(薦)初中數(shù)學(xué)知識點(diǎn)總結(jié)15篇
總結(jié)是對取得的成績、存在的問題及得到的經(jīng)驗(yàn)和教訓(xùn)等方面情況進(jìn)行評價(jià)與描述的一種書面材料,它可以幫助我們有尋找學(xué)習(xí)和工作中的規(guī)律,不如立即行動起來寫一份總結(jié)吧?偨Y(jié)怎么寫才是正確的呢?以下是小編為大家收集的初中數(shù)學(xué)知識點(diǎn)總結(jié),僅供參考,歡迎大家閱讀。
初中數(shù)學(xué)知識點(diǎn)總結(jié)1
初中數(shù)學(xué)的學(xué)科地位很高,一直以來是三大學(xué)科之一,影響著物理化學(xué)的學(xué)習(xí)。
圓心角
在同圓或等圓中,相等的圓心角所對的弧相等,所對的'弦相等,所對的弦心距也相等。
推理過程
根據(jù)旋轉(zhuǎn)的性質(zhì),將∠aob繞圓心o旋轉(zhuǎn)到∠a'ob'的位置時(shí),顯然∠aob=∠a'ob',射線oa與oa'重合,ob與ob'重合,而同圓的半徑相等,oa=oa',ob=ob',從而點(diǎn)a與a'重合,b與b'重合。
因此,弧ab與弧a'b'重合,ab與a'b'重合。即
弧ab=弧a'b',ab=a'b'。
則得到上面定理。
同樣還可以得到:
在同圓或等圓中,如果兩條弧相等,那么他們所對的圓心角相等,所對的弦相等,所對的弦心距也相等。
在同圓或等圓中,如果兩條弦相等,那么他們所對的圓心角相等,所對的弧相等,所對的弦心距也相等。
所以,在同圓或等圓中,兩個(gè)圓心角、兩條弧、兩條弦中有一組量相等,它們所對應(yīng)的其余各組量也相等。
圓的圓心角知識要領(lǐng)很容易掌握,經(jīng)常會出現(xiàn)在關(guān)于圓的證明題中。
初中數(shù)學(xué)知識點(diǎn)總結(jié)2
一次函數(shù):一次函數(shù)圖像與性質(zhì)是中考必考的內(nèi)容之一。中考試題中分值約為10分左右題型多樣,形式靈活,綜合應(yīng)用性強(qiáng)。甚至有存在探究題目出現(xiàn)。
主要考察內(nèi)容:
、贂嬕淮魏瘮(shù)的圖像,并掌握其性質(zhì)。
、跁鶕(jù)已知條件,利用待定系數(shù)法確定一次函數(shù)的解析式。
③能用一次函數(shù)解決實(shí)際問題。
、芸疾煲籭c函數(shù)與二元一次方程組,一元一次不等式的關(guān)系。
突破方法:
①正確理解掌握一次函數(shù)的概念,圖像和性質(zhì)。
②運(yùn)用數(shù)學(xué)結(jié)合的思想解與一次函數(shù)圖像有關(guān)的問題。
、壅莆沼么ㄏ禂(shù)法球一次函數(shù)解析式。
、茏鲆恍┚C合題的訓(xùn)練,提高分析問題的能力。
函數(shù)性質(zhì):
1.y的變化值與對應(yīng)的x的變化值成正比例,比值為k.即:y=kx+b(k,b為常數(shù),k≠0),∵當(dāng)x增加m,k(x+m)+b=y+km,km/m=k。
2.當(dāng)x=0時(shí),b為函數(shù)在y軸上的點(diǎn),坐標(biāo)為(0,b)。
3當(dāng)b=0時(shí)(即y=kx),一次函數(shù)圖像變?yōu)檎壤瘮?shù),正比例函數(shù)是特殊的一次函數(shù)。
4.在兩個(gè)一次函數(shù)表達(dá)式中:
當(dāng)兩一次函數(shù)表達(dá)式中的k相同,b也相同時(shí),兩一次函數(shù)圖像重合;當(dāng)兩一次函數(shù)表達(dá)式中的k相同,b不相同時(shí),兩一次函數(shù)圖像平行;當(dāng)兩一次函數(shù)表達(dá)式中的k不相同,b不相同時(shí),兩一次函數(shù)圖像相交;當(dāng)兩一次函數(shù)表達(dá)式中的k不相同,b相同時(shí),兩一次函數(shù)圖像交于y軸上的同一點(diǎn)(0,b)。若兩個(gè)變量x,y間的關(guān)系式可以表示成Y=KX+b(k,b為常數(shù),k不等于0)則稱y是x的一次函數(shù)圖像性質(zhì)
1、作法與圖形:通過如下3個(gè)步驟:
。1)列表.
。2)描點(diǎn);[一般取兩個(gè)點(diǎn),根據(jù)“兩點(diǎn)確定一條直線”的道理,也可叫“兩點(diǎn)法”。一般的`y=kx+b(k≠0)的圖象過(0,b)和(-b/k,0)兩點(diǎn)畫直線即可。
正比例函數(shù)y=kx(k≠0)的圖象是過坐標(biāo)原點(diǎn)的一條直線,一般。0,0)和(1,k)兩點(diǎn)。(3)連線,可以作出一次函數(shù)的圖象一條直線。因此,作一次函數(shù)的圖象只需知道2點(diǎn),并連成直線即可。(通常找函數(shù)圖象與x軸和y軸的交點(diǎn)分別是-k分之b與0,0與b).
2、性質(zhì):
。1)在一次函數(shù)上的任意一點(diǎn)P(x,y),都滿足等式:y=kx+b(k≠0)。
。2)一次函數(shù)與y軸交點(diǎn)的坐標(biāo)總是(0,b),與x軸總是交于(-b/k,0)正比例函數(shù)的圖像都是過原點(diǎn)。
3、函數(shù)不是數(shù),它是指某一變化過程中兩個(gè)變量之間的關(guān)系。
4、k,b與函數(shù)圖像所在象限:
y=kx時(shí)(即b等于0,y與x成正比例):
當(dāng)k>0時(shí),直線必通過第一、三象限,y隨x的增大而增大;當(dāng)k0,b>0,這時(shí)此函數(shù)的圖象經(jīng)過第一、二、三象限;當(dāng)k>0,b
初中數(shù)學(xué)知識點(diǎn)總結(jié)3
一、“三步六環(huán)”復(fù)習(xí)課型范式構(gòu)建的背景分析
(一)初三數(shù)學(xué)總復(fù)習(xí)的低效教學(xué)影響了中考教學(xué)質(zhì)量的提高
初三數(shù)學(xué)的復(fù)習(xí)教學(xué),注重“四基”(基礎(chǔ)知識、基本技能、基本思想和基本活動經(jīng)驗(yàn))的鞏固和“四能”(發(fā)現(xiàn)問題、提出問題、分析問題、解決問題的能力)的提升。由于受復(fù)習(xí)教學(xué)方法傳統(tǒng)、時(shí)間不足等因素的限制,往往不能處理好知識鞏固與能力提升之間的關(guān)系,導(dǎo)致復(fù)習(xí)教學(xué)實(shí)效不強(qiáng)。尤其是在初三下學(xué)期的復(fù)習(xí)教學(xué)中,大多數(shù)教師采用“一基礎(chǔ)二專題三綜合”的復(fù)習(xí)方式,使得復(fù)習(xí)教學(xué)“高耗低效”,不能大大提高學(xué)生發(fā)現(xiàn)問題、提出問題、分析問題和解決問題的能力。同時(shí)在復(fù)習(xí)教學(xué)中,往往采用市面上的教輔資料,內(nèi)容超標(biāo),試題偏難,不符合復(fù)習(xí)教學(xué)的要求,制約著初三中考數(shù)學(xué)教學(xué)質(zhì)量的提高。
。ǘ叭搅h(huán)”復(fù)習(xí)課型范式是課改實(shí)驗(yàn)教學(xué)的時(shí)代產(chǎn)物
目前,基礎(chǔ)教育課程改革深入推進(jìn),雖然帶來了許多可喜的變化,但許多一線初三教師在實(shí)踐中看到了許多隱藏的教學(xué)危機(jī)。如何利用小組合作學(xué)習(xí)提高初三中考的教學(xué)質(zhì)量,是許多課改實(shí)驗(yàn)學(xué)校面臨的重大課題。筆者對任教學(xué)校班級的學(xué)生進(jìn)行了抽樣訪談,訪談分析反映出初三學(xué)生數(shù)學(xué)總復(fù)習(xí)階段的四個(gè)問題:一是不熟悉中考數(shù)學(xué)考綱的考試要求和考試目標(biāo),沒有明確的初三數(shù)學(xué)總復(fù)習(xí)的方向;二是數(shù)學(xué)基礎(chǔ)知識掌握不夠全面,沒有完整的認(rèn)知結(jié)構(gòu),對初中數(shù)學(xué)知識的邏輯關(guān)系不清晰;三是數(shù)學(xué)基本解題技能掌握不足,對初中數(shù)學(xué)知識的應(yīng)用把握不清;四是數(shù)學(xué)基本思想和基本活動經(jīng)驗(yàn)欠缺,不能靈活地運(yùn)用所學(xué)知識和技能。
“三步六環(huán)”復(fù)習(xí)課型范式的實(shí)踐研究,能轉(zhuǎn)變教師復(fù)習(xí)課的教學(xué)理念,建立更加適合本地區(qū)教學(xué)實(shí)際情況的初三數(shù)學(xué)“三步六環(huán)”復(fù)習(xí)課型的范式,掌握更加科學(xué)有效的.復(fù)習(xí)方法,形成優(yōu)質(zhì)的初三數(shù)學(xué)復(fù)習(xí)教學(xué)資源,提升初三教師的數(shù)學(xué)專業(yè)能力,轉(zhuǎn)變學(xué)生的數(shù)學(xué)學(xué)習(xí)方式,提升學(xué)生的課堂參與度,變被動的枯燥復(fù)習(xí)為主動的興趣探究,從而提高初三數(shù)學(xué)的教學(xué)質(zhì)量。
二、“三步六環(huán)”復(fù)習(xí)課型范式構(gòu)建的策略分析
。ㄒ唬╆P(guān)鍵詞的概念界定
1、復(fù)習(xí)課型。復(fù)習(xí)課型是根據(jù)學(xué)生的認(rèn)知特點(diǎn)和規(guī)律,在學(xué)習(xí)的某一階段,以鞏固、疏理已學(xué)知識、技能,促進(jìn)知識系統(tǒng)化,提高學(xué)生運(yùn)用所學(xué)知識解決問題的能力為主要任務(wù)的一種課型。開展數(shù)學(xué)復(fù)習(xí)課的目的是溫故知新,查漏補(bǔ)缺,完善認(rèn)知結(jié)構(gòu),促進(jìn)學(xué)生解題思想方法的形成,發(fā)展數(shù)學(xué)能力,增強(qiáng)學(xué)生運(yùn)用數(shù)學(xué)知識解決問題的能力。
2、“三步六環(huán)”。這是一種適合初三數(shù)學(xué)總復(fù)習(xí)教學(xué)的高效課堂模式,其基本框架如下:
主要包括:
。1)“三步”:第一步“先做后講”,體現(xiàn)在三點(diǎn):①學(xué)生提前1~2天完成下發(fā)的復(fù)習(xí)導(dǎo)學(xué)案;②老師及時(shí)批改了解學(xué)生的預(yù)習(xí)情況;③老師根據(jù)考綱、課標(biāo),結(jié)合學(xué)生的預(yù)習(xí)反饋進(jìn)行二次備課。
第二步“反思診斷”,體現(xiàn)在四點(diǎn):①有反思――作業(yè)講評;②有跟進(jìn)――針對內(nèi)容的重難點(diǎn)和學(xué)生的易錯(cuò)點(diǎn);③有變式――針對內(nèi)容的重難點(diǎn)和學(xué)生的易錯(cuò)點(diǎn);④有系統(tǒng)――二次訂正整理。
第三步“滾動測試”,體現(xiàn)在兩點(diǎn):①滾動及時(shí)――重點(diǎn)考查近期重難點(diǎn)、易錯(cuò)點(diǎn)知識;②反饋評價(jià)――關(guān)注師徒、小組捆綁評價(jià)。
(2)“六環(huán)”:指初三數(shù)學(xué)復(fù)習(xí)課堂教學(xué)的六個(gè)步驟:自主復(fù)習(xí)、合作交流、展示質(zhì)疑、典例精講、訓(xùn)練達(dá)標(biāo)、總結(jié)評價(jià)。這六環(huán)環(huán)h遞進(jìn)、相輔相成。只有保持復(fù)習(xí)課堂高效的可持續(xù)性,才能保障中考教學(xué)質(zhì)量的提升,這里很關(guān)鍵的兩點(diǎn)因素應(yīng)務(wù)必關(guān)注:其一,教師要精心研讀課標(biāo)考綱,悉心研究中考試題,用心編制總復(fù)習(xí)導(dǎo)學(xué)案,為學(xué)生高效進(jìn)行總復(fù)習(xí)指明方向;其二,課堂教學(xué)中的發(fā)展性評價(jià)應(yīng)及時(shí)跟進(jìn),讓學(xué)生學(xué)會反思?xì)w納,分享復(fù)習(xí)的快樂。
初中數(shù)學(xué)知識點(diǎn)總結(jié)4
關(guān)鍵詞:數(shù)學(xué);總復(fù)習(xí);初中;方法
中圖分類號:G633。6文獻(xiàn)標(biāo)識碼:B文章編號:1672—1578(20xx)12—0217—01
初中數(shù)學(xué)是義務(wù)教育階段一門主要課程,它是進(jìn)一步學(xué)習(xí)工作的基礎(chǔ)。因此,進(jìn)行初三數(shù)學(xué)總復(fù)習(xí),使學(xué)生具有一定的數(shù)學(xué)素質(zhì),合格畢業(yè),對于提高全民族素質(zhì),為培養(yǎng)改革人才奠定基礎(chǔ)是十分必要的。本文將要探討的就是搞好初三數(shù)學(xué)總復(fù)習(xí)的一些體會。
1、明確總復(fù)習(xí)的目的
中考是總結(jié)性的檢驗(yàn),考試成績也必然會促使我們認(rèn)真地總結(jié)檢查自己的教學(xué)工作,改進(jìn)教學(xué)方法,提高教學(xué)質(zhì)量。因此,中考的需要是初三總復(fù)習(xí)的重要目的,但不是唯一的目的。在復(fù)習(xí)方面要從單純面向升學(xué)的需要,轉(zhuǎn)變?yōu)槊嫦驅(qū)W生終身學(xué)習(xí)的需要。通過初三數(shù)學(xué)總復(fù)習(xí),要使學(xué)生全面而系統(tǒng)地掌握初中數(shù)學(xué)的基礎(chǔ)知識加深理解這些知識,進(jìn)一步提高運(yùn)用這些動知識的分析和解決問題的能力,從而大面積地扎扎實(shí)實(shí)的提高教學(xué)質(zhì)量,為學(xué)生升入高一級學(xué)校打下必要的基礎(chǔ)。
2、在《課標(biāo)》和《考試說明》的指導(dǎo)下開展復(fù)習(xí)工作
"人人都能獲得良好的數(shù)學(xué)教育,不同的人在數(shù)學(xué)上得到不同的發(fā)展"。這是新課程標(biāo)準(zhǔn)努力倡導(dǎo)的目標(biāo)。也是我們總復(fù)習(xí)工作的出發(fā)點(diǎn)。20xx年版的《初中數(shù)學(xué)新課程標(biāo)準(zhǔn)》(以下簡稱《課程標(biāo)準(zhǔn)》)以及歷年的《河北省文化課考試說明》(以下簡稱《考試說明》)中所確定的必學(xué)內(nèi)容是要求所有學(xué)生都應(yīng)當(dāng)學(xué)習(xí)的,一定要教好學(xué)好,降低難度、減輕學(xué)生過重的學(xué)習(xí)負(fù)擔(dān),正是為了使學(xué)生掌握那些最基本、最重要的內(nèi)容,使絕大多數(shù)同學(xué)能學(xué)得好,增強(qiáng)信心,大面積提高教學(xué)質(zhì)量。另一方面,對學(xué)有余力的同學(xué)也要創(chuàng)造條件,指導(dǎo)他們進(jìn)一步學(xué)習(xí),充分發(fā)揮他們的數(shù)學(xué)才能,做到既面向全體學(xué)生又因材施教。這一重要的教學(xué)指導(dǎo)思想,也是我們初三數(shù)學(xué)總復(fù)習(xí)必須遵循的方針。
3、從學(xué)生的實(shí)際出發(fā),有序地進(jìn)行初三數(shù)學(xué)總復(fù)習(xí)
教學(xué)是師生雙方的共同活動,教師的教是為學(xué)生積極主動地學(xué)。初三總復(fù)習(xí)時(shí)間短,內(nèi)容多,要想取得較好的復(fù)習(xí)效果,除教師鉆研《課標(biāo)》與《考試說明》,通曉教材,突出重點(diǎn)之外,還要調(diào)查研究、了解學(xué)生、明確難點(diǎn),從學(xué)生實(shí)際出發(fā),進(jìn)行復(fù)習(xí)。否則,課的起點(diǎn)高了,學(xué)生接受有困難,起點(diǎn)低了,講得太容易了,學(xué)生聽起來乏味厭煩,使復(fù)習(xí)課不能有的放矢,對癥下藥、因材施教。因此,要了解學(xué)生的思想狀況,復(fù)習(xí)的學(xué)習(xí)態(tài)度和方法;要了解學(xué)生對哪些知識是掌握提比較好的,哪些知識理解得不夠深透,還有哪些知識是應(yīng)當(dāng)補(bǔ)缺的,哪些知識是普遍性的'問題,哪些知識是個(gè)別性問題,充分估計(jì)學(xué)生的實(shí)際水平究竟如何。
4、突出數(shù)學(xué)思想方法,狠抓"四基"的落實(shí)
數(shù)學(xué)思想方法是數(shù)學(xué)知識的精髓,是溝通數(shù)學(xué)知識與運(yùn)算能力的橋梁。教師應(yīng)在平時(shí)教學(xué)中不斷引導(dǎo)學(xué)生從數(shù)學(xué)知識中提煉數(shù)學(xué)思想,注重運(yùn)用數(shù)學(xué)思想去分析問題與解決問題,并有意識、有目的地結(jié)合教材逐步滲透給學(xué)生:轉(zhuǎn)化的思想、數(shù)形結(jié)合的思想、分類討論的思想、方程的思想、函數(shù)的思想,要求學(xué)生理解待定系數(shù)法、消元法、降次法、配方法、換元法。對學(xué)習(xí)成績好的學(xué)生,還應(yīng)激發(fā)他們?nèi)タ偨Y(jié)帶全局性的數(shù)學(xué)思想方法。
20xx年版初中數(shù)學(xué)課程標(biāo)準(zhǔn)明確提出"四基",即基礎(chǔ)知識、基本技能、基本思想和基本活動經(jīng)驗(yàn)。要使學(xué)生復(fù)習(xí)好基礎(chǔ)知識和掌握基本技能,首先要使學(xué)生正確理解概念,對易混的概念抓住它們之間的區(qū)別與聯(lián)系,同時(shí)要抓基本運(yùn)算、抓基本數(shù)學(xué)方法和思維方法;靖拍、基本運(yùn)算必須反復(fù)地練習(xí),才能達(dá)到純熟和鞏固。凡屬這方面的錯(cuò)誤,必復(fù)習(xí)一段、練習(xí)一段、檢查一段。務(wù)求落實(shí)"段段清",以掌握知識的本質(zhì)為標(biāo)準(zhǔn)。當(dāng)然還要注意因材施教,逐步深入。
初中數(shù)學(xué)知識點(diǎn)總結(jié)5
20xx年的工作臨近尾聲,回首本年度真是忙碌而充實(shí),本年度我即擔(dān)任教導(dǎo)處主任一職又擔(dān)任班主任工作,經(jīng)常是忙的喝口水的時(shí)間都沒有。雖然在教導(dǎo)處主任的崗位上我只有不到一年的工作經(jīng)驗(yàn),但是在李校長的關(guān)心和培養(yǎng)下,在全體領(lǐng)導(dǎo)、老師、家長的熱情支持和幫助下,各項(xiàng)工作得以順利開展并在一些方面有了較為明顯的進(jìn)步,F(xiàn)對自己一年來所做工作加以梳理和反思,力求在總結(jié)中發(fā)現(xiàn)不足,在反思中縮中差距,在創(chuàng)新中不斷提升。
一、思想品德方面
我熱愛教育事業(yè),始初不忘人民教師職責(zé),愛學(xué)校、愛學(xué)生。作為一名名師,我從自身嚴(yán)格要求自己,通過政治思想、學(xué)識水平、教育教學(xué)能力等方面的不斷提高來塑造自己的行為,使自己在教育行業(yè)中不斷成長,為社會培養(yǎng)出優(yōu)秀的人才,打下堅(jiān)實(shí)的基礎(chǔ)。
二、主要成績
今年是我到工作的第五個(gè)年頭,幾年來我一直擔(dān)任班主任和年級的組長,同時(shí)又負(fù)責(zé)學(xué)校教導(dǎo)處工作,一直以來,我始初牢記"踏實(shí)工作、真心待人"的原則,在工作中嚴(yán)格要求自己,刻苦鉆研業(yè)務(wù),不斷提高業(yè)務(wù)水平,不斷學(xué)習(xí)新知識,探索教育教學(xué)規(guī)律,改進(jìn)教育教學(xué)方法,努力使自己成為專家型教師。
1、在班主任工作方面:我投入了極強(qiáng)的責(zé)任心,關(guān)注每一名學(xué)生,及時(shí)發(fā)現(xiàn)他們的各種心理或行為動態(tài),還有學(xué)習(xí)的心態(tài)與學(xué)習(xí)情況,用愛心與耐心澆灌每一個(gè)孩子,并且及時(shí)與家長、科任老師進(jìn)行溝通,使孩子在各個(gè)方面得到發(fā)展,幾年來,與學(xué)生形成了亦師亦友的和諧師生關(guān)系,在18年被評為省級師德先進(jìn)個(gè)人,19年被評為省級優(yōu)秀教師。加強(qiáng)學(xué)習(xí),努力提升自身修為。
2、在教學(xué)方面:我嚴(yán)格要求自己,用心備課上課,每一節(jié)課都精心準(zhǔn)備課件,仔細(xì)研究每一道習(xí)題,真正做到講練結(jié)合,學(xué)以致用,形成了趣實(shí)活新的教學(xué)風(fēng)格,同時(shí),在教研方面,我積極去聽課評課,認(rèn)真學(xué)習(xí)別人上課的長處,為己所用。在17年被評為市級名師工作室主持人,18年被評為省級學(xué)科帶頭人。
3、在教導(dǎo)方面:在做好班主任工作的同時(shí),我作為校長助理、教導(dǎo)主任,我能正確定位,努力做好校長的助手,協(xié)調(diào)各種工作。
一直以來我總是以飽滿的'熱情對待本職工作,兢兢業(yè)業(yè),忠于職守,凡是要求老師們做到的,自己首先做到。我始初認(rèn)真落實(shí)學(xué)校制定的教學(xué)教研常規(guī),不斷規(guī)范教師教學(xué)行為。從學(xué)期初開始,認(rèn)真執(zhí)行教學(xué)教研工作計(jì)劃和工作記錄,嚴(yán)格按照學(xué)校修訂的規(guī)章制度去要求師生,定期檢查教師教案及作業(yè)批改情況,發(fā)現(xiàn)問題及時(shí)反饋及時(shí)做好總結(jié)并進(jìn)行跟蹤檢查,期末對教案進(jìn)行歸納整理。規(guī)范日常巡課制度,定時(shí)巡課與不定時(shí)巡課相結(jié)合,不定時(shí)跟班聽課,與執(zhí)教教師共同切磋存在的問題,加強(qiáng)對教學(xué)工作的監(jiān)控,促進(jìn)教學(xué)質(zhì)量的提高。
學(xué)校要發(fā)展、要生存必須有一批高素質(zhì)的教師隊(duì)伍,同樣教師今后要生存要發(fā)展必須具有過硬的本領(lǐng)。我清楚的認(rèn)識到必須加強(qiáng)骨干教師、青年教師的培養(yǎng)力度,也借助各種機(jī)遇,為教師搭建自我展示的平臺。加大新教師的培養(yǎng)力度,開展“師徒結(jié)對子”活動,通過推門聽課,領(lǐng)導(dǎo)聽課、一課三研、師傅引領(lǐng)課、新教師展示課等,鼓勵教師參加各級各類比賽、培訓(xùn)活動等形式,促進(jìn)新教師的迅速成長。我精心制定了以人為本的校本培訓(xùn)計(jì)劃,每學(xué)期開展十多次骨干培訓(xùn)活動,并進(jìn)行讀書交流活動,活動做到人人有準(zhǔn)備,人人有發(fā)言,人人有反思,老師們一同感悟,一起分享,在探索和交流中,不斷提升教學(xué)水準(zhǔn)。
通過開展語、數(shù)集體備課—上課—聽課——評課研討這樣的教研活動觀摩,讓更多的教師參與到校本教研活動中來,增強(qiáng)了教研活動的實(shí)效性,提高了教師的課堂教學(xué)水平。新教師展示課活動,“中荷才露尖尖角”,新教師在歷練中成長;常態(tài)化的研討課,“萬紫千紅總是春”,老師們?nèi)¢L補(bǔ)短,共同促進(jìn);名師、骨干教師的精品課,“萬綠叢中一點(diǎn)紅”,起了引領(lǐng)示范的作用。
教科研是教學(xué)的源泉,是教改的先導(dǎo),我十分重視課題研究、管理。18年獨(dú)立承擔(dān)了省級重點(diǎn)課題研究已經(jīng)結(jié)題,并被評為科研課題先進(jìn)個(gè)人,19年又獨(dú)立承擔(dān)了中課題的研究,已經(jīng)接近尾聲。
4、自身提高方面:我能利用課余時(shí)間閱讀一些教育名著及教育教學(xué)刊物,并及時(shí)做好讀書筆記,建立個(gè)人博客,發(fā)表自己原創(chuàng)的教學(xué)感想、教案設(shè)計(jì)、學(xué)習(xí)心得、教育理念等文章。一份耕耘,一份收獲”,一年來,我積極參加各級各類比賽,多次獲獎,還被評為縣級學(xué)科帶頭人。
三、存在的不足
回顧一年來的工作,我雖然取得了一些成績,積累了一些經(jīng)驗(yàn),但是,實(shí)事求是地說,與領(lǐng)導(dǎo)的要求和自己的期待還有差距,主要表現(xiàn)在:
1、對教導(dǎo)處管理工作還須腳踏實(shí)地地去做,謙虛認(rèn)真地去學(xué),以使自己取得更好的成績。
2、教學(xué)方面對差生主要是采取開中灶、嚴(yán)要求的方式進(jìn)行強(qiáng)化管理,對其心理攻堅(jiān)尚不到位,所以見效慢,容易激化師生間的矛盾,還得在實(shí)踐中多摸索。課堂教學(xué)水平有待提高,要與同事們多切磋,多學(xué)習(xí)。
3、教研方面,仍需強(qiáng)化、深化、細(xì)化地系統(tǒng)學(xué)習(xí)相關(guān)理論知識,所寫隨感不能僅僅停留在表面現(xiàn)象,還應(yīng)善于總結(jié)提升,以形成有一定深度的,并具有自我指導(dǎo)意義的理論型文字。
另外,意志仍不夠堅(jiān)強(qiáng),堅(jiān)持還不夠徹底,實(shí)是欠缺“鐵杵磨成針”的精神。總之,回顧取得的成績,固然可喜,值得欣慰,但面對未來,仍感任重道遠(yuǎn)、不敢懈怠。
最后,用一句話作為本年度的工作總結(jié),下一年度的開始,也就是:既然選擇了遠(yuǎn)方,必然風(fēng)雨兼程。我將某某,繼續(xù)前行!
關(guān)于數(shù)學(xué)常見誤區(qū)有哪些
1、被動學(xué)習(xí)
許多同學(xué)進(jìn)入高中后,還像初中那樣,有很強(qiáng)的依賴心理,跟隨老師慣性運(yùn)轉(zhuǎn),沒有掌握學(xué)習(xí)主動權(quán).表現(xiàn)在不定計(jì)劃,坐等上課,課前沒有預(yù)習(xí),對老師要上課的內(nèi)容不了解,上課忙于記筆記,沒聽到“門道”,沒有真正理解所學(xué)內(nèi)容。
2、學(xué)不得法
老師上課一般都要講清知識的來龍去脈,剖析概念的內(nèi)涵,分析重點(diǎn)難點(diǎn),突出思想方法。而一部分同學(xué)上課沒能專心聽課,對要點(diǎn)沒聽到或聽不全,筆記記了一大本,問題也有一大堆,課后又不能及時(shí)鞏固、總結(jié)、尋找知識間的聯(lián)系,只是趕做作業(yè),亂套題型,對概念、法則、公式、定理一知半解,機(jī)械模仿,死記硬背。也有的晚上加班加點(diǎn),白天無精打采,或是上課根本不聽,自己另搞一套,結(jié)果是事倍功半,收效甚微。
3、不重視基礎(chǔ)
一些“自我感覺良好”的同學(xué),常輕視基本知識、基本技能和基本方法的學(xué)習(xí)與訓(xùn)練,經(jīng)常是知道怎么做就算了,而不去認(rèn)真演算書寫,但對難題很感興趣,以顯示自己的“水平”,好高鶩遠(yuǎn),重“量”輕“質(zhì)”,陷入題海。到正規(guī)作業(yè)或考試中不是演算出錯(cuò)就是中途“卡殼”。
4、進(jìn)一步學(xué)習(xí)條件不具備
高中數(shù)學(xué)與初中數(shù)學(xué)相比,知識的深度、廣度,能力要求都是一次飛躍.這就要求必須掌握基礎(chǔ)知識與技能為進(jìn)一步學(xué)習(xí)作好準(zhǔn)備。高中數(shù)學(xué)很多地方難度大、方法新、分析能力要求高。
如二次函數(shù)在閉區(qū)間上的最值問題,函數(shù)值域的求法,實(shí)根分布與參變量方程,三角公式的變形與靈活運(yùn)用,空間概念的形成,排列組合應(yīng)用題及實(shí)際應(yīng)用問題等?陀^上這些觀點(diǎn)就是分化點(diǎn),有的內(nèi)容還是高初中教材都不講的脫節(jié)內(nèi)容,如不采取補(bǔ)救措施,查缺補(bǔ)漏,分化是不可避免的。
初中數(shù)學(xué)知識點(diǎn)總結(jié)6
一、圓
1、圓的有關(guān)性質(zhì)
在一個(gè)平面內(nèi),線段OA繞它固定的一個(gè)端點(diǎn)O旋轉(zhuǎn)一周,另一個(gè)端點(diǎn)A隨之旋轉(zhuǎn)所形成的圖形叫圓,固定的端點(diǎn)O叫圓心,線段OA叫半徑。
由圓的意義可知:
圓上各點(diǎn)到定點(diǎn)(圓心O)的距離等于定長的點(diǎn)都在圓上。
就是說:圓是到定點(diǎn)的距離等于定長的點(diǎn)的集合,圓的內(nèi)部可以看作是到圓。心的距離小于半徑的點(diǎn)的集合。
圓的外部可以看作是到圓心的距離大于半徑的點(diǎn)的集合。連結(jié)圓上任意兩點(diǎn)的線段叫做弦,經(jīng)過圓心的弦叫直徑。圓上任意兩點(diǎn)間的部分叫圓弧,簡稱弧。
圓的任意一條直徑的兩個(gè)端點(diǎn)分圓成兩條弧,每一條弧都叫半圓,大于半圓的弧叫優(yōu)。恍∮诎雸A的弧叫劣弧。由弦及其所對的弧組成的圓形叫弓形。
圓心相同,半徑不相等的兩個(gè)圓叫同心圓。
能夠重合的兩個(gè)圓叫等圓。
同圓或等圓的半徑相等。
在同圓或等圓中,能夠互相重合的弧叫等弧。
二、過三點(diǎn)的圓
l、過三點(diǎn)的圓
過三點(diǎn)的圓的作法:利用中垂線找圓心
定理不在同一直線上的三個(gè)點(diǎn)確定一個(gè)圓。
經(jīng)過三角形各頂點(diǎn)的圓叫三角形的外接圓,外接圓的圓心叫外心,這個(gè)三角形叫圓的內(nèi)接三角形。
2、反證法
反證法的三個(gè)步驟:
①假設(shè)命題的結(jié)論不成立;
②從這個(gè)假設(shè)出發(fā),經(jīng)過推理論證,得出矛盾;
③由矛盾得出假設(shè)不正確,從而肯定命題的結(jié)論正確。
例如:求證三角形中最多只有一個(gè)角是鈍角。
證明:設(shè)有兩個(gè)以上是鈍角
則兩個(gè)鈍角之和>180°
與三角形內(nèi)角和等于180°矛盾。
∴不可能有二個(gè)以上是鈍角。
即最多只能有一個(gè)是鈍角。
三、垂直于弦的直徑
圓是軸對稱圖形,經(jīng)過圓心的每一條直線都是它的對稱軸。
垂徑定理:垂直于弦的直徑平分這條弦,并且平分弦所對的兩條弧。
推理1:平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對兩條弧。
弦的垂直平分線經(jīng)過圓心,并且平分弦所對的兩條弧。
平分弦所對的一條弧的直徑,垂直平分弦,并且平分弦所對的另一個(gè)條弧。
推理2:圓兩條平行弦所夾的弧相等。
四、圓心角、弧、弦、弦心距之間的關(guān)系
圓是以圓心為對稱中心的中心對稱圖形。
實(shí)際上,圓繞圓心旋轉(zhuǎn)任意一個(gè)角度,都能夠與原來的圖形重合。
頂點(diǎn)是圓心的角叫圓心角,從圓心到弦的距離叫弦心距。
定理:在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對的弦心距相等。
推理:在同圓或等圓中,如果兩個(gè)圓心角、兩條弧、兩條弦或兩條弦的弦心距中,有一組量相等,那么它們所對應(yīng)的其余各組量都分別相等。
五、圓周角
頂點(diǎn)在圓上,并且兩邊都和圓相交的角叫圓周角。
推理1:同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等。
推理2:半圓(或直徑)所對的圓周角是直角;90°的圓周角所對的弦是直徑。
推理3:如果三角形一邊上的中線等于這邊的一半,那么這個(gè)三角形是直角三角形。
由于以上的定理、推理,所添加輔助線往往是添加能構(gòu)成直徑上的圓周角的輔助線。
六、圓的判定性質(zhì)
1.不在同一直線上的三點(diǎn)確定一個(gè)圓。
2.垂徑定理 垂直于弦的直徑平分這條弦并且平分弦所對的兩條弧
推論1
、倨椒窒(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條弧
②弦的垂直平分線經(jīng)過圓心,并且平分弦所對的兩條弧
、燮椒窒宜鶎Φ囊粭l弧的直徑,垂直平分弦,并且平分弦所對的另一條弧
推論2 圓的兩條平行弦所夾的弧相等
3.圓是以圓心為對稱中心的中心對稱圖形
4.圓是定點(diǎn)的距離等于定長的點(diǎn)的集合
5.圓的內(nèi)部可以看作是圓心的距離小于半徑的點(diǎn)的集合
6.圓的.外部可以看作是圓心的距離大于半徑的點(diǎn)的集合
7.同圓或等圓的半徑相等
8.到定點(diǎn)的距離等于定長的點(diǎn)的軌跡,是以定點(diǎn)為圓心,定長為半徑的圓
9.定理 在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦 相等,所對的弦的弦心距相等
10.推論 在同圓或等圓中,如果兩個(gè)圓心角、兩條弧、兩條弦或兩 弦的弦心距中有一組量相等那么它們所對應(yīng)的其余各組量都相等。
11定理 圓的內(nèi)接四邊形的對角互補(bǔ),并且任何一個(gè)外角都等于它 的內(nèi)對角
12.①直線L和⊙O相交 d
②直線L和⊙O相切 d=r
③直線L和⊙O相離 dr
13.切線的判定定理 經(jīng)過半徑的外端并且垂直于這條半徑的直線是圓的切線
14.切線的性質(zhì)定理 圓的切線垂直于經(jīng)過切點(diǎn)的半徑
15.推論1 經(jīng)過圓心且垂直于切線的直線必經(jīng)過切點(diǎn)
16.推論2 經(jīng)過切點(diǎn)且垂直于切線的直線必經(jīng)過圓心
17.切線長定理 從圓外一點(diǎn)引圓的兩條切線,它們的切線長相等, 圓心和這一點(diǎn)的連線平分兩條切線的夾角
18.圓的外切四邊形的兩組對邊的和相等 外角等于內(nèi)對角
19.如果兩個(gè)圓相切,那么切點(diǎn)一定在連心線上
20.①兩圓外離 dR+r ②兩圓外切 d=R+r
、.兩圓相交 R-rr)
④.兩圓內(nèi)切 d=R-r(Rr) ⑤兩圓內(nèi)含dr)
初中數(shù)學(xué)知識點(diǎn)總結(jié)7
1.圓是以圓心為對稱中心的中心對稱圖形;同圓或等圓的半徑相等。
2.到定點(diǎn)的距離等于定長的點(diǎn)的軌跡,是以定點(diǎn)為圓心,定長為半徑的圓。
3.定理在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對的弦的弦心距相等。
4.圓是定點(diǎn)的距離等于定長的點(diǎn)的集合。
5.圓的內(nèi)部可以看作是圓心的`距離小于半徑的點(diǎn)的集合;圓的外部可以看作是圓心的距離大于半徑的點(diǎn)的集合。
6.不在同一直線上的三點(diǎn)確定一個(gè)圓。
7.垂徑定理垂直于弦的直徑平分這條弦并且平分弦所對的兩條弧。
推論1:
、倨椒窒(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條弧;
②弦的垂直平分線經(jīng)過圓心,并且平分弦所對的兩條弧;
、燮椒窒宜鶎Φ囊粭l弧的直徑,垂直平分弦,并且平分弦所對的另一條弧。
推論2:圓的兩條平行弦所夾的弧相等。
8.推論在同圓或等圓中,如果兩個(gè)圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相等那么它們所對應(yīng)的其余各組量都相等。
9.定理圓的內(nèi)接四邊形的對角互補(bǔ),并且任何一個(gè)外角都等于它的內(nèi)對角。
10.經(jīng)過切點(diǎn)且垂直于切線的直線必經(jīng)過圓心。
11.切線的判定定理經(jīng)過半徑的外端并且垂直于這條半徑的直線是圓的切線。
12.切線的性質(zhì)定理圓的切線垂直于經(jīng)過切點(diǎn)的半徑。
13.經(jīng)過圓心且垂直于切線的直線必經(jīng)過切點(diǎn)
14.切線長定理從圓外一點(diǎn)引圓的兩條切線,它們的切線長相等,圓心和這一點(diǎn)的連線平分兩條切線的夾角。
15.圓的外切四邊形的兩組對邊的和相等外角等于內(nèi)對角。
16.如果兩個(gè)圓相切,那么切點(diǎn)一定在連心線上。
17.
、賰蓤A外離d>R+r
、趦蓤A外切d=R+r
、蹆蓤A相交d>R-r)
、軆蓤A內(nèi)切d=R-r(R>r)
、輧蓤A內(nèi)含d=r)
18.定理把圓分成n(n≥3):
、乓来芜B結(jié)各分點(diǎn)所得的多邊形是這個(gè)圓的內(nèi)接正n邊形
、平(jīng)過各分點(diǎn)作圓的切線,以相鄰切線的交點(diǎn)為頂點(diǎn)的多邊形是這個(gè)圓的外切正n邊形。
19.定理任何正多邊形都有一個(gè)外接圓和一個(gè)內(nèi)切圓,這兩個(gè)圓是同心圓。
20.弧長計(jì)算公式:L=n兀R/180;扇形面積公式:S扇形=n兀R^2/360=LR/2。
21.內(nèi)公切線長= d-(R-r)外公切線長= d-(R+r)。
22.定理一條弧所對的圓周角等于它所對的圓心角的一半。
23.推論1同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等。
24.推論2半圓(或直徑)所對的圓周角是直角;90°的圓周角所對的弦是直徑。
初中數(shù)學(xué)知識點(diǎn)總結(jié)8
知識點(diǎn)總結(jié)
1.定義:兩組對邊分別平行的四邊形叫平行四邊形
2.平行四邊形的性質(zhì)
(1)平行四邊形的對邊平行且相等;
。2)平行四邊形的鄰角互補(bǔ),對角相等;
。3)平行四邊形的對角線互相平分;
3.平行四邊形的判定
平行四邊形是幾何中一個(gè)重要內(nèi)容,如何根據(jù)平行四邊形的性質(zhì),判定一個(gè)四邊形是平行四邊形是個(gè)重點(diǎn),下面就對平行四邊形的五種判定方法,進(jìn)行劃分:
第一類:與四邊形的對邊有關(guān)
。1)兩組對邊分別平行的四邊形是平行四邊形;
。2)兩組對邊分別相等的四邊形是平行四邊形;
。3)一組對邊平行且相等的四邊形是平行四邊形;
第二類:與四邊形的對角有關(guān)
。4)兩組對角分別相等的四邊形是平行四邊形;
第三類:與四邊形的對角線有關(guān)
。5)對角線互相平分的四邊形是平行四邊形
常見考法
。1)利用平行四邊形的性質(zhì),求角度、線段長、周長;
(2)求平行四邊形某邊的`取值范圍;
。3)考查一些綜合計(jì)算問題;
(4)利用平行四邊形性質(zhì)證明角相等、線段相等和直線平行;
。5)利用判定定理證明四邊形是平行四邊形。
誤區(qū)提醒
(1)平行四邊形的性質(zhì)較多,易把對角線互相平分,錯(cuò)記成對角線相等;
。2)“一組對邊平行且相等的四邊形是平行四邊形”錯(cuò)記成“一組對邊平行,一組對邊相等的四邊形是平行四邊形”后者不是平行四邊形的判定定理,它只是個(gè)等腰梯形。
初中數(shù)學(xué)知識點(diǎn)總結(jié)9
課題
3.5正比例函數(shù)、反比例函數(shù)、一次函數(shù)和二次函數(shù)
教學(xué)目標(biāo)
1、掌握正(反)比例函數(shù)、一次函數(shù)和二次函數(shù)的概念及其圖形和性質(zhì)2、會用待定系數(shù)法確定函數(shù)的解析式
教學(xué)重點(diǎn)
掌握正(反)比例函數(shù)、一次函數(shù)和二次函數(shù)的概念及其圖形和性質(zhì)
教學(xué)難點(diǎn)
掌握正(反)比例函數(shù)、一次函數(shù)和二次函數(shù)的概念及其圖形和性質(zhì)
教學(xué)方法
講練結(jié)合法
教學(xué)過程
。↖)知識要點(diǎn)(見下表:)
第三章第29頁函數(shù)名稱解析式圖像正比例函數(shù)ykx(k0)0x反比例函數(shù)一次函數(shù)ykxb(k0)0x二次函數(shù)yax2bxc(a0)y0xy0xky(k0)xyxy0xyy0xy0xyk0k0k0k0k0k0a0a0圖像過點(diǎn)(0,0)及(1,k)的直線雙曲線,x軸、y軸是它的漸近線與直線ykx平行且過點(diǎn)(0,b)的直線拋物線定義域RxxR且xoyyR且yoRR4acb2a0時(shí),y,4aR值域R4acb2a0時(shí),y,4aba0時(shí),在-,上為增2a函數(shù),在,-單調(diào)性k0時(shí),在,0,k0時(shí)為增函數(shù)0,上為減函數(shù)k0時(shí),為增函數(shù)b上為減函數(shù)2ak0時(shí)為減函數(shù)k0時(shí),在,0,k0時(shí),為減函數(shù)0,上為增函數(shù)ba0時(shí),在-,上為減2a函數(shù),在,-b上為增函數(shù)2a奇偶性奇函數(shù)奇函數(shù)b=0時(shí)奇函數(shù)b=0時(shí)偶函數(shù)a0且x-ymin最值無無無b時(shí),2a24acb4ab時(shí),2a24acb4aa0且x-ymax
第三章第30頁b24acb2注:二次函數(shù)yaxbxca(x(a0))a(xm)(xn)2a4abb4acb2對稱軸x,頂點(diǎn)(,)
2a2a4a2拋物線與x軸交點(diǎn)坐標(biāo)(m,0),(n,0)(II)例題講解
例1、求滿足下列條件的二次函數(shù)的'解析式:(1)拋物線過點(diǎn)A(1,1),B(2,2),C(4,2)(2)拋物線的頂點(diǎn)為P(1,5)且過點(diǎn)Q(3,3)
。3)拋物線對稱軸是x2,它在x軸上截出的線段AB長為2且拋物線過點(diǎn)(1,7)。2,
解:(1)設(shè)yax2bxc(a0),將A、B、C三點(diǎn)坐標(biāo)分別代入,可得方程組為
abc1a1解得b4yx24x24a2bc216a4bc2c2(2)設(shè)二次函數(shù)為ya(x1)25,將Q點(diǎn)坐標(biāo)代入,即a(31)253,得
a2,故y2(x1)252x24x3
(3)∵拋物線對稱軸為x2;
∴拋物線與x軸的兩個(gè)交點(diǎn)A、B應(yīng)關(guān)于x2對稱;∴由題設(shè)條件可得兩個(gè)交點(diǎn)坐標(biāo)分別為A(2∴可設(shè)函數(shù)解析式為:ya(x2代入方程可得a1
∴所求二次函數(shù)為yx24x2,
2,0)、B(222,0)
2)(x22)a(x2)22a,將(1,7)
5),例2:二次函數(shù)的圖像過點(diǎn)(0,8),(1,(4,0)
(1)求函數(shù)圖像的頂點(diǎn)坐標(biāo)、對稱軸、最值及單調(diào)區(qū)間(2)當(dāng)x取何值時(shí),①y≥0,②y(2)由y0可得x22x80,解得x4或x2由y0可得x22x80,解得2x4
例3:求函數(shù)f(x)x2x1,x[1,1]的最值及相應(yīng)的x值
113x1(x)2,知函數(shù)的圖像開口向上,對稱軸為x
224111]上是增函數(shù)!嘁李}設(shè)條件可得f(x)在[1,]上是減函數(shù),在[,22131]時(shí),函數(shù)取得最小值,且ymin∴當(dāng)x[1,24131又∵11
初中數(shù)學(xué)知識點(diǎn)總結(jié)10
1、重心的定義:
平面圖形中,幾何圖形的重心是當(dāng)支撐或懸掛時(shí)圖形能在水平面處于平衡狀態(tài),此時(shí)的支撐點(diǎn)或者懸掛點(diǎn)叫做平衡點(diǎn),也叫做重心。
2、幾種幾何圖形的重心:
、啪段的重心就是線段的中點(diǎn);
、破叫兴倪呅渭疤厥馄叫兴倪呅蔚闹匦氖撬膬蓷l對角線的交點(diǎn);
、侨切蔚娜龡l中線交于一點(diǎn),這一點(diǎn)就是三角形的重心;
、热我舛噙呅味加兄匦,以多邊形的任意兩個(gè)頂點(diǎn)作為懸掛點(diǎn),把多邊形懸掛時(shí),過這兩點(diǎn)鉛垂線的交點(diǎn)就是這個(gè)多邊形的重心。
提示:⑴無論幾何圖形的形狀如何,重心都有且只有一個(gè);
、茝奈锢韺W(xué)角度看,幾何圖形在懸掛或支撐時(shí),位于重心兩邊的力矩相同。
3、常見圖形重心的性質(zhì):
、啪段的重心把線段分為兩等份;
、破叫兴倪呅蔚闹匦陌褜蔷分為兩等份;
、侨切蔚闹匦陌阎芯分為1:2兩部分(重心到頂點(diǎn)距離占2份,重心到對邊中點(diǎn)距離占1份)。
上面對重心知識點(diǎn)的鞏固學(xué)習(xí),同學(xué)們都能熟練的.掌握了吧,希望同學(xué)們很好的復(fù)習(xí)學(xué)習(xí)數(shù)學(xué)知識。
、僦本和圓無公共點(diǎn),稱相離。 AB與圓O相離,d>r。
、谥本和圓有兩個(gè)公共點(diǎn),稱相交,這條直線叫做圓的割線。AB與⊙O相交,d
、壑本和圓有且只有一公共點(diǎn),稱相切,這條直線叫做圓的切線,這個(gè)唯一的公共點(diǎn)叫做切點(diǎn)。AB與⊙O相切,d=r。(d為圓心到直線的距離)
平面內(nèi),直線Ax+By+C=0與圓x^2+y^2+Dx+Ey+F=0的位置關(guān)系判斷一般方法是:
1.由Ax+By+C=0,可得y=(-C-Ax)/B,(其中B不等于0),代入x^2+y^2+Dx+Ey+F=0,即成為一個(gè)關(guān)于x的方程
如果b^2-4ac>0,則圓與直線有2交點(diǎn),即圓與直線相交。
如果b^2-4ac=0,則圓與直線有1交點(diǎn),即圓與直線相切。
如果b^2-4ac<0,則圓與直線有0交點(diǎn),即圓與直線相離。
2.如果B=0即直線為Ax+C=0,即x=-C/A,它平行于y軸(或垂直于x軸),將x^2+y^2+Dx+Ey+F=0化為(x-a)^2+(y-b)^2=r^2。令y=b,求出此時(shí)的兩個(gè)x值x1、x2,并且規(guī)定x1
當(dāng)x=-C/Ax2時(shí),直線與圓相離;
初中數(shù)學(xué)知識點(diǎn)總結(jié)11
1.有理數(shù):
(1)凡能寫成形式的數(shù),都是有理數(shù)。正整數(shù)、0、負(fù)整數(shù)統(tǒng)稱整數(shù);正分?jǐn)?shù)、負(fù)分?jǐn)?shù)統(tǒng)稱分?jǐn)?shù);整數(shù)和分?jǐn)?shù)統(tǒng)稱有理數(shù)。注意:0即不是正數(shù),也不是負(fù)數(shù);—a不一定是負(fù)數(shù),+a也不一定是正數(shù);p不是有理數(shù);
(2)有理數(shù)的分類:① ②
2.數(shù)軸:數(shù)軸是規(guī)定了原點(diǎn)、正方向、單位長度的一條直線。
3.相反數(shù):
(1)只有符號不同的兩個(gè)數(shù),我們說其中一個(gè)是另一個(gè)的相反數(shù);0的相反數(shù)還是0;
(2)相反數(shù)的和為0?a+b=0?a、b互為相反數(shù)。
4.絕對值:
(1)正數(shù)的絕對值是其本身,0的絕對值是0,負(fù)數(shù)的絕對值是它的相反數(shù);注意:絕對值的意義是數(shù)軸上表示某數(shù)的點(diǎn)離開原點(diǎn)的距離;
(2)絕對值可表示為:或;絕對值的問題經(jīng)常分類討論;
5.有理數(shù)比大。
(1)正數(shù)的絕對值越大,這個(gè)數(shù)越大;
(2)正數(shù)永遠(yuǎn)比0大,負(fù)數(shù)永遠(yuǎn)比0小;
(3)正數(shù)大于一切負(fù)數(shù);
(4)兩個(gè)負(fù)數(shù)比大小,絕對值大的反而小;
(5)數(shù)軸上的兩個(gè)數(shù),右邊的數(shù)總比左邊的數(shù)大;
(6)大數(shù)—小數(shù)> 0,小數(shù)—大數(shù)< 0。
6.互為倒數(shù):
乘積為1的兩個(gè)數(shù)互為倒數(shù);注意:0沒有倒數(shù);若a≠0,那么的倒數(shù)是;若ab=1,a、b互為倒數(shù);若ab=—1,a、b互為負(fù)倒數(shù)。
7.有理數(shù)加法法則:
(1)同號兩數(shù)相加,取相同的符號,并把絕對值相加;
(2)異號兩數(shù)相加,取絕對值較大的符號,并用較大的絕對值減去較小的絕對值;
(3)一個(gè)數(shù)與0相加,仍得這個(gè)數(shù)。
8.有理數(shù)加法的運(yùn)算律:
(1)加法的交換律:a+b=b+a;
(2)加法的結(jié)合律:(a+b)+c=a+(b+c)。
9.有理數(shù)減法法則:
減去一個(gè)數(shù),等于加上這個(gè)數(shù)的相反數(shù);即a—b=a+(—b)。
10.有理數(shù)乘法法則:
(1)兩數(shù)相乘,同號為正,異號為負(fù),并把絕對值相乘;
(2)任何數(shù)同零相乘都得零;
(3)幾個(gè)數(shù)相乘,有一個(gè)因式為零,積為零;各個(gè)因式都不為零,積的符號由負(fù)因式的個(gè)數(shù)決定。
11.有理數(shù)乘法的運(yùn)算律:
(1)乘法的交換律:ab=ba;(2)乘法的結(jié)合律:(ab)c=a(bc);
(3)乘法的分配律:a(b+c)=ab+ac 。
12.有理數(shù)除法法則:
除以一個(gè)數(shù)等于乘以這個(gè)數(shù)的'倒數(shù);注意:零不能做除數(shù)。
13.有理數(shù)乘方的法則:
(1)正數(shù)的任何次冪都是正數(shù);
(2)負(fù)數(shù)的奇次冪是負(fù)數(shù);負(fù)數(shù)的偶次冪是正數(shù);注意:當(dāng)n為正奇數(shù)時(shí):(—a)n=—an或(a —b)n=—(b—a)n,當(dāng)n為正偶數(shù)時(shí):(—a)n =an或(a—b)n=(b—a)n 。
14.乘方的定義:
(1)求相同因式積的運(yùn)算,叫做乘方;
(2)乘方中,相同的因式叫做底數(shù),相同因式的個(gè)數(shù)叫做指數(shù),乘方的結(jié)果叫做冪;
15.科學(xué)記數(shù)法:
把一個(gè)大于10的數(shù)記成a×10n的形式,其中a是整數(shù)數(shù)位只有一位的數(shù),這種記數(shù)法叫科學(xué)記數(shù)法。
16.近似數(shù)的精確位:
一個(gè)近似數(shù),四舍五入到那一位,就說這個(gè)近似數(shù)的精確到那一位。
17.有效數(shù)字:
從左邊第一個(gè)不為零的數(shù)字起,到精確的位數(shù)止,所有數(shù)字,都叫這個(gè)近似數(shù)的有效數(shù)字。
18.混合運(yùn)算法則:
先乘方,后乘除,最后加減。
本章內(nèi)容要求學(xué)生正確認(rèn)識有理數(shù)的概念,在實(shí)際生活和學(xué)習(xí)數(shù)軸的基礎(chǔ)上,理解正負(fù)數(shù)、相反數(shù)、絕對值的意義所在。重點(diǎn)利用有理數(shù)的運(yùn)算法則解決實(shí)際問題。
體驗(yàn)數(shù)學(xué)發(fā)展的一個(gè)重要原因是生活實(shí)際的需要。激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣,教師培養(yǎng)學(xué)生的觀察、歸納與概括的能力,使學(xué)生建立正確的數(shù)感和解決實(shí)際問題的能力。教師在講授本章內(nèi)容時(shí),應(yīng)該多創(chuàng)設(shè)情境,充分體現(xiàn)學(xué)生學(xué)習(xí)的主體性地位。
有關(guān)初中數(shù)學(xué)知識點(diǎn)
一、圓
1、圓的有關(guān)性質(zhì)
在一個(gè)平面內(nèi),線段OA繞它固定的一個(gè)端點(diǎn)O旋轉(zhuǎn)一周,另一個(gè)端點(diǎn)A隨之旋轉(zhuǎn)所形成的圖形叫圓,固定的端點(diǎn)O叫圓心,線段OA叫半徑。
由圓的.意義可知:
圓上各點(diǎn)到定點(diǎn)(圓心O)的距離等于定長的點(diǎn)都在圓上。
就是說:圓是到定點(diǎn)的距離等于定長的點(diǎn)的集合,圓的內(nèi)部可以看作是到圓。心的距離小于半徑的點(diǎn)的集合。
圓的外部可以看作是到圓心的距離大于半徑的點(diǎn)的集合。連結(jié)圓上任意兩點(diǎn)的線段叫做弦,經(jīng)過圓心的弦叫直徑。圓上任意兩點(diǎn)間的部分叫圓弧,簡稱弧。
圓的任意一條直徑的兩個(gè)端點(diǎn)分圓成兩條弧,每一條弧都叫半圓,大于半圓的弧叫優(yōu)弧;小于半圓的弧叫劣弧。由弦及其所對的弧組成的圓形叫弓形。
圓心相同,半徑不相等的兩個(gè)圓叫同心圓。
能夠重合的兩個(gè)圓叫等圓。
同圓或等圓的半徑相等。
在同圓或等圓中,能夠互相重合的弧叫等弧。
二、過三點(diǎn)的圓
1、過三點(diǎn)的圓
過三點(diǎn)的圓的作法:利用中垂線找圓心
定理不在同一直線上的三個(gè)點(diǎn)確定一個(gè)圓。
經(jīng)過三角形各頂點(diǎn)的圓叫三角形的外接圓,外接圓的圓心叫外心,這個(gè)三角形叫圓的內(nèi)接三角形。
2、反證法
反證法的三個(gè)步驟:
①假設(shè)命題的結(jié)論不成立;
、趶倪@個(gè)假設(shè)出發(fā),經(jīng)過推理論證,得出矛盾;
、塾擅艿贸黾僭O(shè)不正確,從而肯定命題的結(jié)論正確。
例如:求證三角形中最多只有一個(gè)角是鈍角。
證明:設(shè)有兩個(gè)以上是鈍角
則兩個(gè)鈍角之和>180°
與三角形內(nèi)角和等于180°矛盾。
∴不可能有二個(gè)以上是鈍角。
即最多只能有一個(gè)是鈍角。
三、垂直于弦的直徑
圓是軸對稱圖形,經(jīng)過圓心的每一條直線都是它的對稱軸。
垂徑定理:垂直于弦的直徑平分這條弦,并且平分弦所對的兩條弧。
推理1:平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對兩條弧。
弦的垂直平分線經(jīng)過圓心,并且平分弦所對的兩條弧。
平分弦所對的一條弧的直徑,垂直平分弦,并且平分弦所對的另一個(gè)條弧。
推理2:圓兩條平行弦所夾的弧相等。
四、圓心角、弧、弦、弦心距之間的關(guān)系
圓是以圓心為對稱中心的中心對稱圖形。
實(shí)際上,圓繞圓心旋轉(zhuǎn)任意一個(gè)角度,都能夠與原來的圖形重合。
頂點(diǎn)是圓心的角叫圓心角,從圓心到弦的距離叫弦心距。
定理:在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對的弦心距相等。
推理:在同圓或等圓中,如果兩個(gè)圓心角、兩條弧、兩條弦或兩條弦的弦心距中,有一組量相等,那么它們所對應(yīng)的其余各組量都分別相等。
五、圓周角
頂點(diǎn)在圓上,并且兩邊都和圓相交的角叫圓周角。
推理1:同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等。
推理2:半圓(或直徑)所對的圓周角是直角;90°的圓周角所對的弦是直徑。
推理3:如果三角形一邊上的中線等于這邊的一半,那么這個(gè)三角形是直角三角形。
由于以上的定理、推理,所添加輔助線往往是添加能構(gòu)成直徑上的圓周角的輔助線。
為什么要學(xué)習(xí)數(shù)學(xué)
作為一門普及度極廣的學(xué)科,數(shù)學(xué)在人類文明的發(fā)展史上一直占據(jù)著重要的地位。雖然很多人可能會對數(shù)學(xué)產(chǎn)生排斥,認(rèn)為它枯燥無味,但事實(shí)上,數(shù)學(xué)是所有學(xué)科的基石之一,對我們?nèi)粘I钜约拔磥淼穆殬I(yè)發(fā)展有著重大影響。下面我將詳細(xì)闡述學(xué)習(xí)數(shù)學(xué)的重要性。
首先,數(shù)學(xué)可以幫助我們提高邏輯思維能力。數(shù)學(xué)的學(xué)科性質(zhì)使我們在學(xué)習(xí)的過程中時(shí)時(shí)刻刻面臨著思考、推理、證明等諸多問題,而這些問題正是鍛煉我們邏輯思維的好機(jī)會。通過長期的學(xué)習(xí)和練習(xí),我們的思維能力得到提升,可以更加清晰地分析問題,更快速地找到正確的答案。這對我們在工作和生活中都非常有幫助,尤其是在解決復(fù)雜問題時(shí)更能得心應(yīng)手。
其次,數(shù)學(xué)在現(xiàn)代科技中起著至關(guān)重要的作用。在計(jì)算機(jī)科學(xué)、物理學(xué)、經(jīng)濟(jì)學(xué)、工程學(xué)等領(lǐng)域,數(shù)學(xué)可以幫助我們建立模型、分析數(shù)據(jù)、預(yù)測趨勢,并且可以在實(shí)際應(yīng)用中優(yōu)化和改進(jìn)。例如,在人工智能領(lǐng)域,深度學(xué)習(xí)技術(shù)所涉及的數(shù)學(xué)概念包括線性代數(shù)、微積分和概率論等,如果沒有深厚的數(shù)學(xué)基礎(chǔ),很難理解和應(yīng)用這些技術(shù)。同時(shí),在工程學(xué)領(lǐng)域,許多機(jī)械、電子、化工等產(chǎn)品的設(shè)計(jì)和制造過程,也需要運(yùn)用到數(shù)學(xué)知識,因此學(xué)習(xí)數(shù)學(xué)可以使我們更好地參與到現(xiàn)代科技的發(fā)展中。
除此之外,數(shù)學(xué)也是一種普遍使用的語言,許多學(xué)科和領(lǐng)域都使用數(shù)學(xué)語言進(jìn)行表達(dá)和交流。例如,在自然科學(xué)領(lǐng)域,生物學(xué)、化學(xué)、物理學(xué)等學(xué)科都使用數(shù)學(xué)語言來描述自然世界的規(guī)律和現(xiàn)象。在社會科學(xué)和商科領(lǐng)域,經(jīng)濟(jì)學(xué)和金融學(xué)運(yùn)用的數(shù)學(xué)概念,如微積分、線性代數(shù)和統(tǒng)計(jì)學(xué)等,使得我們能夠更好地理解經(jīng)濟(jì)和財(cái)務(wù)數(shù)據(jù),并進(jìn)行決策。因此,學(xué)習(xí)數(shù)學(xué)可以讓我們更好地理解、溝通和交流各個(gè)領(lǐng)域的知識。
最后,學(xué)習(xí)數(shù)學(xué)也可以為我們的職業(yè)發(fā)展帶來廣泛的機(jī)遇和發(fā)展空間。在許多領(lǐng)域,數(shù)學(xué)專業(yè)的畢業(yè)生都有很廣泛的就業(yè)機(jī)會,如金融界、數(shù)據(jù)科學(xué)、研究機(jī)構(gòu)、教育等。數(shù)學(xué)專業(yè)的人才,不只會提供理論支持,同時(shí)也能夠解決現(xiàn)實(shí)中具體的問題,使其在各自領(lǐng)域脫穎而出。
怎樣快速提高數(shù)學(xué)成績?
一、查缺補(bǔ)漏,主攻薄弱
請制作“失分分析表”,包括“不會做的”和“不該丟分的”兩部分,分析模擬考試等試卷失分情況,在緊跟老師復(fù)習(xí)的基礎(chǔ)上,針對自己的薄弱環(huán)節(jié)重點(diǎn)彌補(bǔ)、改進(jìn)。
別一味沖刺難題。做題是對理論知識的進(jìn)一步鞏固與實(shí)檢,我們要在理解的基礎(chǔ)上加強(qiáng)練習(xí),以達(dá)到鞏固的目的,但不能一味追求難題偏題。
因?yàn)橹锌荚嚲碇杏?0%是比較靈活的題型,只有10%是真正的難題。30%那部分題目是我們能拿但容易失分的題目,我們要做到盡量多拿分,但如果我們一味求難求險(xiǎn),就會因?yàn)楹鲆暬A(chǔ)題型的夯實(shí)和鞏固而失掉這部分該得的分。在基礎(chǔ)掌握后,有條件的同學(xué)可再進(jìn)行一些難題怪題的攻關(guān),這樣的策略才更能保證效率。
二、反思錯(cuò)題
不要盲目找題做,陷入題海中,不要“就題論題”停留在“這題我會了”的低水平上。解題能力是在反思中提升的。懂、會、悟是數(shù)學(xué)水平的三個(gè)層次。簡單說,聽懂了,但不一定會,更不意味著真正領(lǐng)悟了。
三、克服無謂失分
如何避免審題出錯(cuò)?
原因:看太快。
應(yīng)對策略:
1.默讀法;2.重點(diǎn)字詞圈點(diǎn)勾畫法;3.審圖法。
如何降低計(jì)算失誤?
表面原因是粗心,其實(shí)是計(jì)算能力不足。平時(shí)對計(jì)算不以為然,認(rèn)為“沒有技術(shù)含量”。事實(shí)上計(jì)算也有很多“聰明算法”,如:邊化簡邊計(jì)算、寧加勿減、寧乘勿除、小數(shù)化分?jǐn)?shù)、找最小最短的設(shè)元、放縮法、湊整法、圖象法等等計(jì)算技巧。
應(yīng)對策略:
1.不要為了趕時(shí)間而跳步計(jì)算;
2.寧可筆算,少用口算,更不要再抱著計(jì)算器;
3.對平時(shí)易算錯(cuò)的題型,可以驗(yàn)算一遍。
四、關(guān)注幾個(gè)重點(diǎn)問題
1.新定義題型、非常規(guī)題型、存在性問題。
2.分析法—執(zhí)果索因,逆向思維,倒過來想,假設(shè)存在;不完全歸納法—根據(jù)例子,大膽猜想、努力驗(yàn)證。反例排除法、特殊圖形(特殊位置、極端值)探究法等。
提高數(shù)學(xué)成績常用方法有哪些
1、預(yù)習(xí)
預(yù)期常常由于 “沒時(shí)間,看不懂,不必要”等等原因被忽略。實(shí)際上預(yù)習(xí)是學(xué)習(xí)的必要過程,更是提高自學(xué)能力的好方法。
2、學(xué)會聽課
聽分析、聽思路、聽?wèi)?yīng)用,關(guān)鍵內(nèi)容一字不漏,注意記錄。
3、做好錯(cuò)題本
每個(gè)會學(xué)習(xí)的學(xué)生都會有錯(cuò)題本。調(diào)查發(fā)現(xiàn)那些沒有錯(cuò)題本,或者是只做不用的同學(xué),學(xué)習(xí)效果都不好。
4、用好課外書
正確認(rèn)識網(wǎng)絡(luò)課程和課外書籍,是副食,是幫助吸收的良藥。
5、注重?cái)?shù)學(xué)思維方法的培養(yǎng)
要注意數(shù)學(xué)思想和方法的指導(dǎo),站得高,才能看得遠(yuǎn)。
初中數(shù)學(xué)知識點(diǎn)總結(jié)12
初中數(shù)學(xué)基礎(chǔ)知識點(diǎn)
平方根:①如果一個(gè)正數(shù)X的平方等于A,那么這個(gè)正數(shù)X就叫做A的算術(shù)平方根。②如果一個(gè)數(shù)X的平方等于A,那么這個(gè)數(shù)X就叫做A的平方根。③一個(gè)正數(shù)有2個(gè)平方根/0的平方根為0/負(fù)數(shù)沒有平方根。④求一個(gè)數(shù)A的平方根運(yùn)算,叫做開平方,其中A叫做被開方數(shù)。
立方根:①如果一個(gè)數(shù)X的立方等于A,那么這個(gè)數(shù)X就叫做A的立方根。②正數(shù)的立方根是正數(shù)、0的立方根是0、負(fù)數(shù)的立方根是負(fù)數(shù)。③求一個(gè)數(shù)A的立方根的運(yùn)算叫開立方,其中A叫做被開方數(shù)。
實(shí)數(shù):①實(shí)數(shù)分有理數(shù)和無理數(shù)。②在實(shí)數(shù)范圍內(nèi),相反數(shù),倒數(shù),絕對值的意義和有理數(shù)范圍內(nèi)的相反數(shù),倒數(shù),絕對值的意義完全一樣。③每一個(gè)實(shí)數(shù)都可以在數(shù)軸上的一個(gè)點(diǎn)來表示。
初中數(shù)學(xué)平行四邊形的性質(zhì)知識點(diǎn)
1.定義:兩組對邊分別平行的.四邊形叫平行四邊形
2.平行四邊形的性質(zhì)
(1)平行四邊形的對邊平行且相等;
(2)平行四邊形的鄰角互補(bǔ),對角相等;
(3)平行四邊形的對角線互相平分;
3.平行四邊形的判定
平行四邊形是幾何中一個(gè)重要內(nèi)容,如何根據(jù)平行四邊形的性質(zhì),判定一個(gè)四邊形是平行四邊形是個(gè)重點(diǎn),下面就對平行四邊形的五種判定方法,進(jìn)行劃分:
第一類:與四邊形的對邊有關(guān)
(1)兩組對邊分別平行的四邊形是平行四邊形;
(2)兩組對邊分別相等的四邊形是平行四邊形;
(3)一組對邊平行且相等的四邊形是平行四邊形;
第二類:與四邊形的對角有關(guān)
(4)兩組對角分別相等的四邊形是平行四邊形;
第三類:與四邊形的對角線有關(guān)
(5)對角線互相平分的四邊形是平行四邊形
初中數(shù)學(xué)函數(shù)知識點(diǎn)總結(jié)
1.一次函數(shù)
(1)定義:形如y=kx+b(k、b是常數(shù),且k≠0)的函數(shù),叫做一次函數(shù)。特別地,當(dāng)b=0時(shí),y是x的正比例函數(shù)。即:y=kx(k為常數(shù),k≠0)
所以,正比例函數(shù)是特殊的一次函數(shù)。
(2)一次函數(shù)的圖像及性質(zhì):
1在一次函數(shù)上的任意一點(diǎn)P(x,y),都滿足等式:y=kx+b。
2一次函數(shù)與y軸交點(diǎn)的坐標(biāo)總是(0,b),與x軸總是交于(-b/k,0)。
3正比例函數(shù)的圖像總是過原點(diǎn)。
4k,b與函數(shù)圖像所在象限的關(guān)系:
當(dāng)k>0時(shí),y隨x的增大而增大;當(dāng)k<0時(shí),y隨x的增大而減小。
當(dāng)k>0,b>0時(shí),直線通過一、二、三象限;
當(dāng)k>0,b<0時(shí),直線通過一、三、四象限;
當(dāng)k<0,b>0時(shí),直線通過一、二、四象限;
當(dāng)k<0,b<0時(shí),直線通過二、三、四象限;
當(dāng)b=0時(shí),直線通過原點(diǎn)O(0,0)表示的是正比例函數(shù)的圖像。
這時(shí),當(dāng)k>0時(shí),直線只通過一、三象限;當(dāng)k<0時(shí),直線只通過二、四象限。
2.二次函數(shù)
(1)定義:一般地,自變量x和因變量y之間存在如下關(guān)系:y=ax^2+bx+c(a,b,c為常數(shù),a≠0,),稱y為x的二次函數(shù)。
(2)二次函數(shù)的三種表達(dá)式
一般式:y=ax^2+bx+c(a,b,c為常數(shù),a≠0);
頂點(diǎn)式:y=a(x-h)^2+k(拋物線的頂點(diǎn)P(h,k));
交點(diǎn)式:
(3)二次函數(shù)的圖像與性質(zhì)
1二次函數(shù)的圖像是一條拋物線。
2拋物線是軸對稱圖形。對稱軸為直線x=-b/2a。
特別地,當(dāng)b=0時(shí),拋物線的對稱軸是y軸(即直線x=0)。
3二次項(xiàng)系數(shù)a決定拋物線的開口方向。
當(dāng)a>0時(shí),拋物線向上開口;
當(dāng)a<0時(shí),拋物線向下開口。
4一次項(xiàng)系數(shù)b和二次項(xiàng)系數(shù)a共同決定對稱軸的位置。
當(dāng)a與b同號時(shí)(即ab>0),對稱軸在y軸左;
當(dāng)a與b異號時(shí)(即ab<0),對稱軸在y軸右。
5拋物線與x軸交點(diǎn)個(gè)數(shù)
Δ=b^2-4ac>0時(shí),拋物線與x軸有2個(gè)交點(diǎn);
Δ=b^2-4ac=0時(shí),拋物線與x軸有1個(gè)交點(diǎn);
Δ=b^2-4ac<0時(shí),拋物線與x軸沒有交點(diǎn)。
3.反比例函數(shù)
(1)定義:形如y=k/x(k為常數(shù)且k≠0) 的函數(shù),叫做反比例函數(shù)。
(2)反比例函數(shù)圖像性質(zhì):
1反比例函數(shù)的圖像為雙曲線;
當(dāng)K>0時(shí),反比例函數(shù)圖像經(jīng)過一,三象限,是減函數(shù);
當(dāng)K<0時(shí),反比例函數(shù)圖像經(jīng)過二,四象限,是增函數(shù);
反比例函數(shù)圖像只能無限趨向于坐標(biāo)軸,無法和坐標(biāo)軸相交。
2由于反比例函數(shù)屬于奇函數(shù),有f(-x)=-f(x),圖像關(guān)于原點(diǎn)對稱。
初中數(shù)學(xué)知識點(diǎn)總結(jié)13
一、特殊的平行四邊形:
1.矩形:
。1)定義:有一個(gè)角是直角的平行四邊形。
。2)性質(zhì):矩形的四個(gè)角都是直角;矩形的對角線平分且相等。
。3)判定定理:
、儆幸粋(gè)角是直角的平行四邊形叫做矩形。
、趯蔷相等的平行四邊形是矩形。
、塾腥齻(gè)角是直角的四邊形是矩形。
直角三角形的性質(zhì):直角三角形中所對的直角邊等于斜邊的一半。
2.菱形:
。1)定義:鄰邊相等的平行四邊形。
。2)性質(zhì):菱形的四條邊都相等;菱形的兩條對角線互相垂直,并且每一條對角線平分一組對角。
。3)判定定理:
①一組鄰邊相等的平行四邊形是菱形。
、趯蔷互相垂直的平行四邊形是菱形。
③四條邊相等的四邊形是菱形。
(4)面積:
3.正方形:
。1)定義:一個(gè)角是直角的菱形或鄰邊相等的矩形。
(2)性質(zhì):四條邊都相等,四個(gè)角都是直角,對角線互相垂直平分。正方形既是矩形,又是菱形。
。3)正方形判定定理:
①對角線互相垂直平分且相等的'四邊形是正方形;
、谝唤M鄰邊相等,一個(gè)角為直角的平行四邊形是正方形;
③對角線互相垂直的矩形是正方形;
、茑忂呄嗟鹊木匦问钦叫
、萦幸粋(gè)角是直角的菱形是正方形;
、迣蔷相等的菱形是正方形。
二、矩形、菱形、正方形與平行四邊形、四邊形之間的聯(lián)系:
1.矩形、菱形和正方形都是特殊的平行四邊形,其性質(zhì)都是在平行四邊形的基礎(chǔ)上擴(kuò)充來的。矩形是由平行四邊形增加“一個(gè)角為90°”的條件得到的,它在角和對角線方面具有比平行四邊形更多的特性;菱形是由平行四邊形增加“一組鄰邊相等”的條件得到的,它在邊和對角線方面具有比平行四邊形更多的特性;正方形是由平行四邊形增加“一組鄰邊相等”和“一個(gè)角為90°”兩個(gè)條件得到的,它在邊、角和對角線方面都具有比平行四邊形更多的特性。
2.矩形、菱形的判定可以根據(jù)出發(fā)點(diǎn)不同而分成兩類:一類是以四邊形為出發(fā)點(diǎn)進(jìn)行判定,另一類是以平行四邊形為出發(fā)點(diǎn)進(jìn)行判定。而正方形除了上述兩個(gè)出發(fā)點(diǎn)外,還可以從矩形和菱形出發(fā)進(jìn)行判定。
三、判定一個(gè)四邊形是特殊四邊形的步驟:
常見考法
。1)利用菱形、矩形、正方形的性質(zhì)進(jìn)行邊、角以及面積等計(jì)算;
。2)靈活運(yùn)用判定定理證明一個(gè)四邊形(或平行四邊形)是菱形、矩形、正方形;
(3)一些折疊問題;
。4)矩形與直角三角形和等腰三角形有著密切聯(lián)系、正方形與等腰直角三角形也有著密切聯(lián)系。所以,以此為背景可以設(shè)置許多考題。
誤區(qū)提醒
。1)平行四邊形的所有性質(zhì)矩形、菱形、正方形都具有,但矩形、菱形、正方形具有的性質(zhì)平行四邊形不一定具有,這點(diǎn)易出現(xiàn)混淆;
。2)矩形、菱形具有的性質(zhì)正方形都具有,而正方形具有的性質(zhì),矩形不一定具有,菱形也不一定具有,這點(diǎn)也易出現(xiàn)混淆;
(3)不能正確的理解和運(yùn)用判定定理進(jìn)行證明,(如在證明菱形時(shí),把四條邊相等的四邊形是菱形誤解成兩組鄰邊相等的四邊形是菱形);
(4)再利用對角線長度求菱形的面積時(shí),忘記乘;
(5)判定一個(gè)四邊形是特殊的平行四邊形的條件不充分。
初中數(shù)學(xué)知識點(diǎn)總結(jié)14
1、相交線
對頂角相等。
過一點(diǎn)有且只有一條直線與已知直線垂直。
連接直線外一點(diǎn)與直線上各點(diǎn)的所有線段中,垂線段最短(簡單說成:垂線段最短)。
2、平行線
經(jīng)過直線外一點(diǎn),有且只有一條直線與這條直線平行。
如果兩條直線都與第三條直線平行,那么這兩條直線也互相平行。
直線平行的條件:
兩條直線被第三條直線所截,如果同位角相等,那么兩直線平行。
兩條直線被第三條直線所截,如果內(nèi)錯(cuò)角相等,那么兩直線平行。
兩條直線被第三條直線所截,如果同旁內(nèi)角互補(bǔ),那么兩直線平行。
3、平行線的.性質(zhì)
兩條平行線被第三條直線所截,同位角相等。
兩條平行線被第三條直線所截,內(nèi)錯(cuò)角相等。
兩條平行線被第三條直線所截,同旁內(nèi)角互補(bǔ)。
判斷一件事情的語句,叫做命題。
初中數(shù)學(xué)知識點(diǎn)總結(jié)15
[關(guān)鍵詞]課堂小結(jié);初中數(shù)學(xué);理解提升
德國作家、科學(xué)家利希頓堡說過:“當(dāng)你還不能對自己說今天學(xué)到了什么東西時(shí),你就不要去睡覺。 ”這句話從側(cè)面闡明了總結(jié)對于知識學(xué)習(xí)的重要性。課堂小結(jié)作為一項(xiàng)提煉收獲、分析問題、概括經(jīng)驗(yàn)的學(xué)習(xí)手段,對于初中數(shù)學(xué)課堂教學(xué)具有很好的促進(jìn)作用。這是因?yàn)槌踔袛?shù)學(xué)與其他學(xué)科相比,有更強(qiáng)的思維性、邏輯性和綜合性,這使得初中數(shù)學(xué)的知識體系、概念內(nèi)容更龐雜,更不容易消化吸收,這就需要我們尋求一項(xiàng)有效的手段來將這些知識進(jìn)行聚合、鞏固、提升,而課堂小結(jié)恰恰解決了這一問題。課堂教學(xué)形式多變、內(nèi)涵豐富,并非時(shí)時(shí)刻刻都應(yīng)該總結(jié)、都需要總結(jié),課堂小結(jié)只有在合適的時(shí)間運(yùn)用,才能發(fā)揮效果。筆者正是基于此,對初中數(shù)學(xué)如何有效運(yùn)用課堂小結(jié)進(jìn)行策略探析,通過對初中數(shù)學(xué)教學(xué)規(guī)律、學(xué)生數(shù)學(xué)知識吸收特點(diǎn)進(jìn)行整理、分析后,提出如下四點(diǎn)建議。
在知識講解之后小結(jié),掌握新
知強(qiáng)調(diào)重點(diǎn)
我們在進(jìn)行新知識的課堂教學(xué)時(shí),一堂課里一般會有多個(gè)小知識點(diǎn),我們在帶入新知識的同時(shí),還會引入一些老問題,幫助學(xué)生進(jìn)行對比、區(qū)分,增進(jìn)理解。但這同時(shí)也加大了課堂容量,容易讓學(xué)生在知識吸收中出現(xiàn)遺漏、錯(cuò)讀。所以,在新知識教學(xué)完成之后進(jìn)行課堂小結(jié),幫助學(xué)生將所學(xué)的新知識進(jìn)行統(tǒng)一規(guī)整,能夠很好地幫助學(xué)生理清思路,明確知識重點(diǎn),快速掌握新知。在對新知識進(jìn)行課堂小結(jié)時(shí),我們講究全而美,即小結(jié)涵蓋的內(nèi)容要全,要將本節(jié)課的所有知識都涵蓋進(jìn)來;美是指總結(jié)的語言要生動,要將新知識的特點(diǎn)用趣味的語言表現(xiàn)出來,讓學(xué)生更容易理解,更方便記憶。
例如,教學(xué)蘇教版初中數(shù)學(xué)“合并同類項(xiàng)”這一部分內(nèi)容時(shí),筆者進(jìn)行了這樣的小結(jié):“同學(xué)們,我們今天學(xué)習(xí)了合并同類項(xiàng),合并同類項(xiàng)我們要掌握兩個(gè)關(guān)鍵,一是什么是同類項(xiàng),另一個(gè)是怎么合并,你們說對不對?”筆者先拋出一個(gè)問題,學(xué)生回答:“對。 ”“那你們誰能告訴老師答案呢?”筆者繼續(xù)問,學(xué)生思考后回答:“老師,是同類項(xiàng)的話,首先所含字母要相同!薄巴粋(gè)字母的指數(shù)也必須一樣!绷硪粋(gè)學(xué)生回答。 “合并同類項(xiàng)就是把同類項(xiàng)的系數(shù)加起來。 ”還有學(xué)生補(bǔ)充。筆者笑著說:“同學(xué)們說得很好呢,其實(shí)合并同類項(xiàng)只要掌握兩同、兩無關(guān),常數(shù)也是同類項(xiàng)就可以了。兩同就是字母同、指數(shù)同,兩無關(guān)是字母順序無關(guān)、系數(shù)大小無關(guān)。 ”像這樣,通過教師引導(dǎo)學(xué)生思考,再進(jìn)行總結(jié),能夠有效幫助學(xué)生了解新知識的重點(diǎn),促進(jìn)學(xué)生理解掌握。
在答疑解惑之后小結(jié),突出要
點(diǎn)指明問題
學(xué)必有疑,學(xué)生在數(shù)學(xué)學(xué)習(xí)過程中,一定會碰到一些麻煩,提出一些問題。對于學(xué)生提出的疑問,教師都會認(rèn)真講解、仔細(xì)分析,直到學(xué)生明白為止,但有時(shí)候會出現(xiàn)同一知識點(diǎn)學(xué)生聽了忘、反復(fù)問的現(xiàn)象,出現(xiàn)這種情況的原因是學(xué)生對于教師的講解沒理解透徹。而如何才能讓學(xué)生參透呢?教師在幫學(xué)生答疑解惑之后的課堂小結(jié),很多時(shí)候剛好能起到這樣的點(diǎn)撥作用。教師在答疑解惑之后的課堂小結(jié)要注意兩個(gè)問題:一是小結(jié)要指明問題,就學(xué)生所出現(xiàn)的問題進(jìn)行分析,讓學(xué)生根據(jù)自身情況認(rèn)領(lǐng)問題,以便對癥下藥;二是小結(jié)要注重方法的啟發(fā),針對學(xué)生的問題闡明解決辦法,引導(dǎo)學(xué)生領(lǐng)會方法,運(yùn)用原則,破獲解題密碼,得到新的收獲與啟發(fā)。
例如,教學(xué)蘇教版初中數(shù)學(xué)“一元一次方程”時(shí),有一位學(xué)生向筆者提出疑問:“老師,這道題目:+=2,我算了好幾遍,答案都是—1,跟老師給的答案不一樣,這是為什么呢?”筆者稍稍看了學(xué)生的解題步驟后發(fā)現(xiàn),原來這個(gè)學(xué)生犯了解一元一次方程非常常見的錯(cuò)誤,即他去分母的`時(shí)候,沒有分母的項(xiàng)忘記乘相同的系數(shù)了。于是筆者在向他講解完之后進(jìn)行小結(jié):“同學(xué)們,我們在給一元一次方程去分母的時(shí)候,要注意什么呢?方程兩邊要同時(shí)乘以所有分母的最小公倍數(shù),只有這么做,方程的大小才會保持不變。一旦你漏乘了誰,特別是沒有分母的項(xiàng),那就不公平了,等式大小就發(fā)生了改變,那么答案肯定就錯(cuò)了。 ”像這樣,根據(jù)學(xué)生的問題,直指關(guān)鍵,幫助學(xué)生答疑解惑,能促進(jìn)學(xué)生吃一塹長一智,規(guī)避錯(cuò)誤,更加進(jìn)步。
在遷移發(fā)散之后小結(jié),明確關(guān)
系梳理聯(lián)系
數(shù)學(xué)知識盤絲錯(cuò)節(jié),各個(gè)知識點(diǎn)之間的聯(lián)系十分多樣、緊密,因此要幫助學(xué)生真正深入掌握知識,明晰知識點(diǎn)間的靈活運(yùn)用,就必須適當(dāng)對這些知識進(jìn)行遷移發(fā)散。遷移發(fā)散是一種舉一反三的教學(xué)手段,通過一個(gè)數(shù)學(xué)概念遷移出舊識新知,通過一種方法發(fā)散出多種不同形式。遷移發(fā)散是數(shù)學(xué)萬紫千紅總是春的集中體現(xiàn),是數(shù)學(xué)學(xué)習(xí)的較高階段,同時(shí)也是學(xué)生較難理解掌握的部分,因此,在遷移發(fā)散之后進(jìn)行課堂小結(jié)很有必要。教師要注意通過小結(jié)引導(dǎo)學(xué)生明確各個(gè)知識點(diǎn)之間的因果先后關(guān)系,梳理多個(gè)知識點(diǎn)之間聯(lián)系的條件和影響因素,讓學(xué)生通過小結(jié)可以在腦中形成更為準(zhǔn)確的印象。
例如,教學(xué)蘇教版初中數(shù)學(xué)“梯形中位線”這部分內(nèi)容時(shí),筆者遷移出三角形中位線的相關(guān)概念,引導(dǎo)學(xué)生進(jìn)行比對、思考、拓展。遷移發(fā)散之后,筆者做了如下總結(jié):“同學(xué)們,通過遷移我們可以得出,三角形中位線是梯形中位線的一種特殊形式,所有梯形通過割補(bǔ)平移都可以轉(zhuǎn)換成一個(gè)三角形。另外,通過式子的轉(zhuǎn)化我們知道,梯形的面積可以看做是中位線乘以梯形高的積,那么作為梯形中位線的特例,三角形的面積同樣也可以是中位線與第三邊上的高的乘積。 ”像這樣,在遷移之后進(jìn)行小結(jié),明確了知識之間的聯(lián)系,能幫助學(xué)生進(jìn)行梳理歸納,有助于學(xué)生理解掌握。
在整體復(fù)習(xí)之后小結(jié),高屋建
瓴全面吸收
復(fù)習(xí)是數(shù)學(xué)學(xué)習(xí)中非常重要的一個(gè)環(huán)節(jié),是對學(xué)生一段時(shí)間以來學(xué)習(xí)的回顧。整體復(fù)習(xí)一般具有復(fù)習(xí)量大、知識跨度大、知識整合度高等特點(diǎn),一堂整體復(fù)習(xí)課下來,學(xué)生需要重新理順和溫習(xí)的知識點(diǎn)非常多,初中生注意力容易分散,對于過于繁多的知識概念會出現(xiàn)“消化不良”的現(xiàn)象。整體復(fù)習(xí)之后的課堂小結(jié),是對整個(gè)復(fù)習(xí)過程的凝練、概括,起到高屋建瓴的作用,能幫助學(xué)生更為系統(tǒng)、全面地知悉內(nèi)容、吸收知識。
【初中數(shù)學(xué)知識點(diǎn)總結(jié)】相關(guān)文章:
初中數(shù)學(xué)必備知識點(diǎn)總結(jié)03-01
初中數(shù)學(xué)函數(shù)知識點(diǎn)總結(jié)11-24
初中數(shù)學(xué)幾何知識點(diǎn)總結(jié)11-05
初中數(shù)學(xué)圓的知識點(diǎn)總結(jié)12-05
初中數(shù)學(xué)知識點(diǎn)總結(jié)07-14
初中數(shù)學(xué)知識點(diǎn)總結(jié)07-15
數(shù)學(xué)初中知識點(diǎn)總結(jié)06-10
初中數(shù)學(xué)函數(shù)知識點(diǎn)總結(jié)06-14