- 相關(guān)推薦
初一數(shù)學(xué)課題完整教案
作為一位杰出的教職工,有必要進(jìn)行細(xì)致的教案準(zhǔn)備工作,編寫教案助于積累教學(xué)經(jīng)驗(yàn),不斷提高教學(xué)質(zhì)量?靵韰⒖冀贪甘窃趺磳懙陌桑∠旅媸切【幷淼某跻粩(shù)學(xué)課題完整教案,歡迎閱讀與收藏。
初一數(shù)學(xué)課題完整教案1
教學(xué)目標(biāo):
1、知識(shí)目標(biāo):
(1)知道什么是全等形、全等三角形及全等三角形的對(duì)應(yīng)元素;
。2)知道全等三角形的性質(zhì),能用符號(hào)正確地表示兩個(gè)三角形全等;
。3)能熟練找出兩個(gè)全等三角形的對(duì)應(yīng)角、對(duì)應(yīng)邊。
2、能力目標(biāo):
。1)通過全等三角形角有關(guān)概念的學(xué)習(xí),提高學(xué)生數(shù)學(xué)概念的辨析能力;
。2)通過找出全等三角形的對(duì)應(yīng)元素,培養(yǎng)學(xué)生的識(shí)圖能力。
3、情感目標(biāo):
。1)通過感受全等三角形的對(duì)應(yīng)美激發(fā)學(xué)生熱愛科學(xué)勇于探索的精神;
。2)通過自主學(xué)習(xí)的發(fā)展體驗(yàn)獲取數(shù)學(xué)知識(shí)的感受,培養(yǎng)學(xué)生勇于創(chuàng)新,多方位審視問題的創(chuàng)造技巧。
教學(xué)重點(diǎn):全等三角形的性質(zhì)。
教學(xué)難點(diǎn):找全等三角形的對(duì)應(yīng)邊、對(duì)應(yīng)角
教學(xué)用具:直尺、微機(jī)
教學(xué)方法:自學(xué)輔導(dǎo)式
教學(xué)過程:
1、全等形及全等三角形概念的引入
。1)動(dòng)畫(幾何畫板)顯示:
問題:你能發(fā)現(xiàn)這兩個(gè)三角形有什么美妙的關(guān)系嗎?
一般學(xué)生都能發(fā)現(xiàn)這兩個(gè)三角形是完全重合的。
(2)學(xué)生自己動(dòng)手
畫一個(gè)三角形:邊長(zhǎng)為4cm,5cm,7cm。然后剪下來,同桌的兩位同學(xué)配合,把兩個(gè)三角形放在一起重合。
。3)獲取概念
讓學(xué)生用自己的語言敘述:
全等三角形、對(duì)應(yīng)頂點(diǎn)、對(duì)應(yīng)角以及有關(guān)數(shù)學(xué)符號(hào)。
2、全等三角形性質(zhì)的發(fā)現(xiàn):
(1)電腦動(dòng)畫顯示:
問題:對(duì)應(yīng)邊、對(duì)應(yīng)角有何關(guān)系?
由學(xué)生觀察動(dòng)畫發(fā)現(xiàn),兩個(gè)三角形的三組對(duì)應(yīng)邊相等、三組對(duì)應(yīng)角相等。
3、找對(duì)應(yīng)邊、對(duì)應(yīng)角以及全等三角形性質(zhì)的`應(yīng)用
。1)投影顯示題目:
D、AD∥BC,且AD=BC
分析:由于兩個(gè)三角形完全重合,故面積、周長(zhǎng)相等。至于D,因?yàn)锳D和BC是對(duì)應(yīng)邊,因此AD=BC。C符合題意。
說明:本題的解題關(guān)鍵是要知道中兩個(gè)全等三角形中,對(duì)應(yīng)頂點(diǎn)定在對(duì)應(yīng)的位置上,易錯(cuò)點(diǎn)是容易找錯(cuò)對(duì)應(yīng)角。
分析:對(duì)應(yīng)邊和對(duì)應(yīng)角只能從兩個(gè)三角形中找,所以需將從復(fù)雜的圖形中分離出來
說明:根據(jù)位置元素來找:有相等元素,其即為對(duì)應(yīng)元素:
然后依據(jù)已知的對(duì)應(yīng)元素找:
。1)全等三角形對(duì)應(yīng)角所對(duì)的邊是對(duì)應(yīng)邊,兩個(gè)對(duì)應(yīng)角所夾的邊是對(duì)應(yīng)邊
(2)全等三角形對(duì)應(yīng)邊所對(duì)的角是對(duì)應(yīng)角,兩條對(duì)應(yīng)邊所夾的角是對(duì)應(yīng)角。
說明:利用“運(yùn)動(dòng)法”來找
翻折法:找到中心線經(jīng)此翻折后能互相重合的兩個(gè)三角形,易發(fā)現(xiàn)其對(duì)應(yīng)元素
旋轉(zhuǎn)法:兩個(gè)三角形繞某一定點(diǎn)旋轉(zhuǎn)一定角度能夠重合時(shí),易于找到對(duì)應(yīng)元素
平移法:將兩個(gè)三角形沿某一直線推移能重合時(shí)也可找到對(duì)應(yīng)元素
求證:AE∥CF
分析:證明直線平行通常用角關(guān)系(同位角、內(nèi)錯(cuò)角等),為此想到三角形全等后的性質(zhì)――對(duì)應(yīng)角相等
∴AE∥CF
說明:解此題的關(guān)鍵是找準(zhǔn)對(duì)應(yīng)角,可以用平移法。
分析:AB不是全等三角形的對(duì)應(yīng)邊,但它通過對(duì)應(yīng)邊轉(zhuǎn)化為AB=CD,而使AB+CD=AD—BC
可利用已知的AD與BC求得。
說明:解決本題的關(guān)鍵是利用三角形全等的性質(zhì),得到對(duì)應(yīng)邊相等。
。2)題目的解決
這些題目給出以后,先要求學(xué)生獨(dú)立思考后回答,其它學(xué)生補(bǔ)充完善,并可以提出自己的看法。教師重點(diǎn)指導(dǎo),師生共同總結(jié):找對(duì)應(yīng)邊、對(duì)應(yīng)角通常的幾種方法:
投影顯示:
。1)全等三角形對(duì)應(yīng)角所對(duì)的邊是對(duì)應(yīng)邊,兩個(gè)對(duì)應(yīng)角所夾的邊是對(duì)應(yīng)邊;
。2)全等三角形對(duì)應(yīng)邊所對(duì)的角是對(duì)應(yīng)角,兩條對(duì)應(yīng)邊所夾的角是對(duì)應(yīng)角;
(3)有公共邊的,公共邊一定是對(duì)應(yīng)邊;
(4)有公共角的,角一定是對(duì)應(yīng)角;
。5)有對(duì)頂角的,對(duì)頂角一定是對(duì)應(yīng)角;
兩個(gè)全等三角形中一對(duì)最長(zhǎng)邊(或角)是對(duì)應(yīng)邊(或?qū)?yīng)角),一對(duì)最短邊(或最小的角)是對(duì)應(yīng)邊(或?qū)?yīng)角)
4、課堂獨(dú)立練習(xí),鞏固提高
此練習(xí),主要加強(qiáng)學(xué)生的識(shí)圖能力,同時(shí),找準(zhǔn)全等三角形的對(duì)應(yīng)邊、對(duì)應(yīng)角,是以后學(xué)好幾何的關(guān)鍵。
5、小結(jié):
(1)如何找全等三角形的對(duì)應(yīng)邊、對(duì)應(yīng)角(基本方法)
。2)全等三角形的性質(zhì)
。3)性質(zhì)的應(yīng)用
讓學(xué)生自由表述,其它學(xué)生補(bǔ)充,自己將知識(shí)系統(tǒng)化,以自己的方式進(jìn)行建構(gòu)。
6、布置作業(yè)
a、書面作業(yè)P55#2、3、4
b、上交作業(yè)(中考題)
初一數(shù)學(xué)課題完整教案2
教學(xué)目標(biāo)
1、等腰三角形的概念。
2、等腰三角形的性質(zhì)。
3、等腰三角形的概念及性質(zhì)的應(yīng)用。
教學(xué)重點(diǎn):
1、等腰三角形的概念及性質(zhì)。
2、等腰三角形性質(zhì)的應(yīng)用。
教學(xué)難點(diǎn):等腰三角形三線合一的性質(zhì)的理解及其應(yīng)用。
教學(xué)過程
Ⅰ、提出問題,創(chuàng)設(shè)情境
在前面的學(xué)習(xí)中,我們認(rèn)識(shí)了軸對(duì)稱圖形,探究了軸對(duì)稱的性質(zhì),并且能夠作出一個(gè)簡(jiǎn)單平面圖形關(guān)于某一直線的軸對(duì)稱圖形,還能夠通過軸對(duì)稱變換來設(shè)計(jì)一些美麗的圖案。這節(jié)課我們就是從軸對(duì)稱的角度來認(rèn)識(shí)一些我們熟悉的幾何圖形。來研究:
、偃切问禽S對(duì)稱圖形嗎?
、谑裁礃拥娜切问禽S對(duì)稱圖形?
有的三角形是軸對(duì)稱圖形,有的三角形不是。
問題:那什么樣的三角形是軸對(duì)稱圖形?
滿足軸對(duì)稱的條件的三角形就是軸對(duì)稱圖形,也就是將三角形沿某一條直線對(duì)折后兩部分能夠完全重合的就是軸對(duì)稱圖形。
我們這節(jié)課就來認(rèn)識(shí)一種成軸對(duì)稱圖形的三角形──等腰三角形。
、颉(dǎo)入新課:要求學(xué)生通過自己的思考來做一個(gè)等腰三角形。
作一條直線L,在L上取點(diǎn)A,在L外取點(diǎn)B,作出點(diǎn)B關(guān)于直線L的對(duì)稱點(diǎn)C,連結(jié)AB、BC、CA,則可得到一個(gè)等腰三角形。
等腰三角形的定義:有兩條邊相等的三角形叫做等腰三角形。相等的兩邊叫做腰,另一邊叫做底邊,兩腰所夾的角叫做頂角,底邊與腰的夾角叫底角。同學(xué)們?cè)谧约鹤鞒龅牡妊切沃,注明它的腰、底邊、頂角和底角?/p>
思考:
1、等腰三角形是軸對(duì)稱圖形嗎?請(qǐng)找出它的對(duì)稱軸。
2、等腰三角形的兩底角有什么關(guān)系?
3、頂角的平分線所在的直線是等腰三角形的對(duì)稱軸嗎?
4、底邊上的中線所在的直線是等腰三角形的對(duì)稱軸嗎?底邊上的高所在的直線呢?
結(jié)論:等腰三角形是軸對(duì)稱圖形。它的對(duì)稱軸是頂角的平分線所在的直線。因?yàn)榈妊切蔚膬裳嗟,所以把這兩條腰重合對(duì)折三角形便知:等腰三角形是軸對(duì)稱圖形,它的對(duì)稱軸是頂角的平分線所在的直線。
要求學(xué)生把自己做的等腰三角形進(jìn)行折疊,找出它的對(duì)稱軸,并看它的`兩個(gè)底角有什么關(guān)系。
沿等腰三角形的頂角的平分線對(duì)折,發(fā)現(xiàn)它兩旁的部分互相重合,由此可知這個(gè)等腰三角形的兩個(gè)底角相等,而且還可以知道頂角的平分線既是底邊上的中線,也是底邊上的高。
由此可以得到等腰三角形的性質(zhì):
1、等腰三角形的兩個(gè)底角相等(簡(jiǎn)寫成“等邊對(duì)等角”)。
2、等腰三角形的頂角平分線,底邊上的中線、底邊上的高互相重合(通常稱作“三線合一”)。
由上面折疊的過程獲得啟發(fā),我們可以通過作出等腰三角形的對(duì)稱軸,得到兩個(gè)全等的三角形,從而利用三角形的全等來證明這些性質(zhì)。同學(xué)們現(xiàn)在就動(dòng)手來寫出這些證明過程)。
如右圖,在△ABC中,AB=AC,作底邊BC的中線AD,因?yàn)?/p>
所以△BAD≌△CAD(SSS)。
所以∠B=∠C。
]如右圖,在△ABC中,AB=AC,作頂角∠BAC的角平分線AD,因?yàn)?/p>
所以△BAD≌△CAD。
所以BD=CD,∠BDA=∠CDA= ∠BDC=90°。
[例1]如圖,在△ABC中,AB=AC,點(diǎn)D在AC上,且BD=BC=AD,求:△ABC各角的度數(shù)。
分析:根據(jù)等邊對(duì)等角的性質(zhì),我們可以得到
∠A=∠ABD,∠ABC=∠C=∠BDC,
再由∠BDC=∠A+∠ABD,就可得到∠ABC=∠C=∠BDC=2∠A。
再由三角形內(nèi)角和為180°,就可求出△ABC的三個(gè)內(nèi)角。
把∠A設(shè)為x的話,那么∠ABC、∠C都可以用x來表示,這樣過程就更簡(jiǎn)捷。
解:因?yàn)锳B=AC,BD=BC=AD,所以∠ABC=∠C=∠BDC。
∠A=∠ABD(等邊對(duì)等角)。
設(shè)∠A=x,則∠BDC=∠A+∠ABD=2x,從而∠ABC=∠C=∠BDC=2x。
【初一數(shù)學(xué)課題完整教案】相關(guān)文章:
完整的教案03-10
《搭石》完整教案11-25
初一數(shù)學(xué)教案02-07
完整幼兒園教案04-05
初一數(shù)學(xué)教案人教版01-03
中班德育教案《微笑》完整文檔11-16
慶國慶教案,菁選完整12-20