初中數(shù)學角的知識點
在我們平凡無奇的學生時代,是不是聽到知識點,就立刻清醒了?知識點就是學習的重點。掌握知識點有助于大家更好的學習。以下是小編為大家整理的初中數(shù)學角的知識點,歡迎閱讀,希望大家能夠喜歡。
初中數(shù)學角的知識點1
角
角的度量與表示:
①角由兩條具有公共端點的射線組成,兩條射線的公共端點是這個角的頂點。
、谝欢鹊1/60是一分,一分的1/60是一秒。
角的比較:
、俳且部梢钥闯墒怯梢粭l射線繞著他的端點旋轉(zhuǎn)而成的。
、谝粭l射線繞著他的端點旋轉(zhuǎn),當終邊和始邊成一條直線時,所成的角叫做平角。始邊繼續(xù)旋轉(zhuǎn),當他又和始邊重合時,所成的角叫做周角。
、蹚囊粋角的頂點引出的一條射線,把這個角分成兩個相等的角,這條射線叫做這個角的平分線。
相信上面的知識點同學們已經(jīng)很好的掌握了,希望上面的知識點能很好的幫助同學們的復習學習,希望同學們在考試中取得好成績。
平面直角坐標系
平面直角坐標系:在平面內(nèi)畫兩條互相垂直、原點重合的數(shù)軸,組成平面直角坐標系。
水平的數(shù)軸稱為x軸或橫軸,豎直的數(shù)軸稱為y軸或縱軸,兩坐標軸的交點為平面直角坐標系的原點。
平面直角坐標系的要素:
①在同一平面
、趦蓷l數(shù)軸
③互相垂直
、茉c重合
三個規(guī)定:
①正方向的規(guī)定橫軸取向右為正方向,縱軸取向上為正方向
②單位長度的規(guī)定;一般情況,橫軸、縱軸單位長度相同;實際有時也可不同,但同一數(shù)軸上必須相同。
、巯笙薜囊(guī)定:右上為第一象限、左上為第二象限、左下為第三象限、右下為第四象限。
平面直角坐標系的構(gòu)成
在同一個平面上互相垂直且有公共原點的兩條數(shù)軸構(gòu)成平面直角坐標系,簡稱為直角坐標系。通常,兩條數(shù)軸分別置于水平位置與鉛直位置,取向右與向上的方向分別為兩條數(shù)軸的正方向。水平的數(shù)軸叫做X軸或橫軸,鉛直的數(shù)軸叫做Y軸或縱軸,X軸或Y軸統(tǒng)稱為坐標軸,它們的公共原點O稱為直角坐標系的原點。
點的坐標的性質(zhì)
建立了平面直角坐標系后,對于坐標系平面內(nèi)的任何一點,我們可以確定它的坐標。反過來,對于任何一個坐標,我們可以在坐標平面內(nèi)確定它所表示的一個點。
對于平面內(nèi)任意一點C,過點C分別向X軸、Y軸作垂線,垂足在X軸、Y軸上的對應點a,b分別叫做點C的橫坐標、縱坐標,有序?qū)崝?shù)對(a,b)叫做點C的坐標。
一個點在不同的象限或坐標軸上,點的坐標不一樣。
因式分解的一般步驟
如果多項式有公因式就先提公因式,沒有公因式的多項式就考慮運用公式法;若是四項或四項以上的多項式,
通常采用分組分解法,最后運用十字相乘法分解因式。因此,可以概括為:“一提”、“二套”、“三分組”、“四十字”。
注意:因式分解一定要分解到每一個因式都不能再分解為止,否則就是不完全的因式分解,若題目沒有明確指出在哪個范圍內(nèi)因式分解,應該是指在有理數(shù)范圍內(nèi)因式分解,因此分解因式的結(jié)果,必須是幾個整式的積的形式。
因式分解
因式分解定義:把一個多項式化成幾個整式的積的形式的變形叫把這個多項式因式分解。
因式分解要素:
、俳Y(jié)果必須是整式
、诮Y(jié)果必須是積的形式
、劢Y(jié)果是等式
因式分解與整式乘法的關(guān)系:m(a+b+c)
公因式:一個多項式每項都含有的公共的因式,叫做這個多項式各項的公因式。
公因式確定方法:
、傧禂(shù)是整數(shù)時取各項最大公約數(shù)。
、谙嗤帜溉∽畹痛蝺
③系數(shù)最大公約數(shù)與相同字母取最低次冪的積就是這個多項式各項的公因式。
提取公因式步驟:
、俅_定公因式。
、诖_定商式
、酃蚴脚c商式寫成積的形式。
分解因式注意;
、俨粶蕘G字母
、诓粶蕘G常數(shù)項注意查項數(shù)
③雙重括號化成單括號
、芙Y(jié)果按數(shù)單字母單項式多項式順序排列
、菹嗤蚴綄懗蓛绲男问
、奘醉椮撎柗爬ㄌ柾
⑦括號內(nèi)同類項合并。
通過上面對因式分解內(nèi)容知識的講解學習,相信同學們已經(jīng)能很好的掌握了吧,希望上面的內(nèi)容給同學們的學習很好的幫助。
初中數(shù)學角的知識點2
角的種類:角的大小與邊的長短沒有關(guān)系;角的大小決定于角的兩條邊張開的程度,張開的越大,角就越大,相反,張開的越小,角則越小。在動態(tài)定義中,取決于旋轉(zhuǎn)的方向與角度。角可以分為銳角、直角、鈍角、平角、周角、負角、正角、優(yōu)角、劣角、0角這10種。以度、分、秒為單位的角的度量制稱為角度制。此外,還有密位制、弧度制等。
銳角:大于0°,小于90°的角叫做銳角。
直角:等于90°的角叫做直角。
鈍角:大于90°而小于180°的角叫做鈍角。
平角:等于180°的角叫做平角。
優(yōu)角:大于180°小于360°叫優(yōu)角。
劣角:大于0°小于180°叫做劣角,銳角、直角、鈍角都是劣角。
周角:等于360°的角叫做周角。
負角:按照順時針方向旋轉(zhuǎn)而成的角叫做負角。
正角:逆時針旋轉(zhuǎn)的角為正角。
0角:等于零度的角。
余角和補角:兩角之和為90°則兩角互為余角,兩角之和為180°則兩角互為補角。等角的余角相等,等角的補角相等。
對頂角:兩條直線相交后所得的只有一個公共頂點且兩個角的兩邊互為反向延長線,這樣的兩個角叫做互為對頂角。兩條直線相交,構(gòu)成兩對對頂角。互為對頂角的兩個角相等。
初中數(shù)學角的知識點3
1、解斜三角形的主要定理:正弦定理和余弦定理和余弦的射影公式和各種形式的面積的公式。
2、能解決的四類型的問題:
(1)已知兩角和一條邊
(2)已知兩邊和夾角
(3)已知三邊
(4)已知兩邊和其中一邊的對角。
初中數(shù)學角的知識點4
全等三角形的判定
1、一般三角形全等的判定
。1)邊邊邊公理:三邊對應相等的兩個三角形全等(“邊邊邊”或“SSS”)。
。2)邊角公理:兩邊和它們的夾角對應相等的兩個三角形全等(“邊角邊”或“SAS”)。
。3)角邊角公理:兩個角和它們的夾邊分別對應相等的兩個三角形全等(“角邊角”或“ASA”)。
。4)角角邊定理:有兩角和其中一角的對邊對應相等的兩個三角形全等(“角角邊”或“AAS”)。
2、直角三角形全等的判定
利用一般三角形全等的判定都能證明直角三角形全等、
斜邊和一條直角邊對應相等的兩個直角三角形全等(“斜邊、直角邊”或“HL”)、
注意:兩邊一對角(SSA)和三角(AAA)對應相等的兩個三角形不一定全等。
與三角形有關(guān)的角
1、三角形的內(nèi)角
三角形的內(nèi)角和等于180。
2、三角形的外角
三角形的一邊與另一邊的延長線組成的角,叫做三角形的外角。
三角形的一個外角等于與它不相鄰的兩個內(nèi)角的和。
三角形的一個外角大于與它不相鄰的任何一個內(nèi)角。
與三角形有關(guān)的線段
1、三角形的邊
由不在同一條直線上的三條線段首尾順次相接所組成的圖形叫做三角形。相鄰兩邊組成的角,叫做三角形的內(nèi)角,簡稱三角形的角。
頂點是A、B、C的三角形,記作“△ABC”,讀作“三角形ABC”。
三角形兩邊的和大于第三邊。
2、三角形的高、中線和角平分線
3、三角形的穩(wěn)定性
三角形具有穩(wěn)定性。
【初中數(shù)學角的知識點】相關(guān)文章:
初中數(shù)學角的知識點05-31
初中數(shù)學三角形知識點04-12
上海初中數(shù)學知識點之線與角的關(guān)系歸納11-19
初中數(shù)學垂直知識點12-07
初中數(shù)學代數(shù)知識點01-13
初中數(shù)學倒數(shù)的知識點08-01
初中數(shù)學蘇教版知識點08-22
初中數(shù)學知識點04-30