(精品)初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)
總結(jié)就是對(duì)一個(gè)時(shí)期的學(xué)習(xí)、工作或其完成情況進(jìn)行一次全面系統(tǒng)的回顧和分析的書面材料,它可以使我們更有效率,不妨坐下來好好寫寫總結(jié)吧?偨Y(jié)怎么寫才不會(huì)流于形式呢?下面是小編精心整理的初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié),歡迎大家借鑒與參考,希望對(duì)大家有所幫助。
初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)1
1.有理數(shù):
。1)凡能寫成形式的數(shù),都是有理數(shù)。正整數(shù)、0、負(fù)整數(shù)統(tǒng)稱整數(shù);正分?jǐn)?shù)、負(fù)分?jǐn)?shù)統(tǒng)稱分?jǐn)?shù);整數(shù)和分?jǐn)?shù)統(tǒng)稱有理數(shù)。注意:0即不是正數(shù),也不是負(fù)數(shù);—a不一定是負(fù)數(shù),+a也不一定是正數(shù);p不是有理數(shù);
(2)有理數(shù)的分類:① ②
2.數(shù)軸:數(shù)軸是規(guī)定了原點(diǎn)、正方向、單位長(zhǎng)度的一條直線。
3.相反數(shù):
。1)只有符號(hào)不同的兩個(gè)數(shù),我們說其中一個(gè)是另一個(gè)的相反數(shù);0的相反數(shù)還是0;
。2)相反數(shù)的和為0?a+b=0?a、b互為相反數(shù)。
4.絕對(duì)值:
(1)正數(shù)的絕對(duì)值是其本身,0的絕對(duì)值是0,負(fù)數(shù)的絕對(duì)值是它的相反數(shù);注意:絕對(duì)值的意義是數(shù)軸上表示某數(shù)的點(diǎn)離開原點(diǎn)的距離;
(2)絕對(duì)值可表示為:或;絕對(duì)值的問題經(jīng)常分類討論;
5.有理數(shù)比大。海1)正數(shù)的絕對(duì)值越大,這個(gè)數(shù)越大;(2)正數(shù)永遠(yuǎn)比0大,負(fù)數(shù)永遠(yuǎn)比0;(3)正數(shù)大于一切負(fù)數(shù);(4)兩個(gè)負(fù)數(shù)比大小,絕對(duì)值大的反而小;(5)數(shù)軸上的兩個(gè)數(shù),右邊的數(shù)總比左邊的數(shù)大;(6)大數(shù)—小數(shù)> 0,小數(shù)—大數(shù)< 0。
6.互為倒數(shù):乘積為1的兩個(gè)數(shù)互為倒數(shù);注意:0沒有倒數(shù);若a≠0,那么的倒數(shù)是;若ab=1?a、b互為倒數(shù);若ab=—1?a、b互為負(fù)倒數(shù)。
7.有理數(shù)加法法則:
。1)同號(hào)兩數(shù)相加,取相同的符號(hào),并把絕對(duì)值相加;
(2)異號(hào)兩數(shù)相加,取絕對(duì)值較大的符號(hào),并用較大的絕對(duì)值減去較小的絕對(duì)值;
(3)一個(gè)數(shù)與0相加,仍得這個(gè)數(shù)。
8.有理數(shù)加法的運(yùn)算律:
。1)加法的交換律:a+b=b+a;(2)加法的結(jié)合律:(a+b)+c=a+(b+c)。
9.有理數(shù)減法法則:減去一個(gè)數(shù),等于加上這個(gè)數(shù)的相反數(shù);即a—b=a+(—b)。
10.有理數(shù)乘法法則:
。1)兩數(shù)相乘,同號(hào)為正,異號(hào)為負(fù),并把絕對(duì)值相乘;
(2)任何數(shù)同零相乘都得零;
(3)幾個(gè)數(shù)相乘,有一個(gè)因式為零,積為零;各個(gè)因式都不為零,積的符號(hào)由負(fù)因式的個(gè)數(shù)決定。
11.有理數(shù)乘法的運(yùn)算律:
(1)乘法的交換律:ab=ba;(2)乘法的結(jié)合律:(ab)c=a(bc);
(3)乘法的分配律:a(b+c)=ab+ac 。
12.有理數(shù)除法法則:除以一個(gè)數(shù)等于乘以這個(gè)數(shù)的倒數(shù);注意:零不能做除數(shù),。
13.有理數(shù)乘方的法則:
。1)正數(shù)的任何次冪都是正數(shù);
。2)負(fù)數(shù)的奇次冪是負(fù)數(shù);負(fù)數(shù)的偶次冪是正數(shù);注意:當(dāng)n為正奇數(shù)時(shí):(—a)n=—an或(a —b)n=—(b—a)n,當(dāng)n為正偶數(shù)時(shí):(—a)n =an或(a—b)n=(b—a)n 。
14.乘方的定義:
。1)求相同因式積的運(yùn)算,叫做乘方;
。2)乘方中,相同的因式叫做底數(shù),相同因式的個(gè)數(shù)叫做指數(shù),乘方的結(jié)果叫做冪;
15.科學(xué)記數(shù)法:把一個(gè)大于10的數(shù)記成a×10n的形式,其中a是整數(shù)數(shù)位只有一位的.數(shù),這種記數(shù)法叫科學(xué)記數(shù)法。
16.近似數(shù)的精確位:一個(gè)近似數(shù),四舍五入到那一位,就說這個(gè)近似數(shù)的精確到那一位。
17.有效數(shù)字:從左邊第一個(gè)不為零的數(shù)字起,到精確的位數(shù)止,所有數(shù)字,都叫這個(gè)近似數(shù)的有效數(shù)字。
18.混合運(yùn)算法則:先乘方,后乘除,最后加減。
本章內(nèi)容要求學(xué)生正確認(rèn)識(shí)有理數(shù)的概念,在實(shí)際生活和學(xué)習(xí)數(shù)軸的基礎(chǔ)上,理解正負(fù)數(shù)、相反數(shù)、絕對(duì)值的意義所在。重點(diǎn)利用有理數(shù)的運(yùn)算法則解決實(shí)際問題。
體驗(yàn)數(shù)學(xué)發(fā)展的一個(gè)重要原因是生活實(shí)際的需要。激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣,教師培養(yǎng)學(xué)生的觀察、歸納與概括的能力,使學(xué)生建立正確的數(shù)感和解決實(shí)際問題的能力。教師在講授本章內(nèi)容時(shí),應(yīng)該多創(chuàng)設(shè)情境,充分體現(xiàn)學(xué)生學(xué)習(xí)的主體性地位。
初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)2
一、基本知識(shí)
㈠、數(shù)與代數(shù)
A、數(shù)與式:
1、有理數(shù)
有理數(shù):
①整數(shù)→正整數(shù)/0/負(fù)整數(shù)
、诜?jǐn)?shù)→正分?jǐn)?shù)/負(fù)分?jǐn)?shù)
數(shù)軸:
①畫一條水平直線,在直線上取一點(diǎn)表示0(原點(diǎn)),選取某一長(zhǎng)度作為單位長(zhǎng)度,規(guī)定直線上向右的方向?yàn)檎较,就得到?shù)軸。
、谌魏我粋(gè)有理數(shù)都可以用數(shù)軸上的一個(gè)點(diǎn)來表示。
、廴绻麅蓚(gè)數(shù)只有符號(hào)不同,那么我們稱其中一個(gè)數(shù)為另外一個(gè)數(shù)的相反數(shù),也稱這兩個(gè)數(shù)互為相反數(shù)。在數(shù)軸上,表示互為相反數(shù)的兩個(gè)點(diǎn),位于原點(diǎn)的兩側(cè),并且與原點(diǎn)距離相等。
④數(shù)軸上兩個(gè)點(diǎn)表示的數(shù),右邊的總比左邊的大。正數(shù)大于0,負(fù)數(shù)小于0,正數(shù)大于負(fù)數(shù)。
絕對(duì)值:
、僭跀(shù)軸上,一個(gè)數(shù)所對(duì)應(yīng)的點(diǎn)與原點(diǎn)的距離叫做該數(shù)的絕對(duì)值。
、谡龜(shù)的絕對(duì)值是他的本身、負(fù)數(shù)的絕對(duì)值是他的相反數(shù)、0的絕對(duì)值是0、兩個(gè)負(fù)數(shù)比較大小,絕對(duì)值大的反而小。
有理數(shù)的運(yùn)算:
加法:
①同號(hào)相加,取相同的符號(hào),把絕對(duì)值相加。
②異號(hào)相加,絕對(duì)值相等時(shí)和為0;絕對(duì)值不等時(shí),取絕對(duì)值較大的數(shù)的符號(hào),并用較大的絕對(duì)值減去較小的絕對(duì)值。
③一個(gè)數(shù)與0相加不變。
減法:減去一個(gè)數(shù),等于加上這個(gè)數(shù)的相反數(shù)。
乘法:
①兩數(shù)相乘,同號(hào)得正,異號(hào)得負(fù),絕對(duì)值相乘。
、谌魏螖(shù)與0相乘得0、
③乘積為1的兩個(gè)有理數(shù)互為倒數(shù)。
除法:
、俪砸粋(gè)數(shù)等于乘以一個(gè)數(shù)的倒數(shù)。
、0不能作除數(shù)。
乘方:求N個(gè)相同因數(shù)A的積的運(yùn)算叫做乘方,乘方的結(jié)果叫冪,A叫底數(shù),N叫次數(shù)。
混合順序:先算乘法,再算乘除,最后算加減,有括號(hào)要先算括號(hào)里的。
2、實(shí)數(shù)
無理數(shù):無限不循環(huán)小數(shù)叫無理數(shù)
平方根:
①如果一個(gè)正數(shù)X的平方等于A,那么這個(gè)正數(shù)X就叫做A的算術(shù)平方根。
、谌绻粋(gè)數(shù)X的平方等于A,那么這個(gè)數(shù)X就叫做A的平方根。
③一個(gè)正數(shù)有2個(gè)平方根/0的平方根為0/負(fù)數(shù)沒有平方根。
④求一個(gè)數(shù)A的平方根運(yùn)算,叫做開平方,其中A叫做被開方數(shù)。
立方根:
、偃绻粋(gè)數(shù)X的立方等于A,那么這個(gè)數(shù)X就叫做A的立方根。
、谡龜(shù)的立方根是正數(shù)、0的立方根是0、負(fù)數(shù)的立方根是負(fù)數(shù)。
、矍笠粋(gè)數(shù)A的立方根的運(yùn)算叫開立方,其中A叫做被開方數(shù)。
實(shí)數(shù):
①實(shí)數(shù)分有理數(shù)和無理數(shù)。
②在實(shí)數(shù)范圍內(nèi),相反數(shù),倒數(shù),絕對(duì)值的意義和有理數(shù)范圍內(nèi)的相反數(shù),倒數(shù),絕對(duì)值的意義完全一樣。
、勖恳粋(gè)實(shí)數(shù)都可以在數(shù)軸上的一個(gè)點(diǎn)來表示。
3、代數(shù)式
代數(shù)式:?jiǎn)为?dú)一個(gè)數(shù)或者一個(gè)字母也是代數(shù)式。
合并同類項(xiàng):
①所含字母相同,并且相同字母的指數(shù)也相同的項(xiàng),叫做同類項(xiàng)。
、诎淹愴(xiàng)合并成一項(xiàng)就叫做合并同類項(xiàng)。
、墼诤喜⑼愴(xiàng)時(shí),我們把同類項(xiàng)的系數(shù)相加,字母和字母的指數(shù)不變。
4、整式與分式
整式:
、贁(shù)與字母的乘積的代數(shù)式叫單項(xiàng)式,幾個(gè)單項(xiàng)式的和叫多項(xiàng)式,單項(xiàng)式和多項(xiàng)式統(tǒng)稱整式。
、谝粋(gè)單項(xiàng)式中,所有字母的指數(shù)和叫做這個(gè)單項(xiàng)式的次數(shù)。
、垡粋(gè)多項(xiàng)式中,次數(shù)最高的項(xiàng)的次數(shù)叫做這個(gè)多項(xiàng)式的次數(shù)。
整式運(yùn)算:加減運(yùn)算時(shí),如果遇到括號(hào)先去括號(hào),再合并同類項(xiàng)。
冪的運(yùn)算:AM+AN=A(M+N)
(AM)N=AMN
。ˋ/B)N=AN/BN除法一樣。
整式的乘法:
、賳雾(xiàng)式與單項(xiàng)式相乘,把他們的系數(shù),相同字母的冪分別相乘,其余字母連同他的指數(shù)不變,作為積的因式。
②單項(xiàng)式與多項(xiàng)式相乘,就是根據(jù)分配律用單項(xiàng)式去乘多項(xiàng)式的每一項(xiàng),再把所得的積相加。
、鄱囗(xiàng)式與多項(xiàng)式相乘,先用一個(gè)多項(xiàng)式的每一項(xiàng)乘另外一個(gè)多項(xiàng)式的每一項(xiàng),再把所得的積相加。
公式兩條:平方差公式/完全平方公式
整式的除法:
、賳雾(xiàng)式相除,把系數(shù),同底數(shù)冪分別相除后,作為商的因式;對(duì)于只在被除式里含有的字母,則連同他的指數(shù)一起作為商的一個(gè)因式。
、诙囗(xiàng)式除以單項(xiàng)式,先把這個(gè)多項(xiàng)式的每一項(xiàng)分別除以單項(xiàng)式,再把所得的商相加。
分解因式:把一個(gè)多項(xiàng)式化成幾個(gè)整式的積的形式,這種變化叫做把這個(gè)多項(xiàng)式分解因式。
方法:提公因式法、運(yùn)用公式法、分組分解法、十字相乘法。
分式:
、僬紸除以整式B,如果除式B中含有分母,那么這個(gè)就是分式,對(duì)于任何一個(gè)分式,分母不為0、
、诜质降姆肿优c分母同乘以或除以同一個(gè)不等于0的整式,分式的值不變。分式的運(yùn)算:
乘法:把分子相乘的積作為積的分子,把分母相乘的積作為積的分母。
除法:除以一個(gè)分式等于乘以這個(gè)分式的倒數(shù)。
加減法:
、偻帜阜质较嗉訙p,分母不變,把分子相加減。
、诋惙帜傅姆质较韧ǚ,化為同分母的分式,再加減。
分式方程:
①分母中含有未知數(shù)的方程叫分式方程。
、谑狗匠痰姆帜笧0的解稱為原方程的增根。
B、方程與不等式
1、方程與方程組
一元一次方程:
、僭谝粋(gè)方程中,只含有一個(gè)未知數(shù),并且未知數(shù)的指數(shù)是1,這樣的方程叫一元一次方程。
、诘仁絻蛇呁瑫r(shí)加上或減去或乘以或除以(不為0)一個(gè)代數(shù)式,所得結(jié)果仍是等式。
解一元一次方程的步驟:去分母,移項(xiàng),合并同類項(xiàng),未知數(shù)系數(shù)化為1、
二元一次方程:含有兩個(gè)未知數(shù),并且所含未知數(shù)的項(xiàng)的次數(shù)都是1的`方程叫做二元一次方程。二元一次方程組:兩個(gè)二元一次方程組成的方程組叫做二元一次方程組。適合一個(gè)二元一次方程的一組未知數(shù)的值,叫做這個(gè)二元一次方程的一個(gè)解。二元一次方程組中各個(gè)方程的公共解,叫做這個(gè)二元一次方程的解。解二元一次方程組的方法:代入消元法/加減消元法。
一元二次方程:只有一個(gè)未知數(shù),并且未知數(shù)的項(xiàng)的最高系數(shù)為2的方程
1)一元二次方程的二次函數(shù)的關(guān)系
大家已經(jīng)學(xué)過二次函數(shù)(即拋物線)了,對(duì)他也有很深的了解,好像解法,在圖象中表示等等,其實(shí)一元二次方程也可以用二次函數(shù)來表示,其實(shí)一元二次方程也是二次函數(shù)的一個(gè)特殊情況,就是當(dāng)Y的0的時(shí)候就構(gòu)成了一元二次方程了。那如果在平面直角坐標(biāo)系中表示出來,一元二次方程就是二次函數(shù)中,圖象與X軸的交點(diǎn)。也就是該方程的解了
2)一元二次方程的解法
大家知道,二次函數(shù)有頂點(diǎn)式(—b/2a,4ac—b2/4a),這大家要記住,很重要,因?yàn)樵谏厦嬉呀?jīng)說過了,一元二次方程也是二次函數(shù)的一部分,所以他也有自己的一個(gè)解法,利用他可以求出所有的一元一次方程的解
。1)配方法
利用配方,使方程變?yōu)橥耆椒焦剑谟弥苯娱_平方法去求出解
。2)分解因式法
提取公因式,套用公式法,和十字相乘法。在解一元二次方程的時(shí)候也一樣,利用這點(diǎn),把方程化為幾個(gè)乘積的形式去解
。3)公式法
這方法也可以是在解一元二次方程的萬能方法了,方程的根X1={—b+√[b2—4ac)]}/2a,X2={—b—√[b2—4ac)]}/2a
3)解一元二次方程的步驟:
(1)配方法的步驟:
先把常數(shù)項(xiàng)移到方程的右邊,再把二次項(xiàng)的系數(shù)化為1,再同時(shí)加上1次項(xiàng)的系數(shù)的一半的平方,最后配成完全平方公式
(2)分解因式法的步驟:
把方程右邊化為0,然后看看是否能用提取公因式,公式法(這里指的是分解因式中的公式法)或十字相乘,如果可以,就可以化為乘積的形式
。3)公式法
就把一元二次方程的各系數(shù)分別代入,這里二次項(xiàng)的系數(shù)為a,一次項(xiàng)的系數(shù)為b,常數(shù)項(xiàng)的系數(shù)為c
4)韋達(dá)定理
利用韋達(dá)定理去了解,韋達(dá)定理就是在一元二次方程中,二根之和=—b/a,二根之積=c/a,也可以表示為x1+x2=—b/a,x1x2=c/a。利用韋達(dá)定理,可以求出一元二次方程中的各系數(shù),在題目中很常用
5)一元一次方程根的情況
利用根的判別式去了解,根的判別式可在書面上可以寫為“△”,讀作“diaota”,而△=b2—4ac,這里可以分為3種情況:
I當(dāng)△>0時(shí),一元二次方程有2個(gè)不相等的實(shí)數(shù)根;
II當(dāng)△=0時(shí),一元二次方程有2個(gè)相同的實(shí)數(shù)根;
III當(dāng)△B,A+C>B+C在不等式中,如果減去同一個(gè)數(shù)(或加上一個(gè)負(fù)數(shù)),不等式符號(hào)不改向;例如:A>B,A—C>B—C在不等式中,如果乘以同一個(gè)正數(shù),不等號(hào)不改向;例如:A>B,A*C>B*C(C>0)在不等式中,如果乘以同一個(gè)負(fù)數(shù),不等號(hào)改向;例如:A>B,A*C系內(nèi)描出它的對(duì)應(yīng)點(diǎn),所有這些點(diǎn)組成的圖形叫做該函數(shù)的圖象。
②正比例函數(shù)Y=KX的圖象是經(jīng)過原點(diǎn)的一條直線。
③在一次函數(shù)中,當(dāng)K〈0,B〈O,則經(jīng)234象限;當(dāng)K〈0,B〉0時(shí),則經(jīng)124象限;當(dāng)K〉0,B〈0時(shí),則經(jīng)134象限;當(dāng)K〉0,B〉0時(shí),則經(jīng)123象限。
、墚(dāng)K〉0時(shí),Y的值隨X值的增大而增大,當(dāng)X〈0時(shí),Y的值隨X值的增大而減少。
㈡空間與圖形A、圖形的認(rèn)識(shí)1、點(diǎn),線,面
點(diǎn),線,面:
①圖形是由點(diǎn),線,面構(gòu)成的。
、诿媾c面相交得線,線與線相交得點(diǎn)。
、埸c(diǎn)動(dòng)成線,線動(dòng)成面,面動(dòng)成體。
展開與折疊:
、僭诶庵,任何相鄰的兩個(gè)面的交線叫做棱,側(cè)棱是相鄰兩個(gè)側(cè)面的交線,棱柱的所有側(cè)棱長(zhǎng)相等,棱柱的上下底面的形狀相同,側(cè)面的形狀都是長(zhǎng)方體。
、贜棱柱就是底面圖形有N條邊的棱柱。
截一個(gè)幾何體:用一個(gè)平面去截一個(gè)圖形,截出的面叫做截面。視圖:主視圖,左視圖,俯視圖。
多邊形:他們是由一些不在同一條直線上的線段依次首尾相連組成的封閉圖形。
弧、扇形:
、儆梢粭l弧和經(jīng)過這條弧的端點(diǎn)的兩條半徑所組成的圖形叫扇形。
、趫A可以分割成若干個(gè)扇形。
2、角
線:
、倬段有兩個(gè)端點(diǎn)。
②將線段向一個(gè)方向無限延長(zhǎng)就形成了射線。射線只有一個(gè)端點(diǎn)。
、蹖⒕段的兩端無限延長(zhǎng)就形成了直線。直線沒有端點(diǎn)。
、芙(jīng)過兩點(diǎn)有且只有一條直線。
比較長(zhǎng)短:
、賰牲c(diǎn)之間的所有連線中,線段最短。
②兩點(diǎn)之間線段的長(zhǎng)度,叫做這兩點(diǎn)之間的距離。
角的度量與表示:
、俳怯蓛蓷l具有公共端點(diǎn)的射線組成,兩條射線的公共端點(diǎn)是這個(gè)角的頂點(diǎn)。
、谝欢鹊1/60是一分,一分的1/60是一秒。
角的比較:
、俳且部梢钥闯墒怯梢粭l射線繞著他的端點(diǎn)旋轉(zhuǎn)而成的。
、谝粭l射線繞著他的端點(diǎn)旋轉(zhuǎn),當(dāng)終邊和始邊成一條直線時(shí),所成的角叫做平角。始邊繼續(xù)旋轉(zhuǎn),當(dāng)他又和始邊重合時(shí),所成的角叫做周角。
、蹚囊粋(gè)角的頂點(diǎn)引出的一條射線,把這個(gè)角分成兩個(gè)相等的角,這條射線叫做這個(gè)角的平分線。
平行:
、偻黄矫鎯(nèi),不相交的兩條直線叫做平行線。
②經(jīng)過直線外一點(diǎn),有且只有一條直線與這條直線平行。
、廴绻麅蓷l直線都與第3條直線平行,那么這兩條直線互相平行。
垂直:
、偃绻麅蓷l直線相交成直角,那么這兩條直線互相垂直。
、诨ハ啻怪钡膬蓷l直線的交點(diǎn)叫做垂足。
、燮矫鎯(nèi),過一點(diǎn)有且只有一條直線與已知直線垂直。垂直平分線:垂直和平分一條線段的直線叫垂直平分線。
垂直平分線垂直平分的一定是線段,不能是射線或直線,這根據(jù)射線和直線可以無限延長(zhǎng)有關(guān),再看后面的,垂直平分線是一條直線,所以在畫垂直平分線的時(shí)候,確定了2點(diǎn)后(關(guān)于畫法,后面會(huì)講)一定要把線段穿出2點(diǎn)。
垂直平分線定理:
性質(zhì)定理:在垂直平分線上的點(diǎn)到該線段兩端點(diǎn)的距離相等;判定定理:到線段2端點(diǎn)距離相等的點(diǎn)在這線段的垂直平分線上角平分線:把一個(gè)角平分的射線叫該角的角平分線。
定義中有幾個(gè)要點(diǎn)要注意一下的,就是角的角平分線是一條射線,不是線段也不是直線,很多時(shí),在題目中會(huì)出
現(xiàn)直線,這是角平分線的對(duì)稱軸才會(huì)用直線的,這也涉及到軌跡的問題,一個(gè)角個(gè)角平分線就是到角兩邊距離相等的點(diǎn)
性質(zhì)定理:角平分線上的點(diǎn)到該角兩邊的距離相等
判定定理:到角的兩邊距離相等的點(diǎn)在該角的角平分線上正方形:一組鄰邊相等的矩形是正方形
性質(zhì):正方形具有平行四邊形、菱形、矩形的一切性質(zhì)
判定:1、對(duì)角線相等的菱形2、鄰邊相等的矩形
二、基本定理
1、過兩點(diǎn)有且只有一條直線
2、兩點(diǎn)之間線段最短
3、同角或等角的補(bǔ)角相等
4、同角或等角的余角相等
5、過一點(diǎn)有且只有一條直線和已知直線垂直
6、直線外一點(diǎn)與直線上各點(diǎn)連接的所有線段中,垂線段最短
7、平行公理經(jīng)過直線外一點(diǎn),有且只有一條直線與這條直線平行
8、如果兩條直線都和第三條直線平行,這兩條直線也互相平行
9、同位角相等,兩直線平行
10、內(nèi)錯(cuò)角相等,兩直線平行
11、同旁內(nèi)角互補(bǔ),兩直線平行
12、兩直線平行,同位角相等
13、兩直線平行,內(nèi)錯(cuò)角相等
14、兩直線平行,同旁內(nèi)角互補(bǔ)
15、定理三角形兩邊的和大于第三邊
16、推論三角形兩邊的差小于第三邊
17、三角形內(nèi)角和定理三角形三個(gè)內(nèi)角的和等于180°
18、推論1直角三角形的兩個(gè)銳角互余
19、推論2三角形的一個(gè)外角等于和它不相鄰的兩個(gè)內(nèi)角的和
20、推論3三角形的一個(gè)外角大于任何一個(gè)和它不相鄰的內(nèi)角
21、全等三角形的對(duì)應(yīng)邊、對(duì)應(yīng)角相等
22、邊角邊公理(SAS)有兩邊和它們的夾角對(duì)應(yīng)相等的兩個(gè)三角形全等
23、角邊角公理(ASA)有兩角和它們的夾邊對(duì)應(yīng)相等的兩個(gè)三角形全等
24、推論(AAS)有兩角和其中一角的對(duì)邊對(duì)應(yīng)相等的兩個(gè)三角形全等
25、邊邊邊公理(SSS)有三邊對(duì)應(yīng)相等的兩個(gè)三角形全等
26、斜邊、直角邊公理(HL)有斜邊和一條直角邊對(duì)應(yīng)相等的兩個(gè)直角三角形全等
27、定理1在角的平分線上的點(diǎn)到這個(gè)角的兩邊的距離相等
28、定理2到一個(gè)角的兩邊的距離相同的點(diǎn),在這個(gè)角的平分線上
29、角的平分線是到角的兩邊距離相等的所有點(diǎn)的集合
30、等腰三角形的性質(zhì)定理等腰三角形的兩個(gè)底角相等(即等邊對(duì)等角)
31、推論1等腰三角形頂角的平分線平分底邊并且垂直于底邊
32、等腰三角形的頂角平分線、底邊上的中線和底邊上的高互相重合
33、推論3等邊三角形的各角都相等,并且每一個(gè)角都等于60°
34、等腰三角形的判定定理如果一個(gè)三角形有兩個(gè)角相等,那么這兩個(gè)角所對(duì)的邊也相等(等角對(duì)等邊)
35、推論1三個(gè)角都相等的三角形是等邊三角形
36、推論2有一個(gè)角等于60°的等腰三角形是等邊三角形
37、在直角三角形中,如果一個(gè)銳角等于30°那么它所對(duì)的直角邊等于斜邊的一半
38、直角三角形斜邊上的中線等于斜邊上的一半
39、定理線段垂直平分線上的點(diǎn)和這條線段兩個(gè)端點(diǎn)的距離相等
40、逆定理和一條線段兩個(gè)端點(diǎn)距離相等的點(diǎn),在這條線段的垂直平分線上
41、線段的垂直平分線可看作和線段兩端點(diǎn)距離相等的所有點(diǎn)的集合
42、定理1關(guān)于某條直線對(duì)稱的兩個(gè)圖形是全等形
43、定理2如果兩個(gè)圖形關(guān)于某直線對(duì)稱,那么對(duì)稱軸是對(duì)應(yīng)點(diǎn)連線的垂直平分線
44、定理3兩個(gè)圖形關(guān)于某直線對(duì)稱,如果它們的對(duì)應(yīng)線段或延長(zhǎng)線相交,那么交點(diǎn)在對(duì)稱軸上
45、逆定理如果兩個(gè)圖形的對(duì)應(yīng)點(diǎn)連線被同一條直線垂直平分,那么這兩個(gè)圖形關(guān)于這條直線對(duì)稱
46、勾股定理直角三角形兩直角邊a、b的平方和、等于斜邊c的平方,即a2+b2=c2
47、勾股定理的逆定理如果三角形的三邊長(zhǎng)a、b、c有關(guān)系a2+b2=c2,那么這個(gè)三角形是直角三角形
48、定理四邊形的內(nèi)角和等于360°
49、四邊形的外角和等于360°
50、多邊形內(nèi)角和定理n邊形的內(nèi)角的和等于(n—2)×180°
51、推論任意多邊的外角和等于360°
52、平行四邊形性質(zhì)定理1平行四邊形的對(duì)角相等
53、平行四邊形性質(zhì)定理2平行四邊形的對(duì)邊相等
54、推論夾在兩條平行線間的平行線段相等
55、平行四邊形性質(zhì)定理3平行四邊形的對(duì)角線互相平分
56、平行四邊形判定定理1兩組對(duì)角分別相等的四邊形是平行四邊形
57、平行四邊形判定定理2兩組對(duì)邊分別相等的四邊形是平行四邊形
58、平行四邊形判定定理3對(duì)角線互相平分的四邊形是平行四邊形
59、平行四邊形判定定理4一組對(duì)邊平行相等的四邊形是平行四邊形
60、矩形性質(zhì)定理1矩形的四個(gè)角都是直角
61、矩形性質(zhì)定理2矩形的對(duì)角線相等
62、矩形判定定理1有三個(gè)角是直角的四邊形是矩形
63、矩形判定定理2對(duì)角線相等的平行四邊形是矩形
64、菱形性質(zhì)定理1菱形的四條邊都相等
65、菱形性質(zhì)定理2菱形的對(duì)角線互相垂直,并且每一條對(duì)角線平分一組對(duì)角
66、菱形面積=對(duì)角線乘積的一半,即S=(a×b)÷2
67、菱形判定定理1四邊都相等的四邊形是菱形
68、菱形判定定理2對(duì)角線互相垂直的平行四邊形是菱形
69、正方形性質(zhì)定理1正方形的四個(gè)角都是直角,四條邊都相等
70、正方形性質(zhì)定理2正方形的兩條對(duì)角線相等,并且互相垂直平分,每條對(duì)角線平分一組對(duì)角
71、定理1關(guān)于中心對(duì)稱的兩個(gè)圖形是全等的
72、定理2關(guān)于中心對(duì)稱的兩個(gè)圖形,對(duì)稱點(diǎn)連線都經(jīng)過對(duì)稱中心,并且被對(duì)稱中心平分
73、逆定理如果兩個(gè)圖形的對(duì)應(yīng)點(diǎn)連線都經(jīng)過某一點(diǎn),并且被這一點(diǎn)平分,那么這兩個(gè)圖形關(guān)于這一點(diǎn)對(duì)稱
74、等腰梯形性質(zhì)定理等腰梯形在同一底上的兩個(gè)角相等
75、等腰梯形的兩條對(duì)角線相等
76、等腰梯形判定定理在同一底上的兩個(gè)角相等的梯形是等腰梯形
77、對(duì)角線相等的梯形是等腰梯形
78、平行線等分線段定理如果一組平行線在一條直線上截得的線段相等,那么在其他直線上截得的線段也相等
79、推論1經(jīng)過梯形一腰的中點(diǎn)與底平行的直線,必平分另一腰
80、推論2經(jīng)過三角形一邊的中點(diǎn)與另一邊平行的直線,必平分第三邊
81、三角形中位線定理三角形的中位線平行于第三邊,并且等于它的一半
82、梯形中位線定理梯形的中位線平行于兩底,并且等于兩底和的一半L=(a+b)÷2S=L×h
83、(1)比例的基本性質(zhì):如果a:b=c:d,那么ad=bc如果ad=bc,那么a:b=c:d
84、(2)合比性質(zhì):如果a/b=c/d,那么(a±b)/b=(c±d)/d
85、(3)等比性質(zhì):如果a/b=c/d==m/n(b+d++n≠0),那么(a+c++m)/(b+d++n)=a/b
86、平行線分線段成比例定理三條平行線截兩條直線,所得的對(duì)應(yīng)線段成比例
87、推論平行于三角形一邊的直線截其他兩邊(或兩邊的延長(zhǎng)線),所得的對(duì)應(yīng)線段成比例
88、定理如果一條直線截三角形的兩邊(或兩邊的延長(zhǎng)線)所得的對(duì)應(yīng)線段成比例,那么這條直線平行于三角形的第三邊
89、平行于三角形的一邊,并且和其他兩邊相交的直線,所截得的三角形的三邊與原三角形三邊對(duì)應(yīng)成比例
90、定理平行于三角形一邊的直線和其他兩邊(或兩邊的延長(zhǎng)線)相交,所構(gòu)成的三角形與原三角形相似
91、相似三角形判定定理1兩角對(duì)應(yīng)相等,兩三角形相似(ASA)
92、直角三角形被斜邊上的高分成的兩個(gè)直角三角形和原三角形相似
93、判定定理2兩邊對(duì)應(yīng)成比例且夾角相等,兩三角形相似(SAS)
94、判定定理3三邊對(duì)應(yīng)成比例,兩三角形相似(SSS)
95、定理如果一個(gè)直角三角形的斜邊和一條直角邊與另一個(gè)直角三角形的斜邊和一條直角邊對(duì)應(yīng)成比例,那么這兩個(gè)直角三角形相似
96、性質(zhì)定理1相似三角形對(duì)應(yīng)高的比,對(duì)應(yīng)中線的比與對(duì)應(yīng)角平分線的比都等于相似比
97、性質(zhì)定理2相似三角形周長(zhǎng)的比等于相似比
98、性質(zhì)定理3相似三角形面積的比等于相似比的平方
99、任意銳角的正弦值等于它的余角的余弦值,任意銳角的余弦值等于它的余角的正弦值
100、任意銳角的正切值等于它的余角的余切值,任意銳角的余切值等于它的余角的正切值
101、圓是定點(diǎn)的距離等于定長(zhǎng)的點(diǎn)的集合
102、圓的內(nèi)部可以看作是圓心的距離小于半徑的點(diǎn)的集合
103、圓的外部可以看作是圓心的距離大于半徑的點(diǎn)的集合
104、同圓或等圓的半徑相等
105、到定點(diǎn)的距離等于定長(zhǎng)的點(diǎn)的軌跡,是以定點(diǎn)為圓心,定長(zhǎng)為半徑的圓
106、和已知線段兩個(gè)端點(diǎn)的距離相等的點(diǎn)的軌跡,是著條線段的垂直平分線
107、到已知角的兩邊距離相等的點(diǎn)的軌跡,是這個(gè)角的平分線
108、到兩條平行線距離相等的點(diǎn)的軌跡,是和這兩條平行線平行且距離相等的一條直線
109、定理不在同一直線上的三點(diǎn)確定一個(gè)圓。
110、垂徑定理垂直于弦的直徑平分這條弦并且平分弦所對(duì)的兩條弧
111、推論1
、倨椒窒遥ú皇侵睆剑┑闹睆酱怪庇谙,并且平分弦所對(duì)的兩條弧
②弦的垂直平分線經(jīng)過圓心,并且平分弦所對(duì)的兩條弧
、燮椒窒宜鶎(duì)的一條弧的直徑,垂直平分弦,并且平分弦所對(duì)的另一條弧
112、推論2圓的兩條平行弦所夾的弧相等
113、圓是以圓心為對(duì)稱中心的中心對(duì)稱圖形
114、定理在同圓或等圓中,相等的圓心角所對(duì)的弧相等,所對(duì)的弦相等,所對(duì)的弦的弦心距相等
115、推論在同圓或等圓中,如果兩個(gè)圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相等那么它們所對(duì)應(yīng)的其余各組量都相等
116、定理一條弧所對(duì)的圓周角等于它所對(duì)的圓心角的一半
117、推論1同弧或等弧所對(duì)的圓周角相等;同圓或等圓中,相等的圓周角所對(duì)的弧也相等
118、推論2半圓(或直徑)所對(duì)的圓周角是直角;90°的圓周角所對(duì)的弦是直徑
119、推論3如果三角形一邊上的中線等于這邊的一半,那么這個(gè)三角形是直角三角形
120、定理圓的內(nèi)接四邊形的對(duì)角互補(bǔ),并且任何一個(gè)外角都等于它的內(nèi)對(duì)角
121、①直線L和⊙O相交dr②直線L和⊙O相切d=r③直線L和⊙O相離dr
122、切線的判定定理經(jīng)過半徑的外端并且垂直于這條半徑的直線是圓的切線
123、切線的性質(zhì)定理圓的切線垂直于經(jīng)過切點(diǎn)的半徑
124、推論1經(jīng)過圓心且垂直于切線的直線必經(jīng)過切點(diǎn)
125、推論2經(jīng)過切點(diǎn)且垂直于切線的直線必經(jīng)過圓心
126、切線長(zhǎng)定理從圓外一點(diǎn)引圓的兩條切線,它們的切線長(zhǎng)相等圓心和這一點(diǎn)的連線平分兩條切線的夾角
127、圓的外切四邊形的兩組對(duì)邊的和相等
128、弦切角定理弦切角等于它所夾的弧對(duì)的圓周角
129、推論如果兩個(gè)弦切角所夾的弧相等,那么這兩個(gè)弦切角也相等
130、相交弦定理圓內(nèi)的兩條相交弦,被交點(diǎn)分成的兩條線段長(zhǎng)的積相等
131、推論如果弦與直徑垂直相交,那么弦的一半是它分直徑所成的兩條線段的比例中項(xiàng)
132、切割線定理從圓外一點(diǎn)引圓的切線和割線,切線長(zhǎng)是這點(diǎn)到割線與圓交點(diǎn)的兩條線段長(zhǎng)的比例中項(xiàng)
133、推論從圓外一點(diǎn)引圓的兩條割線,這一點(diǎn)到每條割線與圓的交點(diǎn)的兩條線段長(zhǎng)的積相等
134、如果兩個(gè)圓相切,那么切點(diǎn)一定在連心線上
135、①兩圓外離dR+r②兩圓外切d=R+r③兩圓相交R—rdR+r(Rr)④兩圓內(nèi)切d=R—r(Rr)⑤兩圓內(nèi)含dR—r(Rr)
136、定理相交兩圓的連心線垂直平分兩圓的公共弦
137、定理把圓分成n(n≥3):
⑴依次連結(jié)各分點(diǎn)所得的多邊形是這個(gè)圓的內(nèi)接正n邊形
、平(jīng)過各分點(diǎn)作圓的切線,以相鄰切線的交點(diǎn)為頂點(diǎn)的多邊形是這個(gè)圓的外切正n邊形
138、定理任何正多邊形都有一個(gè)外接圓和一個(gè)內(nèi)切圓,這兩個(gè)圓是同心圓
139、正n邊形的每個(gè)內(nèi)角都等于(n—2)×180°/n
140、定理正n邊形的半徑和邊心距把正n邊形分成2n個(gè)全等的直角三角形
141、正n邊形的面積Sn=pnrn/2p表示正n邊形的周長(zhǎng)
142、正三角形面積√3a/4a表示邊長(zhǎng)
143、如果在一個(gè)頂點(diǎn)周圍有k個(gè)正n邊形的角,由于這些角的和應(yīng)為360°,因此k×(n—2)180°/n=360°化為(n—2)(k—2)=4
144、弧長(zhǎng)計(jì)算公式:L=n兀R/180
145、扇形面積公式:S扇形=n兀R^2/360=LR/2146、內(nèi)公切線長(zhǎng)=d—(R—r)外公切線長(zhǎng)=d—(R+r)
一、常用數(shù)學(xué)公式
公式分類公式表達(dá)式乘法與因式分解a2—b2=(a+b)(a—b)a3+b3=(a+b)(a2—ab+b2)a3—b3=(a—b(a2+ab+b2)
三角不等式|a+b|≤|a|+|b||a—b|≤|a|+|b|
|a|≤b—b≤a≤b|a—b|≥|a|—|b|—|a|≤a≤|a|
一元二次方程的解—b+√(b2—4ac)/2a—b—√(b2—4ac)/2a
根與系數(shù)的關(guān)系X1+X2=—b/aX1*X2=c/a注:韋達(dá)定理判別式
b2—4ac=0注:方程有兩個(gè)相等的實(shí)根b2—4ac>0注:方程有兩個(gè)不等的實(shí)根
b2—4ac歸謬是反證法的關(guān)鍵,導(dǎo)出矛盾的過程沒有固定的模式,但必須從反設(shè)出發(fā),否則推導(dǎo)將成為無源之水,無本之木。推理必須嚴(yán)謹(jǐn)。導(dǎo)出的矛盾有如下幾種類型:與已知條件矛盾;與已知的公理、定義、定理、公式矛盾;與反設(shè)矛盾;自相矛盾。
8、面積法
平面幾何中講的面積公式以及由面積公式推出的與面積計(jì)算有關(guān)的性質(zhì)定理,不僅可用于計(jì)算面積,而且用它來證明平面幾何題有時(shí)會(huì)收到事半功倍的效果。運(yùn)用面積關(guān)系來證明或計(jì)算平面幾何題的方法,稱為面積方法,它是幾何中的一種常用方法。
用歸納法或分析法證明平面幾何題,其困難在添置輔助線。面積法的特點(diǎn)是把已知和未知各量用面積公式聯(lián)系起來,通過運(yùn)算達(dá)到求證的結(jié)果。所以用面積法來解幾何題,幾何元素之間關(guān)系變成數(shù)量之間的關(guān)系,只需要計(jì)算,有時(shí)可以不添置補(bǔ)助線,即使需要添置輔助線,也很容易考慮到。
9、幾何變換法
在數(shù)學(xué)問題的研究中,常常運(yùn)用變換法,把復(fù)雜性問題轉(zhuǎn)化為簡(jiǎn)單性的問題而得到解決。所謂變換是一個(gè)集合的任一元素到同一集合的元素的一個(gè)一一映射。中學(xué)數(shù)學(xué)中所涉及的變換主要是初等變換。有一些看來很難甚至于無法下手的習(xí)題,可以借助幾何變換法,化繁為簡(jiǎn),化難為易。另一方面,也可將變換的觀點(diǎn)滲透到中學(xué)數(shù)學(xué)教學(xué)中。將圖形從相等靜止條件下的研究和運(yùn)動(dòng)中的研究結(jié)合起來,有利于對(duì)圖形本質(zhì)的認(rèn)識(shí)。幾何變換包括:(1)平移;(2)旋轉(zhuǎn);(3)對(duì)稱。
10、客觀性題的解題方法
選擇題是給出條件和結(jié)論,要求根據(jù)一定的關(guān)系找出正確答案的一類題型。選擇題的題型構(gòu)思精巧,形式靈活,可以比較全面地考察學(xué)生的基礎(chǔ)知識(shí)和基本技能,從而增大了試卷的容量和知識(shí)覆蓋面。
填空題是標(biāo)準(zhǔn)化考試的重要題型之一,它同選擇題一樣具有考查目標(biāo)明確,知識(shí)復(fù)蓋面廣,評(píng)卷準(zhǔn)確迅速,有利于考查學(xué)生的分析判斷能力和計(jì)算能力等優(yōu)點(diǎn),不同的是填空題未給出答案,可以防止學(xué)生猜估答案的情況。要想迅速、正確地解選擇題、填空題,除了具有準(zhǔn)確的計(jì)算、嚴(yán)密的推理外,還要有解選擇題、填空題的方法與技巧。下面通過實(shí)例介紹常用方法。
(1)直接推演法:直接從命題給出的條件出發(fā),運(yùn)用概念、公式、定理等進(jìn)行推理或運(yùn)算,得出結(jié)論,選擇正確答案,這就是傳統(tǒng)的解題方法,這種解法叫直接推演法。
。2)驗(yàn)證法:由題設(shè)找出合適的驗(yàn)證條件,再通過驗(yàn)證,找出正確答案,亦可將供選擇的答案代入條件中去驗(yàn)證,找出正確答案,此法稱為驗(yàn)證法(也稱代入法)。當(dāng)遇到定量命題時(shí),常用此法。
。3)特殊元素法:用合適的特殊元素(如數(shù)或圖形)代入題設(shè)條件或結(jié)論中去,從而獲得解答。這種方法叫特殊元素法。
(4)排除、篩選法:對(duì)于正確答案有且只有一個(gè)的選擇題,根據(jù)數(shù)學(xué)知識(shí)或推理、演算,把不正確的結(jié)論排除,余下的結(jié)論再經(jīng)篩選,從而作出正確的結(jié)論的解法叫排除、篩選法。
(5)圖解法:借助于符合題設(shè)條件的圖形或圖象的性質(zhì)、特點(diǎn)來判斷,作出正確的選擇稱為圖解法。圖解法是解選擇題常用方法之一。
。6)分析法:直接通過對(duì)選擇題的條件和結(jié)論,作詳盡的分析、歸納和判斷,從而選出正確的結(jié)果,為分析法。
初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)3
一元一次方程定義
通過化簡(jiǎn),只含有一個(gè)未知數(shù),且含有未知數(shù)的最高次項(xiàng)的次數(shù)是一的等式,叫一元一次方程。通常形式是ax+b=0(a,b為常數(shù),且a≠0)。一元一次方程屬于整式方程,即方程兩邊都是整式。
一元指方程僅含有一個(gè)未知數(shù),一次指未知數(shù)的次數(shù)為1,且未知數(shù)的系數(shù)不為0。我們將ax+b=0(其中x是未知數(shù),a、b是已知數(shù),并且a≠0)叫一元一次方程的標(biāo)準(zhǔn)形式。這里a是未知數(shù)的系數(shù),b是常數(shù),x的次數(shù)必須是1。
即一元一次方程必須同時(shí)滿足4個(gè)條件:⑴它是等式;⑵分母中不含有未知數(shù);⑶未知數(shù)最高次項(xiàng)為1;⑷含未知數(shù)的項(xiàng)的系數(shù)不為0。
一元一次方程的五個(gè)核心問題
一、什么是等式?1+1=1是等式嗎?
表示相等關(guān)系的式子叫做等式,等式可分三類:第一類是恒等式,就是用任何允許的數(shù)值代替等式中的字母,等式的兩邊總是相等,由數(shù)字組成的等式也是恒等式,如2+4=6,a+b=b+a等都是恒等式;第二類是條件等式,也就是方程,這類等式只能取某些數(shù)值代替等式中的字母時(shí),等式才成立,如x+y=-5,x+4=7等都是條件等式;第三類是矛盾等式,就是無論用任何值代替等式中的字母,等式總不成立,如x2=-2,|a|+5=0等。
一個(gè)等式中,如果等號(hào)多于一個(gè),叫做連等式,連等式可以化為一組只含有一個(gè)等號(hào)的等式。
等式與代數(shù)式不同,等式中含有等號(hào),代數(shù)式中不含等號(hào)。
等式有兩個(gè)重要性質(zhì)1)等式的兩邊都加上或減去同一個(gè)數(shù)或同一個(gè)整式,所得結(jié)果仍然是一個(gè)等式;(2)等式的兩邊都乘以或除以同一個(gè)數(shù)除數(shù)不為零,所得結(jié)果仍然是一個(gè)等式。
二、什么是方程,什么是一元一次方程?
含有未知數(shù)的等式叫做方程,如2x-3=8,x+y=7等。判斷一個(gè)式子是否是方程,只需看兩點(diǎn):一是不是等式;二是否含有未知數(shù),兩者缺一不可。
只含有一個(gè)未知數(shù),并且含未知數(shù)的式子都是整式,未知數(shù)的次數(shù)是1,系數(shù)不是0的方程叫做一元一次方程。其標(biāo)準(zhǔn)形式是ax+b=0(a不為0,a,b是已知數(shù)),值得注意的是1)一個(gè)整式方程的"元"和"次"是將這個(gè)方程化成最簡(jiǎn)形式后才能判定的。如方程2y2+6=3x+2y2,形式上是二元二次方程,但化簡(jiǎn)后,它實(shí)際上是一個(gè)一元一次方程。(2)整式方程分母中不含有未知數(shù)。判斷是否為整式方程,是不能先將它化簡(jiǎn)的如方程x+1/x=2+1/x,因?yàn)樗姆帜钢泻形粗獢?shù)x,所以,它不是整式方程。如果將上面的方程進(jìn)行化簡(jiǎn),則為x=2,這時(shí)再去作判斷,將得到錯(cuò)誤的結(jié)論。
凡是談到次數(shù)的方程,都是指整式方程,即方程的.兩邊都是整式。一元一次方程是整式方程中元數(shù)最少且次數(shù)最低的方程。
三、等式有什么牛掰的基本性質(zhì)嗎?
將方程中的某些項(xiàng)改變符號(hào)后,從方程的一邊移到另一邊的變形叫做移項(xiàng),移項(xiàng)的依據(jù)是等式的基本性質(zhì)1。
移項(xiàng)時(shí)不一定要把含未知數(shù)的項(xiàng)移到等式的左邊。如解方程3x-2=4x-5時(shí)就可以把含未知數(shù)的項(xiàng)移到右邊,而把常數(shù)項(xiàng)移到左邊,這樣會(huì)顯得簡(jiǎn)便些。
去分母,將未知數(shù)的系數(shù)化為1,則是依據(jù)等式的基本性質(zhì)2進(jìn)行的。
四、等式一定是方程嗎?方程一定是等式嗎?
等式與方程有很多相同之處。如都是用等號(hào)連接的,等號(hào)左、右兩邊都是代數(shù)式,但它們還是有區(qū)別的。方程僅是含有未知數(shù)的等式,是等式中的特例。就是說,等式包含方程;反過來,方程并不包含所有的等式。如,13+5=18,18-13=5都屬于等式,但它們并不是方程。因此,等式一定是方程的說法是不對(duì)的。
五、"解方程"與"方程的解"是一回事兒?jiǎn)?
方程的解是使方程左、右兩邊相等的未知數(shù)的取值。而解方程是求方程的解或判斷方程無解的過程。即方程的解是結(jié)果,而解方程是一個(gè)過程。方程的解中的"解"是名詞,而解方程中的"解"是動(dòng)詞,二者不能混淆。
初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)4
1、相交線
對(duì)頂角相等。
過一點(diǎn)有且只有一條直線與已知直線垂直。
連接直線外一點(diǎn)與直線上各點(diǎn)的所有線段中,垂線段最短(簡(jiǎn)單說成:垂線段最短)。
2、平行線
經(jīng)過直線外一點(diǎn),有且只有一條直線與這條直線平行。
如果兩條直線都與第三條直線平行,那么這兩條直線也互相平行。
直線平行的條件:
兩條直線被第三條直線所截,如果同位角相等,那么兩直線平行。
兩條直線被第三條直線所截,如果內(nèi)錯(cuò)角相等,那么兩直線平行。
兩條直線被第三條直線所截,如果同旁內(nèi)角互補(bǔ),那么兩直線平行。
3、平行線的'性質(zhì)
兩條平行線被第三條直線所截,同位角相等。
兩條平行線被第三條直線所截,內(nèi)錯(cuò)角相等。
兩條平行線被第三條直線所截,同旁內(nèi)角互補(bǔ)。
判斷一件事情的語句,叫做命題。
初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)5
1.不在同一直線上的三點(diǎn)確定一個(gè)圓。
2.垂徑定理 垂直于弦的直徑平分這條弦并且平分弦所對(duì)的兩條弧
推論1: ①平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對(duì)的兩條弧
、谙业拇怪逼椒志經(jīng)過圓心,并且平分弦所對(duì)的兩條弧 ③平分弦所對(duì)的一條弧的直徑,垂直平分弦,并且平分弦所對(duì)的另一條弧
推論2 :圓的兩條平行弦所夾的弧相等
3.圓是以圓心為對(duì)稱中心的中心對(duì)稱圖形。
4.圓是定點(diǎn)的距離等于定長(zhǎng)的點(diǎn)的集合。
5.圓的內(nèi)部可以看作是圓心的距離小于半徑的點(diǎn)的集合。
6.圓的外部可以看作是圓心的距離大于半徑的點(diǎn)的集合。
7.同圓或等圓的半徑相等。
8.到定點(diǎn)的距離等于定長(zhǎng)的點(diǎn)的軌跡,是以定點(diǎn)為圓心,定長(zhǎng)為半徑的圓。
9.定理 在同圓或等圓中,相等的圓心角所對(duì)的弧相等,所對(duì)的弦 相等,所對(duì)的弦的弦心距相等。
10.推論 在同圓或等圓中,如果兩個(gè)圓心角、兩條弧、兩條弦或兩 弦的弦心距中有一組量相等那么它們所對(duì)應(yīng)的其余各組量都相等。
11定理 圓的內(nèi)接四邊形的對(duì)角互補(bǔ),并且任何一個(gè)外角都等于它 的內(nèi)對(duì)角。
12.①直線L和⊙O相交 d 、谥本L和⊙O相切 d=r ③直線L和⊙O相離 d>r
13.切線的判定定理 經(jīng)過半徑的外端并且垂直于這條半徑的直線是圓的切線。
14.切線的性質(zhì)定理 圓的切線垂直于經(jīng)過切點(diǎn)的半徑。
15.推論1 經(jīng)過圓心且垂直于切線的直線必經(jīng)過切點(diǎn)。
16.推論2 經(jīng)過切點(diǎn)且垂直于切線的直線必經(jīng)過圓心。
17.切線長(zhǎng)定理 從圓外一點(diǎn)引圓的兩條切線,它們的切線長(zhǎng)相等, 圓心和這一點(diǎn)的連線平分兩條切線的'夾角。
18.圓的外切四邊形的兩組對(duì)邊的和相等 外角等于內(nèi)對(duì)角。
19.如果兩個(gè)圓相切,那么切點(diǎn)一定在連心線上。
20.①兩圓外離 d>R+r ②兩圓外切 d=R+r 、.兩圓相交 R-rr) 、.兩圓內(nèi)切 d=R-r(R>r) ⑤兩圓內(nèi)含dr)
21.定理 相交兩圓的連心線垂直平分兩圓的公共弦。
22.定理 把圓分成n(n≥3): 、乓来芜B結(jié)各分點(diǎn)所得的多邊形是這個(gè)圓的內(nèi)接正n邊形 、平(jīng)過各分點(diǎn)作圓的切線,以相鄰切線的交點(diǎn)為頂點(diǎn)的多邊形是這個(gè)圓的外切正n邊形。
23.定理 任何正多邊形都有一個(gè)外接圓和一個(gè)內(nèi)切圓,這兩個(gè)圓是同心圓。
24.正n邊形的每個(gè)內(nèi)角都等于(n-2)×180°/n。
25.定理 正n邊形的半徑和邊心距把正n邊形分成2n個(gè)全等的直角三角形。
26.正n邊形的面積Sn=pnrn/2 p表示正n邊形的周長(zhǎng)。
27.正三角形面積√3a/4 a表示邊長(zhǎng)。
28.如果在一個(gè)頂點(diǎn)周圍有k個(gè)正n邊形的角,由于這些角的和應(yīng)為 360°,因此k×(n-2)180°/n=360°化為(n-2)(k-2)=4。
29.弧長(zhǎng)計(jì)算公式:L=n兀R/180。
30.扇形面積公式:S扇形=n兀R^2/360=LR/2。
31.內(nèi)公切線長(zhǎng)= d-(R-r) 外公切線長(zhǎng)= d-(R+r)。
32.定理 一條弧所對(duì)的圓周角等于它所對(duì)的圓心角的一半。
33.推論1 同弧或等弧所對(duì)的圓周角相等;同圓或等圓中,相等的圓周角所對(duì)的弧也相等。
34.推論2 半圓(或直徑)所對(duì)的圓周角是直角;90°的圓周角所 對(duì)的弦是直徑。
35.弧長(zhǎng)公式 l=a*r a是圓心角的弧度數(shù)r >0 扇形面積公式 s=1/2*l*r。
1.直接法:根據(jù)選擇題的題設(shè)條件,通過計(jì)算、推理或判斷,最后得到題目的所求。
2.特殊值法:(特殊值淘汰法)有些選擇題所涉及的數(shù)學(xué)命題與字母的取值范圍有關(guān);
在解這類選擇題時(shí),可以考慮從取值范圍內(nèi)選取某幾個(gè)特殊值,代入原命題進(jìn)行驗(yàn)證,然后淘汰錯(cuò)誤的,保留正確的。
3.淘汰法:把題目所給的四個(gè)結(jié)論逐一代回原題的題干中進(jìn)行驗(yàn)證,把錯(cuò)誤的淘汰掉,直至找到正確的答案。
4.逐步淘汰法:如果我們?cè)谟?jì)算或推導(dǎo)的過程中不是一步到位,而是逐步進(jìn)行,既采用“走一走、瞧一瞧”的策略;
每走一步都與四個(gè)結(jié)論比較一次,淘汰掉不可能的,這樣也許走不到最后一步,三個(gè)錯(cuò)誤的結(jié)論就被全部淘汰掉了。
5.數(shù)形結(jié)合法:根據(jù)數(shù)學(xué)問題的條件和結(jié)論之間的內(nèi)在聯(lián)系,既分析其代數(shù)含義,又揭示其幾何意義;
使數(shù)量關(guān)系和圖形巧妙和諧地結(jié)合起來,并充分利用這種結(jié)合,尋求解題思路,使問題得到解決。
常用的數(shù)學(xué)思想方法
1.數(shù)形結(jié)合思想:就是根據(jù)數(shù)學(xué)問題的條件和結(jié)論之間的內(nèi)在聯(lián)系,既分析其代數(shù)含義,又揭示其幾何意義;
使數(shù)量關(guān)系和圖形巧妙和諧地結(jié)合起來,并充分利用這種結(jié)合,尋求解體思路,使問題得到解決。
2.聯(lián)系與轉(zhuǎn)化的思想:事物之間是相互聯(lián)系、相互制約的,是可以相互轉(zhuǎn)化的。數(shù)學(xué)學(xué)科的各部分之間也是相互聯(lián)系,可以相互轉(zhuǎn)化的。
在解題時(shí),如果能恰當(dāng)處理它們之間的相互轉(zhuǎn)化,往往可以化難為易,化繁為簡(jiǎn)。
如:代換轉(zhuǎn)化、已知與未知的轉(zhuǎn)化、特殊與一般的轉(zhuǎn)化、具體與抽象的轉(zhuǎn)化、部分與整體的轉(zhuǎn)化、動(dòng)與靜的轉(zhuǎn)化等等。
3.分類討論的思想:在數(shù)學(xué)中,我們常常需要根據(jù)研究對(duì)象性質(zhì)的差異,分各種不同情況予以考查;
這種分類思考的方法,是一種重要的數(shù)學(xué)思想方法,同時(shí)也是一種重要的解題策略。
4.待定系數(shù)法:當(dāng)我們所研究的數(shù)學(xué)式子具有某種特定形式時(shí),要確定它,只要求出式子中待確定的字母得值就可以了。
為此,把已知條件代入這個(gè)待定形式的式子中,往往會(huì)得到含待定字母的方程或方程組,然后解這個(gè)方程或方程組就使問題得到解決。
5.配方法:就是把一個(gè)代數(shù)式設(shè)法構(gòu)造成平方式,然后再進(jìn)行所需要的變化。
配方法是初中代數(shù)中重要的變形技巧,配方法在分解因式、解方程、討論二次函數(shù)等問題,都有重要的作用。
6.換元法:在解題過程中,把某個(gè)或某些字母的式子作為一個(gè)整體,用一個(gè)新的字母表示,以便進(jìn)一步解決問題的一種方法。
換元法可以把一個(gè)較為復(fù)雜的式子化簡(jiǎn),把問題歸結(jié)為比原來更為基本的問題,從而達(dá)到化繁為簡(jiǎn),化難為易的目的。
7.分析法:在研究或證明一個(gè)命題時(shí),又結(jié)論向已知條件追溯,既從結(jié)論開始,推求它成立的充分條件,這個(gè)條件的成立還不顯然;
則再把它當(dāng)作結(jié)論,進(jìn)一步研究它成立的充分條件,直至達(dá)到已知條件為止,從而使命題得到證明。這種思維過程通常稱為“執(zhí)果尋因”
8.綜合法:在研究或證明命題時(shí),如果推理的方向是從已知條件開始,逐步推導(dǎo)得到結(jié)論,這種思維過程通常稱為“由因?qū)Ч?/p>
9.演繹法:由一般到特殊的推理方法。
10.歸納法:由一般到特殊的推理方法。
初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)6
一、投影
1、投影:一般地,用光線照射物體,在某個(gè)平面(地面、墻壁等)上得到的影子叫做物體的投影,照射光線叫做投影線,投影所在的平面叫做投影面。
2、平行投影:由平行光線形成的投影是平行投影。(光源特別遠(yuǎn))
3、中心投影:由同一點(diǎn)(點(diǎn)光源發(fā)出的光線)形成的投影叫做中心投影
4、正投影:投影線垂直于投影面產(chǎn)生的投影叫做正投影。物體正投影的形狀、大小與它相對(duì)于投影面的位置有關(guān)。
5、當(dāng)物體的某個(gè)面平行于投影面時(shí),這個(gè)面的正投影與這個(gè)面的形狀、大小完全相同。當(dāng)物體的'某個(gè)面頂斜于投影面時(shí),這個(gè)面的正投影變小。當(dāng)物體的某個(gè)面垂直于投影面時(shí),這個(gè)面的正投影成為一條直線。
二、三視圖
1、三視圖:是觀測(cè)者從三個(gè)不同位置(正面、水平面、側(cè)面)觀察同一個(gè)空間幾何體而畫出的圖形。三視圖就是主視圖、俯視圖、左視圖的總稱。另外還有如剖面圖、半剖面圖等做為輔助,基本能完整的表達(dá)物體的結(jié)構(gòu)。
2、主視圖:在正面內(nèi)得到的由前向后觀察物體的視圖。
3、俯視圖:在水平面內(nèi)得到的由上向下觀察物體的視圖。
4、左視圖:在側(cè)面內(nèi)得到的由左向右觀察物體的視圖。
5、三個(gè)視圖的位置關(guān)系:
、僦饕晥D在上、俯視圖在下、左視圖在右;
、谥饕、俯視表示物體的長(zhǎng),主視、左視表示物體的高,左視、俯視表示物體的寬。
、壑饕暋⒏┮曢L(zhǎng)對(duì)正,主視、左視高平齊,左視、俯視寬相等。
6、畫法:看得見的部分的輪廓線畫成實(shí)線,因被其它部分遮檔而看不見的部分的輪廓線畫成虛線。
鄰補(bǔ)角:兩條直線相交所構(gòu)成的四個(gè)角中,有公共頂點(diǎn)且有一條公共邊的兩個(gè)角是鄰補(bǔ)角。
對(duì)頂角:一個(gè)角的兩邊分別是另一個(gè)叫的兩邊的反向延長(zhǎng)線,像這樣的兩個(gè)角互為對(duì)頂角。
垂線:兩條直線相交成直角時(shí),叫做互相垂直,其中一條叫做另一條的垂線。
平行線:在同一平面內(nèi),不相交的兩條直線叫做平行線。
同位角、內(nèi)錯(cuò)角、同旁內(nèi)角:
同位角:∠1與∠5像這樣具有相同位置關(guān)系的一對(duì)角叫做同位角。
內(nèi)錯(cuò)角:∠2與∠6像這樣的一對(duì)角叫做內(nèi)錯(cuò)角。
同旁內(nèi)角:∠2與∠5像這樣的一對(duì)角叫做同旁內(nèi)角。
命題:判斷一件事情的語句叫命題。
平移:在平面內(nèi),將一個(gè)圖形沿某個(gè)方向移動(dòng)一定的距離,圖形的這種移動(dòng)叫做平移平移變換,簡(jiǎn)稱平移。
對(duì)應(yīng)點(diǎn):平移后得到的新圖形中每一點(diǎn),都是由原圖形中的某一點(diǎn)移動(dòng)后得到的,這樣的兩個(gè)點(diǎn)叫做對(duì)應(yīng)點(diǎn)。
初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)7
知識(shí)要點(diǎn):數(shù)列中的項(xiàng)必須是數(shù),它可以是實(shí)數(shù),也可以是復(fù)數(shù)。
數(shù)列表示方法
如果數(shù)列{an}的第n項(xiàng)與序號(hào)n之間的關(guān)系可以用一個(gè)式子來表示,那么這個(gè)公式叫做這個(gè)數(shù)列的通項(xiàng)公式。如an=(-1)^(n+1)+1。
數(shù)列通項(xiàng)公式的特點(diǎn):(1)有些數(shù)列的通項(xiàng)公式可以有不同形式,即不唯一。(2)有些數(shù)列沒有通項(xiàng)公式
如果數(shù)列{an}的第n項(xiàng)與它前一項(xiàng)或幾項(xiàng)的關(guān)系可以用一個(gè)式子來表示,那么這個(gè)公式叫做這個(gè)數(shù)列的遞推公式。如an=2a(n-1)+1 (n>;1)
數(shù)列遞推公式的特點(diǎn):(1)有些數(shù)列的遞推公式可以有不同形式,即不唯一。(2)有些數(shù)列沒有遞推公式
有遞推公式不一定有通項(xiàng)公式
知識(shí)要領(lǐng)總結(jié):數(shù)列是一種特殊的函數(shù)。其特殊性主要表現(xiàn)在其定義域和值域上。
初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié):平面直角坐標(biāo)系
下面是對(duì)平面直角坐標(biāo)系的內(nèi)容學(xué)習(xí),希望同學(xué)們很好的掌握下面的內(nèi)容。
平面直角坐標(biāo)系
平面直角坐標(biāo)系:在平面內(nèi)畫兩條互相垂直、原點(diǎn)重合的數(shù)軸,組成平面直角坐標(biāo)系。
水平的數(shù)軸稱為_軸或橫軸,豎直的數(shù)軸稱為y軸或縱軸,兩坐標(biāo)軸的交點(diǎn)為平面直角坐標(biāo)系的原點(diǎn)。
平面直角坐標(biāo)系的要素:①在同一平面②兩條數(shù)軸③互相垂直④原點(diǎn)重合
三個(gè)規(guī)定:
、僬较虻囊(guī)定橫軸取向右為正方向,縱軸取向上為正方向
、趩挝婚L(zhǎng)度的規(guī)定;一般情況,橫軸、縱軸單位長(zhǎng)度相同;實(shí)際有時(shí)也可不同,但同一數(shù)軸上必須相同。
③象限的規(guī)定:右上為第一象限、左上為第二象限、左下為第三象限、右下為第四象限。
相信上面對(duì)平面直角坐標(biāo)系知識(shí)的講解學(xué)習(xí),同學(xué)們已經(jīng)能很好的掌握了吧,希望同學(xué)們都能考試成功。
初中數(shù)學(xué)知識(shí)點(diǎn):平面直角坐標(biāo)系的構(gòu)成
對(duì)于平面直角坐標(biāo)系的構(gòu)成內(nèi)容,下面我們一起來學(xué)習(xí)哦。
平面直角坐標(biāo)系的構(gòu)成
在同一個(gè)平面上互相垂直且有公共原點(diǎn)的兩條數(shù)軸構(gòu)成平面直角坐標(biāo)系,簡(jiǎn)稱為直角坐標(biāo)系。通常,兩條數(shù)軸分別置于水平位置與鉛直位置,取向右與向上的方向分別為兩條數(shù)軸的正方向。水平的數(shù)軸叫做_軸或橫軸,鉛直的數(shù)軸叫做y軸或縱軸,_軸或y軸統(tǒng)稱為坐標(biāo)軸,它們的公共原點(diǎn)o稱為直角坐標(biāo)系的原點(diǎn)。
通過上面對(duì)平面直角坐標(biāo)系的構(gòu)成知識(shí)的講解學(xué)習(xí),希望同學(xué)們對(duì)上面的內(nèi)容都能很好的掌握,同學(xué)們認(rèn)真學(xué)習(xí)吧。
初中數(shù)學(xué)知識(shí)點(diǎn):點(diǎn)的坐標(biāo)的性質(zhì)
下面是對(duì)數(shù)學(xué)中點(diǎn)的坐標(biāo)的性質(zhì)知識(shí)學(xué)習(xí),同學(xué)們認(rèn)真看看哦。
點(diǎn)的坐標(biāo)的性質(zhì)
建立了平面直角坐標(biāo)系后,對(duì)于坐標(biāo)系平面內(nèi)的任何一點(diǎn),我們可以確定它的坐標(biāo)。反過來,對(duì)于任何一個(gè)坐標(biāo),我們可以在坐標(biāo)平面內(nèi)確定它所表示的一個(gè)點(diǎn)。
對(duì)于平面內(nèi)任意一點(diǎn)c,過點(diǎn)c分別向x軸、y軸作垂線,垂足在x軸、y軸上的對(duì)應(yīng)點(diǎn)a,b分別叫做點(diǎn)c的橫坐標(biāo)、縱坐標(biāo),有序?qū)崝?shù)對(duì)(a,b)叫做點(diǎn)c的坐標(biāo)。
一個(gè)點(diǎn)在不同的象限或坐標(biāo)軸上,點(diǎn)的坐標(biāo)不一樣。
希望上面對(duì)點(diǎn)的坐標(biāo)的性質(zhì)知識(shí)講解學(xué)習(xí),同學(xué)們都能很好的.掌握,相信同學(xué)們會(huì)在考試中取得優(yōu)異成績(jī)的。
初中數(shù)學(xué)知識(shí)點(diǎn):因式分解的一般步驟
關(guān)于數(shù)學(xué)中因式分解的一般步驟內(nèi)容學(xué)習(xí),我們做下面的知識(shí)講解。
因式分解的一般步驟
如果多項(xiàng)式有公因式就先提公因式,沒有公因式的多項(xiàng)式就考慮運(yùn)用公式法;若是四項(xiàng)或四項(xiàng)以上的多項(xiàng)式,通常采用分組分解法,最后運(yùn)用十字相乘法分解因式。因此,可以概括為:“一提”、“二套”、“三分組”、“四十字”。
注意:因式分解一定要分解到每一個(gè)因式都不能再分解為止,否則就是不完全的因式分解,若題目沒有明確指出在哪個(gè)范圍內(nèi)因式分解,應(yīng)該是指在有理數(shù)范圍內(nèi)因式分解,因此分解因式的結(jié)果,必須是幾個(gè)整式的積的形式。
相信上面對(duì)因式分解的一般步驟知識(shí)的內(nèi)容講解學(xué)習(xí),同學(xué)們已經(jīng)能很好的掌握了吧,希望同學(xué)們會(huì)考出好成績(jī)。
初中數(shù)學(xué)知識(shí)點(diǎn):因式分解
下面是對(duì)數(shù)學(xué)中因式分解內(nèi)容的知識(shí)講解,希望同學(xué)們認(rèn)真學(xué)習(xí)。
因式分解
因式分解定義:把一個(gè)多項(xiàng)式化成幾個(gè)整式的積的形式的變形叫把這個(gè)多項(xiàng)式因式分解。
因式分解要素:①結(jié)果必須是整式②結(jié)果必須是積的形式③結(jié)果是等式④
因式分解與整式乘法的關(guān)系:m(a+b+c)
公因式:一個(gè)多項(xiàng)式每項(xiàng)都含有的公共的因式,叫做這個(gè)多項(xiàng)式各項(xiàng)的公因式。
公因式確定方法:①系數(shù)是整數(shù)時(shí)取各項(xiàng)最大公約數(shù)。②相同字母取最低次冪③系數(shù)最大公約數(shù)與相同字母取最低次冪的積就是這個(gè)多項(xiàng)式各項(xiàng)的公因式。
提取公因式步驟:
、俅_定公因式。②確定商式③公因式與商式寫成積的形式。
分解因式注意;
、俨粶(zhǔn)丟字母
、诓粶(zhǔn)丟常數(shù)項(xiàng)注意查項(xiàng)數(shù)
、垭p重括號(hào)化成單括號(hào)
、芙Y(jié)果按數(shù)單字母單項(xiàng)式多項(xiàng)式順序排列
⑤相同因式寫成冪的形式
、奘醉(xiàng)負(fù)號(hào)放括號(hào)外
、呃ㄌ(hào)內(nèi)同類項(xiàng)合并。
通過上面對(duì)因式分解內(nèi)容知識(shí)的講解學(xué)習(xí),相信同學(xué)們已經(jīng)能很好的掌握了吧,希望上面的內(nèi)容給同學(xué)們的學(xué)習(xí)很好的幫助。
初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)8
一、平移變換:
1。概念:在平面內(nèi),將一個(gè)圖形沿著某個(gè)方向移動(dòng)一定的距離,這樣的圖形運(yùn)動(dòng)叫做平移。
2。性質(zhì):(1)平移前后圖形全等;
。2)對(duì)應(yīng)點(diǎn)連線平行或在同一直線上且相等。
3。平移的作圖步驟和方法:
。1)分清題目要求,確定平移的方向和平移的距離;
。2)分析所作的圖形,找出構(gòu)成圖形的關(guān)健點(diǎn);
。3)沿一定的方向,按一定的距離平移各個(gè)關(guān)健點(diǎn);
。4)連接所作的`各個(gè)關(guān)鍵點(diǎn),并標(biāo)上相應(yīng)的字母;
(5)寫出結(jié)論。
二、旋轉(zhuǎn)變換:
1。概念:在平面內(nèi),將一個(gè)圖形繞一個(gè)定點(diǎn)沿某個(gè)方向轉(zhuǎn)動(dòng)一個(gè)角度,這樣的圖形運(yùn)動(dòng)叫做旋轉(zhuǎn)。
說明:
。1)圖形的旋轉(zhuǎn)是由旋轉(zhuǎn)中心和旋轉(zhuǎn)的角度所決定的;
。2)旋轉(zhuǎn)過程中旋轉(zhuǎn)中心始終保持不動(dòng)。
。3)旋轉(zhuǎn)過程中旋轉(zhuǎn)的方向是相同的。
。4)旋轉(zhuǎn)過程靜止時(shí),圖形上一個(gè)點(diǎn)的旋轉(zhuǎn)角度是一樣的。⑤旋轉(zhuǎn)不改變圖形的大小和形狀。
2。性質(zhì):
(1)對(duì)應(yīng)點(diǎn)到旋轉(zhuǎn)中心的距離相等;
(2)對(duì)應(yīng)點(diǎn)與旋轉(zhuǎn)中心所連線段的夾角等于旋轉(zhuǎn)角;
。3)旋轉(zhuǎn)前、后的圖形全等。
3。旋轉(zhuǎn)作圖的步驟和方法:
(1)確定旋轉(zhuǎn)中心及旋轉(zhuǎn)方向、旋轉(zhuǎn)角;
。2)找出圖形的關(guān)鍵點(diǎn);
。3)將圖形的關(guān)鍵點(diǎn)和旋轉(zhuǎn)中心連接起來,然后按旋轉(zhuǎn)方向分別將它們旋轉(zhuǎn)一個(gè)旋轉(zhuǎn)角度數(shù),得到這些關(guān)鍵點(diǎn)的對(duì)應(yīng)點(diǎn);
(4)按原圖形順次連接這些對(duì)應(yīng)點(diǎn),所得到的圖形就是旋轉(zhuǎn)后的圖形。
說明:在旋轉(zhuǎn)作圖時(shí),一對(duì)對(duì)應(yīng)點(diǎn)與旋轉(zhuǎn)中心的夾角即為旋轉(zhuǎn)角。
常見考法
。1)把平移旋轉(zhuǎn)結(jié)合起來證明三角形全等;
。2)利用平移變換與旋轉(zhuǎn)變換的性質(zhì),設(shè)計(jì)一些題目。
誤區(qū)提醒
。1)弄反了坐標(biāo)平移的上加下減,左減右加的規(guī)律;
。2)平移與旋轉(zhuǎn)的性質(zhì)沒有掌握。
初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)9
一、角的定義
“靜態(tài)”概念:有公共端點(diǎn)的兩條射線組成的圖形叫做角。
“動(dòng)態(tài)”概念:角可以看作是一條射線繞其端點(diǎn)從一個(gè)位置旋轉(zhuǎn)到另一個(gè)位置所形成的圖形。
如果一個(gè)角的兩邊成一條直線,那么這個(gè)角叫做平角;平角的一半叫直角;大于直角小于平角的角叫做鈍角;大于0小于直角的角叫做銳角。
二、角的換算:1周角=2平角=4直角=360°;
1平角=2直角=180°;
1直角=90°;
1度=60分=3600秒(即:1°=60′=3600″);
1分=60秒(即:1′=60″).
三、余角、補(bǔ)角的概念和性質(zhì):
概念:如果兩個(gè)角的和是一個(gè)平角,那么這兩個(gè)角叫做互為補(bǔ)角。
如果兩個(gè)角的和是一個(gè)直角,那么這兩個(gè)角叫做互為余角。
說明:互補(bǔ)、互余是指兩個(gè)角的數(shù)量關(guān)系,沒有位置關(guān)系。
性質(zhì):同角(或等角)的余角相等;
同角(或等角)的補(bǔ)角相等。
四、角的比較方法:
角的大小比較,有兩種方法:
(1)度量法(利用量角器);
(2)疊合法(利用圓規(guī)和直尺)。
五、角平分線:從一個(gè)角的頂點(diǎn)引出的一條射線。把這個(gè)角分成相等的兩部分,這條射線叫做這個(gè)角的平分線。
常見考法
(1)考查與時(shí)鐘有關(guān)的問題;(2)角的計(jì)算與度量。
誤區(qū)提醒
角的度、分、秒單位的換算是60進(jìn)制,而不是10進(jìn)制,換算時(shí)易受10進(jìn)制影響而出錯(cuò)。
初中數(shù)學(xué)知識(shí)點(diǎn)梳理
1.一元一次方程:只含有一個(gè)未知數(shù),并且未知數(shù)的次數(shù)是1,并且含未知數(shù)項(xiàng)的系數(shù)不是零的整式方程是一元一次方程。
2.一元一次方程的`標(biāo)準(zhǔn)形式:ax+b=0(x是未知數(shù),a、b是已知數(shù),且a≠0)。
3.一元一次方程解法的一般步驟:整理方程……去分母……去括號(hào)……移項(xiàng)……合并同類項(xiàng)……系數(shù)化為1 ……(檢驗(yàn)方程的解)。
4.列一元一次方程解應(yīng)用題:
(1)讀題分析法:多用于“和,差,倍,分問題”
仔細(xì)讀題,找出表示相等關(guān)系的關(guān)鍵字,例如:“大,小,多,少,是,共,合,為,完成,增加,減少,配套—————”,利用這些關(guān)鍵字列出文字等式,并且據(jù)題意設(shè)出未知數(shù),最后利用題目中的量與量的關(guān)系填入代數(shù)式,得到方程。
(2)畫圖分析法:多用于“行程問題”
利用圖形分析數(shù)學(xué)問題是數(shù)形結(jié)合思想在數(shù)學(xué)中的體現(xiàn),仔細(xì)讀題,依照題意畫出有關(guān)圖形,使圖形各部分具有特定的含義,通過圖形找相等關(guān)系是解決問題的關(guān)鍵,從而取得布列方程的依據(jù),最后利用量與量之間的關(guān)系(可把未知數(shù)看做已知量),填入有關(guān)的代數(shù)式是獲得方程的基礎(chǔ)。
11.列方程解應(yīng)用題的常用公式:
(1)行程問題:距離=速度·時(shí)間;
(2)工程問題:工作量=工效·工時(shí);
(3)比率問題:部分=全體·比率;
(4)順逆流問題:順流速度=靜水速度+水流速度,逆流速度=靜水速度—水流速度;
(5)商品價(jià)格問題:售價(jià)=定價(jià)·折·,利潤(rùn)=售價(jià)—成本,;
(6)周長(zhǎng)、面積、體積問題:C圓=2πR,S圓=πR2,C長(zhǎng)方形=2(a+b),S長(zhǎng)方形=ab,C正方形=4a,S正方形=a2,S環(huán)形=π(R2—r2),V長(zhǎng)方體=abc,V正方體=a3,V圓柱=πR2h,V圓錐= πR2h。
本章內(nèi)容是代數(shù)學(xué)的核心,也是所有代數(shù)方程的基礎(chǔ)。豐富多彩的問題情境和解決問題的快樂很容易激起學(xué)生對(duì)數(shù)學(xué)的樂趣,所以要注意引導(dǎo)學(xué)生從身邊的問題研究起,進(jìn)行有效的數(shù)學(xué)活動(dòng)和合作交流,讓學(xué)生在主動(dòng)學(xué)習(xí)、探究學(xué)習(xí)的過程中獲得知識(shí),提升能力,體會(huì)數(shù)學(xué)思想方法。
初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)10
誘導(dǎo)公式的本質(zhì)
所謂三角函數(shù)誘導(dǎo)公式,就是將角n(/2)的三角函數(shù)轉(zhuǎn)化為角的三角函數(shù)。
常用的誘導(dǎo)公式
公式一: 設(shè)為任意角,終邊相同的角的同一三角函數(shù)的值相等:
sin(2k)=sin kz
cos(2k)=cos kz
tan(2k)=tan kz
cot(2k)=cot kz
公式二: 設(shè)為任意角,的三角函數(shù)值與的三角函數(shù)值之間的.關(guān)系:
sin()=-sin
cos()=-cos
tan()=tan
cot()=cot
公式三: 任意角與 -的三角函數(shù)值之間的關(guān)系:
sin(-)=-sin
cos(-)=cos
tan(-)=-tan
cot(-)=-cot
公式四: 利用公式二和公式三可以得到與的三角函數(shù)值之間的關(guān)系:
sin()=sin
cos()=-cos
tan()=-tan
cot()=-cot
初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)11
第一章:勾股定理
1.如果直角三角形的兩條直角邊長(zhǎng)分別是a和b,斜邊長(zhǎng)為c,那么a的平方加上b的平方等于c的平方。
2.如果直角三角形的兩條直角邊長(zhǎng)分別是a和b,斜邊長(zhǎng)為c,那么a的平方加上b的平方等于c的平方。
3.如果直角三角形的兩條直角邊長(zhǎng)分別是a和b,斜邊長(zhǎng)為c,那么兩條直角邊長(zhǎng)的平方和等于斜邊長(zhǎng)的平方。
4.如果直角三角形的兩條直角邊長(zhǎng)分別是a和b,斜邊長(zhǎng)為c,那么a、b、c三者之間的關(guān)系是a的平方加上b的平方等于c的平方。
第二章:四邊形
1.平行四邊形:兩組對(duì)邊分別平行的四邊形叫做平行四邊形。
2.菱形:有一組鄰邊相等的平行四邊形叫做菱形。
3.矩形:有一個(gè)角是直角的平行四邊形叫做矩形。
4.正方形:有一組鄰邊相等的矩形叫做正方形。
5.平行四邊形的性質(zhì):對(duì)邊平行且相等;對(duì)角相等,且互補(bǔ);對(duì)角線互相平分。
6.菱形的性質(zhì):四邊相等;對(duì)角線互相垂直,且每一條對(duì)角線平分一組對(duì)角;菱形被兩條對(duì)角線分成四個(gè)全等的直角三角形;菱形的面積等于兩條對(duì)角線長(zhǎng)的積的一半。
7.矩形的性質(zhì):矩形的四個(gè)角都是直角;矩形的對(duì)角線相等。
8.正方形的性質(zhì):四個(gè)角都是直角,四條邊都相等;對(duì)角線相等,且互相垂直平分,每條對(duì)角線平分一組對(duì)角;正方形被兩條對(duì)角線分成四個(gè)全等的直角三角形;正方形是特殊的長(zhǎng)方形,所以正方形具有矩形的一切性質(zhì)。
第三章:一次函數(shù)
1.一次函數(shù):如果所給函數(shù)表達(dá)式是正比例函數(shù),那么它經(jīng)過原點(diǎn)(0,0);如果所給函數(shù)表達(dá)式是一次函數(shù)(斜截式),那么它經(jīng)過原點(diǎn)(0,0)。
2.正比例函數(shù):如果y=kx(k是常數(shù),且k≠0),那么y叫做x的正比例函數(shù)。
3.一次函數(shù):如果正比例函數(shù)y=kx(k是常數(shù),且k≠0)的圖像經(jīng)過第一、二、三象限,那么一次函數(shù)y=kx+b(k,b是常數(shù),k≠0)的圖像也經(jīng)過第一、二、三象限。
4.一次函數(shù):如果正比例函數(shù)y=kx(k是常數(shù),且k≠0)的.圖像經(jīng)過第一、二、三象限,那么一次函數(shù)y=kx+b(k,b是常數(shù),k≠0)的圖像也經(jīng)過第一、二、三象限。
5.正比例函數(shù):如果y=kx(k是常數(shù),且k≠0),那么y叫做x的正比例函數(shù)。
6.一次函數(shù):如果正比例函數(shù)y=kx(k是常數(shù),且k≠0)的圖像經(jīng)過第一、二、三象限,那么一次函數(shù)y=kx+b(k,b是常數(shù),k≠0)的圖像也經(jīng)過第一、二、三象限。
7.正比例函數(shù):如果y=kx(k是常數(shù),且k≠0),那么y叫做x的正比例函數(shù)。
8.一次函數(shù):如果正比例函數(shù)y=kx(k是常數(shù),且k≠0)的圖像經(jīng)過第一、二、三象限,那么一次函數(shù)y=kx+b(k,b是常數(shù),k≠0)的圖像也經(jīng)過第一、二、三象限。
9.正比例函數(shù):如果y=kx(k是常數(shù),且k≠0),那么y叫做x的正比例函數(shù)。
10.一次函數(shù):如果正比例函數(shù)y=kx(k是常數(shù),且k≠0)的圖像經(jīng)過第一、二、三象限,那么一次函數(shù)y=kx+b(k,b是常數(shù),k≠0)的圖像也經(jīng)過第一、二、三象限。
初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)12
關(guān)鍵詞:初一數(shù)學(xué);基礎(chǔ)知識(shí);教學(xué)策略
初中數(shù)學(xué)是一個(gè)整體,相對(duì)而言,初一數(shù)學(xué)知識(shí)點(diǎn)很多,注重基礎(chǔ),初一數(shù)學(xué)是對(duì)學(xué)數(shù)學(xué)的適當(dāng)深入,也為后續(xù)的學(xué)習(xí)打下良好的基礎(chǔ)。在初一數(shù)學(xué)的教學(xué)中,注重學(xué)生基礎(chǔ)知識(shí)的掌握是非常必要的。如今的現(xiàn)狀是,剛?cè)氤踔械膶W(xué)生并沒有對(duì)打好數(shù)學(xué)基礎(chǔ)有足夠的重視。一些學(xué)生剛進(jìn)入初中,在數(shù)學(xué)學(xué)習(xí)中感受不到壓力,沒有投入足夠的精力,因而漸漸地就積累了很多關(guān)于基礎(chǔ)知識(shí)的小問題,這些小問題在學(xué)生進(jìn)入后續(xù)的學(xué)習(xí)中,慢慢就越來越多,形成大問題,大問題漸漸就會(huì)凸顯出來,學(xué)生漸漸就會(huì)感到力不從心。下面就針對(duì)初一學(xué)生學(xué)習(xí)中的問題,具體談?wù)勅绾未蚝贸跻粩?shù)學(xué)的基礎(chǔ)。
一、打好初一數(shù)學(xué)基礎(chǔ)的重要性
進(jìn)入中學(xué),學(xué)生的科目增加,內(nèi)容拓展,知識(shí)深入,數(shù)學(xué)這門學(xué)科由具體到抽象,從文字發(fā)展成了符號(hào),從靜態(tài)逐漸發(fā)展成了動(dòng)態(tài)。初一數(shù)學(xué)學(xué)習(xí)是很重要的一年,能夠讓學(xué)生感受到初中數(shù)學(xué)與小學(xué)的不同,并能感受到數(shù)學(xué)學(xué)習(xí)帶來的快樂,然而,一些學(xué)生對(duì)數(shù)學(xué)產(chǎn)生厭惡情緒也大都是從初中開始的,由于基礎(chǔ)沒打好對(duì)數(shù)學(xué)產(chǎn)生厭惡是很多學(xué)生的通病;A(chǔ)知識(shí)是進(jìn)行深入學(xué)習(xí)的根基,它為數(shù)學(xué)學(xué)習(xí)的`深入做鋪墊,然而基礎(chǔ)知識(shí)卻并沒有得到初一學(xué)生應(yīng)有的足夠重視。初中的數(shù)學(xué)知識(shí)相對(duì)小學(xué)來說,已有了很大的深入,如果初一的基礎(chǔ)知識(shí)沒有打好,學(xué)生會(huì)漸漸感到吃力,從而跟不上教學(xué)步伐,導(dǎo)致產(chǎn)生厭學(xué)情緒。不利于學(xué)生的發(fā)展。因此,教師在教學(xué)中必須注重初一學(xué)生基礎(chǔ)知識(shí)的培養(yǎng),并使學(xué)生認(rèn)識(shí)到打好基礎(chǔ)知識(shí)的重要性。
二、初一數(shù)學(xué)學(xué)習(xí)中常出現(xiàn)的問題
1、知識(shí)點(diǎn)理解不透徹
初一學(xué)生剛?cè)氤踔,依然保留著小學(xué)生的一些習(xí)慣,愛玩并且厭煩課本上的基礎(chǔ)知識(shí)點(diǎn)。對(duì)知識(shí)點(diǎn)的理解停留在一知半解的層次上。并且,學(xué)生并沒有對(duì)基礎(chǔ)知識(shí)有足夠的重視,沒有認(rèn)識(shí)到基礎(chǔ)知識(shí)的重要性,從而導(dǎo)致基礎(chǔ)知識(shí)越來越差,產(chǎn)生對(duì)數(shù)學(xué)的厭煩,進(jìn)入惡性循環(huán)。
2、解答題目小錯(cuò)誤多,無法完整地解決問題
學(xué)生由于不重視基礎(chǔ),導(dǎo)致一些題目無法完整地進(jìn)行解決,無論簡(jiǎn)單的題型還是難的題型,都是建立在基礎(chǔ)知識(shí)點(diǎn)上的。學(xué)生的問題是無法把握其中的基礎(chǔ)技巧,忽視基礎(chǔ)知識(shí),始終不能完整地解決問題。
3、沒有養(yǎng)成歸納總結(jié)的好習(xí)慣
學(xué)生在平時(shí)的練習(xí)中會(huì)有許多解錯(cuò)的題型和忽視了的知識(shí)點(diǎn),然而大都都是錯(cuò)了就錯(cuò)了,并沒有進(jìn)行歸納總結(jié),導(dǎo)致對(duì)錯(cuò)誤的題型沒有進(jìn)行反思,從而一錯(cuò)再錯(cuò)。對(duì)一些基礎(chǔ)知識(shí)點(diǎn),也沒有進(jìn)行很好的歸納,腦海里沒有一個(gè)系統(tǒng)的基礎(chǔ)知識(shí)網(wǎng)。
三、打好學(xué)生數(shù)學(xué)基礎(chǔ)的策略
1、明確教學(xué)目標(biāo),突出重點(diǎn)
每一堂課的教學(xué),都有它的重點(diǎn)內(nèi)容,每一堂課,作為教師,首先都需要明確這堂課的教學(xué)目標(biāo),并要突出重點(diǎn),讓學(xué)生對(duì)這堂課所學(xué)的知識(shí)點(diǎn)有一個(gè)清晰的輪廓。教師可以在黑板的一角把重點(diǎn)內(nèi)容簡(jiǎn)短地寫出來,并保持一節(jié)課,引起學(xué)生的關(guān)注和重視。教師要通過不斷強(qiáng)調(diào)和引用,使學(xué)生對(duì)重點(diǎn)知識(shí)點(diǎn)留下深刻的印象,并可以出一個(gè)引用了重點(diǎn)知識(shí)的題目讓學(xué)生解答。例如,學(xué)習(xí)《數(shù)軸》這一節(jié)時(shí),教師可先對(duì)重點(diǎn)基礎(chǔ)知識(shí)點(diǎn)進(jìn)行講解,讓學(xué)生了解數(shù)軸的基本定義,在腦海里留下一個(gè)概念,再讓學(xué)生上講臺(tái)到黑板上按要求畫下來。畫完后,讓學(xué)生自己做必要的講解,比如畫數(shù)軸的三要素原點(diǎn)、正方向、單位長(zhǎng)度。這樣,學(xué)生對(duì)數(shù)軸的基礎(chǔ)知識(shí)點(diǎn)就會(huì)有一個(gè)深刻的印象。
2、精講例題,多做課堂練習(xí)
針對(duì)基礎(chǔ)知識(shí),教師可在課堂上多設(shè)置一些例題,使學(xué)生能夠把基礎(chǔ)知識(shí)應(yīng)用到題目中去解答,從而認(rèn)識(shí)到基礎(chǔ)知識(shí)的重要性。教師要精選例題,按照這節(jié)課的重點(diǎn)基礎(chǔ)內(nèi)容進(jìn)行選題,從結(jié)構(gòu)特征、思維方式等各個(gè)方面進(jìn)行對(duì)題型的剖析,從而讓學(xué)生在解題的基礎(chǔ)之上掌握基礎(chǔ)知識(shí)的關(guān)鍵。知識(shí)點(diǎn)講得再多也是抽象空洞的,只有與題目進(jìn)行結(jié)合,讓學(xué)生靈活運(yùn)用,才能夠使學(xué)生對(duì)知識(shí)點(diǎn)有一個(gè)深刻的理解。課堂上需根據(jù)實(shí)際情況布置課堂練習(xí),練習(xí)量針對(duì)知識(shí)點(diǎn)的難易程度可多可少,重要的是要讓學(xué)生有一個(gè)思考解答的過程。教師可讓學(xué)生自主進(jìn)行解答,若解答不出教師則做必要的指點(diǎn)進(jìn)行幫助,并且要鼓勵(lì)學(xué)生不懂就要問。還可以讓學(xué)生共同討論一些難點(diǎn)問題,促進(jìn)學(xué)生勤學(xué)好問的習(xí)慣培養(yǎng)。
3、形象教學(xué),變抽象為具體
教師在實(shí)際課堂教學(xué)中,可以運(yùn)用很多種教學(xué)方式,每一堂課都有其教學(xué)目標(biāo),教學(xué)需根據(jù)教學(xué)內(nèi)容的變化選擇適當(dāng)?shù)慕虒W(xué)方式,形象教學(xué)是很重要并且很有效的教學(xué)方式。例如,進(jìn)行幾何的教學(xué),教師可以進(jìn)行具體演示,向?qū)W生展示幾何模型,運(yùn)用幾何模型來驗(yàn)證幾何結(jié)論。
4、讓學(xué)生收集題目,制作錯(cuò)題集
基礎(chǔ)是在無數(shù)次練習(xí)的基礎(chǔ)之上總結(jié)出來的,做題如同挖金礦,對(duì)待錯(cuò)題就如同對(duì)待發(fā)掘冶煉金礦一樣。學(xué)生在做題時(shí),會(huì)遇到很多難題和易錯(cuò)題,對(duì)于做錯(cuò)了的題目,學(xué)生看看就丟到一邊,是沒有起到練習(xí)應(yīng)有的效果的。教師要促使學(xué)生制作一個(gè)錯(cuò)題集,專門收集自己做錯(cuò)或者不會(huì)做的題目,讓學(xué)生自己分析做錯(cuò)的原因,為什么會(huì)做錯(cuò),下次如何避免,學(xué)生在總結(jié)反思的過程中,自然而然就對(duì)知識(shí)進(jìn)行了一次梳理。例如,用科學(xué)計(jì)數(shù)法計(jì)數(shù)是學(xué)生經(jīng)常容易犯錯(cuò)的知識(shí)點(diǎn),學(xué)生的粗心導(dǎo)致很簡(jiǎn)單的問題經(jīng)常犯錯(cuò),通過錯(cuò)題集,學(xué)生收集表示錯(cuò)的科學(xué)計(jì)數(shù)法,不斷總結(jié)、強(qiáng)化,從而做到更細(xì)心。
初一數(shù)學(xué)學(xué)習(xí)對(duì)剛進(jìn)入初中的學(xué)生來說是非常重要的,其既是對(duì)小學(xué)數(shù)學(xué)知識(shí)的必要深入,也為后續(xù)更深層次的學(xué)習(xí)打下關(guān)鍵的基礎(chǔ)。然而,初一學(xué)生往往并沒有認(rèn)識(shí)到進(jìn)入初中打好數(shù)學(xué)基礎(chǔ)的重要性。本文針對(duì)學(xué)好初一數(shù)學(xué)的重要性和初一數(shù)學(xué)學(xué)習(xí)面臨的一些問題進(jìn)行了具體討論,最后總結(jié)出提高學(xué)生數(shù)學(xué)基礎(chǔ)知識(shí)的幾條教學(xué)策略,給以后的數(shù)學(xué)教學(xué)提供參考。
參考文獻(xiàn):
[1]吳遠(yuǎn),學(xué)生數(shù)學(xué)自主能力的培養(yǎng)[J]。巨人教學(xué)資源,20xx。
初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)13
1、乘法與因式分解
a2-b2=(a+b)(a-b)a3+b3=(a+b)(a2-ab+b2)a3-b3=(a-b)(a2+ab+b2)
2、三角不等式
|a+b|≤|a|+|b||a-b|≤|a|+|b||a|≤b<=>-b≤a≤b
|a-b|≥|a|-|b|-|a|≤a≤|a|
3、一元二次方程的解
-b+√(b2-4ac)/2a-b-b+√(b2-4ac)/2a
4、根與系數(shù)的關(guān)系
X1+X2=-b/a X1*X2=c/a注:韋達(dá)定理
5、判別式
、賐2-4a=0注:方程有相等的兩實(shí)根
、赽2-4ac>0注:方程有一個(gè)實(shí)根
、踒2-4ac<0注:方程有共軛復(fù)數(shù)根
6、三角函數(shù)公式
、賰山呛凸
sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA
cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB
tan(A+B)=(tanA+tanB)/(1-tanAtanB)tan(A-B)=(tanA-tanB)/(1+tanAtanB)
ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA)ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)
、诒督枪
tan2A=2tanA/(1-tan2A)ctg2A=(ctg2A-1)/2ctga
cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a
、郯虢枪
sin(A/2)=√((1-cosA)/2)sin(A/2)=-√((1-cosA)/2)
cos(A/2)=√((1+cosA)/2)cos(A/2)=-√((1+cosA)/2)
tan(A/2)=√((1-cosA)/((1+cosA))tan(A/2)=-√((1-cosA)/((1+cosA))
ctg(A/2)=√((1+cosA)/((1-cosA))ctg(A/2)=-√((1+cosA)/((1-cosA))
、芎筒罨e
2sinAcosB=sin(A+B)+sin(A-B)2cosAsinB=sin(A+B)-sin(A-B)
2cosAcosB=cos(A+B)-sin(A-B)-2sinAsinB=cos(A+B)-cos(A-B)
sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2)
tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosB
ctgA+ctgBsin(A+B)/sinAsinB-ctgA+ctgBsin(A+B)/sinAsinB
、菽承⿺(shù)列前n項(xiàng)和
1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2
1+3+5+7+9+11+13+15+…+(2n-1)=n2
2+4+6+8+10+12+14+…+(2n)=n(n+1)
12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6
13+23+33+43+53+63+…n3=n2(n+1)2/4
1*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3
⑥正弦定理
a/sinA=b/sinB=c/sinC=2R注:其中R表示三角形的外接圓半徑
、哂嘞叶ɡ
b2=a2+c2-2accosB注:角B是邊a和邊c的夾角
⑧圓的方程
圓的標(biāo)準(zhǔn)方程(x-a)2+(y-b)2=r2注:(a,b)是圓心坐標(biāo)
圓的一般方程x2+y2+Dx+Ey+F=0注:D2+E2-4F>0
、崃Ⅲw體積與側(cè)面積
直棱柱側(cè)面積S=c*h斜棱柱側(cè)面積S=c'*h
正棱錐側(cè)面積S=1/2c*h'正棱臺(tái)側(cè)面積S=1/2(c+c')h'
圓臺(tái)側(cè)面積S=1/2(c+c')l=pi(R+r)l球的表面積S=4pi*r2
圓柱側(cè)面積S=c*h=2pi*h圓錐側(cè)面積S=1/2*c*l=pi*r*l
弧長(zhǎng)公式l=a*r a是圓心角的弧度數(shù)r>0扇形面積公式s=1/2*l*r
錐體體積公式V=1/3*S*H圓錐體體積公式V=1/3*pi*r2h
斜棱柱體積V=S'L注:其中,S'是直截面面積,L是側(cè)棱長(zhǎng)
柱體體積公式V=s*h圓柱體V=pi*r2h
二、初中幾何公式
1、平行線證明
、俳(jīng)過直線外一點(diǎn),有且只有一條直線與這條直線平行
、谌绻麅蓷l直線都和第三條直線平行,這兩條直線也互相平行
、弁唤窍嗟,兩直線平行
、軆(nèi)錯(cuò)角相等,兩直線平行
⑤同旁內(nèi)角互補(bǔ),兩直線平行
、迌芍本平行,同位角相等
、邇芍本平行,內(nèi)錯(cuò)角相等
、鄡芍本平行,同旁內(nèi)角互補(bǔ)
2、全等三角形證明
、龠吔沁吂(SAS)有兩邊和它們的夾角對(duì)應(yīng)相等的兩個(gè)三角形全等
②角邊角公理(ASA)有兩角和它們的夾邊對(duì)應(yīng)相等的兩個(gè)三角形全等
、弁普(AAS)有兩角和其中一角的對(duì)邊對(duì)應(yīng)相等的兩個(gè)三角形全等
、苓呥呥吂(SSS)有三邊對(duì)應(yīng)相等的兩個(gè)三角形全等
、菪边、直角邊公理(HL)有斜邊和一條直角邊對(duì)應(yīng)相等的兩個(gè)直角三角形全等
3、三角形基本定理
、俣ɡ1在角的平分線上的點(diǎn)到這個(gè)角的兩邊的距離相等
、诙ɡ2到一個(gè)角的兩邊的距離相同的點(diǎn),在這個(gè)角的平分線上
、劢堑钠椒志是到角的兩邊距離相等的所有點(diǎn)的集合
④等腰三角形的性質(zhì)定理等腰三角形的兩個(gè)底角相等(即等邊對(duì)等角)
、萃普1等腰三角形頂角的平分線平分底邊并且垂直于底邊
⑥等腰三角形的頂角平分線、底邊上的中線和底邊上的高互相重合
⑦推論3等邊三角形的各角都相等,并且每一個(gè)角都等于60°
、嗟妊切蔚呐卸ǘɡ砣绻粋(gè)三角形有兩個(gè)角相等,那么這兩個(gè)角所對(duì)的邊也相等(等角對(duì)等邊)
、嶂苯侨切
4、多邊形定理
、俣ɡ硭倪呅蔚膬(nèi)角和等于360°
、谒倪呅蔚耐饨呛偷扔360°
、鄱噙呅蝺(nèi)角和定理n邊形的內(nèi)角的和等于(n-2)×180°
、芡普撊我舛噙叺耐饨呛偷扔360°
5、平行四邊形證明與等腰梯形證明
、倨叫兴倪呅涡再|(zhì)定理1平行四邊形的對(duì)角相等
、谄叫兴倪呅涡再|(zhì)定理2平行四邊形的對(duì)邊相等
、燮叫兴倪呅涡再|(zhì)定理3平行四邊形的對(duì)角線互相平分
……
、芫匦涡再|(zhì)定理1矩形的四個(gè)角都是直角
、菥匦涡再|(zhì)定理2矩形的對(duì)角線相等
……
、薜妊菪涡再|(zhì)定理等腰梯形在同一底上的兩個(gè)角相等
⑦等腰梯形判定定理在同一底上的兩個(gè)角相等的梯形是等腰梯形
、嗤普1經(jīng)過梯形一腰的中點(diǎn)與底平行的直線,必平分另一腰
、嵬普2經(jīng)過三角形一邊的中點(diǎn)與另一邊平行的直線,必平分第三邊
7、相似三角形證明
、傧嗨迫切闻卸ǘɡ1兩角對(duì)應(yīng)相等,兩三角形相似(ASA)
②判定定理2兩邊對(duì)應(yīng)成比例且夾角相等,兩三角形相似(SAS)
③判定定理3三邊對(duì)應(yīng)成比例,兩三角形相似(SSS)
、芏ɡ砣绻粋(gè)直角三角形的斜邊和一條直角邊與另一個(gè)直角三角形的斜邊和一條直角邊對(duì)應(yīng)成比例,那么這兩個(gè)直角三角形相似
⑤性質(zhì)定理1相似三角形對(duì)應(yīng)高的比,對(duì)應(yīng)中線的比與對(duì)應(yīng)角平分線的比都等于相似比
、扌再|(zhì)定理2相似三角形周長(zhǎng)的比等于相似比
、咝再|(zhì)定理3相似三角形面積的比等于相似比的平方
8、弦和圓的證明
①定理不在同一直線上的三點(diǎn)確定一個(gè)圓。
、诖箯蕉ɡ泶怪庇谙业闹睆狡椒诌@條弦并且平分弦所對(duì)的兩條弧
、弁普1
平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對(duì)的兩條弧
弦的.垂直平分線經(jīng)過圓心,并且平分弦所對(duì)的兩條弧
平分弦所對(duì)的一條弧的直徑,垂直平分弦,并且平分弦所對(duì)的另一條弧
、芡普2圓的兩條平行弦所夾的弧相等
、輬A是以圓心為對(duì)稱中心的中心對(duì)稱圖形
、薅ɡ碓谕瑘A或等圓中,相等的圓心角所對(duì)的弧相等,所對(duì)的弦
相等,所對(duì)的弦的弦心距相等
⑦線與圓的位置關(guān)系
直線L和⊙O相交d 直線L和⊙O相切d=r 直線L和⊙O相離d>r 、鄨A與圓之間的位置關(guān)系 兩圓外離d>R+r②兩圓外切d=R+r 兩圓相交R-r 兩圓內(nèi)切d=R-r(R>r) 兩圓內(nèi)含dr) QQ截圖20150129173906.jpg 三、數(shù)學(xué)學(xué)習(xí)方法 1、突出一個(gè)“勤”字(克服一個(gè)“惰”字) 數(shù)學(xué)家華羅庚曾經(jīng)說過:“聰明在于學(xué)習(xí),天才在于勤奮”,“勤能補(bǔ)拙是良訓(xùn),一分辛勞一分才“:我們?cè)趯W(xué)習(xí)的時(shí)候要突出一個(gè)勤字,克服一個(gè)“懶”字,怎么突出“勤”字,從這個(gè)字面上來看,要做到五勤:“耳勤”“眼勤”(耳朵聽,眼睛看,接受信息) “口勤”(討論,回答問題,而不是講話,消化信息)“腦勤”(善于思考問題,積極思考問題——吸收、儲(chǔ)存信息)那是不是做到以上四點(diǎn)就行了呢?不是。這個(gè)字還有缺陷,在聰下面加上“手” “手勤”(動(dòng)手多實(shí)踐,不僅光做題,做課件,做模型) 這樣的人聰明不聰明? 最大的提高學(xué)習(xí)效率,首先要做到——上課認(rèn)真聽講(這是根本)回家先復(fù)習(xí)再做題如果課聽不好,就別想消化知識(shí) 2、學(xué)好初中數(shù)學(xué)還有兩個(gè)要點(diǎn),要狠抓兩個(gè)要點(diǎn): 學(xué)好數(shù)學(xué),一要(動(dòng)手),二要(動(dòng)腦)。動(dòng)腦就是要學(xué)會(huì)觀察分析問題,學(xué)會(huì)思考,不要拿到題就做,找到已知和未知想象之間有什么聯(lián)系,多問幾個(gè)為什么。動(dòng)手就是多實(shí)踐,多做題,要“拳不離手”(武術(shù))“曲不離口”(唱歌)。同學(xué)就是“題不離手”,這兩個(gè)要點(diǎn)大家要記住!皠(dòng)腦又動(dòng)手,才能最大地發(fā)揮大腦的效率” 3、做到“三個(gè)一遍” 大家聽過“失敗是成功之母”聽過“重復(fù)是學(xué)習(xí)之母”嗎?培根(18-19世紀(jì)英國的哲學(xué)家)——“知識(shí)就是力量”,“重復(fù)是學(xué)習(xí)之母”。如何重復(fù),我給你們解釋一下: “上課要認(rèn)真聽一遍,動(dòng)手推一遍,想一遍” “下課看” “考試前” 4、重視“四個(gè)依據(jù)” 讀好一本教科書——它是教學(xué)、中考的主要依據(jù); 記好一本筆記——它是教師多年經(jīng)驗(yàn)的結(jié)晶; 做好做凈一本習(xí)題集——它是使知識(shí)拓寬; 記好一本心得筆記,最好每人自己準(zhǔn)備一本錯(cuò)題集 首先你要有一個(gè)好的態(tài)度,有些人學(xué)習(xí)數(shù)學(xué),可能有的階段會(huì)喜歡學(xué)習(xí),但是某一階段,對(duì)數(shù)學(xué)就沒有什么興趣了,可能每個(gè)人都會(huì)有這樣一個(gè)階段,但是如果發(fā)現(xiàn)自己不喜歡學(xué)習(xí)數(shù)學(xué)了,一定要克制自己,在學(xué)習(xí)數(shù)學(xué)上,保持一個(gè)良好的學(xué)習(xí)態(tài)度,這是你學(xué)好數(shù)學(xué)的第一步。 充分的利用好上課的時(shí)間,上課時(shí)間你所掌握的知識(shí),會(huì)比你在課下學(xué)很長(zhǎng)時(shí)間都有用,所以珍惜課堂老師所講的內(nèi)容,老師的某些話對(duì)我們以后做數(shù)學(xué)題都很有幫助,如果你上課走神,這些話沒有聽到,你在做題的時(shí)候,可能會(huì)走很多彎路,做題的效率也會(huì)降低,一旦有這樣的情況,可能你就會(huì)不喜歡數(shù)學(xué)了。 學(xué)習(xí)最重要的是思考,會(huì)思考數(shù)學(xué)才能學(xué)好,數(shù)學(xué)中的題都是需要我們?nèi)ヅe一反三的,沒做一道題,都要思考一下,圍繞著這道題的`知識(shí)點(diǎn),還會(huì)有什么樣的題型出現(xiàn),哪怕是遇到不會(huì)的題,也要勤加的思考,如果你把知識(shí)點(diǎn)自認(rèn)為學(xué)習(xí)透徹,那么就用做題檢驗(yàn)吧,數(shù)學(xué)中多做題是必須的,成績(jī)都是用題堆積出來的,很少會(huì)有人不做題數(shù)學(xué)成績(jī)很高的。 三角形兩邊: 定理三角形兩邊的和大于第三邊。 推論三角形兩邊的差小于第三邊。 三角形中位線定理: 三角形的中位線平行于第三邊,并且等于它的一半。 三角形的重心: 三角形的重心到頂點(diǎn)的距離是它到對(duì)邊中點(diǎn)距離的2倍。 在三角形中,連接一個(gè)頂點(diǎn)和它對(duì)邊中點(diǎn)的線段叫做三角形的中線,三角形的三條中線交于一點(diǎn),這一點(diǎn)叫做“三角形的重心”。 與三角形有關(guān)的角: 1、三角形的`內(nèi)角和定理:三角形的內(nèi)角和為180°,與三角形的形狀無關(guān)。 2、直角三角形兩個(gè)銳角的關(guān)系:直角三角形的兩個(gè)銳角互余(相加為90°)。有兩個(gè)角互余的三角形是直角三角形。 3、三角形外角的性質(zhì):三角形的一個(gè)外角等于與它不相鄰的兩個(gè)內(nèi)角之和;三角形的一個(gè)外角大于與它不相鄰的任何一個(gè)內(nèi)角;三角形三個(gè)外角和為360°。 全等三角形的性質(zhì)和判定: 全等三角形共有5種判定方式:SSS、SAS、ASA、AAS、HL。特殊情況下平移、旋轉(zhuǎn)、對(duì)折也會(huì)構(gòu)成全等三角形。 。ㄟ呥呥叄,即三邊對(duì)應(yīng)相等的兩個(gè)三角形全等。 。ㄟ吔沁叄,即三角形的其中兩條邊對(duì)應(yīng)相等,且兩條邊的夾角也對(duì)應(yīng)相等的兩個(gè)三角形全等。 (角邊角),即三角形的其中兩個(gè)角對(duì)應(yīng)相等,且兩個(gè)角夾的的邊也對(duì)應(yīng)相等的兩個(gè)三角形全等。 。ń墙沁叄慈切蔚钠渲袃蓚(gè)角對(duì)應(yīng)相等,且對(duì)應(yīng)相等的角所對(duì)應(yīng)的邊也對(duì)應(yīng)相等的兩個(gè)三角形全等。 。ㄐ边叀⒅苯沁叄,即在直角三角形中一條斜邊和一條直角邊對(duì)應(yīng)相等的兩個(gè)直角三角形全等。 等邊三角形的判定: 1、三邊相等的三角形是等邊三角形(定義)。 2、三個(gè)內(nèi)角都相等的三角形是等邊三角形。 3、有一個(gè)角是60度的等腰三角形是等邊三角形。 4、有兩個(gè)角等于60度的三角形是等邊三角形。 【初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)】相關(guān)文章: 初中數(shù)學(xué)幾何知識(shí)點(diǎn)總結(jié)11-05 初中數(shù)學(xué)函數(shù)知識(shí)點(diǎn)總結(jié)11-24 初中數(shù)學(xué)圓的知識(shí)點(diǎn)總結(jié)12-05 初中數(shù)學(xué)必備知識(shí)點(diǎn)總結(jié)03-01 初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)07-14 初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)07-15 初中數(shù)學(xué)知識(shí)點(diǎn)歸納總結(jié)12-02 初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)歸納03-05初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)14
初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)15