數學初中知識點總結優(yōu)秀[15篇]
總結是對過去一定時期的工作、學習或思想情況進行回顧、分析,并做出客觀評價的書面材料,它能幫我們理順知識結構,突出重點,突破難點,因此,讓我們寫一份總結吧。你想知道總結怎么寫嗎?以下是小編整理的數學初中知識點總結,僅供參考,大家一起來看看吧。
數學初中知識點總結1
一、角的定義
“靜態(tài)”概念:有公共端點的兩條射線組成的圖形叫做角。
“動態(tài)”概念:角可以看作是一條射線繞其端點從一個位置旋轉到另一個位置所形成的圖形。
如果一個角的兩邊成一條直線,那么這個角叫做平角;平角的一半叫直角;大于直角小于平角的角叫做鈍角;大于0小于直角的角叫做銳角。
二、角的換算:1周角=2平角=4直角=360°;
1平角=2直角=180°;
1直角=90°;
1度=60分=3600秒(即:1°=60′=3600″);
1分=60秒(即:1′=60″).
三、余角、補角的概念和性質:
概念:如果兩個角的和是一個平角,那么這兩個角叫做互為補角。
如果兩個角的和是一個直角,那么這兩個角叫做互為余角。
說明:互補、互余是指兩個角的數量關系,沒有位置關系。
性質:同角(或等角)的余角相等;
同角(或等角)的補角相等。
四、角的比較方法:
角的大小比較,有兩種方法:
(1)度量法(利用量角器);
(2)疊合法(利用圓規(guī)和直尺)。
五、角平分線:從一個角的頂點引出的一條射線。把這個角分成相等的兩部分,這條射線叫做這個角的平分線。
常見考法
(1)考查與時鐘有關的問題;(2)角的計算與度量。
誤區(qū)提醒
角的度、分、秒單位的換算是60進制,而不是10進制,換算時易受10進制影響而出錯。
初中數學知識點梳理
1.一元一次方程:只含有一個未知數,并且未知數的次數是1,并且含未知數項的.系數不是零的整式方程是一元一次方程。
2.一元一次方程的標準形式:ax+b=0(x是未知數,a、b是已知數,且a≠0)。
3.一元一次方程解法的一般步驟:整理方程……去分母……去括號……移項……合并同類項……系數化為1 ……(檢驗方程的解)。
4.列一元一次方程解應用題:
(1)讀題分析法:多用于“和,差,倍,分問題”
仔細讀題,找出表示相等關系的關鍵字,例如:“大,小,多,少,是,共,合,為,完成,增加,減少,配套—————”,利用這些關鍵字列出文字等式,并且據題意設出未知數,最后利用題目中的量與量的關系填入代數式,得到方程。
(2)畫圖分析法:多用于“行程問題”
利用圖形分析數學問題是數形結合思想在數學中的體現,仔細讀題,依照題意畫出有關圖形,使圖形各部分具有特定的含義,通過圖形找相等關系是解決問題的關鍵,從而取得布列方程的依據,最后利用量與量之間的關系(可把未知數看做已知量),填入有關的代數式是獲得方程的基礎。
11.列方程解應用題的常用公式:
(1)行程問題:距離=速度·時間;
(2)工程問題:工作量=工效·工時;
(3)比率問題:部分=全體·比率;
(4)順逆流問題:順流速度=靜水速度+水流速度,逆流速度=靜水速度—水流速度;
(5)商品價格問題:售價=定價·折·,利潤=售價—成本,;
(6)周長、面積、體積問題:C圓=2πR,S圓=πR2,C長方形=2(a+b),S長方形=ab,C正方形=4a,S正方形=a2,S環(huán)形=π(R2—r2),V長方體=abc,V正方體=a3,V圓柱=πR2h,V圓錐= πR2h。
本章內容是代數學的核心,也是所有代數方程的基礎。豐富多彩的問題情境和解決問題的快樂很容易激起學生對數學的樂趣,所以要注意引導學生從身邊的問題研究起,進行有效的數學活動和合作交流,讓學生在主動學習、探究學習的過程中獲得知識,提升能力,體會數學思想方法。
數學初中知識點總結2
整式的加減
2、1整式
1、單項式:由數字和字母乘積組成的式子。系數,單項式的次數、單項式指的是數或字母的積的代數式、單獨一個數或一個字母也是單項式、因此,判斷代數式是否是單項式,關鍵要看代數式中數與字母是否是乘積關系,即分母中不含有字母,若式子中含有加、減運算關系,其也不是單項式、
2、單項式的系數:是指單項式中的數字因數;
3、單項數的次數:是指單項式中所有字母的指數的和、
4、多項式:幾個單項式的和。判斷代數式是否是多項式,關鍵要看代數式中的每一項是否是單項式、每個單項式稱項,常數項,多項式的次數就是多項式中次數的次數。多項式的次數是指多項式里次數項的次數,這里是次數項,其次數是6;多項式的項是指在多項式中,每一個單項式、特別注意多項式的`項包括它前面的性質符號、
5、它們都是用字母表示數或列式表示數量關系。注意單項式和多項式的每一項都包括它前面的符號。
6、單項式和多項式統(tǒng)稱為整式。
2、2整式的加減
1、同類項:所含字母相同,并且相同字母的指數也相同的項。與字母前面的系數(≠0)無關。
2、同類項必須同時滿足兩個條件:(1)所含字母相同;(2)相同字母的次數相同,二者缺一不可、同類項與系數大小、字母的排列順序無關
3、合并同類項:把多項式中的同類項合并成一項?梢赃\用交換律,結合律和分配律。
4、合并同類項法則:合并同類項后,所得項的系數是合并前各同類項的系數的和,且字母部分不變;
5、去括號法則:去括號,看符號:是正號,不變號;是負號,全變號。
6、整式加減的一般步驟:
一去、二找、三合
(1)如果遇到括號按去括號法則先去括號、(2)結合同類項、(3)合并同類項葫蘆島
初中數學知識點歸納
三角和的公式
sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγ
cos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγ
tan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα)
倍角公式
tan2A = 2tanA/(1-tan2 A)
Sin2A=2SinA?CosA
Cos2A = Cos^2 A--Sin2 A =2Cos2 A-1 =1-2sin^2 A
三倍角公式
sin3A = 3sinA-4(sinA)3;
cos3A = 4(cosA)3 -3cosA
tan3a = tan a ? tan(π/3+a)? tan(π/3-a)
三角函數特殊值
α=0° sinα=0 cosα=1 tαnα=0 cotα→∞ secα=1 cscα→∞
α=15°(π/12) sinα=(√6-√2)/4 cosα=(√6+√2)/4 tαnα=2-√3 cotα=2+√3 secα=√6-√2 cscα=√6+√2
α=22.5°(π/8) sinα=√(2-√2)/2 cosα=√(2+√2)/2 tαnα=√2-1 cotα=√2+1 secα=√(4-2√2) cscα=√(4+2√2)
a=30°(π/6) sinα=1/2 cosα=√3/2 tαnα=√3/3 cotα=√3 secα=2√3/3 cscα=2
α=45°(π/4) sinα=√2/2 cosα=√2/2 tαnα=1 cotα=1 secα=√2 cscα=√2
α=60°(π/3) sinα=√3/2 cosα=1/2 tαnα=√3 cotα=√3/3 secα=2 cscα=2√3/3
α=67.5°(3π/8) sinα=√(2+√2)/2 cosα=√(2-√2)/2 tαnα=√2+1 cotα=√2-1 secα=√(4+2√2) cscα=√(4-2√2)
α=75°(5π/12) sinα=(√6+√2)/4 cosα=(√6-√2)/4 tαnα=2+√3 cotα=2-√3 secα=√6+√2 cscα=√6-√2
α=90°(π/2) sinα=1 cosα=0 tαnα→∞ cotα=0 secα→∞ cscα=1
α=180°(π) sinα=0 cosα=-1 tαnα=0 cotα→∞ secα=-1 cscα→∞
α=270°(3π/2) sinα=-1 cosα=0 tαnα→∞ cotα=0 secα→∞ cscα=-1
α=360°(2π) sinα=0 cosα=1 tαnα=0 cotα→∞ secα=1 cscα→∞
三角函數記憶順口溜
1三角函數記憶口訣
“奇、偶”指的是π/2的倍數的奇偶,“變與不變”指的是三角函數的名稱的變化:“變”是指正弦變余弦,正切變余切。(反之亦然成立)“符號看象限”的含義是:把角α看做銳角,不考慮α角所在象限,看n·(π/2)±α是第幾象限角,從而得到等式右邊是正號還是負號。
以cos(π/2+α)=-sinα為例,等式左邊cos(π/2+α)中n=1,所以右邊符號為sinα,把α看成銳角,所以π/2<(π/2+α)<π,y=cosx在區(qū)間(π/2,π)上小于零,所以右邊符號為負,所以右邊為-sinα。
2符號判斷口訣
全,S,T,C,正。這五個字口訣的意思就是說:第一象限內任何一個角的四種三角函數值都是“+”;第二象限內只有正弦是“+”,其余全部是“-”;第三象限內只有正切是“+”,其余全部是“-”;第四象限內只有余弦是“+”,其余全部是“-”。
也可以這樣理解:一、二、三、四指的角所在象限。全正、正弦、正切、余弦指的是對應象限三角函數為正值的名稱?谠E中未提及的都是負值。
“ASTC”反Z。意即為“all(全部)”、“sin”、“tan”、“cos”按照將字母Z反過來寫所占的象限對應的三角函數為正值。
3三角函數順口溜
三角函數是函數,象限符號坐標注。函數圖像單位圓,周期奇偶增減現。
同角關系很重要,化簡證明都需要。正六邊形頂點處,從上到下弦切割;
中心記上數字一,連結頂點三角形。向下三角平方和,倒數關系是對角,頂點任意一函數,等于后面兩根除。誘導公式就是好,負化正后大化小,變成銳角好查表,化簡證明少不了。二的一半整數倍,奇數化余偶不變,將其后者視銳角,符號原來函數判。兩角和的余弦值,化為單角好求值,余弦積減正弦積,換角變形眾公式。和差化積須同名,互余角度變名稱。
計算證明角先行,注意結構函數名,保持基本量不變,繁難向著簡易變。
逆反原則作指導,升冪降次和差積。條件等式的證明,方程思想指路明。
萬能公式不一般,化為有理式居先。公式順用和逆用,變形運用加巧用;
一加余弦想余弦,一減余弦想正弦,冪升一次角減半,升冪降次它為范;
三角函數反函數,實質就是求角度,先求三角函數值,再判角取值范圍;
利用直角三角形,形象直觀好換名,簡單三角的方程,化為最簡求解集。
初中數學知識點大全
誘導公式的本質
所謂三角函數誘導公式,就是將角n(/2)的三角函數轉化為角的三角函數。
常用的誘導公式
公式一: 設為任意角,終邊相同的角的同一三角函數的值相等:
sin(2k)=sin kz
cos(2k)=cos kz
tan(2k)=tan kz
cot(2k)=cot kz
公式二: 設為任意角,的三角函數值與的三角函數值之間的關系:
sin( )=-sin
cos( )=-cos
tan( )=tan
cot( )=cot
公式三: 任意角與 -的三角函數值之間的關系:
sin(-)=-sin
cos(-)=cos
tan(-)=-tan
cot(-)=-cot
公式四: 利用公式二和公式三可以得到與的三角函數值之間的關系:
sin( )=sin
cos( )=-cos
tan( )=-tan
cot( )=-cot
數學初中知識點總結3
一、實數
1.平方根性質:
。1)一個正數有兩個平方根,它們互為相反數;
。2)零的平方根是零;
。3)負數沒有平方根。
2.算術平方根性質:
。1)一個正數的正的平方根叫做它的算術平方根;
。2)零的算術平方根是零;
。3)負數沒有算術平方根。
3.立方根性質:
(1)正數的立方根是正數;
。2)零的立方根是零;
。3)負數的立方根是負數。
4.實數的性質:
。1)零是唯一沒有平方根的數;
(2)正數和負數可以沒有算術平方根;
。3)任何實數的立方根只有唯一的一個;
(4)正數的立方根與它本身和零同類。
二、整式的運算
1.整式范圍:
(1)整式可以化為分數或整數;
。2)整式可以化為負數或非負數;
。3)整式可以化為奇數或偶數;
(4)整式可以化簡為分數指數冪。
2.單項式:
。1)單項式的系數是數字因數;
(2)一個單項式中所有字母的`指數的和叫做單項式的次數。
3.多項式:
(1)多項式的每一項都是一個單項式;
(2)一個多項式的項數與多項式中含有幾個單項式有關。
4.同底數冪的乘法:
。1)同底數冪相乘,底數不變,指數相加;
。2)同底數冪相除,底數不變,指數相減。
5.冪的乘方:
冪的乘方,底數不變,指數相乘。
6.積的乘方:
(1)積的乘方,等于把積的每一個因式分別乘方,再把所得的冪相乘;
。2)1的乘方等于1。
7.同底數冪的除法:
(1)同底數冪相除,底數不變,指數相減;
(2)0的任何正整數次冪都是0。
8.分式:
(1)分式是整式的一種,在整式中區(qū)別于整式,分式的分母中必須含有字母;
。2)分式的值等于分子除以分母。
9.分式的運算:
(1)分式的乘方:分式與分式相乘,再把被乘式的分子、分母分別與乘式的分子、分母相乘,即分子相乘的積做積的分子,分母相乘的積做積的分母;
(2)分式的除法:分式除以分式,把除式的分子、分母顛倒位置后,與被除式相乘,即分子相除的商做被除式的分子,分母相除的商做被除式的分母;
。3)分式的加減:異分母分式的加減運算,為了使不同分母的分數直接相加減不便,因此常把不同分母的分數分別化成與原來的分母相同的分母后再相加減。
三、方程與方程組
1.方程:
。1)含有未知數的等式叫方程;
。2)使方程左右兩邊相等的未知數的值,叫做方程的解;
。3)求方程的解的過程叫做解方程。
2.方程的解:
。1)能使方程左右兩邊相等的未知數的值;
。2)一個數(它不一定是數,也可以是符號和運算)是某一等式(含有未知數的等式)的解,那么這個數就叫做該等式的解。
3.一元一次方程:
(1)只有一個未知數;
。2)未知數的最高次數為1;
。3)整式方程。
4.方程的解法:
(1)去分母:在方程兩端同乘各分母的最小公倍數;
。2)去括號:去括號要變號;
(3)移項:把含有未知數的項移到等號的一邊,其他項移到另一邊;
(4)合并同類項:化未知數為已知數;
。5)系數化成1:在方程兩端同除以未知數的系數。
5.列方程解應用題
數學初中知識點總結4
三角形兩邊:
定理三角形兩邊的和大于第三邊。
推論三角形兩邊的差小于第三邊。
三角形中位線定理:
三角形的中位線平行于第三邊,并且等于它的一半。
三角形的重心:
三角形的重心到頂點的距離是它到對邊中點距離的2倍。
在三角形中,連接一個頂點和它對邊中點的線段叫做三角形的中線,三角形的三條中線交于一點,這一點叫做“三角形的重心”。
與三角形有關的角:
1、三角形的內角和定理:三角形的內角和為180°,與三角形的形狀無關。
2、直角三角形兩個銳角的關系:直角三角形的兩個銳角互余(相加為90°)。有兩個角互余的三角形是直角三角形。
3、三角形外角的性質:三角形的一個外角等于與它不相鄰的兩個內角之和;三角形的一個外角大于與它不相鄰的任何一個內角;三角形三個外角和為360°。
全等三角形的性質和判定:
全等三角形共有5種判定方式:SSS、SAS、ASA、AAS、HL。特殊情況下平移、旋轉、對折也會構成全等三角形。
(邊邊邊),即三邊對應相等的兩個三角形全等。
(邊角邊),即三角形的其中兩條邊對應相等,且兩條邊的夾角也對應相等的兩個三角形全等。
。ń沁吔牵,即三角形的其中兩個角對應相等,且兩個角夾的的邊也對應相等的兩個三角形全等。
。ń墙沁叄慈切蔚钠渲袃蓚角對應相等,且對應相等的'角所對應的邊也對應相等的兩個三角形全等。
(斜邊、直角邊),即在直角三角形中一條斜邊和一條直角邊對應相等的兩個直角三角形全等。
等邊三角形的判定:
1、三邊相等的三角形是等邊三角形(定義)。
2、三個內角都相等的三角形是等邊三角形。
3、有一個角是60度的等腰三角形是等邊三角形。
4、有兩個角等于60度的三角形是等邊三角形。
數學初中知識點總結5
1、有理數的加法運算:
同號相加一邊倒;異號相加“大”減“小”,符號跟著大的跑;絕對值相等“零”正好、
2、合并同類項:
合并同類項,法則不能忘,只求系數和,字母、指數不變樣、
3、去、添括號法則:
去括號、添括號,關鍵看符號,括號前面是正號,去、添括號不變號,括號前面是負號,去、添括號都變號、
4、一元一次方程:
已知未知要分離,分離方法就是移,加減移項要變號,乘除移了要顛倒、
5、平方差公式:
平方差公式有兩項,符號相反切記牢,首加尾乘首減尾,莫與完全公式相混淆、
1、完全平方公式:
完全平方有三項,首尾符號是同鄉(xiāng),首平方、尾平方,首尾二倍放中央;
首±尾括號帶平方,尾項符號隨中央、
2、因式分解:
一提(公因式)二套(公式)三分組,細看幾項不離譜,兩項只用平方差,三項十字相乘法,陣法熟練不馬虎,四項仔細看清楚,若有三個平方數(項),就用一三來分組,否則二二去分組,五項、六項更多項,二三、三三試分組,以上若都行不通,拆項、添項看清楚、
3、單項式運算:
加、減、乘、除、乘(開)方,三級運算分得清,系數進行同級(運)算,指數運算降級(進)行、
4、一元一次不等式解題的'一般步驟:
去分母、去括號,移項時候要變號,同類項合并好,再把系數來除掉,兩邊除(以)負數時,不等號改向別忘了、
5、一元一次不等式組的解集:
大大取較大,小小取較小,小大、大小取中間,大小、小大無處找、
一元二次不等式、一元一次絕對值不等式的解集:
大(魚)于(吃)取兩邊,小(魚)于(吃)取中間。
數學初中知識點總結6
一、投影
1、投影:一般地,用光線照射物體,在某個平面(地面、墻壁等)上得到的影子叫做物體的投影,照射光線叫做投影線,投影所在的平面叫做投影面。
2、平行投影:由平行光線形成的投影是平行投影。(光源特別遠)
3、中心投影:由同一點(點光源發(fā)出的光線)形成的投影叫做中心投影
4、正投影:投影線垂直于投影面產生的投影叫做正投影。物體正投影的形狀、大小與它相對于投影面的位置有關。
5、當物體的某個面平行于投影面時,這個面的正投影與這個面的形狀、大小完全相同。當物體的某個面頂斜于投影面時,這個面的正投影變小。當物體的某個面垂直于投影面時,這個面的.正投影成為一條直線。
二、三視圖
1、三視圖:是觀測者從三個不同位置(正面、水平面、側面)觀察同一個空間幾何體而畫出的圖形。三視圖就是主視圖、俯視圖、左視圖的總稱。另外還有如剖面圖、半剖面圖等做為輔助,基本能完整的表達物體的結構。
2、主視圖:在正面內得到的由前向后觀察物體的視圖。
3、俯視圖:在水平面內得到的由上向下觀察物體的視圖。
4、左視圖:在側面內得到的由左向右觀察物體的視圖。
5、三個視圖的位置關系:
①主視圖在上、俯視圖在下、左視圖在右;
、谥饕、俯視表示物體的長,主視、左視表示物體的高,左視、俯視表示物體的寬。
、壑饕、俯視長對正,主視、左視高平齊,左視、俯視寬相等。
6、畫法:看得見的部分的輪廓線畫成實線,因被其它部分遮檔而看不見的部分的輪廓線畫成虛線。
鄰補角:兩條直線相交所構成的四個角中,有公共頂點且有一條公共邊的兩個角是鄰補角。
對頂角:一個角的兩邊分別是另一個叫的兩邊的反向延長線,像這樣的兩個角互為對頂角。
垂線:兩條直線相交成直角時,叫做互相垂直,其中一條叫做另一條的垂線。
平行線:在同一平面內,不相交的兩條直線叫做平行線。
同位角、內錯角、同旁內角:
同位角:∠1與∠5像這樣具有相同位置關系的一對角叫做同位角。
內錯角:∠2與∠6像這樣的一對角叫做內錯角。
同旁內角:∠2與∠5像這樣的一對角叫做同旁內角。
命題:判斷一件事情的語句叫命題。
平移:在平面內,將一個圖形沿某個方向移動一定的距離,圖形的這種移動叫做平移平移變換,簡稱平移。
對應點:平移后得到的新圖形中每一點,都是由原圖形中的某一點移動后得到的,這樣的兩個點叫做對應點。
數學初中知識點總結7
1.相似三角形定義:
對應角相等,對應邊成比例的三角形,叫做相似三角形。
2.相似三角形的表示方法:用符號"∽"表示,讀作"相似于"。
3.相似三角形的相似比:
相似三角形的對應邊的比叫做相似比。
4.相似三角形的'預備定理:
平行于三角形一邊的直線和其他兩邊(或兩邊的延長線)相交,所截成的三角形與原三角形相似。
從表中可以看出只要將全等三角形判定定理中的"對應邊相等"的條件改為"對應邊
成比例"就可得到相似三角形的判定定理,這就是我們數學中的用類比的方法,在舊知識的基礎上找出新知識并從中探究新知識掌握的方法。
6.直角三角形相似:
(1)直角三角形被斜邊上的高分成兩個直角三角形和原三角形相似。
(2)如果一個直角三角形的斜邊和一條直角邊與另一個直角三角形的斜邊和一條直角邊對應成比例,那么這兩個直角三角形相似。
7.相似三角形的性質定理:
(1)相似三角形的對應角相等。
(2)相似三角形的對應邊成比例。
(3)相似三角形的對應高線的比,對應中線的比和對應角平分線的比都等于相似比。
(4)相似三角形的周長比等于相似比。
(5)相似三角形的面積比等于相似比的平方。
8. 相似三角形的傳遞性
如果△ABC∽△A1B1C1,△A1B1C1∽△A2B2C2,那么△ABC∽A2B2C2
數學初中知識點總結8
知識要點:數列中的項必須是數,它可以是實數,也可以是復數。
數列表示方法
如果數列{an}的第n項與序號n之間的關系可以用一個式子來表示,那么這個公式叫做這個數列的通項公式。如an=(-1)^(n+1)+1。
數列通項公式的特點:(1)有些數列的通項公式可以有不同形式,即不唯一。(2)有些數列沒有通項公式
如果數列{an}的第n項與它前一項或幾項的關系可以用一個式子來表示,那么這個公式叫做這個數列的遞推公式。如an=2a(n-1)+1 (n>;1)
數列遞推公式的特點:(1)有些數列的遞推公式可以有不同形式,即不唯一。(2)有些數列沒有遞推公式
有遞推公式不一定有通項公式
知識要領總結:數列是一種特殊的函數。其特殊性主要表現在其定義域和值域上。
初中數學知識點總結:平面直角坐標系
下面是對平面直角坐標系的內容學習,希望同學們很好的掌握下面的內容。
平面直角坐標系
平面直角坐標系:在平面內畫兩條互相垂直、原點重合的數軸,組成平面直角坐標系。
水平的數軸稱為_軸或橫軸,豎直的數軸稱為y軸或縱軸,兩坐標軸的交點為平面直角坐標系的原點。
平面直角坐標系的要素:①在同一平面②兩條數軸③互相垂直④原點重合
三個規(guī)定:
、僬较虻囊(guī)定橫軸取向右為正方向,縱軸取向上為正方向
、趩挝婚L度的規(guī)定;一般情況,橫軸、縱軸單位長度相同;實際有時也可不同,但同一數軸上必須相同。
、巯笙薜囊(guī)定:右上為第一象限、左上為第二象限、左下為第三象限、右下為第四象限。
相信上面對平面直角坐標系知識的講解學習,同學們已經能很好的掌握了吧,希望同學們都能考試成功。
初中數學知識點:平面直角坐標系的構成
對于平面直角坐標系的構成內容,下面我們一起來學習哦。
平面直角坐標系的構成
在同一個平面上互相垂直且有公共原點的兩條數軸構成平面直角坐標系,簡稱為直角坐標系。通常,兩條數軸分別置于水平位置與鉛直位置,取向右與向上的方向分別為兩條數軸的正方向。水平的數軸叫做_軸或橫軸,鉛直的數軸叫做y軸或縱軸,_軸或y軸統(tǒng)稱為坐標軸,它們的公共原點o稱為直角坐標系的原點。
通過上面對平面直角坐標系的構成知識的講解學習,希望同學們對上面的內容都能很好的`掌握,同學們認真學習吧。
初中數學知識點:點的坐標的性質
下面是對數學中點的坐標的性質知識學習,同學們認真看看哦。
點的坐標的性質
建立了平面直角坐標系后,對于坐標系平面內的任何一點,我們可以確定它的坐標。反過來,對于任何一個坐標,我們可以在坐標平面內確定它所表示的一個點。
對于平面內任意一點c,過點c分別向x軸、y軸作垂線,垂足在x軸、y軸上的對應點a,b分別叫做點c的橫坐標、縱坐標,有序實數對(a,b)叫做點c的坐標。
一個點在不同的象限或坐標軸上,點的坐標不一樣。
希望上面對點的坐標的性質知識講解學習,同學們都能很好的掌握,相信同學們會在考試中取得優(yōu)異成績的。
初中數學知識點:因式分解的一般步驟
關于數學中因式分解的一般步驟內容學習,我們做下面的知識講解。
因式分解的一般步驟
如果多項式有公因式就先提公因式,沒有公因式的多項式就考慮運用公式法;若是四項或四項以上的多項式,通常采用分組分解法,最后運用十字相乘法分解因式。因此,可以概括為:“一提”、“二套”、“三分組”、“四十字”。
注意:因式分解一定要分解到每一個因式都不能再分解為止,否則就是不完全的因式分解,若題目沒有明確指出在哪個范圍內因式分解,應該是指在有理數范圍內因式分解,因此分解因式的結果,必須是幾個整式的積的形式。
相信上面對因式分解的一般步驟知識的內容講解學習,同學們已經能很好的掌握了吧,希望同學們會考出好成績。
初中數學知識點:因式分解
下面是對數學中因式分解內容的知識講解,希望同學們認真學習。
因式分解
因式分解定義:把一個多項式化成幾個整式的積的形式的變形叫把這個多項式因式分解。
因式分解要素:①結果必須是整式②結果必須是積的形式③結果是等式④
因式分解與整式乘法的關系:m(a+b+c)
公因式:一個多項式每項都含有的公共的因式,叫做這個多項式各項的公因式。
公因式確定方法:①系數是整數時取各項最大公約數。②相同字母取最低次冪③系數最大公約數與相同字母取最低次冪的積就是這個多項式各項的公因式。
提取公因式步驟:
①確定公因式。②確定商式③公因式與商式寫成積的形式。
分解因式注意;
①不準丟字母
、诓粶蕘G常數項注意查項數
、垭p重括號化成單括號
④結果按數單字母單項式多項式順序排列
、菹嗤蚴綄懗蓛绲男问
、奘醉椮撎柗爬ㄌ柾
⑦括號內同類項合并。
通過上面對因式分解內容知識的講解學習,相信同學們已經能很好的掌握了吧,希望上面的內容給同學們的學習很好的幫助。
數學初中知識點總結9
一次函數:一次函數圖像與性質是中考必考的內容之一。中考試題中分值約為10分左右題型多樣,形式靈活,綜合應用性強。甚至有存在探究題目出現。
主要考察內容:
、贂嬕淮魏瘮档膱D像,并掌握其性質。
、跁鶕阎獥l件,利用待定系數法確定一次函數的解析式。
、勰苡靡淮魏瘮到鉀Q實際問題。
、芸疾煲籭c函數與二元一次方程組,一元一次不等式的關系。
突破方法:
、僬_理解掌握一次函數的概念,圖像和性質。
、谶\用數學結合的思想解與一次函數圖像有關的問題。
、壅莆沼么ㄏ禂捣ㄇ蛞淮魏瘮到馕鍪。
④做一些綜合題的訓練,提高分析問題的能力。
函數性質:
1.y的變化值與對應的x的變化值成正比例,比值為k.即:y=kx+b(k,b為常數,k≠0),∵當x增加m,k(x+m)+b=y+km,km/m=k。
2.當x=0時,b為函數在y軸上的'點,坐標為(0,b)。
3當b=0時(即y=kx),一次函數圖像變?yōu)檎壤瘮,正比例函數是特殊的一次函數?/p>
4.在兩個一次函數表達式中:
當兩一次函數表達式中的k相同,b也相同時,兩一次函數圖像重合;當兩一次函數表達式中的k相同,b不相同時,兩一次函數圖像平行;當兩一次函數表達式中的k不相同,b不相同時,兩一次函數圖像相交;當兩一次函數表達式中的k不相同,b相同時,兩一次函數圖像交于y軸上的同一點(0,b)。若兩個變量x,y間的關系式可以表示成Y=KX+b(k,b為常數,k不等于0)則稱y是x的一次函數圖像性質
1、作法與圖形:通過如下3個步驟:
。1)列表.
。2)描點;[一般取兩個點,根據“兩點確定一條直線”的道理,也可叫“兩點法”。一般的y=kx+b(k≠0)的圖象過(0,b)和(-b/k,0)兩點畫直線即可。
正比例函數y=kx(k≠0)的圖象是過坐標原點的一條直線,一般。0,0)和(1,k)兩點。(3)連線,可以作出一次函數的圖象一條直線。因此,作一次函數的圖象只需知道2點,并連成直線即可。(通常找函數圖象與x軸和y軸的交點分別是-k分之b與0,0與b).
2、性質:
。1)在一次函數上的任意一點P(x,y),都滿足等式:y=kx+b(k≠0)。
(2)一次函數與y軸交點的坐標總是(0,b),與x軸總是交于(-b/k,0)正比例函數的圖像都是過原點。
3、函數不是數,它是指某一變化過程中兩個變量之間的關系。
4、k,b與函數圖像所在象限:
y=kx時(即b等于0,y與x成正比例):
當k>0時,直線必通過第一、三象限,y隨x的增大而增大;當k0,b>0,這時此函數的圖象經過第一、二、三象限;當k>0,b
數學初中知識點總結10
1.圓是以圓心為對稱中心的中心對稱圖形;同圓或等圓的半徑相等。
2.到定點的距離等于定長的點的軌跡,是以定點為圓心,定長為半徑的圓。
3.定理在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對的弦的弦心距相等。
4.圓是定點的距離等于定長的點的集合。
5.圓的內部可以看作是圓心的距離小于半徑的點的集合;圓的外部可以看作是圓心的距離大于半徑的'點的集合。
6.不在同一直線上的三點確定一個圓。
7.垂徑定理垂直于弦的直徑平分這條弦并且平分弦所對的兩條弧。
推論1:
、倨椒窒(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條弧;
②弦的垂直平分線經過圓心,并且平分弦所對的兩條弧;
、燮椒窒宜鶎Φ囊粭l弧的直徑,垂直平分弦,并且平分弦所對的另一條弧。
推論2:圓的兩條平行弦所夾的弧相等。
8.推論在同圓或等圓中,如果兩個圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相等那么它們所對應的其余各組量都相等。
9.定理圓的內接四邊形的對角互補,并且任何一個外角都等于它的內對角。
10.經過切點且垂直于切線的直線必經過圓心。
11.切線的判定定理經過半徑的外端并且垂直于這條半徑的直線是圓的切線。
12.切線的性質定理圓的切線垂直于經過切點的半徑。
13.經過圓心且垂直于切線的直線必經過切點
14.切線長定理從圓外一點引圓的兩條切線,它們的切線長相等,圓心和這一點的連線平分兩條切線的夾角。
15.圓的外切四邊形的兩組對邊的和相等外角等于內對角。
16.如果兩個圓相切,那么切點一定在連心線上。
17.
、賰蓤A外離d>R+r
、趦蓤A外切d=R+r
、蹆蓤A相交d>R-r)
④兩圓內切d=R-r(R>r)
、輧蓤A內含d=r)
18.定理把圓分成n(n≥3):
、乓来芜B結各分點所得的多邊形是這個圓的內接正n邊形
⑵經過各分點作圓的切線,以相鄰切線的交點為頂點的多邊形是這個圓的外切正n邊形。
19.定理任何正多邊形都有一個外接圓和一個內切圓,這兩個圓是同心圓。
20.弧長計算公式:L=n兀R/180;扇形面積公式:S扇形=n兀R^2/360=LR/2。
21.內公切線長= d-(R-r)外公切線長= d-(R+r)。
22.定理一條弧所對的圓周角等于它所對的圓心角的一半。
23.推論1同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等。
24.推論2半圓(或直徑)所對的圓周角是直角;90°的圓周角所對的弦是直徑。
數學初中知識點總結11
20xx年的工作臨近尾聲,回首本年度真是忙碌而充實,本年度我即擔任教導處主任一職又擔任班主任工作,經常是忙的喝口水的時間都沒有。雖然在教導處主任的崗位上我只有不到一年的工作經驗,但是在李校長的關心和培養(yǎng)下,在全體領導、老師、家長的熱情支持和幫助下,各項工作得以順利開展并在一些方面有了較為明顯的進步,F對自己一年來所做工作加以梳理和反思,力求在總結中發(fā)現不足,在反思中縮中差距,在創(chuàng)新中不斷提升。
一、思想品德方面
我熱愛教育事業(yè),始初不忘人民教師職責,愛學校、愛學生。作為一名名師,我從自身嚴格要求自己,通過政治思想、學識水平、教育教學能力等方面的不斷提高來塑造自己的行為,使自己在教育行業(yè)中不斷成長,為社會培養(yǎng)出優(yōu)秀的人才,打下堅實的基礎。
二、主要成績
今年是我到工作的第五個年頭,幾年來我一直擔任班主任和年級的組長,同時又負責學校教導處工作,一直以來,我始初牢記"踏實工作、真心待人"的原則,在工作中嚴格要求自己,刻苦鉆研業(yè)務,不斷提高業(yè)務水平,不斷學習新知識,探索教育教學規(guī)律,改進教育教學方法,努力使自己成為專家型教師。
1、在班主任工作方面:我投入了極強的責任心,關注每一名學生,及時發(fā)現他們的各種心理或行為動態(tài),還有學習的心態(tài)與學習情況,用愛心與耐心澆灌每一個孩子,并且及時與家長、科任老師進行溝通,使孩子在各個方面得到發(fā)展,幾年來,與學生形成了亦師亦友的和諧師生關系,在18年被評為省級師德先進個人,19年被評為省級優(yōu)秀教師。加強學習,努力提升自身修為。
2、在教學方面:我嚴格要求自己,用心備課上課,每一節(jié)課都精心準備課件,仔細研究每一道習題,真正做到講練結合,學以致用,形成了趣實活新的教學風格,同時,在教研方面,我積極去聽課評課,認真學習別人上課的長處,為己所用。在17年被評為市級名師工作室主持人,18年被評為省級學科帶頭人。
3、在教導方面:在做好班主任工作的同時,我作為校長助理、教導主任,我能正確定位,努力做好校長的助手,協(xié)調各種工作。
一直以來我總是以飽滿的熱情對待本職工作,兢兢業(yè)業(yè),忠于職守,凡是要求老師們做到的,自己首先做到。我始初認真落實學校制定的教學教研常規(guī),不斷規(guī)范教師教學行為。從學期初開始,認真執(zhí)行教學教研工作計劃和工作記錄,嚴格按照學校修訂的規(guī)章制度去要求師生,定期檢查教師教案及作業(yè)批改情況,發(fā)現問題及時反饋及時做好總結并進行跟蹤檢查,期末對教案進行歸納整理。規(guī)范日常巡課制度,定時巡課與不定時巡課相結合,不定時跟班聽課,與執(zhí)教教師共同切磋存在的問題,加強對教學工作的監(jiān)控,促進教學質量的提高。
學校要發(fā)展、要生存必須有一批高素質的教師隊伍,同樣教師今后要生存要發(fā)展必須具有過硬的本領。我清楚的認識到必須加強骨干教師、青年教師的培養(yǎng)力度,也借助各種機遇,為教師搭建自我展示的平臺。加大新教師的培養(yǎng)力度,開展“師徒結對子”活動,通過推門聽課,領導聽課、一課三研、師傅引領課、新教師展示課等,鼓勵教師參加各級各類比賽、培訓活動等形式,促進新教師的迅速成長。我精心制定了以人為本的校本培訓計劃,每學期開展十多次骨干培訓活動,并進行讀書交流活動,活動做到人人有準備,人人有發(fā)言,人人有反思,老師們一同感悟,一起分享,在探索和交流中,不斷提升教學水準。
通過開展語、數集體備課—上課—聽課——評課研討這樣的教研活動觀摩,讓更多的教師參與到校本教研活動中來,增強了教研活動的實效性,提高了教師的課堂教學水平。新教師展示課活動,“中荷才露尖尖角”,新教師在歷練中成長;常態(tài)化的研討課,“萬紫千紅總是春”,老師們取長補短,共同促進;名師、骨干教師的精品課,“萬綠叢中一點紅”,起了引領示范的作用。
教科研是教學的源泉,是教改的先導,我十分重視課題研究、管理。18年獨立承擔了省級重點課題研究已經結題,并被評為科研課題先進個人,19年又獨立承擔了中課題的'研究,已經接近尾聲。
4、自身提高方面:我能利用課余時間閱讀一些教育名著及教育教學刊物,并及時做好讀書筆記,建立個人博客,發(fā)表自己原創(chuàng)的教學感想、教案設計、學習心得、教育理念等文章。一份耕耘,一份收獲”,一年來,我積極參加各級各類比賽,多次獲獎,還被評為縣級學科帶頭人。
三、存在的不足
回顧一年來的工作,我雖然取得了一些成績,積累了一些經驗,但是,實事求是地說,與領導的要求和自己的期待還有差距,主要表現在:
1、對教導處管理工作還須腳踏實地地去做,謙虛認真地去學,以使自己取得更好的成績。
2、教學方面對差生主要是采取開中灶、嚴要求的方式進行強化管理,對其心理攻堅尚不到位,所以見效慢,容易激化師生間的矛盾,還得在實踐中多摸索。課堂教學水平有待提高,要與同事們多切磋,多學習。
3、教研方面,仍需強化、深化、細化地系統(tǒng)學習相關理論知識,所寫隨感不能僅僅停留在表面現象,還應善于總結提升,以形成有一定深度的,并具有自我指導意義的理論型文字。
另外,意志仍不夠堅強,堅持還不夠徹底,實是欠缺“鐵杵磨成針”的精神?傊仡櫲〉玫某煽,固然可喜,值得欣慰,但面對未來,仍感任重道遠、不敢懈怠。
最后,用一句話作為本年度的工作總結,下一年度的開始,也就是:既然選擇了遠方,必然風雨兼程。我將某某,繼續(xù)前行!
關于數學常見誤區(qū)有哪些
1、被動學習
許多同學進入高中后,還像初中那樣,有很強的依賴心理,跟隨老師慣性運轉,沒有掌握學習主動權.表現在不定計劃,坐等上課,課前沒有預習,對老師要上課的內容不了解,上課忙于記筆記,沒聽到“門道”,沒有真正理解所學內容。
2、學不得法
老師上課一般都要講清知識的來龍去脈,剖析概念的內涵,分析重點難點,突出思想方法。而一部分同學上課沒能專心聽課,對要點沒聽到或聽不全,筆記記了一大本,問題也有一大堆,課后又不能及時鞏固、總結、尋找知識間的聯(lián)系,只是趕做作業(yè),亂套題型,對概念、法則、公式、定理一知半解,機械模仿,死記硬背。也有的晚上加班加點,白天無精打采,或是上課根本不聽,自己另搞一套,結果是事倍功半,收效甚微。
3、不重視基礎
一些“自我感覺良好”的同學,常輕視基本知識、基本技能和基本方法的學習與訓練,經常是知道怎么做就算了,而不去認真演算書寫,但對難題很感興趣,以顯示自己的“水平”,好高鶩遠,重“量”輕“質”,陷入題海。到正規(guī)作業(yè)或考試中不是演算出錯就是中途“卡殼”。
4、進一步學習條件不具備
高中數學與初中數學相比,知識的深度、廣度,能力要求都是一次飛躍.這就要求必須掌握基礎知識與技能為進一步學習作好準備。高中數學很多地方難度大、方法新、分析能力要求高。
如二次函數在閉區(qū)間上的最值問題,函數值域的求法,實根分布與參變量方程,三角公式的變形與靈活運用,空間概念的形成,排列組合應用題及實際應用問題等?陀^上這些觀點就是分化點,有的內容還是高初中教材都不講的脫節(jié)內容,如不采取補救措施,查缺補漏,分化是不可避免的。
數學初中知識點總結12
一次函數的圖象與性質的口訣:
一次函數是直線,圖象經過三象限;
正比例函數更簡單,經過原點一直線;
兩個系數k與b,作用之大莫小看,k是斜率定夾角,b與y軸來相見,k為正來右上斜,x增減y增減;
k為負來左下展,變化規(guī)律正相反;
k的絕對值越大,線離橫軸就越遠。
拓展閱讀:一次函數的解題方法
理解一次函數和其它知識的聯(lián)系
一次函數和代數式以及方程有著密不可分的聯(lián)系。如一次函數和正比例函數仍然是函數,同時,等號的兩邊又都是代數式。需要注意的是,與一般代數式有很大區(qū)別。首先,一次函數和正比例函數都只能存在兩個變量,而代數式可以是多個變量;其次,一次函數中的變量指數只能是1,而代數式中變量指數還可以是1以外的數。另外,一次函數解析式也可以理解為二元一次方程。
掌握一次函數的解析式的特征
一次函數解析式的結構特征:kx+b是關于x的一次二項式,其中常數b可以是任意實數,一次項系數k必須是非零數,k≠0,因為當k = 0時,y = b(b是常數),由于沒有一次項,這樣的函數不是一次函數;而當b = 0,k≠0,y = kx既是正比例函數,也是一次函數。
應用一次函數解決實際問題
1、分清哪些是已知量,哪些是未知量,尤其要弄清哪兩種量是相關聯(lián)的量,且其中一種量因另一種量的變化而變化;
2、找出具有相關聯(lián)的兩種量的等量關系之后,明確哪種量是另一種量的函數;
3、在實際問題中,一般存在著三種量,如距離、時間、速度等等,在這三種量中,當且僅當其中一種量時間(或速度)不變時,距離與速度(或時間)才成正比例,也就是說,距離(s)是時間(t)或速度( )的正比例函數;
4、求一次函數與正比例函數的關系式,一般采取待定系數法。
數形結合
方程,不等式,不等式組,方程組我們都可以用一次函數的觀點來理解。一元一次不等式實際上就看兩條直線上下方的關系,求出端點后可以很容易把握解集,至于一元一次方程可以把左右兩邊看為兩條直線來認識,直線交點的橫坐標就是方程的解,至于二元一次方程組就是對應2條直線,方程組的解就是直線的交點,結合圖形可以認識兩直線的位置關系也可以把握交點個數。
如果一個交點時候兩條直線的k不同,如果無窮個交點就是k,b都一樣,如果平行無交點就是k相同,b不一樣。至于函數平移的問題可以化歸為對應點平移。k反正不變然后用待定系數法得到平移后的方程。這就是化一般為特殊的解題方法。
數學解題方法分別有哪些
1、配方法
所謂的公式是使用變換解析方程的同構方法,并將其中的一些分配給一個或多個多項式正整數冪的和形式。通過配方解決數學問題的公式。其中,用的最多的是配成完全平方式。匹配方法是數學中不斷變形的重要方法,其應用非常廣泛,在分解,簡化根,它通常用于求解方程,證明方程和不等式,找到函數的極值和解析表達式。
2、因式分解法
因式分解是將多項式轉換為幾個積分產品的乘積。分解是恒定變形的基礎。除了引入中學教科書中介紹的公因子法,公式法,群體分解法,交叉乘法法等外,還有很多方法可以進行因式分解。還有一些項目,如拆除物品的使用,根分解,替換,未確定的系數等等。
3、換元法
替代方法是數學中一個非常重要和廣泛使用的解決問題的方法。我們通常稱未知或變元。用新的參數替換原始公式的一部分或重新構建原始公式可以更簡單,更容易解決。
4、判別式法與韋達定理
一元二次方程 ax2+ bx+ c=0( a、 b、 c屬于 R, a≠0)根的判別, = b2-4 ac,不僅用來確定根的性質,還作為一個問題解決方法,代數變形,求解方程(組),求解不等式,研究函數,甚至幾何以及三角函數都有非常廣泛的應用。
韋達定理除了知道二次方程的根外,還找到另一根;考慮到兩個數的和和乘積的簡單應用并尋找這兩個數,也可以找到根的對稱函數并量化二次方程根的符號。求解對稱方程并解決一些與二次曲線有關的問題等,具有非常廣泛的應用。
5、待定系數法
在解決數學問題時,如果我們首先判斷我們所尋找的結果具有一定的形式,其中包含某些未決的系數,然后根據問題的`條件列出未確定系數的方程,最后找到未確定系數的值或這些待定系數之間的關系。為了解決數學問題,這種問題解決方法被稱為待定系數法。它是中學數學中常用的方法之一。
6、構造法
在解決問題時,我們通常通過分析條件和結論來使用這些方法來構建輔助元素。它可以是一個圖表,一個方程(組),一個方程,一個函數,一個等價的命題等,架起連接條件和結論的橋梁。為了解決這個問題,這種解決問題的數學方法,我們稱之為構造方法。運用結構方法解決問題可以使代數,三角形,幾何等數學知識相互滲透,有助于解決問題。
數學經常遇到的問題解答
1、要提高數學成績首先要做什么?
這一點,是很多學生所關注的,要提高數學成績,首先就應該從基礎知識學起。不少同學覺得基礎知識過于簡單,看兩遍基本上就都會了。這種“自我感覺良好”其實是一種錯覺,而真正考試時又覺得無從下手,這還是基礎不牢的表現,因此要提高數學成績先要把基礎夯實。
2、基礎不好怎么學好數學?
對于基礎差的同學來說,課本是就是學好數學的秘籍,把課本上的定義、公式、定理全部弄懂,力爭在理解的基礎上全部背熟,每一道例題、每一道課后題都要掌握。我們知道只有把公式、定理爛熟于心,才能舉一反三、活學活用,把課本的知識學透有兩個好處,第一,強化基礎;第二,提高得分能力。
3、是否要采用題海戰(zhàn)術?
方法君曾不止一次提到了“題海戰(zhàn)術”,題海戰(zhàn)術究竟可不可取呢?“題海戰(zhàn)術”其實也是一種學習方法,但很多學生只知道做題,不懂得總結,體現不出任何的學習效果。因此在做題后要總結至關重要,只有認真總結才能不斷積累做題經驗,這樣才能取得理想成績。
4、做題總是粗心怎么辦?
很多學生成績不好,會說自己是因為粗心導致的,其實“粗心”只是借口,真正的原因就是題做得少、基礎知識不牢、沒有清晰的解題思路、計算能力不強。因此在平時的學習中,一定要注重熟練度和精準度的練習。如果總是給自己找“粗心”的借口,也就變相否定了自己的學習弱點,所以,要告訴自己,高中數學沒有“粗心”只有“不用心”。
為什么要學習數學
作為一門普及度極廣的學科,數學在人類文明的發(fā)展史上一直占據著重要的地位。雖然很多人可能會對數學產生排斥,認為它枯燥無味,但事實上,數學是所有學科的基石之一,對我們日常生活以及未來的職業(yè)發(fā)展有著重大影響。下面我將詳細闡述學習數學的重要性。
首先,數學可以幫助我們提高邏輯思維能力。數學的學科性質使我們在學習的過程中時時刻刻面臨著思考、推理、證明等諸多問題,而這些問題正是鍛煉我們邏輯思維的好機會。通過長期的學習和練習,我們的思維能力得到提升,可以更加清晰地分析問題,更快速地找到正確的答案。這對我們在工作和生活中都非常有幫助,尤其是在解決復雜問題時更能得心應手。
其次,數學在現代科技中起著至關重要的作用。在計算機科學、物理學、經濟學、工程學等領域,數學可以幫助我們建立模型、分析數據、預測趨勢,并且可以在實際應用中優(yōu)化和改進。例如,在人工智能領域,深度學習技術所涉及的數學概念包括線性代數、微積分和概率論等,如果沒有深厚的數學基礎,很難理解和應用這些技術。同時,在工程學領域,許多機械、電子、化工等產品的設計和制造過程,也需要運用到數學知識,因此學習數學可以使我們更好地參與到現代科技的發(fā)展中。
除此之外,數學也是一種普遍使用的語言,許多學科和領域都使用數學語言進行表達和交流。例如,在自然科學領域,生物學、化學、物理學等學科都使用數學語言來描述自然世界的規(guī)律和現象。在社會科學和商科領域,經濟學和金融學運用的數學概念,如微積分、線性代數和統(tǒng)計學等,使得我們能夠更好地理解經濟和財務數據,并進行決策。因此,學習數學可以讓我們更好地理解、溝通和交流各個領域的知識。
最后,學習數學也可以為我們的職業(yè)發(fā)展帶來廣泛的機遇和發(fā)展空間。在許多領域,數學專業(yè)的畢業(yè)生都有很廣泛的就業(yè)機會,如金融界、數據科學、研究機構、教育等。數學專業(yè)的人才,不只會提供理論支持,同時也能夠解決現實中具體的問題,使其在各自領域脫穎而出。
數學初中知識點總結13
關鍵詞:初一數學;基礎知識;教學策略
初中數學是一個整體,相對而言,初一數學知識點很多,注重基礎,初一數學是對學數學的適當深入,也為后續(xù)的學習打下良好的基礎。在初一數學的教學中,注重學生基礎知識的掌握是非常必要的。如今的現狀是,剛入初中的學生并沒有對打好數學基礎有足夠的重視。一些學生剛進入初中,在數學學習中感受不到壓力,沒有投入足夠的精力,因而漸漸地就積累了很多關于基礎知識的小問題,這些小問題在學生進入后續(xù)的學習中,慢慢就越來越多,形成大問題,大問題漸漸就會凸顯出來,學生漸漸就會感到力不從心。下面就針對初一學生學習中的問題,具體談談如何打好初一數學的基礎。
一、打好初一數學基礎的重要性
進入中學,學生的科目增加,內容拓展,知識深入,數學這門學科由具體到抽象,從文字發(fā)展成了符號,從靜態(tài)逐漸發(fā)展成了動態(tài)。初一數學學習是很重要的一年,能夠讓學生感受到初中數學與小學的不同,并能感受到數學學習帶來的快樂,然而,一些學生對數學產生厭惡情緒也大都是從初中開始的,由于基礎沒打好對數學產生厭惡是很多學生的通病;A知識是進行深入學習的根基,它為數學學習的深入做鋪墊,然而基礎知識卻并沒有得到初一學生應有的足夠重視。初中的數學知識相對小學來說,已有了很大的深入,如果初一的基礎知識沒有打好,學生會漸漸感到吃力,從而跟不上教學步伐,導致產生厭學情緒。不利于學生的發(fā)展。因此,教師在教學中必須注重初一學生基礎知識的培養(yǎng),并使學生認識到打好基礎知識的重要性。
二、初一數學學習中常出現的問題
1、知識點理解不透徹
初一學生剛入初中,依然保留著小學生的一些習慣,愛玩并且厭煩課本上的基礎知識點。對知識點的理解停留在一知半解的層次上。并且,學生并沒有對基礎知識有足夠的重視,沒有認識到基礎知識的重要性,從而導致基礎知識越來越差,產生對數學的厭煩,進入惡性循環(huán)。
2、解答題目小錯誤多,無法完整地解決問題
學生由于不重視基礎,導致一些題目無法完整地進行解決,無論簡單的題型還是難的題型,都是建立在基礎知識點上的。學生的問題是無法把握其中的基礎技巧,忽視基礎知識,始終不能完整地解決問題。
3、沒有養(yǎng)成歸納總結的好習慣
學生在平時的練習中會有許多解錯的題型和忽視了的知識點,然而大都都是錯了就錯了,并沒有進行歸納總結,導致對錯誤的題型沒有進行反思,從而一錯再錯。對一些基礎知識點,也沒有進行很好的歸納,腦海里沒有一個系統(tǒng)的基礎知識網。
三、打好學生數學基礎的策略
1、明確教學目標,突出重點
每一堂課的教學,都有它的重點內容,每一堂課,作為教師,首先都需要明確這堂課的教學目標,并要突出重點,讓學生對這堂課所學的知識點有一個清晰的輪廓。教師可以在黑板的一角把重點內容簡短地寫出來,并保持一節(jié)課,引起學生的關注和重視。教師要通過不斷強調和引用,使學生對重點知識點留下深刻的印象,并可以出一個引用了重點知識的題目讓學生解答。例如,學習《數軸》這一節(jié)時,教師可先對重點基礎知識點進行講解,讓學生了解數軸的基本定義,在腦海里留下一個概念,再讓學生上講臺到黑板上按要求畫下來。畫完后,讓學生自己做必要的講解,比如畫數軸的三要素原點、正方向、單位長度。這樣,學生對數軸的基礎知識點就會有一個深刻的印象。
2、精講例題,多做課堂練習
針對基礎知識,教師可在課堂上多設置一些例題,使學生能夠把基礎知識應用到題目中去解答,從而認識到基礎知識的重要性。教師要精選例題,按照這節(jié)課的重點基礎內容進行選題,從結構特征、思維方式等各個方面進行對題型的剖析,從而讓學生在解題的基礎之上掌握基礎知識的關鍵。知識點講得再多也是抽象空洞的,只有與題目進行結合,讓學生靈活運用,才能夠使學生對知識點有一個深刻的理解。課堂上需根據實際情況布置課堂練習,練習量針對知識點的'難易程度可多可少,重要的是要讓學生有一個思考解答的過程。教師可讓學生自主進行解答,若解答不出教師則做必要的指點進行幫助,并且要鼓勵學生不懂就要問。還可以讓學生共同討論一些難點問題,促進學生勤學好問的習慣培養(yǎng)。
3、形象教學,變抽象為具體
教師在實際課堂教學中,可以運用很多種教學方式,每一堂課都有其教學目標,教學需根據教學內容的變化選擇適當的教學方式,形象教學是很重要并且很有效的教學方式。例如,進行幾何的教學,教師可以進行具體演示,向學生展示幾何模型,運用幾何模型來驗證幾何結論。
4、讓學生收集題目,制作錯題集
基礎是在無數次練習的基礎之上總結出來的,做題如同挖金礦,對待錯題就如同對待發(fā)掘冶煉金礦一樣。學生在做題時,會遇到很多難題和易錯題,對于做錯了的題目,學生看看就丟到一邊,是沒有起到練習應有的效果的。教師要促使學生制作一個錯題集,專門收集自己做錯或者不會做的題目,讓學生自己分析做錯的原因,為什么會做錯,下次如何避免,學生在總結反思的過程中,自然而然就對知識進行了一次梳理。例如,用科學計數法計數是學生經常容易犯錯的知識點,學生的粗心導致很簡單的問題經常犯錯,通過錯題集,學生收集表示錯的科學計數法,不斷總結、強化,從而做到更細心。
初一數學學習對剛進入初中的學生來說是非常重要的,其既是對小學數學知識的必要深入,也為后續(xù)更深層次的學習打下關鍵的基礎。然而,初一學生往往并沒有認識到進入初中打好數學基礎的重要性。本文針對學好初一數學的重要性和初一數學學習面臨的一些問題進行了具體討論,最后總結出提高學生數學基礎知識的幾條教學策略,給以后的數學教學提供參考。
參考文獻:
[1]吳遠,學生數學自主能力的培養(yǎng)[J]。巨人教學資源,20xx。
數學初中知識點總結14
字母表示數
代數式的概念:
用運算符號(加、減、乘除、乘方、開方等)把數與表示數的字母連接而成的式子叫做代數式。單獨的一個數或一個字母也是代數式。
注意:①代數式中除了含有數、字母和運算符號外,還可以有括號;
②代數式中不含有“=、>、<、≠”等符號。等式和不等式都不是代數式,但等號和不等號兩邊的式子一般都是代數式;
③代數式中的字母所表示的數必須要使這個代數式有意義,是實際問題的要符合實際問題的意義。
代數式的書寫格式:
、俅鷶凳街谐霈F乘號,通常省略不寫,如vt;
②數字與字母相乘時,數字應寫在字母前面,如4a;
③帶分數與字母相乘時,應先把帶分數化成假分數后與字母相乘,如應寫作;
④數字與數字相乘,一般仍用“×”號,即“×”號不省略;
⑤在代數式中出現除法運算時,一般按照分數的寫法來寫,如4÷(a-4)應寫作;注意:分數線具有“÷”號和括號的雙重作用。
、拊诒硎竞(或)差的代差的代數式后有單位名稱的,則必須把代數式括起來,再將單位名稱寫在式子的后面,如平方米
代數式的系數:
代數式中的數字中的數字因數叫做代數式的系數。如3x,4y的系數分別為3,4。
注意:①單個字母的系數是1,如a的系數是1;
、谥缓帜敢驍档拇鷶凳降南禂凳1或-1,如-ab的系數是-1。a3b的系數是1
代數式的項:
代數式表示6x2、-2x、-7的和,6x2、-2x、-7是它的項,其中把不含字母的項叫做常數項
注意:在交待某一項時,應與前面的符號一起交待。
同類項:
所含字母相同,并且相同字母的指數也相同的項叫做同類項。
注意:①判斷幾個代數式是否是同類項有兩個條件:a.所含字母相同;b.相同字母的指數也相同。這兩個條件缺一不可;
、谕愴椗c系數無關,與字母的排列順序無關;
③幾個常數項也是同類項。
合差同類項:
把代數式中的同類項合并成一項,叫做合并同類項。
①合并同類項的理論根據是逆用乘法分配律;
、诤喜⑼愴椀姆▌t是把同類項的.系數相加,所得結果作為系數,字母和字母的指數不變。
注意:
、偃绻麅蓚同類項的系數互為相反數,合并同類項后結果為0;
、诓皇峭愴椀牟荒芎喜,不能合并的項,在每步運算中都要寫上;
③只要不再有同類項,就是最后結果,結果還是代數式。
根據去括號法則去括號:
括號前面是“+”號,把括號和它前面的“+”號去掉,括號里各項都不改變符號;括號前面是“-”號去掉,括號里各項都改變符號。
根據分配律去括號:
括號前面是“+”號看成+1,括號前面是“-”號看成-1,根據乘法的分配律用+1或-1去乘括號里的每一項以達到去括號的目的。
注意:
①去括號時,要連同括號前面的符號一起去掉;
②去括號時,首先要弄清楚括號前是“+”號還是“-”號;
③改變符號時,各項都變號;不改變符號時,各項都不變號。
北師大初中數學知識點
絕對值
、苯^對值的幾何定義
一般地,數軸上表示數a的點與原點的距離叫做a的絕對值,記作|a|。
2.絕對值的代數定義
、乓粋正數的絕對值是它本身;⑵一個負數的絕對值是它的相反數;⑶0的絕對值是0.
可用字母表示為:
①如果a>0,那么|a|=a;②如果a<0,那么|a|=-a;③如果a=0,那么|a|=0。
可歸納為①:a≥0,<═>|a|=a(非負數的絕對值等于本身;絕對值等于本身的數是非負數。)②a≤0,<═>|a|=-a(非正數的絕對值等于其相反數;絕對值等于其相反數的數是非正數。)經典考題
如數軸所示,化簡下列各數
|a|,|b|,|c|,|a-b|,|a-c|,|b+c|
解:由題知道,因為a>0,b<0,c<0,a-b>0,a-c>0,b+c<0,
所以|a|=a,|b|=-b,|c|=-c,|a-b|=a-b,|a-c|=a-c,|b+c|=-(b+c)=-b-c
3.絕對值的性質
任何一個有理數的絕對值都是非負數,也就是說絕對值具有非負性。所以,a取任何有理數,都有|a|≥0。即⑴0的絕對值是0;絕對值是0的數是0.即:a=0<═>|a|=0;
、埔粋數的絕對值是非負數,絕對值最小的數是0.即:|a|≥0;
、侨魏螖档慕^對值都不小于原數。即:|a|≥a;
⑷絕對值是相同正數的數有兩個,它們互為相反數。即:若|x|=a(a>0),則x=±a;
⑸互為相反數的兩數的絕對值相等。即:|-a|=|a|或若a+b=0,則|a|=|b|;
、式^對值相等的兩數相等或互為相反數。即:|a|=|b|,則a=b或a=-b;
、巳魩讉數的絕對值的和等于0,則這幾個數就同時為0。即|a|+|b|=0,則a=0且b=0。
(非負數的常用性質:若幾個非負數的和為0,則有且只有這幾個非負數同時為0)
如何整理數學學科課堂筆記
一、內容提綱。老師講課大多有提綱,并且講課時老師會將一堂課的線索脈絡、重點難點等,簡明清晰地呈現在黑板上。同時,教師會使之富有條理性和直觀性。記下這些內容提綱,便于課后復習回顧,整體把握知識框架,對所學知識做到胸有成竹、清晰完整。
二、疑難問題。將課堂上未聽懂的問題及時記下來,便于課后請教同學或老師,把問題弄懂弄通。教師在組織課堂教學時,受到時空的限制,不可能做到顧及每一位同學。相應的,一些問題對部分學生來說,是屬于疑難問題,由于課堂上來不及思考成熟,記下疑難問題,可在課后繼續(xù)加以思考和探究,加以理解和掌握,不致出現知識的斷層、方法的缺陷。
三、思路方法。對老師在課堂上介紹的解題方法和分析思路也應及時記下,課后加以消化,若有疑惑,先作獨立分析,因為有可能是自己理解錯誤造成的,也有可能是老師講課疏忽造成的,記下來后,便于課后及時與老師商榷和探討。勤記老師講的解題技巧、思路及方法,這對于啟迪思維,開闊視野,開發(fā)智力,培養(yǎng)能力,并對提高解題水平大有益處。在這基礎上,若能主動鉆研,另辟蹊徑,則更難能可貴。
四、歸納總結。注意記下老師的課后總結,這對于濃縮一堂課的內容,找出重點及各部分之間的聯(lián)系,掌握基本概念、公式、定理,尋找規(guī)律,融會貫通課堂內容都很有作用。同時,很多有經驗的老師在課后小結時,一方面是承上歸納所學內容,另一方面又是啟下布置預習任務或點明后面所要學的內容,做好筆記可以把握學習的主動權,提前作準備,做到目標任務明確。
五、錯誤反思。學習過程中不可避免地會犯這樣或那樣的錯誤,記下自己所犯的錯誤,并用紅筆醒目地加以標注,以警示自己,同時也應注明錯誤成因,正確思路及方法,在反思中成熟,在反思中提高。
數學常用解題技巧有哪些
第一,應堅持由易到難的做題順序。近年來高考數學試題的設置是8道選擇題、6道填空題、6到大題,通常稱為866結構。在實體設置的結構中有三個小高峰,選擇題是由易到難,最難的題是第8題。填空題同樣是這樣設置的。也是第9題容易到第14題最難,大題從第15題到第20題,它們的設置也是這樣的。根據這樣的試題結構,應先做前面容易的,基礎好一點的考生就先做前7個選擇,前5個填空、前5個大題,稱為是755結構。基礎差的就是644,先把自己能做的、會做的拿到手。這是第一點。
第二,審題是關鍵。把題給看清楚了再動筆答題,看清楚題以后問什么、已知什么、讓你做什么,把這些問題搞清楚了,自己制訂了一個完整的解題策略,在開始寫的時候,這個時候是很快就可以完成的。
第三,屬于非智力因素導致想不起來。本來是很簡單的題比如說是做到第三題、第四題的時候不是難題,但想不起來了,卡住了,這時候怎么辦?雖然是簡單題卻不會做怎么辦?應先跳過去,不是這道題不會做嗎?后面還有很多的簡單題呢,把后面的題做一做,不要在考場上愣神,先跳過去做其他的題,等穩(wěn)定下來以后再回過頭來看會頓悟,豁然開朗。
第四,做選擇題的時候應運用最好的解題方法。因為選擇題和填空題都是看結果不看過程,因此在這個過程中都應不擇手段,只要是能把正確的結論找到就行?忌S玫姆椒ㄊ侵苯臃ǎ瑥囊阎拈_始也不看它的四個選項,從頭到尾寫完了之后一看答案就寫上去了。另外就是特質法(音),一些出現字母、特別是不等式,這時候給它賦一個值,代進去這時候速度會比較快,正確地找出結果來。再就是數形結合法。最后實在不行了,就將四個選項代入驗證,看看哪個符合就是哪個了。填空題用上述的直接法、特質法、數形結合法三種方法都適合。做大題的時候要特別注意解題步驟,規(guī)范答題可以減少失分。簡單地說,規(guī)范答題就是從上一步的原因到下一步的結論,這是一個必然的過程,讓誰寫、誰看都是這樣的。因為什么所以什么是一個必然的過程,這是規(guī)范答題。
學霸分享的數學復習技巧
1、把答案蓋住看例題
例題不能帶著答案去看,不然會認為自己就是這么,其實自己并沒有理解透徹。
所以,在看例題時,把解答蓋住,自己去做,做完或做不出時再去看。這時要想一想,自己做的哪里與解答不同,哪里沒想到,該注意什么,哪一種方法更好,還有沒有另外的解法。
經過上面的訓練,自己的思維空間擴展了,看問題也全面了。如果把題目徹底搞清了,在題后精煉幾個批注,說明此題的“題眼”及巧妙之處,收獲會更大。
2、研究每題都考什么
數學能力的提高離不開做題,“熟能生巧”這個簡單的道理大家都懂。但做題不是搞題海戰(zhàn)術,而是要通過一題聯(lián)想到很多題。
3、錯一次反思一次
每次業(yè)及考試或多或少會發(fā)生些錯誤,這并不可怕,要緊的是避免類似的錯誤再次重現。因此平時注意把錯題記下來。
學生若能將每次考試或練習中出現的錯誤記錄下來分析,并盡力保證在下次考試時不發(fā)生同樣錯誤,那么以后人生中最重要的高考也就能避免犯錯了.
4、分析試卷總結經驗
每次考試結束試卷發(fā)下來,要認真分析得失,總結經驗教訓。特別是將試卷中出現的錯誤進行分類。
數學解題方法分別有哪些
1、配方法
所謂的公式是使用變換解析方程的同構方法,并將其中的一些分配給一個或多個多項式正整數冪的和形式。通過配方解決數學問題的公式。其中,用的最多的是配成完全平方式。匹配方法是數學中不斷變形的重要方法,其應用非常廣泛,在分解,簡化根,它通常用于求解方程,證明方程和不等式,找到函數的極值和解析表達式。
2、因式分解法
因式分解是將多項式轉換為幾個積分產品的乘積。分解是恒定變形的基礎。除了引入中學教科書中介紹的公因子法,公式法,群體分解法,交叉乘法法等外,還有很多方法可以進行因式分解。還有一些項目,如拆除物品的使用,根分解,替換,未確定的系數等等。
3、換元法
替代方法是數學中一個非常重要和廣泛使用的解決問題的方法。我們通常稱未知或變元。用新的參數替換原始公式的一部分或重新構建原始公式可以更簡單,更容易解決。
4、判別式法與韋達定理
一元二次方程 ax2+ bx+ c=0( a、 b、 c屬于 R, a≠0)根的判別, = b2-4 ac,不僅用來確定根的性質,還作為一個問題解決方法,代數變形,求解方程(組),求解不等式,研究函數,甚至幾何以及三角函數都有非常廣泛的應用。
韋達定理除了知道二次方程的根外,還找到另一根;考慮到兩個數的和和乘積的簡單應用并尋找這兩個數,也可以找到根的對稱函數并量化二次方程根的符號。求解對稱方程并解決一些與二次曲線有關的問題等,具有非常廣泛的應用。
5、待定系數法
在解決數學問題時,如果我們首先判斷我們所尋找的結果具有一定的形式,其中包含某些未決的系數,然后根據問題的條件列出未確定系數的方程,最后找到未確定系數的值或這些待定系數之間的關系。為了解決數學問題,這種問題解決方法被稱為待定系數法。它是中學數學中常用的方法之一。
6、構造法
在解決問題時,我們通常通過分析條件和結論來使用這些方法來構建輔助元素。它可以是一個圖表,一個方程(組),一個方程,一個函數,一個等價的命題等,架起連接條件和結論的橋梁。為了解決這個問題,這種解決問題的數學方法,我們稱之為構造方法。運用結構方法解決問題可以使代數,三角形,幾何等數學知識相互滲透,有助于解決問題。
數學初中知識點總結15
一、重要概念
1.總體:考察對象的全體。
2.個體:總體中每一個考察對象。
3.樣本:從總體中抽出的一部分個體。
4.樣本容量:樣本中個體的數目。
5.眾數:一組數據中,出現次數最多的數據。
6.中位數:將一組數據按大小依次排列,處在最中間位置的一個數(或最中間位置的兩個數據的平均數)
二、計算方法
1.樣本平均數:⑴;⑵若,…,,則(a—常數,…,接近較整的常數a);⑶加權平均數:;⑷平均數是刻劃數據的集中趨勢(集中位置)的特征數。通常用樣本平均數去估計總體平均數,樣本容量越大,估計越準確。
2.樣本方差:⑴;⑵若,,…,,則(a—接近、、…、的平均數的較“整”的常數);若、、…、較“小”較“整”,則;⑶樣本方差是刻劃數據的離散程度(波動大小)的特征數,當樣本容量較大時,樣本方差非常接近總體方差,通常用樣本方差去估計總體方差。
3.樣本標準差:
三、應用舉例(略)
初三數學知識點:第四章直線形
★重點★相交線與平行線、三角形、四邊形的有關概念、判定、性質。
☆內容提要☆
一、直線、相交線、平行線
1.線段、射線、直線三者的區(qū)別與聯(lián)系
從“圖形”、“表示法”、“界限”、“端點個數”、“基本性質”等方面加以分析。
2.線段的中點及表示
3.直線、線段的基本性質(用“線段的基本性質”論證“三角形兩邊之和大于第三邊”)
4.兩點間的距離(三個距離:點-點;點-線;線-線)
5.角(平角、周角、直角、銳角、鈍角)
6.互為余角、互為補角及表示方法
7.角的平分線及其表示
8.垂線及基本性質(利用它證明“直角三角形中斜邊大于直角邊”)
9.對頂角及性質
10.平行線及判定與性質(互逆)(二者的區(qū)別與聯(lián)系)
11.常用定理:①同平行于一條直線的兩條直線平行(傳遞性);②同垂直于一條直線的兩條直線平行。
12.定義、命題、命題的組成
13.公理、定理
14.逆命題
二、三角形
分類:⑴按邊分;
、瓢唇欠
1.定義(包括內、外角)
2.三角形的邊角關系:⑴角與角:①內角和及推論;②外角和;③n邊形內角和;④n邊形外角和。⑵邊與邊:三角形兩邊之和大于第三邊,兩邊之差小于第三邊。⑶角與邊:在同一三角形中
3.三角形的主要線段
討論:①定義②x線的交點—三角形的×心③性質
①高線②中線③角平分線④中垂線⑤中位線
、乓话闳切微铺厥馊切危褐苯侨切、等腰三角形、等邊三角形
4.特殊三角形(直角三角形、等腰三角形、等邊三角形、等腰直角三角形)的`判定與性質
5.全等三角形
、乓话闳切稳鹊呐卸(sas、asa、aas、sss)
、铺厥馊切稳鹊呐卸ǎ孩僖话惴椒á趯S梅椒
6.三角形的面積
、乓话阌嬎愎舰菩再|:等底等高的三角形面積相等。
7.重要輔助線
⑴中點配中點構成中位線;⑵加倍中線;⑶添加輔助平行線
8.證明方法
、胖苯幼C法:綜合法、分析法
⑵間接證法—反證法:①反設②歸謬③結論
、亲C線段相等、角相等常通過證三角形全等
、茸C線段倍分關系:加倍法、折半法
、勺C線段和差關系:延結法、截余法
⑹證面積關系:將面積表示出來
三、四邊形
分類表:
1.一般性質(角)
、艃冉呛停360°
⑵順次連結各邊中點得平行四邊形。
推論1:順次連結對角線相等的四邊形各邊中點得菱形。
推論2:順次連結對角線互相垂直的四邊形各邊中點得矩形。
、峭饨呛停360°
2.特殊四邊形
⑴研究它們的一般方法:
、破叫兴倪呅、矩形、菱形、正方形;梯形、等腰梯形的定義、性質和判定
⑶判定步驟:四邊形→平行四邊形→矩形→正方形
┗→菱形——↑
、葘蔷的紐帶作用:
3.對稱圖形
、泡S對稱(定義及性質);⑵中心對稱(定義及性質)
4.有關定理:①平行線等分線段定理及其推論1、2
、谌切、梯形的中位線定理
③平行線間的距離處處相等。(如,找下圖中面積相等的三角形)
5.重要輔助線:①常連結四邊形的對角線;②梯形中!捌揭埔谎薄ⅰ捌揭茖蔷”、“作高”、“連結頂點和對腰中點并延長與底邊相交”轉化為三角形。
6.作圖:任意等分線段。
【數學初中知識點總結】相關文章:
初中數學圓的知識點總結12-05
數學初中知識點總結06-10
初中數學函數知識點總結06-14
【經典】數學初中知識點總結07-16
初中數學必備知識點總結03-01
初中數學函數知識點總結11-24
初中數學幾何知識點總結11-05
初中數學知識點總結(精選)06-16
初中數學知識點總結07-15
初中數學知識點歸納總結12-02