- 相關(guān)推薦
初中數(shù)學(xué)知識(shí)點(diǎn)余弦定理
在日常過程學(xué)習(xí)中,是不是經(jīng)常追著老師要知識(shí)點(diǎn)?知識(shí)點(diǎn)在教育實(shí)踐中,是指對(duì)某一個(gè)知識(shí)的泛稱。還在苦惱沒有知識(shí)點(diǎn)總結(jié)嗎?以下是小編為大家整理的初中數(shù)學(xué)知識(shí)點(diǎn)余弦定理,僅供參考,大家一起來看看吧。
余弦定理—初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)
正弦定理和余弦定理的公式大全和分類大家要熟記了。那么下面為大家?guī)淼氖浅踔袛?shù)學(xué)知識(shí)點(diǎn)大全之正弦定理和余弦定理,希望大家做好筆記了。
正弦定理 a/sinA=b/sinB=c/sinC=2R
注:其中 R 表示三角形的外接圓半徑
余弦定理 b2=a2+c2-2accosB
注:角B是邊a和邊c的夾角
相信大家看過上面的初中數(shù)學(xué)知識(shí)點(diǎn)大全之正弦定理和余弦定理后,肯定會(huì)有所感悟有所學(xué)習(xí)了吧,接下來還有更多的精彩知識(shí)盡在哦。
初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié):平面直角坐標(biāo)系
下面是對(duì)平面直角坐標(biāo)系的內(nèi)容學(xué)習(xí),希望同學(xué)們很好的掌握下面的內(nèi)容。
平面直角坐標(biāo)系
平面直角坐標(biāo)系:在平面內(nèi)畫兩條互相垂直、原點(diǎn)重合的數(shù)軸,組成平面直角坐標(biāo)系。
水平的數(shù)軸稱為x軸或橫軸,豎直的數(shù)軸稱為y軸或縱軸,兩坐標(biāo)軸的交點(diǎn)為平面直角坐標(biāo)系的原點(diǎn)。
平面直角坐標(biāo)系的要素:①在同一平面②兩條數(shù)軸③互相垂直④原點(diǎn)重合
三個(gè)規(guī)定:
、僬较虻囊(guī)定橫軸取向右為正方向,縱軸取向上為正方向
、趩挝婚L度的規(guī)定;一般情況,橫軸、縱軸單位長度相同;實(shí)際有時(shí)也可不同,但同一數(shù)軸上必須相同。
③象限的規(guī)定:右上為第一象限、左上為第二象限、左下為第三象限、右下為第四象限。
相信上面對(duì)平面直角坐標(biāo)系知識(shí)的講解學(xué)習(xí),同學(xué)們已經(jīng)能很好的掌握了吧,希望同學(xué)們都能考試成功。
初中數(shù)學(xué)知識(shí)點(diǎn):平面直角坐標(biāo)系的構(gòu)成
對(duì)于平面直角坐標(biāo)系的構(gòu)成內(nèi)容,下面我們一起來學(xué)習(xí)哦。
平面直角坐標(biāo)系的構(gòu)成
在同一個(gè)平面上互相垂直且有公共原點(diǎn)的兩條數(shù)軸構(gòu)成平面直角坐標(biāo)系,簡稱為直角坐標(biāo)系。通常,兩條數(shù)軸分別置于水平位置與鉛直位置,取向右與向上的方向分別為兩條數(shù)軸的正方向。水平的數(shù)軸叫做X軸或橫軸,鉛直的數(shù)軸叫做Y軸或縱軸,X軸或Y軸統(tǒng)稱為坐標(biāo)軸,它們的公共原點(diǎn)O稱為直角坐標(biāo)系的原點(diǎn)。
通過上面對(duì)平面直角坐標(biāo)系的構(gòu)成知識(shí)的講解學(xué)習(xí),希望同學(xué)們對(duì)上面的內(nèi)容都能很好的掌握,同學(xué)們認(rèn)真學(xué)習(xí)吧。
初中數(shù)學(xué)知識(shí)點(diǎn):點(diǎn)的坐標(biāo)的性質(zhì)
下面是對(duì)數(shù)學(xué)中點(diǎn)的坐標(biāo)的性質(zhì)知識(shí)學(xué)習(xí),同學(xué)們認(rèn)真看看哦。
點(diǎn)的坐標(biāo)的性質(zhì)
建立了平面直角坐標(biāo)系后,對(duì)于坐標(biāo)系平面內(nèi)的任何一點(diǎn),我們可以確定它的坐標(biāo)。反過來,對(duì)于任何一個(gè)坐標(biāo),我們可以在坐標(biāo)平面內(nèi)確定它所表示的一個(gè)點(diǎn)。
對(duì)于平面內(nèi)任意一點(diǎn)C,過點(diǎn)C分別向X軸、Y軸作垂線,垂足在X軸、Y軸上的對(duì)應(yīng)點(diǎn)a,b分別叫做點(diǎn)C的橫坐標(biāo)、縱坐標(biāo),有序?qū)崝?shù)對(duì)(a,b)叫做點(diǎn)C的坐標(biāo)。
一個(gè)點(diǎn)在不同的象限或坐標(biāo)軸上,點(diǎn)的坐標(biāo)不一樣。
希望上面對(duì)點(diǎn)的坐標(biāo)的性質(zhì)知識(shí)講解學(xué)習(xí),同學(xué)們都能很好的掌握,相信同學(xué)們會(huì)在考試中取得優(yōu)異成績的。
初中數(shù)學(xué)知識(shí)點(diǎn):因式分解的一般步驟
關(guān)于數(shù)學(xué)中因式分解的一般步驟內(nèi)容學(xué)習(xí),我們做下面的知識(shí)講解。
因式分解的一般步驟
如果多項(xiàng)式有公因式就先提公因式,沒有公因式的多項(xiàng)式就考慮運(yùn)用公式法;若是四項(xiàng)或四項(xiàng)以上的多項(xiàng)式,
通常采用分組分解法,最后運(yùn)用十字相乘法分解因式。因此,可以概括為:“一提”、“二套”、“三分組”、“四十字”。
注意:因式分解一定要分解到每一個(gè)因式都不能再分解為止,否則就是不完全的因式分解,若題目沒有明確指出在哪個(gè)范圍內(nèi)因式分解,應(yīng)該是指在有理數(shù)范圍內(nèi)因式分解,因此分解因式的結(jié)果,必須是幾個(gè)整式的積的形式。
相信上面對(duì)因式分解的一般步驟知識(shí)的內(nèi)容講解學(xué)習(xí),同學(xué)們已經(jīng)能很好的掌握了吧,希望同學(xué)們會(huì)考出好成績。
初中數(shù)學(xué)知識(shí)點(diǎn):因式分解
下面是對(duì)數(shù)學(xué)中因式分解內(nèi)容的知識(shí)講解,希望同學(xué)們認(rèn)真學(xué)習(xí)。
因式分解
因式分解定義:把一個(gè)多項(xiàng)式化成幾個(gè)整式的積的形式的變形叫把這個(gè)多項(xiàng)式因式分解。
因式分解要素:①結(jié)果必須是整式②結(jié)果必須是積的形式③結(jié)果是等式④
因式分解與整式乘法的關(guān)系:m(a+b+c)
公因式:一個(gè)多項(xiàng)式每項(xiàng)都含有的公共的因式,叫做這個(gè)多項(xiàng)式各項(xiàng)的公因式。
公因式確定方法:①系數(shù)是整數(shù)時(shí)取各項(xiàng)最大公約數(shù)。②相同字母取最低次冪③系數(shù)最大公約數(shù)與相同字母取最低次冪的積就是這個(gè)多項(xiàng)式各項(xiàng)的公因式。
提取公因式步驟:
、俅_定公因式。②確定商式③公因式與商式寫成積的形式。
分解因式注意;
、俨粶(zhǔn)丟字母
②不準(zhǔn)丟常數(shù)項(xiàng)注意查項(xiàng)數(shù)
、垭p重括號(hào)化成單括號(hào)
、芙Y(jié)果按數(shù)單字母單項(xiàng)式多項(xiàng)式順序排列
⑤相同因式寫成冪的形式
、奘醉(xiàng)負(fù)號(hào)放括號(hào)外
、呃ㄌ(hào)內(nèi)同類項(xiàng)合并。
通過上面對(duì)因式分解內(nèi)容知識(shí)的講解學(xué)習(xí),相信同學(xué)們已經(jīng)能很好的掌握了吧,希望上面的內(nèi)容給同學(xué)們的學(xué)習(xí)很好的幫助。
初中數(shù)學(xué)知識(shí)點(diǎn)余弦定理
首先,我們要了解下正弦定理的應(yīng)用領(lǐng)域
在解三角形中,有以下的應(yīng)用領(lǐng)域:
(1)已知三角形的兩角與一邊,解三角形
(2)已知三角形的兩邊和其中一邊所對(duì)的角,解三角形
(3)運(yùn)用a:b:c=sinA:sinB:sinC解決角之間的轉(zhuǎn)換關(guān)系
直角三角形的一個(gè)銳角的對(duì)邊與斜邊的比叫做這個(gè)角的正弦
正弦定理
在△ABC中,角A、B、C所對(duì)的邊分別為a、b、c,則有a/sinA=b/sinB=c/sinC=2R(其中R為三角形外接圓的半徑)
其次,余弦的應(yīng)用領(lǐng)域
余弦定理
余弦定理是揭示三角形邊角關(guān)系的重要定理,直接運(yùn)用它可解決一類已知三角形兩邊及夾角求第三邊或者是已知三個(gè)邊求角的問題,若對(duì)余弦定理加以變形并適當(dāng)移于其它知識(shí),則使用起來更為方便、靈活。
正弦定理的變形公式
(1) a=2RsinA, b=2RsinB, c=2RsinC;
(2) sinA : sinB : sinC = a : b : c; 在一個(gè)三角形中,各邊與其所對(duì)角的正弦的比相等,且該比值都等于該三角形外接圓的直徑已知三角形是確定的,利用正弦定理解三角形時(shí),其解是唯一的;已知三角形的兩邊和其中一邊的對(duì)角,由于該三角形具有不穩(wěn)定性,所以其解不確定,可結(jié)合平面幾何作圖的方法及大邊對(duì)大角,大角對(duì)大邊定理和三角形內(nèi)角和定理去考慮解決問題
(3)相關(guān)結(jié)論: a/sinA=b/sinB=c/sinC=(a+b)/(sinA+sinB)=(a+b+c)/(sinA+sinB+sinC) c/sinC=c/sinD=BD=2R(R為外接圓半徑)
(4)設(shè)R為三角外接圓半徑,公式可擴(kuò)展為:a/sinA=b/sinB=c/sinC=2R,即當(dāng)一內(nèi)角為90時(shí),所對(duì)的邊為外接圓的直徑。靈活運(yùn)用正弦定理,還需要知道它的幾個(gè)變形 sinA=a/2R,sinB=b/2R,sinC=c/2R asinB=bsinA,bsinC=csinB,asinC=csinA
(5)a=bsinA/sinB sinB=bsinA/a
正弦、余弦典型例題
1.在△ABC中,C=90,a=1,c=4,則sinA 的值為
2.已知為銳角,且,則 的度數(shù)是( ) A.30 B.45 C.60 D.90
3.在△ABC中,若,A,B為銳角,則C的度數(shù)是() A.75 B.90 C.105 D.120
4.若A為銳角,且,則A=() A.15 B.30 C.45 D.60
5.在△ABC中,AB=AC=2,ADBC,垂足為D,且AD= ,E是AC中點(diǎn), EFBC,垂足為F,求sinEBF的值。
正弦、余弦解題訣竅
1、已知兩角及一邊,或兩邊及一邊的對(duì)角(對(duì)三角形是否存在要討論)用正弦定理
2、已知三邊,或兩邊及其夾角用余弦定理
3、余弦定理對(duì)于確定三角形形狀非常有用,只需要知道最大角的余弦值為正,為負(fù),還是為零,就可以確定是鈍角。直角還是銳角。
【初中數(shù)學(xué)知識(shí)點(diǎn)余弦定理】相關(guān)文章:
初中數(shù)學(xué)垂直知識(shí)點(diǎn)12-07
初中數(shù)學(xué)方差知識(shí)點(diǎn)10-28
初中數(shù)學(xué)余切的知識(shí)點(diǎn)04-07
初中數(shù)學(xué)內(nèi)錯(cuò)角的知識(shí)點(diǎn)04-07
初中數(shù)學(xué)概率知識(shí)點(diǎn)05-09
初中數(shù)學(xué)的知識(shí)點(diǎn)大全06-06
初中數(shù)學(xué)知識(shí)點(diǎn)11-30