定航向的指路標。
在培訓(xùn)即將結(jié)束的時候,想說的話真是很多很多,但我明白,只有把培訓(xùn)中學(xué)到的知識技能轉(zhuǎn)化成自我前進的內(nèi)驅(qū)力,我才會在教學(xué)中有所成。我也相信在傾聽,記錄,反思,沉淀,實踐中,我的數(shù)學(xué)教學(xué)之路會愈趨于成熟!
提高數(shù)學(xué)學(xué)習(xí)的七大能力是什么
1.運算能力,否則每次考試大題第一題你就開始錯!
2.空間想象能力,否則幾何題會讓你痛不欲生!
3.邏輯思維能力,否則以后的證明題和推導(dǎo)題會讓你生不如死!
4.將實際問題抽象為數(shù)學(xué)問題的能力,不然應(yīng)用題會讓你雖死猶生!
5.形數(shù)結(jié)合互相轉(zhuǎn)化的能力。這考試每次考試的壓軸題哦!
6.觀察、實驗、比較、猜想、歸納問題的能力。不然每次選擇或者填空題的最后一題找規(guī)律會讓你內(nèi)流滿面!
7.研究、探討問題的能力和創(chuàng)新能力。不然每次的附加題咱們就不用看了!
如何養(yǎng)成良好的數(shù)學(xué)學(xué)習(xí)習(xí)慣
制定計劃,成為習(xí)慣
無論是學(xué)習(xí)哪一科,明確的目標計劃都是最基本的方法,也是要被大家說爛了的提高成績的基本。
數(shù)學(xué)也是一樣,雖然公式多,定義多,圖形多,但完全不影響制定數(shù)學(xué)的學(xué)習(xí)計劃。學(xué)習(xí)是一個長久性的打算,因此在制定數(shù)學(xué)學(xué)習(xí)內(nèi)容的過程中可以盡量的詳細一點。
比如說每天做多少道題,掌握多少個公式,記住幾個定義等等。這樣才是學(xué)好高中數(shù)學(xué)應(yīng)該做的步驟。
其次就是每天按照自己給自己的規(guī)定去做,不要想著偷懶,今天不愛做就留給明天,想著明天多做點補回來。
這種想法是非常錯誤的,今天的任務(wù)就要今天完成,想著自己為了提高數(shù)學(xué)成績,無論如何都要努力。
預(yù)習(xí)與復(fù)習(xí)相結(jié)合
預(yù)習(xí)幫助大家在數(shù)學(xué)課上對知識有一個大概的了解,也對老師要講的內(nèi)容有個先知,不至于驚訝驚訝老師接下來要講什么。
而復(fù)習(xí)就是對這一堂課的數(shù)學(xué)學(xué)習(xí)進行一個驗收和反饋,檢驗自己是否學(xué)會數(shù)學(xué)老師講的內(nèi)容;反饋自己的學(xué)習(xí)成效,及時找到自己數(shù)學(xué)學(xué)習(xí)的問題以便及時解決。
這樣在學(xué)習(xí)新的數(shù)學(xué)知識的時候就不會帶著之前留下來的疑問了。這對于學(xué)好高中數(shù)學(xué),提高數(shù)學(xué)成績非常有幫助。
高質(zhì)量的完成作業(yè)
作業(yè)是一個很好查缺補漏的過程,因此同學(xué)們想要學(xué)好數(shù)學(xué),就一定要認真完成作業(yè)。不要依賴不會就空著等數(shù)學(xué)老師上課講這樣的想法,這樣只會退步。
數(shù)學(xué)學(xué)習(xí)就是要不斷的動腦解決問題,所以作業(yè)要完成,還要高質(zhì)量的去完成,這樣才能不斷提高自己的能力。
不要空太多的題不寫,就只等著老師公布正確答案和解題過程,這樣一來,需要自己消化的數(shù)學(xué)問題就因為自己的懶惰變得越來越多,以至于影響之后的學(xué)習(xí)效率。
數(shù)學(xué)最常用且非常實用的學(xué)習(xí)方法
1、預(yù)習(xí)很重要:
往往被忽略,理由:沒時間,看不懂,不必要等。預(yù)習(xí)是學(xué)習(xí)的必要過程,還是提高自學(xué)能力的好方法。
2、聽講有學(xué)問:
聽分析、聽思路、聽應(yīng)用,關(guān)鍵內(nèi)容一字不漏,注意記錄。
3、做好錯題本:
每個會學(xué)習(xí)的學(xué)生都會有。最好再加個“好題本”。發(fā)現(xiàn)許多同學(xué)沒有錯題本,或者是只做不用。這樣學(xué)習(xí)效果都不好。
4、用好課外書:
正確認識網(wǎng)絡(luò)課程和課外書籍,是副食,是幫助吸收的良藥,絕對不是課堂學(xué)習(xí)的替代品。
5、注意總結(jié)和反思:
知識點、解題方法和技巧、經(jīng)驗和教訓(xùn)。
6、接受數(shù)學(xué)思想方法的指導(dǎo):
要注意數(shù)學(xué)思想和方法的指導(dǎo),站得高,才能看得遠。
初中數(shù)學(xué)知識點 篇8
我們在學(xué)習(xí)三角形的知識中,老師經(jīng)常會提到的一句話就是:三角形具有穩(wěn)定性。
穩(wěn)定性證明
任取三角形兩條邊,則兩條邊的非公共端點被第三條邊連接。
∵第三條邊不可伸縮或彎折 ,
∴兩端點距離固定 ,
∴這兩條邊的夾角固定;
∵這兩條邊是任取的 ,
∴三角形三個角都固定,進而將三角形固定,
∴三角形有穩(wěn)定性 。
任取n邊形(n≥4)兩條相鄰邊,則兩條邊的非公共端點被不止一條邊連接
∴兩端點距離不固定 ,
∴這兩邊夾角不固定 ,
∴n邊形(n≥4)每個角都不固定,所以n邊形(n≥4)沒有穩(wěn)定性。
如果不看上面的證明過程,我們就沒有辦法清晰的理解三角形穩(wěn)定性的所有定理。
正方形定理公式
正方形的特征:
①正方形的四邊相等;
②正方形的四個角都是直角;
、壅叫蔚膬蓷l對角線相等,且互相垂直平分,每一條對角線平分一組對角;
正方形的判定:
、儆幸粋角是直角的菱形是正方形;
、谟幸唤M鄰邊相等的矩形是正方形。
希望上面對正方形定理公式知識的講解學(xué)習(xí),同學(xué)們都能很好的掌握,相信同學(xué)們會取得很好的成績的哦。
平行四邊形
平行四邊形的'性質(zhì):
、倨叫兴倪呅蔚膶呄嗟龋
、谄叫兴倪呅蔚膶窍嗟龋
、燮叫兴倪呅蔚膶蔷互相平分;
平行四邊形的判定:
、賰山M對角分別相等的四邊形是平行四邊形;
②兩組對邊分別相等的四邊形是平行四邊形;
③對角線互相平分的四邊形是平行四邊形;
、芤唤M對邊平行且相等的四邊形是平行四邊形。
上面對數(shù)學(xué)中平行四邊形定理公式知識的講解學(xué)習(xí),同學(xué)們都能很好的掌握了吧,相信同學(xué)們會從中學(xué)習(xí)的更好的哦。
直角三角形的性質(zhì):
、僦苯侨切蔚膬蓚銳角互為余角;
、谥苯侨切涡边吷系闹芯等于斜邊的一半;
③直角三角形的兩直角邊的平方和等于斜邊的平方(勾股定理);
、苤苯侨切沃30度
角所對的直角邊等于斜邊的一半;
直角三角形的判定:
、儆袃蓚角互余的三角形是直角三角形;
、谌绻切蔚娜呴La、b 、c有下面關(guān)系a^2+b^2=c^2
,那么這個三角形是直角三角形(勾股定理的逆定理)。
以上對數(shù)學(xué)直角三角形定理公式的內(nèi)容講解學(xué)習(xí),同學(xué)們都能很好的掌握了吧,希望同學(xué)們都能考試成功。
等腰三角形的性質(zhì):
、俚妊切蔚膬蓚底角相等;
、诘妊切蔚捻斀瞧椒志、底邊上的中線、底邊上的高互相重合(三線合一)
上面對等腰三角形的性質(zhì)定理公式的內(nèi)容講解學(xué)習(xí),同學(xué)們都能很好的掌握了吧,希望同學(xué)們在考試中取得很好的成績。
三角形
三角形的三邊關(guān)系定理及推論:三角形的兩邊之和大于第三邊,兩邊之差小于第三邊;
三角形的內(nèi)角和定理:三角形的三個內(nèi)角的和等于180度;
三角形的外角和定理:三角形的一個外角等于和它不相鄰的兩個的和;
三角形的外角和定理推理:三角形的一個外角大于任何一個和它不相鄰的內(nèi)角;
三角形的三條角平分線交于一點(內(nèi)心);
三角形的三邊的垂直平分線交于一點(外心);
三角形中位線定理:三角形兩邊中點的連線平行于第三邊,并且等于第三邊的一半;
初中數(shù)學(xué)知識點 篇9
1、整式的乘除的公式運用(六條)及逆運用(數(shù)的計算)。
。1)an·am(2)(am)n=(3)(ab)n=4)am÷an(5)a0(a≠0)(6)a—p==
2、單項式與單項式、多項式相乘的法則。
3、整式的乘法公式(兩條)。
平方差公式:(a+b)(a—b)=
完全平方公式:(a+b)2(a—b)2
常用公式:(x+m)(x+n)=
4、單項式除以單項式,多項式除以單項式(轉(zhuǎn)換單項式除以單項式)。
5、互為余角和互為補角和
6、兩直線平行的條件:(角的關(guān)系線的平行)
、傧嗟龋瑑芍本平行;
②相等,兩直線平行;
、刍パa,兩直線平行。
7、平行線的`性質(zhì):兩直線平行。(線的平行
8、能判別變量中的自變量和因變量,會列列關(guān)系式(因變量=自變量與常量的關(guān)系)
9、變量中的圖象法,注意:(1)橫、縱坐標的對象。(2)起點、終點不同表示什么意義(3)圖象交點表示什么意義(4)會求平均值。
10、三角形
。1)三邊關(guān)系:角的關(guān)系)
。2)內(nèi)角關(guān)系:
(3)三角形的三條重要線段:
。4)三角形全等的判別方法:(注意:公共邊、邊的公共部分對頂角、公共角、角的公共部分)
。5)全等三角形的性質(zhì):
。6)等腰三角形:(a)知邊求邊、周長方法(b)知角求角方法(c)三線合一:
。7)等邊三角形:
11、會判軸對稱圖形,會根據(jù)畫對稱圖形,(或在方格中畫)
12、常見的軸對稱圖形有:
13、(1)等腰三角形:對稱軸,性質(zhì)
。2)線段:對稱軸,性質(zhì)
。3)角:對稱軸,性質(zhì)
14、尺規(guī)作圖:(1)作一線段等已知線段(2)作角已知角(3)作線段垂直平分線
(4)作角的平分線(5)作三角形
15、事件的分類:,會求各種事件的概率
。1)摸球:P(摸某種球)=
。2)摸牌:P(摸某種牌)=
(3)轉(zhuǎn)盤:P(指向某個區(qū)域)=
。4)拋骰子:P(拋出某個點數(shù))=
。5)方格(面積):P(停留某個區(qū)域)=
16、必然事件不可能事件,不確定事件
17、方法歸納:(1)求邊相等可以利用
。2)求角相等可以利用。
。3)計算簡便可以利用。
18、注意復(fù)習(xí):合并同類項的法則,科學(xué)記數(shù)法,解一元一次方程,絕對值。
初中數(shù)學(xué)知識點 篇10
第十一章三角形
一、知識框架:
二、知識概念:
1.三角形:由不在同一直線上的三條線段首尾順次相接所組成的圖形叫做三角形.
2.三邊關(guān)系:三角形任意兩邊的和(大于或小于)第三邊,任意兩邊的差(大于或小于)第三邊.
3.高:從三角形的一個頂點向它的對邊所在直線作,頂點和間的線段叫做三角形的高.4.中線:在三角形中,連接一個頂點和它對邊的線段叫做三角形的中線.
5.角平分線:三角形的一個內(nèi)角的平分線與這個角的對邊相交,這個角的頂點和之間的線段叫做三角形的角平分線.
6.三角形的穩(wěn)定性:三角形的形狀是,三角形的這個性質(zhì)叫三角形的穩(wěn)定性.
7.多邊形:在平面內(nèi),由一些線段首尾順次相接組成的圖形叫做多邊形.
8.多邊形的內(nèi)角:多邊形兩邊組成的角叫做它的內(nèi)角.
9.多邊形的外角:多邊形的一邊與它的鄰邊的線組成的角叫做多邊形的外角.
10.多邊形的對角線:連接多邊形的兩個頂點的線段,叫做多邊形的對角線.
11.正多邊形:在平面內(nèi),各個角都相等,各條邊都相等的多邊形叫正多邊形.
12.平面鑲嵌:用一些不重疊擺放的多邊形把平面的一部分完全覆蓋,叫做用多邊形覆蓋平面,
13.公式與性質(zhì):
⑴三角形的內(nèi)角和:三角形的內(nèi)角和為度。
、迫切瓮饨堑男再|(zhì):
性質(zhì)1:三角形的一個外角等于和它不相鄰的的和.
性質(zhì)2:三角形的一個外角大于任何一個和它的內(nèi)角.
、嵌噙呅蝺(nèi)角和公式:n邊形的內(nèi)角和等于。
學(xué)無慮課后輔導(dǎo)中心編制
、榷噙呅蔚耐饨呛停憾噙呅蔚耐饨呛蜑槎.
⑸多邊形對角線的條數(shù):
、購膎邊形的一個頂點出發(fā)可以引條對角線,把多邊形分成個三角形.
、趎邊形共有條對角線.
第十二章全等三角形
一、知識框架:
二、知識概念:
1.基本定義:
⑴全等形:能夠完全的兩個圖形叫做全等形.
、迫热切危耗軌蛲耆膬蓚三角形叫做全等三角形.
、菍(yīng)頂點:全等三角形中互相的頂點叫做對應(yīng)頂點.
、葘(yīng)邊:全等三角形中互相的邊叫做對應(yīng)邊.
、蓪(yīng)角:全等三角形中互相的角叫做對應(yīng)角.
2.基本性質(zhì):
、湃切蔚姆(wěn)定性:三角形三邊的確定了,這個三角形的形狀、大小就全確定,這個性質(zhì)叫做三角形的穩(wěn)定性.
、迫热切蔚男再|(zhì):全等三角形的相等,對應(yīng)角相等.
3.全等三角形的判定定理:
、胚呥呥叄⊿SS):。
、七吔沁叄⊿AS):。
、墙沁吔牵ˋSA):。
、冉墙沁叄ˋAS):。
、尚边、直角邊(HL):。
4.角平分線:⑴畫法:⑵性質(zhì)定理:角平分線上的點到角的兩邊的距離.⑶性質(zhì)定理的'逆定理:角的內(nèi)部到角的兩邊距離相等的點在角的上.
5.證明的基本方法:
、琶鞔_命題中的已知和求證.(包括隱含條件,如公共邊、公共角、對頂角、角平分線、中線、高、等腰三角形等所隱含的邊角關(guān)系)⑵根據(jù)題意,畫出圖形,并用數(shù)字符號表示已知和求證.⑶經(jīng)過分析,找出由已知推出求證的途徑,寫出證明過程.
第十三章軸對稱
一、知識框架:
二、知識概念:
1.基本概念:
⑴軸對稱圖形:如果一個圖形沿一條直線折疊,直線兩旁的部分能夠互相,這個圖形就叫做軸對稱圖形.
、苾蓚圖形成軸對稱:把一個圖形沿某一條直線折疊,如果它能夠與另一個圖形重合,那么就說這兩個圖形關(guān)于這條直線對稱.⑶線段的垂直平分線:經(jīng)過線段中點并且這條線段的直線,叫做這條線段的垂直平分線.
、鹊妊切危河袃蓷l邊相等的三角形叫做等腰三角形.相等的兩條邊叫做腰,另一條邊叫做底邊,兩腰所夾的角叫做頂角,底邊與腰的夾角叫做底角.
⑸等邊三角形:都相等的三角形叫做等邊三角形.2.基本性質(zhì):⑴對稱的性質(zhì):①不管是軸對稱圖形還是兩個圖形關(guān)于某條直線對稱,對稱軸都是任何一對對應(yīng)點所連線段的垂直平分線.②對稱的圖形都全等.⑵線段垂直平分線的性質(zhì):①線段垂直平分線上的點與這條線段的距離相等.②與一條線段兩個端點距離相等的點在這條線段的上.⑶關(guān)于坐標軸對稱的點的坐標性質(zhì)①點P(x,y)關(guān)于x軸對稱的點的坐標為P"(,).②點P(x,y)關(guān)于y軸對稱的點的坐標為P"(,).⑷等腰三角形的性質(zhì):
、俚妊切蝺裳.
②等腰三角形兩底角相等(等邊對等角).
、鄣妊切蔚摹,相互重合.④等腰三角形是圖形,對稱軸是三線合一(1條).⑸等邊三角形的性質(zhì):
①等邊三角形三邊都相等.
、诘冗吶切稳齻內(nèi)角都相等,都等于度。③等邊三角形每條邊上都存在三線合一.
④等邊三角形是軸對稱圖形,對稱軸是三線合一(3條).3.基本判定:
⑴等腰三角形的判定:
、傧嗟鹊娜切问堑妊切.
②如果一個三角形有兩個角相等,那么這兩個角所對的邊也(等角對等邊).
、频冗吶切蔚呐卸ǎ
、俣枷嗟鹊娜切问堑冗吶切.②三個角都相等的三角形是三角形.
、塾幸粋角是度。的等腰三角形是等邊三角形.
4.基本方法:
⑴做已知直線的垂線:
、谱鲆阎段的垂直平分線:
⑶作對稱軸:連接兩個對應(yīng)點,作所連線段的垂直平分線.
⑷作已知圖形關(guān)于某直線的對稱圖形:
、稍谥本上做一點,使它到該直線同側(cè)的兩個已知點的距離之和最短.
第十四章整式的乘除與分解因式
一、知識框架:
整式乘法乘法法則整式除法因式分解
二、知識概念:
基本運算:⑴同底數(shù)冪的乘法公式:。⑵冪的乘方公式:。⑶積的乘方公式:。
2.整式的乘法:⑴單項式單項式:系數(shù),同字母,不同字母為積的因式.⑵單項式多項式:。⑶多項式多項式:.
3.計算公式:
、牌椒讲罟剑篴babab
222222⑵完全平方公式:aba2abb;aba2abb
224.整式的除法:
、磐讛(shù)冪的除法:aaamnmn
、茊雾検絾雾検剑合禂(shù),同字母,不同字母作為商的因式.⑶多項式單項式:.⑷多項式多項式:用豎式.
5.因式分解:把一個多項式化成的積的形式,這種變形叫做把這個式子因式分解.
6.因式分解方法:
、盘峁蚴椒ǎ赫页鲎畲蠊蚴.⑵公式法:①平方差公式:。②完全平方公式:。③立方和:。④立方差:。⑶十字相乘法:。⑷拆項法⑸添項法第十五章分式一、知識框架:
二、知識概念:A1.分式:形如,A、B是整式,B中含有字母且B不等于的整式叫做分式.其中AB叫做分式的,B叫做分式的2.分式有意義的條件:分母不等于.3.分式的基本性質(zhì):分式的分子和分母同時乘以(或除以)同一個不為的整式,分式的值不變.4.約分:把一個分式的分子和分母的(不為1的數(shù))約去,這種變形稱為約分.5.通分:異分母的分式可以化成的分式,這一過程叫做通分.
6.最簡分式:一個分式的分子和分母沒有時,這個分式稱為最簡分式,約分時,一般將一個分式化為最簡分式.7.分式的四則運算:
⑴同分母分式加減法則:同分母的分式相加減,分母,把相加減.用字
母表示
為:。
、飘惙帜阜质郊訙p法則:異分母的分式相加減,先,化為同分母的分
式,然后再按同分母分式的加減法法則進行計算.用字母表示為:。
、欠质降某朔ǚ▌t:兩個分式相乘,把相乘的積作為積的分子,把相乘的積作為積的分母.用字母表示為:。
、确质降某ǚ▌t:兩個分式相除,把除式的和顛倒位置后再與被除式相乘.用字母表示為:。⑸分式的乘方法則:、分別乘方.用字母表示為:。8.整數(shù)指數(shù)冪:⑴aaam⑵amnmn(m、n是正整數(shù))namn(m、n是正整數(shù))nn⑶abab(n是正整數(shù))n⑷aaanmnmn(a0,m、n是正整數(shù),mn)ana⑸n(n是正整數(shù))bb⑹an1(a0,n是正整數(shù))na9.分式方程的意義:分母中含有未知數(shù)的方程叫做分式方程.10.分式方程的解法:
、(方程兩邊同時乘以最簡公分母,將分式方程化為整式方程);②按解整式方程的步驟求出未知數(shù)的值;
、(求出未知數(shù)的值后必須驗根,因為在把分式方程化為整式方程的過程中,擴大了未知數(shù)的取值范圍,可能產(chǎn)生增根).
初中數(shù)學(xué)知識點 篇11
因式分解
因式分解定義:把一個多項式化成幾個整式的積的形式的變形叫把這個多項式因式分解。
因式分解要素:①結(jié)果必須是整式②結(jié)果必須是積的形式③結(jié)果是等式④
因式分解與整式乘法的關(guān)系:m(a+b+c)
公因式:一個多項式每項都含有的公共的因式,叫做這個多項式各項的公因式。
公因式確定方法:①系數(shù)是整數(shù)時取各項最大公約數(shù)。②相同字母取最低次冪③系數(shù)最大公約數(shù)與相同字母取最低次冪的積就是這個多項式各項的公因式。
提取公因式步驟:
、俅_定公因式。②確定商式③公因式與商式寫成積的形式。
分解因式注意;
①不準丟字母
、诓粶蕘G常數(shù)項注意查項數(shù)
③雙重括號化成單括號
、芙Y(jié)果按數(shù)單字母單項式多項式順序排列
、菹嗤蚴綄懗蓛绲男问
、奘醉椮撎柗爬ㄌ柾
、呃ㄌ杻(nèi)同類項合并。
通過上面對因式分解內(nèi)容知識的講解學(xué)習(xí),相信同學(xué)們已經(jīng)能很好的掌握了吧,希望上面的內(nèi)容給同學(xué)們的學(xué)習(xí)很好的幫助。
初中數(shù)學(xué)知識點總結(jié):平面直角坐標系
下面是對平面直角坐標系的內(nèi)容學(xué)習(xí),希望同學(xué)們很好的掌握下面的內(nèi)容。
平面直角坐標系
平面直角坐標系:在平面內(nèi)畫兩條互相垂直、原點重合的數(shù)軸,組成平面直角坐標系。
水平的數(shù)軸稱為x軸或橫軸,豎直的數(shù)軸稱為y軸或縱軸,兩坐標軸的交點為平面直角坐標系的原點。
平面直角坐標系的要素:①在同一平面②兩條數(shù)軸③互相垂直④原點重合
三個規(guī)定:
、僬较虻囊(guī)定橫軸取向右為正方向,縱軸取向上為正方向
、趩挝婚L度的規(guī)定;一般情況,橫軸、縱軸單位長度相同;實際有時也可不同,但同一數(shù)軸上必須相同。
、巯笙薜腵規(guī)定:右上為第一象限、左上為第二象限、左下為第三象限、右下為第四象限。
相信上面對平面直角坐標系知識的講解學(xué)習(xí),同學(xué)們已經(jīng)能很好的掌握了吧,希望同學(xué)們都能考試成功。
初中數(shù)學(xué)知識點:平面直角坐標系的構(gòu)成
對于平面直角坐標系的構(gòu)成內(nèi)容,下面我們一起來學(xué)習(xí)哦。
平面直角坐標系的構(gòu)成
在同一個平面上互相垂直且有公共原點的兩條數(shù)軸構(gòu)成平面直角坐標系,簡稱為直角坐標系。通常,兩條數(shù)軸分別置于水平位置與鉛直位置,取向右與向上的方向分別為兩條數(shù)軸的正方向。水平的數(shù)軸叫做X軸或橫軸,鉛直的數(shù)軸叫做Y軸或縱軸,X軸或Y軸統(tǒng)稱為坐標軸,它們的公共原點O稱為直角坐標系的原點。
通過上面對平面直角坐標系的構(gòu)成知識的講解學(xué)習(xí),希望同學(xué)們對上面的內(nèi)容都能很好的掌握,同學(xué)們認真學(xué)習(xí)吧。
初中數(shù)學(xué)知識點:點的坐標的性質(zhì)
下面是對數(shù)學(xué)中點的坐標的性質(zhì)知識學(xué)習(xí),同學(xué)們認真看看哦。
點的坐標的性質(zhì)
建立了平面直角坐標系后,對于坐標系平面內(nèi)的任何一點,我們可以確定它的坐標。反過來,對于任何一個坐標,我們可以在坐標平面內(nèi)確定它所表示的一個點。
對于平面內(nèi)任意一點C,過點C分別向X軸、Y軸作垂線,垂足在X軸、Y軸上的對應(yīng)點a,b分別叫做點C的橫坐標、縱坐標,有序?qū)崝?shù)對(a,b)叫做點C的坐標。
一個點在不同的象限或坐標軸上,點的坐標不一樣。
希望上面對點的坐標的性質(zhì)知識講解學(xué)習(xí),同學(xué)們都能很好的掌握,相信同學(xué)們會在考試中取得優(yōu)異成績的。
初中數(shù)學(xué)知識點:因式分解的一般步驟
關(guān)于數(shù)學(xué)中因式分解的一般步驟內(nèi)容學(xué)習(xí),我們做下面的知識講解。
因式分解的一般步驟
如果多項式有公因式就先提公因式,沒有公因式的多項式就考慮運用公式法;若是四項或四項以上的多項式,通常采用分組分解法,最后運用十字相乘法分解因式。因此,可以概括為:“一提”、“二套”、“三分組”、“四十字”。
注意:因式分解一定要分解到每一個因式都不能再分解為止,否則就是不完全的因式分解,若題目沒有明確指出在哪個范圍內(nèi)因式分解,應(yīng)該是指在有理數(shù)范圍內(nèi)因式分解,因此分解因式的結(jié)果,必須是幾個整式的積的形式。
相信上面對因式分解的一般步驟知識的內(nèi)容講解學(xué)習(xí),同學(xué)們已經(jīng)能很好的掌握了吧,希望同學(xué)們會考出好成績。
初中數(shù)學(xué)知識點:平面直角坐標系
關(guān)于數(shù)學(xué)的學(xué)習(xí)中,對平面直角坐標系知識點的內(nèi)容講解學(xué)習(xí),希望同學(xué)們認真看看下面的知識。
平面直角坐標系:
。1)在平面內(nèi)兩條有公共點并且互相垂直的數(shù)軸就構(gòu)成了平面直角坐標系,通常把其中水平的一條數(shù)軸叫橫軸或軸,取向右的方向為正方向;鉛直的數(shù)軸叫縱軸或軸,取向上的方向為正方向;兩數(shù)軸的交點叫做坐標原點。
。2)建立了直角坐標系的平面叫坐標平面.x軸和y軸把坐標平面分成四個部分,稱為四個象限,按逆時針順序依次叫第一象限、第二象限、第三象限、第四象限。
初中數(shù)學(xué)知識點 篇12
一.列方程解應(yīng)用題的一般步驟:
1.認真審題:分析題中已知和未知,明確題中各數(shù)量之間的關(guān)系;
2.尋找等量關(guān)系:可借助圖表分析題中的已知量和未知量之間關(guān)系,找出能夠表示應(yīng)用題全部含義的相等關(guān)系;
3.設(shè)未知數(shù):用字母表示題目中的未知數(shù)時一般采用直接設(shè)法,當直接設(shè)法使列方程有困難可采用間接設(shè)法;
4.列方程:根據(jù)這個相等關(guān)系列出所需要的代數(shù)式,從而列出方程注意它們的量要一致,使它們都表示一個相等或相同的量;
列方程應(yīng)滿足三個條件:方程各項是同類量,單位一致,左右兩邊是等量;
5.解方程:解所列出的方程,求出未知數(shù)的值;
6.寫出答案:檢查方程的.解是否符合應(yīng)用題的實際意義,進行取舍,并注意單位。
簡記為六個字:審、找、設(shè)、列、解、答。
二.列一元一次方程解應(yīng)用題的幾點注意:
1.注意語言與解析式的互化:
如,“多”、“少”、“增加了”、“增加為(到)”、“同時”、“擴大為(到)”、“擴大了”、……
2.注意從語言敘述中寫出相等關(guān)系:
如,x比y大3,則x-y=3或x=y+3或x-3=y。
3.注意單位換算:
如,“小時”、“分鐘”的換算;s、v、t單位的一致等。
三.一元一次方程的實際應(yīng)用:
常見考法
一元一次方程應(yīng)用題的題型很多,每種題型又不完全孤立,其中有些題型的解題思想有相似之處,如工程問題和行程問題。所以一直受命題者青睞,近年來中考考查的實際問題多貼近生活,而且立意新穎,設(shè)計巧妙,所以決不能靠死背題型,要具體分析每一題的實際情況。
誤區(qū)提醒
由于對題意理解不透,不能正確的找出相等關(guān)系列出方程。
初中數(shù)學(xué)知識點 篇13
初一數(shù)學(xué)三角函數(shù)知識點
1、勾股定理:直角三角形兩直角邊a、b的平方和等于斜邊c的平方a2+b2=c2。
2、如下圖,在Rt△ABC中,∠C為直角,則∠A的銳角三角函數(shù)為(∠A可換成∠B):
3、任意銳角的正弦值等于它的余角的余弦值;任意銳角的余弦值等于它的余角的正弦值。
4、任意銳角的正切值等于它的余角的余切值;任意銳角的余切值等于它的余角的正切值。
5、0°、30°、45°、60°、90°特殊角的三角函數(shù)值(重要)
6、正弦、余弦的增減性:
當0°≤α≤90°時,sinα隨α的增大而增大,cosα隨α的增大而減小。
7、正切、余切的增減性:當0°;α;90°時,tanα隨α的增大而增大,cotα隨α的增大而減小。
初一數(shù)學(xué)知識點總結(jié)
1.有理數(shù):
(1)凡能寫成形式的數(shù),都是有理數(shù).正整數(shù)、0、負整數(shù)統(tǒng)稱整數(shù);正分數(shù)、負分數(shù)統(tǒng)稱分數(shù);整數(shù)和分數(shù)統(tǒng)稱有理數(shù).注意:0即不是正數(shù),也不是負數(shù);-a不一定是負數(shù),+a也不一定是正數(shù);p不是有理數(shù);
(2)有理數(shù)的分類: ① ②
2.數(shù)軸:數(shù)軸是規(guī)定了原點、正方向、單位長度的一條直線.
3.相反數(shù):
(1)只有符號不同的兩個數(shù),我們說其中一個是另一個的相反數(shù);0的相反數(shù)還是0;
(2)相反數(shù)的和為0 ? a+b=0 ? a、b互為相反數(shù).
4.絕對值:
(1)正數(shù)的絕對值是其本身,0的絕對值是0,負數(shù)的絕對值是它的相反數(shù);注意:絕對值的意義是數(shù)軸上表示某數(shù)的點離開原點的距離;
(2)絕對值可表示為:或;絕對值的問題經(jīng)常分類討論;
5.有理數(shù)比大。(1)正數(shù)的絕對值越大,這個數(shù)越大;(2)正數(shù)永遠比0大,負數(shù)永遠比0小;(3)正數(shù)大于一切負數(shù);(4)兩個負數(shù)比大小,絕對值大的反而小;(5)數(shù)軸上的兩個數(shù),右邊的數(shù)總比左邊的數(shù)大;(6)大數(shù)-小數(shù)> 0,小數(shù)-大數(shù); 0.
6.互為倒數(shù):乘積為1的兩個數(shù)互為倒數(shù);注意:0沒有倒數(shù);若a≠0,那么的倒數(shù)是;若ab=1? a、b互為倒數(shù);若ab=-1?a、b互為負倒數(shù).
7.有理數(shù)加法法則:
(1)同號兩數(shù)相加,取相同的符號,并把絕對值相加;
(2)異號兩數(shù)相加,取絕對值較大的符號,并用較大的絕對值減去較小的絕對值;
(3)一個數(shù)與0相加,仍得這個數(shù).
8.有理數(shù)加法的運算律:
(1)加法的交換律:a+b=b+a ;(2)加法的結(jié)合律:(a+b)+c=a+(b+c).
9.有理數(shù)減法法則:減去一個數(shù),等于加上這個數(shù)的相反數(shù);即a-b=a+(-b).
10有理數(shù)乘法法則:
(1)兩數(shù)相乘,同號為正,異號為負,并把絕對值相乘;
(2)任何數(shù)同零相乘都得零;
(3)幾個數(shù)相乘,有一個因式為零,積為零;各個因式都不為零,積的符號由負因式的個數(shù)決定.
11有理數(shù)乘法的運算律:
(1)乘法的交換律:ab=ba;(2)乘法的結(jié)合律:(ab)c=a(bc);
(3)乘法的分配律:a(b+c)=ab+ac .
12.有理數(shù)除法法則:除以一個數(shù)等于乘以這個數(shù)的倒數(shù);注意:零不能做除數(shù),.
13.有理數(shù)乘方的法則:
(1)正數(shù)的任何次冪都是正數(shù);
(2)負數(shù)的奇次冪是負數(shù);負數(shù)的偶次冪是正數(shù);注意:當n為正奇數(shù)時: (-a)n=-an或(a -b)n=-(b-a)n ,當n為正偶數(shù)時:(-a)n =an或(a-b)n=(b-a)n .
14.乘方的定義:
(1)求相同因式積的運算,叫做乘方;
(2)乘方中,相同的因式叫做底數(shù),相同因式的個數(shù)叫做指數(shù),乘方的結(jié)果叫做冪;
15.科學(xué)記數(shù)法:把一個大于10的數(shù)記成a×10n的形式,其中a是整數(shù)數(shù)位只有一位的數(shù),這種記數(shù)法叫科學(xué)記數(shù)法.
16.近似數(shù)的精確位:一個近似數(shù),四舍五入到那一位,就說這個近似數(shù)的精確到那一位.
17.有效數(shù)字:從左邊第一個不為零的數(shù)字起,到精確的位數(shù)止,所有數(shù)字,都叫這個近似數(shù)的有效數(shù)字.
18.混合運算法則:先乘方,后乘除,最后加減.
七年級數(shù)學(xué)知識點
難點
三角形內(nèi)角和定理的推理的過程;
在具體的圖形中不重復(fù),且不遺漏地識別所有三角形;
用三角形三邊不等關(guān)系判定三條線段可否組成三角形。
知識點、概念總結(jié)
1.三角形:由不在同一直線上的三條線段首尾順次相接所組成的圖形叫做三角形。
2.三角形的分類
3.三角形的三邊關(guān)系:三角形任意兩邊的和大于第三邊,任意兩邊的差小于第三邊。
4.高:從三角形的一個頂點向它的對邊所在直線作垂線,頂點和垂足間的線段叫做三角形的高。
5.中線:在三角形中,連接一個頂點和它的對邊中點的線段叫做三角形的中線。
6.角平分線:三角形的一個內(nèi)角的平分線與這個角的對邊相交,這個角的頂點和交點之間的線段叫做三角形的角平分線。
7.高線、中線、角平分線的意義和做法
8.三角形的穩(wěn)定性:三角形的.形狀是固定的,三角形的這個性質(zhì)叫三角形的穩(wěn)定性。
9.三角形內(nèi)角和定理:三角形三個內(nèi)角的和等于180°
推論1直角三角形的兩個銳角互余;
推論2三角形的一個外角等于和它不相鄰的兩個內(nèi)角和;
推論3三角形的一個外角大于任何一個和它不相鄰的內(nèi)角;
三角形的內(nèi)角和是外角和的一半。
10.三角形的外角:三角形的一條邊與另一條邊延長線的夾角,叫做三角形的外角。
2分數(shù)與小數(shù)的互化
重要程度--四顆星。最早接觸到分數(shù)是在三年級的課本上,學(xué)習(xí)了分數(shù)的意義、比較大小和同分母的加減法,這里的分數(shù)則是更加全面的去學(xué)習(xí)、認識分數(shù)。其中分數(shù)的基本性質(zhì)里面會有分數(shù)的化簡、約分,這也是接下來數(shù)學(xué)中非常常用的運算性質(zhì)(類似四年級學(xué)習(xí)的乘法分配率);分數(shù)的大小比較也不再是簡單的同分母或者一個個體的比較,復(fù)雜的一些還需要用到“放縮法”;分數(shù)的乘除運算法則則是數(shù)學(xué)運算的基本功了,越熟練越好(讓孩子多練)。孩子在學(xué)習(xí)過程中遇到的第一個難點,那就屬分數(shù)的應(yīng)用題了(學(xué)生不明白什么時候用乘法什么時候用除法),往年很多學(xué)生都分不清題目中的:整體(單位“1”)、部分和占比(率),誤區(qū)是學(xué)生們總認為整體比部分要大,但是學(xué)習(xí)分數(shù)以后就不一定了;
3多邊形外角和定理:
(1) n邊形外角和等于n·180°-(n-2)·180°=360°
(2)多邊形的每個內(nèi)角與它相鄰的外角是鄰補角,所以n邊形內(nèi)角和加外角和等于n·180°
4多邊形對角線的條數(shù):
(1)從n邊形的一個頂點出發(fā)可以引(n-3)條對角線,把多邊形分詞(n-2)個三角形。 (2)n邊形共有n(n-3)/2條對角線。
初中數(shù)學(xué)知識點 篇14
一、圓
1、圓的有關(guān)性質(zhì)
在一個平面內(nèi),線段OA繞它固定的一個端點O旋轉(zhuǎn)一周,另一個端點A隨之旋轉(zhuǎn)所形成的圖形叫圓,固定的端點O叫圓心,線段OA叫半徑。
由圓的意義可知:
圓上各點到定點(圓心O)的距離等于定長的點都在圓上。
就是說:圓是到定點的距離等于定長的點的集合,圓的內(nèi)部可以看作是到圓。心的距離小于半徑的點的集合。
圓的外部可以看作是到圓心的距離大于半徑的點的集合。連結(jié)圓上任意兩點的線段叫做弦,經(jīng)過圓心的弦叫直徑。圓上任意兩點間的部分叫圓弧,簡稱弧。
圓的任意一條直徑的兩個端點分圓成兩條弧,每一條弧都叫半圓,大于半圓的弧叫優(yōu);小于半圓的弧叫劣弧。由弦及其所對的弧組成的圓形叫弓形。
圓心相同,半徑不相等的兩個圓叫同心圓。
能夠重合的兩個圓叫等圓。
同圓或等圓的半徑相等。
在同圓或等圓中,能夠互相重合的弧叫等弧。
二、過三點的圓
l、過三點的圓
過三點的圓的作法:利用中垂線找圓心
定理不在同一直線上的三個點確定一個圓。
經(jīng)過三角形各頂點的圓叫三角形的外接圓,外接圓的圓心叫外心,這個三角形叫圓的內(nèi)接三角形。
2、反證法
反證法的三個步驟:
、偌僭O(shè)命題的'結(jié)論不成立;
、趶倪@個假設(shè)出發(fā),經(jīng)過推理論證,得出矛盾;
、塾擅艿贸黾僭O(shè)不正確,從而肯定命題的結(jié)論正確。
例如:求證三角形中最多只有一個角是鈍角。
證明:設(shè)有兩個以上是鈍角
則兩個鈍角之和>180°
與三角形內(nèi)角和等于180°矛盾。
∴不可能有二個以上是鈍角。
即最多只能有一個是鈍角。
三、垂直于弦的直徑
圓是軸對稱圖形,經(jīng)過圓心的每一條直線都是它的對稱軸。
垂徑定理:垂直于弦的直徑平分這條弦,并且平分弦所對的兩條弧。
推理1:平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對兩條弧。
弦的垂直平分線經(jīng)過圓心,并且平分弦所對的兩條弧。
平分弦所對的一條弧的直徑,垂直平分弦,并且平分弦所對的另一個條弧。
推理2:圓兩條平行弦所夾的弧相等。
四、圓心角、弧、弦、弦心距之間的關(guān)系
圓是以圓心為對稱中心的中心對稱圖形。
實際上,圓繞圓心旋轉(zhuǎn)任意一個角度,都能夠與原來的圖形重合。
頂點是圓心的角叫圓心角,從圓心到弦的距離叫弦心距。
定理:在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對的弦心距相等。
推理:在同圓或等圓中,如果兩個圓心角、兩條弧、兩條弦或兩條弦的弦心距中,有一組量相等,那么它們所對應(yīng)的其余各組量都分別相等。
五、圓周角
頂點在圓上,并且兩邊都和圓相交的角叫圓周角。
推理1:同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等。
推理2:半圓(或直徑)所對的圓周角是直角;90°的圓周角所對的弦是直徑。
推理3:如果三角形一邊上的中線等于這邊的一半,那么這個三角形是直角三角形。
由于以上的定理、推理,所添加輔助線往往是添加能構(gòu)成直徑上的圓周角的輔助線。
相關(guān)的角:
1、對頂角:一個角的兩邊分別是另一個角的兩邊的反向延長線,這兩個角叫做對頂角。
2、互為補角:如果兩個角的和是一個平角,這兩個角做互為補角。
3、互為余角:如果兩個角的和是一個直角,這兩個角叫做互為余角。
4、鄰補角:有公共頂點,一條公共邊,另兩條邊互為反向延長線的兩個角做互為鄰補角。
注意:互余、互補是指兩個角的數(shù)量關(guān)系,與兩個角的位置無關(guān),而互為鄰補角則要求兩個角有特殊的位置關(guān)系。
角的性質(zhì)
1、對頂角相等。
2、同角或等角的余角相等。
3、同角或等角的補角相等。
其實角的大小與邊的長短沒有關(guān)系,角的大小決定于角的兩條邊張開的程度。
角的靜態(tài)定義
具有公共端點的兩條射線組成的圖形叫做角(angle)。這個公共端點叫做角的頂點,這兩條射線叫做角的兩條邊。
角的動態(tài)定義
一條射線繞著它的端點從一個位置旋轉(zhuǎn)到另一個位置所形成的圖形叫做角。所旋轉(zhuǎn)射線的端點叫做角的頂點,開始位置的射線叫做角的始邊,終止位置的射線叫做角的終邊
角的符號
角的符號:∠
角的種類
在動態(tài)定義中,取決于旋轉(zhuǎn)的方向與角度。角可以分為銳角、直角、鈍角、平角、周角、負角、正角、優(yōu)角、劣角、0角這10種。以度、分、秒為單位的角的度量制稱為角度制。此外,還有密位制、弧度制等。
銳角:大于0°,小于90°的角叫做銳角。
直角:等于90°的角叫做直角。
鈍角:大于90°而小于180°的角叫做鈍角。
平角:等于180°的角叫做平角。
優(yōu)角:大于180°小于360°叫優(yōu)角。
劣角:大于0°小于180°叫做劣角,銳角、直角、鈍角都是劣角。
角周角:等于360°的角叫做周角。
負角:按照順時針方向旋轉(zhuǎn)而成的角叫做負角。
正角:逆時針旋轉(zhuǎn)的角為正角。
0角:等于零度的角。
特殊角
余角和補角:兩角之和為90°則兩角互為余角,兩角之和為180°則兩角互為補角。等角的余角相等,等角的補角相等。
對頂角:兩條直線相交后所得的只有一個公共頂點且兩個角的兩邊互為反向延長線,這樣的兩個角叫做互為對頂角。兩條直線相交,構(gòu)成兩對對頂角。互為對頂角的兩個角相等。
鄰補角:兩個角有一條公共邊,它們的另一條邊互為反向延長線,具有這種關(guān)系的兩個角,互為鄰補角。
內(nèi)錯角:互相平行的兩條直線直線,被第三條直線所截,如果兩個角都在兩條直線的
內(nèi)側(cè),并且在第三條直線的兩側(cè),那么這樣的一對角叫做內(nèi)錯角(alternate interior angle )。如:∠1和∠6,∠2和∠5
同旁內(nèi)角:兩個角都在截線的同一側(cè),且在兩條被截線之間,具有這樣位置關(guān)系的一對角互為同旁內(nèi)角。如:∠1和∠5,∠2和∠6
同位角:兩個角都在截線的同旁,又分別處在被截的兩條直線同側(cè),具有這樣位置關(guān)系的一對角叫做同位角(correspondingangles):∠1和∠8,∠2和∠7
外錯角:兩條直線被第三條直線所截,構(gòu)成了八個角。如果兩個角都在兩條被截線的外側(cè),并且在截線的兩側(cè),那么這樣的一對角叫做外錯角。例如:∠4與∠7,∠3與∠8。
同旁外角:兩個角都在截線的同一側(cè),且在兩條被截線之外,具有這樣位置關(guān)系的一對角互為同旁外角。如:∠4和∠8,∠3和∠7
終邊相同的角:具有共同始邊和終邊的角叫終邊相同的角。與角a終邊相同的角屬于集合:
A{bb=k_360+a,k∈Z}表示角度制;
B{bb=2kπ+a,k∈Z}表示弧度制
、僦本和圓無公共點,稱相離。 AB與圓O相離,d>r。
、谥本和圓有兩個公共點,稱相交,這條直線叫做圓的割線。AB與⊙O相交,d
、壑本和圓有且只有一公共點,稱相切,這條直線叫做圓的切線,這個唯一的公共點叫做切點。AB與⊙O相切,d=r。(d為圓心到直線的距離)
平面內(nèi),直線Ax+By+C=0與圓x^2+y^2+Dx+Ey+F=0的位置關(guān)系判斷一般方法是:
1.由Ax+By+C=0,可得y=(-C-Ax)/B,(其中B不等于0),代入x^2+y^2+Dx+Ey+F=0,即成為一個關(guān)于x的方程
如果b^2-4ac>0,則圓與直線有2交點,即圓與直線相交。
如果b^2-4ac=0,則圓與直線有1交點,即圓與直線相切。
如果b^2-4ac;0,則圓與直線有0交點,即圓與直線相離。
2.如果B=0即直線為Ax+C=0,即x=-C/A,它平行于y軸(或垂直于x軸),將x^2+y^2+Dx+Ey+F=0化為(x-a)^2+(y-b)^2=r^2。令y=b,求出此時的兩個x值x1、x2,并且規(guī)定x1
當x=-C/Ax2時,直線與圓相離;
【初中數(shù)學(xué)知識點】相關(guān)文章:
初中數(shù)學(xué)垂直知識點12-07
初中數(shù)學(xué)倒數(shù)的知識點08-01
初中數(shù)學(xué)方差知識點05-16
初中數(shù)學(xué)的知識點大全06-06
初中數(shù)學(xué)知識點06-07
初中數(shù)學(xué)旋轉(zhuǎn)的知識點05-29
初中數(shù)學(xué)概率知識點05-09