高二數(shù)學(xué)教案實(shí)用15篇
作為一名教學(xué)工作者,時(shí)常需要用到教案,教案有助于順利而有效地開展教學(xué)活動(dòng)。那么你有了解過(guò)教案嗎?下面是小編整理的高二數(shù)學(xué)教案,僅供參考,歡迎大家閱讀。
高二數(shù)學(xué)教案1
一、教材分析
【教材地位及作用】
基本不等式又稱為均值不等式,選自北京師范大學(xué)出版社普通高中課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書數(shù)學(xué)必修5第3章第3節(jié)內(nèi)容。教學(xué)對(duì)象為高二學(xué)生,本節(jié)課為第一課時(shí),重在研究基本不等式的證明及幾何意義。本節(jié)課是在系統(tǒng)的學(xué)習(xí)了不等關(guān)系和掌握了不等式性質(zhì)的基礎(chǔ)上展開的,作為重要的基本不等式之一,為后續(xù)進(jìn)一步了解不等式的性質(zhì)及運(yùn)用,研究最值問(wèn)題奠定基礎(chǔ)。因此基本不等式在知識(shí)體系中起了承上啟下的作用,同時(shí)在生活及生產(chǎn)實(shí)際中有著廣泛的應(yīng)用,它也是對(duì)學(xué)生進(jìn)行情感價(jià)值觀教育的好素材,所以基本不等式應(yīng)重點(diǎn)研究。
【教學(xué)目標(biāo)】
依據(jù)《新課程標(biāo)準(zhǔn)》對(duì)《不等式》學(xué)段的目標(biāo)要求和學(xué)生的實(shí)際情況,特確定如下目標(biāo):
知識(shí)與技能目標(biāo):理解掌握基本不等式,理解算數(shù)平均數(shù)與幾何平均數(shù)的概念,學(xué)會(huì)構(gòu)造條件使用基本不等式;
過(guò)程與方法目標(biāo):通過(guò)探究基本不等式,使學(xué)生體會(huì)知識(shí)的形成過(guò)程,培養(yǎng)分析、解決問(wèn)題的能力;
情感與態(tài)度目標(biāo):通過(guò)問(wèn)題情境的設(shè)置,使學(xué)生認(rèn)識(shí)到數(shù)學(xué)是從實(shí)際中來(lái),培養(yǎng)學(xué)生用數(shù)學(xué)的眼光看世界,通過(guò)數(shù)學(xué)思維認(rèn)知世界,從而培養(yǎng)學(xué)生善于思考、勤于動(dòng)手的良好品質(zhì)。
【教學(xué)重難點(diǎn)】
重點(diǎn):理解掌握基本不等式,能借助幾何圖形說(shuō)明基本不等式的意義。
難點(diǎn):利用基本不等式推導(dǎo)不等式。
關(guān)鍵是對(duì)基本不等式的理解掌握。
二、教法分析
本節(jié)課采用觀察——感知——抽象——?dú)w納——探究;啟發(fā)誘導(dǎo)、講練結(jié)合的教學(xué)方法,以學(xué)生為主體,以基本不等式為主線,從實(shí)際問(wèn)題出發(fā),放手讓學(xué)生探究思索。利用多媒體輔助教學(xué),直觀地反映了教學(xué)內(nèi)容,使學(xué)生思維活動(dòng)得以充分展開,從而優(yōu)化了教學(xué)過(guò)程,大大提高了課堂教學(xué)效率。
三、學(xué)法指導(dǎo)
新課改的精神在于以學(xué)生的發(fā)展為本,把學(xué)習(xí)的主動(dòng)權(quán)還給學(xué)生,倡導(dǎo)積極主動(dòng),勇于探索的學(xué)習(xí)方法,因此,本課主要采取以自主探索與合作交流的學(xué)習(xí)方式,通過(guò)讓學(xué)生想一想,做一做,用一用,建構(gòu)起自己的知識(shí),使學(xué)生成為學(xué)習(xí)的主人。
四、教學(xué)過(guò)程
教學(xué)過(guò)程設(shè)計(jì)以問(wèn)題為中心,以探究解決問(wèn)題的方法為主線展開。這種安排強(qiáng)調(diào)過(guò)程,符合學(xué)生的認(rèn)知規(guī)律,使數(shù)學(xué)教學(xué)過(guò)程成為學(xué)生對(duì)知識(shí)的再創(chuàng)造、再發(fā)現(xiàn)的過(guò)程,從而培養(yǎng)學(xué)生的創(chuàng)新意識(shí)。
具體過(guò)程安排如下:
。ㄒ唬┗静坏仁降慕虒W(xué)設(shè)計(jì)創(chuàng)設(shè)情景,提出問(wèn)題
設(shè)計(jì)意圖:數(shù)學(xué)教育必須基于學(xué)生的“數(shù)學(xué)現(xiàn)實(shí)”,現(xiàn)實(shí)情境問(wèn)題是數(shù)學(xué)教學(xué)的平臺(tái),數(shù)學(xué)教師的任務(wù)之一就是幫助學(xué)生構(gòu)造數(shù)學(xué)現(xiàn)實(shí),并在此基礎(chǔ)上發(fā)展他們的數(shù)學(xué)現(xiàn)實(shí)。基于此,設(shè)置如下情境:
上圖是在北京召開的第24屆國(guó)際數(shù)學(xué)家大會(huì)的會(huì)標(biāo),會(huì)標(biāo)是根據(jù)中國(guó)古代數(shù)學(xué)家趙爽的弦圖設(shè)計(jì)的,顏色的.明暗使它看上去像一個(gè)風(fēng)車,代表中國(guó)人民熱情好客。
[問(wèn)題1]請(qǐng)觀察會(huì)標(biāo)圖形,圖中有哪些特殊的幾何圖形?它們?cè)诿娣e上有哪些相等關(guān)系和不等關(guān)系?(讓學(xué)生分組討論)
。ǘ┨骄繂(wèn)題,抽象歸納
基本不等式的教學(xué)設(shè)計(jì)1、探究圖形中的不等關(guān)系
形的角度----(利用多媒體展示會(huì)標(biāo)圖形的變化,引導(dǎo)學(xué)生發(fā)現(xiàn)四個(gè)直角三角形的面積之和小于或等于正方形的面積。)
數(shù)的角度
[問(wèn)題2]若設(shè)直角三角形的兩直角邊分別為a、b,應(yīng)怎樣表示這種不等關(guān)系?
學(xué)生討論結(jié)果:。
[問(wèn)題3]大家看,這個(gè)圖形里還真有點(diǎn)奧妙。我們從圖中找到了一個(gè)不等式。這里a、b的取值有沒(méi)有什么限制條件?不等式中的等號(hào)什么時(shí)候成立呢?(師生共同探索)
咱們?cè)倏匆豢磮D形的變化,(教師演示)
。▽W(xué)生發(fā)現(xiàn))當(dāng)a=b四個(gè)直角三角形都變成了等腰直角三角形,他們的面積和恰好等于正方形的面積,即。探索結(jié)論:我們得到不等式,當(dāng)且僅當(dāng)時(shí)等號(hào)成立。
設(shè)計(jì)意圖:本背景意圖在于利用圖中相關(guān)面積間存在的數(shù)量關(guān)系,抽象出不等式基本不等式的教學(xué)設(shè)計(jì)。在此基礎(chǔ)上,引導(dǎo)學(xué)生認(rèn)識(shí)基本不等式。
2、抽象歸納:
一般地,對(duì)于任意實(shí)數(shù)a,b,有,當(dāng)且僅當(dāng)a=b時(shí),等號(hào)成立。
[問(wèn)題4]你能給出它的證明嗎?
學(xué)生在黑板上板書。
[問(wèn)題5]特別地,當(dāng)時(shí),在不等式中,以、分別代替a、b,得到什么?
學(xué)生歸納得出。
設(shè)計(jì)意圖:類比是學(xué)習(xí)數(shù)學(xué)的一種重要方法,此環(huán)節(jié)不僅讓學(xué)生理解了基本不等式的來(lái)源,突破了重點(diǎn)和難點(diǎn),而且感受了其中的函數(shù)思想,為今后學(xué)習(xí)奠定基礎(chǔ)。
【歸納總結(jié)】
如果a,b都是非負(fù)數(shù),那么,當(dāng)且僅當(dāng)a=b時(shí),等號(hào)成立。
我們稱此不等式為基本不等式。其中稱為a,b的算術(shù)平均數(shù),稱為a,b的幾何平均數(shù)。
3、探究基本不等式證明方法:
[問(wèn)題6]如何證明基本不等式?
設(shè)計(jì)意圖:在于引領(lǐng)學(xué)生從感性認(rèn)識(shí)基本不等式到理性證明,實(shí)現(xiàn)從感性認(rèn)識(shí)到理性認(rèn)識(shí)的升華,前面是從幾何圖形中的面積關(guān)系獲得不等式的,下面用代數(shù)的思想,利用不等式的性質(zhì)直接推導(dǎo)這個(gè)不等式。
方法一:作差比較或由基本不等式的教學(xué)設(shè)計(jì)展開證明。
方法二:分析法
要證
只要證2
要證,只要證2
要證,只要證
顯然,是成立的。當(dāng)且僅當(dāng)a=b時(shí),中的等號(hào)成立。
4、理解升華
1)文字語(yǔ)言敘述:
兩個(gè)正數(shù)的算術(shù)平均數(shù)不小于它們的幾何平均數(shù)。
2)符號(hào)語(yǔ)言敘述:
若,則有,當(dāng)且僅當(dāng)a=b時(shí)。
[問(wèn)題7]怎樣理解“當(dāng)且僅當(dāng)”?(學(xué)生小組討論,交流看法,師生總結(jié))
“當(dāng)且僅當(dāng)a=b時(shí),等號(hào)成立”的含義是:
當(dāng)a=b時(shí),取等號(hào),即;
僅當(dāng)a=b時(shí),取等號(hào),即。
3)探究基本不等式的幾何意義:
基本不等式的教學(xué)設(shè)計(jì)借助初中階段學(xué)生熟知的幾何圖形,引導(dǎo)學(xué)生探究不等式的幾何解釋,通過(guò)數(shù)形結(jié)合,賦予不等式幾何直觀。進(jìn)一步領(lǐng)悟不等式中等號(hào)成立的條件。
如圖:AB是圓的直徑,點(diǎn)C是AB上一點(diǎn),CD⊥AB,AC=a,CB=b,[問(wèn)題8]你能利用這個(gè)圖形得出基本不等式的幾何解釋嗎?
(教師演示,學(xué)生直觀感覺)
易證RtACDRtDCB,那么CD2=CA·CB
即CD=。
這個(gè)圓的半徑為,顯然,它大于或等于CD,即,其中當(dāng)且僅當(dāng)點(diǎn)C與圓心重合,即a=b時(shí),等號(hào)成立。
因此:基本不等式幾何意義可認(rèn)為是:在同一半圓中,半徑不小于半弦(直徑是最長(zhǎng)的弦);或者認(rèn)為是,直角三角形斜邊的一半不小于斜邊上的高。
4)聯(lián)想數(shù)列的知識(shí)理解基本不等式
從形的角度來(lái)看,基本不等式具有特定的幾何意義;從數(shù)的角度來(lái)看,基本不等式揭示了“和”與“積”這兩種結(jié)構(gòu)間的不等關(guān)系。
[問(wèn)題9]回憶一下你所學(xué)的知識(shí)中,有哪些地方出現(xiàn)過(guò)“和”與“積”的結(jié)構(gòu)?
歸納得出:
均值不等式的代數(shù)解釋為:兩個(gè)正數(shù)的等差中項(xiàng)不小它們的等比中項(xiàng)。
基本不等式的教學(xué)設(shè)計(jì)(四)體會(huì)新知,遷移應(yīng)用
例1:(1)設(shè)均為正數(shù),證明不等式:基本不等式的教學(xué)設(shè)計(jì)
。2)如圖:AB是圓的直徑,點(diǎn)C是AB上一點(diǎn),設(shè)AC=a,CB=b,過(guò)作交于,你能利用這個(gè)圖形得出這個(gè)不等式的一種幾何解釋嗎?
設(shè)計(jì)意圖:以上例題是根據(jù)基本不等式的使用條件中的難點(diǎn)和關(guān)鍵處設(shè)置的,目的是利用學(xué)生原有的平面幾何知識(shí),進(jìn)一步領(lǐng)悟到不等式成立的條件,及當(dāng)且僅當(dāng)時(shí),等號(hào)成立。這里完全放手讓學(xué)生自主探究,老師指導(dǎo),師生歸納總結(jié)。
。ㄎ澹┭菥毞答,鞏固深化
公式應(yīng)用之一:
1、試判斷與與2的大小關(guān)系?
問(wèn)題:如果將條件“x>0”去掉,上述結(jié)論是否仍然成立?
2、試判斷與7的大小關(guān)系?
公式應(yīng)用之二:
設(shè)計(jì)意圖:新穎有趣、簡(jiǎn)單易懂、貼近生活的問(wèn)題,不僅極大地增強(qiáng)學(xué)生的興趣,拓寬學(xué)生的視野,更重要的是調(diào)動(dòng)學(xué)生探究鉆研的興趣,引導(dǎo)學(xué)生加強(qiáng)對(duì)生活的關(guān)注,讓學(xué)生體會(huì):數(shù)學(xué)就在我們身邊的生活中
。1)用一個(gè)兩臂長(zhǎng)短有差異的天平稱一樣物品,有人說(shuō)只要左右各秤一次,將兩次所稱重量相加后除以2就可以了。你覺得這種做法比實(shí)際重量輕了還是重了?
(2)甲、乙兩商場(chǎng)對(duì)單價(jià)相同的同類產(chǎn)品進(jìn)行促銷。甲商場(chǎng)采取的促銷方式是在原價(jià)p折的基礎(chǔ)上再打q折;乙商場(chǎng)的促銷方式則是兩次都打折。對(duì)顧客而言,哪種打折方式更合算?(0≠q)
。ㄎ澹┓此伎偨Y(jié),整合新知:
通過(guò)本節(jié)課的學(xué)習(xí)你有什么收獲?取得了哪些經(jīng)驗(yàn)教訓(xùn)?還有哪些問(wèn)題需要請(qǐng)教?
設(shè)計(jì)意圖:通過(guò)反思、歸納,培養(yǎng)概括能力;幫助學(xué)生總結(jié)經(jīng)驗(yàn)教訓(xùn),鞏固知識(shí)技能,提高認(rèn)知水平。從各種角度對(duì)均值不等式進(jìn)行總結(jié),目的是為了讓學(xué)生掌握本節(jié)課的重點(diǎn),突破難點(diǎn)
老師根據(jù)情況完善如下:
知識(shí)要點(diǎn):
。1)重要不等式和基本不等式的條件及結(jié)構(gòu)特征
。2)基本不等式在幾何、代數(shù)及實(shí)際應(yīng)用三方面的意義
思想方法技巧:
(1)數(shù)形結(jié)合思想、“整體與局部”
(2)歸納與類比思想
。3)換元法、比較法、分析法
。ㄆ撸┎贾米鳂I(yè),更上一層
1、閱讀作業(yè):預(yù)習(xí)基本不等式的教學(xué)設(shè)計(jì)
2、書面作業(yè):已知a,b為正數(shù),證明不等式基本不等式的教學(xué)設(shè)計(jì)
3、思考題:類比基本不等式,當(dāng)a,b,c均為正數(shù),猜想會(huì)有怎樣的不等式?
設(shè)計(jì)意圖:作業(yè)分為三種形式,體現(xiàn)作業(yè)的鞏固性和發(fā)展性原則,同時(shí)考慮學(xué)生的差異性。閱讀作業(yè)是后續(xù)課堂的鋪墊,而思考題不做統(tǒng)一要求,供學(xué)有余力的學(xué)生課后研究。
五、評(píng)價(jià)分析
1、在建立新知的過(guò)程中,教師力求引導(dǎo)、啟發(fā),讓學(xué)生逐步應(yīng)用所學(xué)的知識(shí)來(lái)分析問(wèn)題、解決問(wèn)題,以形成比較系統(tǒng)和完整的知識(shí)結(jié)構(gòu)。每個(gè)問(wèn)題在設(shè)計(jì)時(shí),充分考慮了學(xué)生的具體情況,力爭(zhēng)提問(wèn)準(zhǔn)確到位,便于學(xué)生思考和回答。使思考和提問(wèn)持續(xù)在學(xué)生的最近發(fā)展區(qū)內(nèi),學(xué)生的思考有價(jià)值,對(duì)知識(shí)的理解和掌握在不斷的思考和討論中完善和加深。
2、本節(jié)的教學(xué)中要求學(xué)生對(duì)基本不等式在數(shù)與形兩個(gè)方面都有比較充分的認(rèn)識(shí),特別強(qiáng)調(diào)數(shù)與形的統(tǒng)一,教學(xué)過(guò)程從形得到數(shù),又從數(shù)回到形,意圖使學(xué)生在比較中對(duì)基本不等式得以深刻理解。“數(shù)形結(jié)合”作為一種重要的數(shù)學(xué)思想方法,不是教師提一提學(xué)生就能夠掌握并且會(huì)用的,只有學(xué)生通過(guò)實(shí)踐,意識(shí)到它的好處之后,學(xué)生才會(huì)在解決問(wèn)題時(shí)去嘗試使用,只有通過(guò)不斷的使用才能促進(jìn)學(xué)生對(duì)這種思想方法的再理解,從而達(dá)到掌握它的目的。
高二數(shù)學(xué)教案2
一、教學(xué)目的
1、使學(xué)生進(jìn)一步理解自變量的取值范圍和函數(shù)值的意義。
2、使學(xué)生會(huì)用描點(diǎn)法畫出簡(jiǎn)單函數(shù)的圖象。
二、教學(xué)重點(diǎn)、難點(diǎn)
重點(diǎn):
1、理解與認(rèn)識(shí)函數(shù)圖象的意義。
2、培養(yǎng)學(xué)生的看圖、識(shí)圖能力。
難點(diǎn):在畫圖的三個(gè)步驟的列表中,如何恰當(dāng)?shù)剡x取自變量與函數(shù)的對(duì)應(yīng)值問(wèn)題。
三、教學(xué)過(guò)程
復(fù)習(xí)提問(wèn)
1、函數(shù)有哪三種表示法?(答:解析法、列表法、圖象法。)
2、結(jié)合函數(shù)y=x的圖象,說(shuō)明什么是函數(shù)的圖象?
3、說(shuō)出下列各點(diǎn)所在象限或坐標(biāo)軸:
新課
1、畫函數(shù)圖象的方法是描點(diǎn)法。其步驟:
。1)列表。要注意適當(dāng)選取自變量與函數(shù)的對(duì)應(yīng)值。什么叫“適當(dāng)”?這就要求能選取表現(xiàn)函數(shù)圖象特征的幾個(gè)關(guān)鍵點(diǎn)。比如畫函數(shù)y=3x的圖象,其關(guān)鍵點(diǎn)是原點(diǎn)(0,0),只要再選取另一個(gè)點(diǎn)如M(3,9)就可以了。
一般地,我們把自變量與函數(shù)的對(duì)應(yīng)值分別作為點(diǎn)的橫坐標(biāo)和縱坐標(biāo),這就要把自變量與函數(shù)的對(duì)應(yīng)值列出表來(lái)。
(2)描點(diǎn)。我們把表中給出的有序?qū)崝?shù)對(duì),看作點(diǎn)的坐標(biāo),在直角坐標(biāo)系中描出相應(yīng)的點(diǎn)。
。3)用光滑曲線連線。根據(jù)函數(shù)解析式比如y=3x,我們把所描的兩個(gè)點(diǎn)(0,0),(3,9)連成直線。
一般地,根據(jù)函數(shù)解析式,我們列表、描點(diǎn)是有限的`幾個(gè),只需在平面直角坐標(biāo)系中,把這有限的幾個(gè)點(diǎn)連成表示函數(shù)的曲線(或直線)。
2、講解畫函數(shù)圖象的三個(gè)步驟和例。畫出函數(shù)y=x+0。5的圖象。
小結(jié)
本節(jié)課的重點(diǎn)是讓學(xué)生根據(jù)函數(shù)解析式畫函數(shù)圖象的三個(gè)步驟,自己動(dòng)手畫圖。
練習(xí)
、龠x用課本練習(xí)
(前一節(jié)已作:列表、描點(diǎn),本節(jié)要求連線)
②補(bǔ)充題:畫出函數(shù)y=5x-2的圖象。
作業(yè):選用課本習(xí)題。
四、教學(xué)注意問(wèn)題
1、注意滲透數(shù)形結(jié)合思想。通過(guò)研究函數(shù)的圖象,對(duì)圖象所表示的一個(gè)變量隨另一個(gè)變量的變化而變化就更有形象而直觀的認(rèn)識(shí)。把函數(shù)的解析式、列表、圖象三者結(jié)合起來(lái),更有利于認(rèn)識(shí)函數(shù)的本質(zhì)特征。
2、注意充分調(diào)動(dòng)學(xué)生自己動(dòng)手畫圖的積極性。
3、認(rèn)識(shí)到由于計(jì)算器和計(jì)算機(jī)的普及化,代替了手工繪圖功能。故在教學(xué)中要傾向培養(yǎng)學(xué)生看圖、識(shí)圖的能力。
高二數(shù)學(xué)教案3
課題:2、1曲線與方程
課時(shí):01
課型:新授課
一、教學(xué)目標(biāo)
。ㄒ唬┲R(shí)教學(xué)點(diǎn)
使學(xué)生掌握常用動(dòng)點(diǎn)的軌跡以及求動(dòng)點(diǎn)軌跡方程的常用技巧與方法。
(二)能力訓(xùn)練點(diǎn)
通過(guò)對(duì)求軌跡方程的常用技巧與方法的歸納和介紹,培養(yǎng)學(xué)生綜合運(yùn)用各方面知識(shí)的能力。
。ㄈ⿲W(xué)科滲透點(diǎn)
通過(guò)對(duì)求軌跡方程的常用技巧與方法的介紹,使學(xué)生掌握常用動(dòng)點(diǎn)的軌?
二、教材分析
1、重點(diǎn):求動(dòng)點(diǎn)的軌跡方程的常用技巧與方法。
(解決辦法:對(duì)每種方法用例題加以說(shuō)明,使學(xué)生掌握這種方法。)
2、難點(diǎn):作相關(guān)點(diǎn)法求動(dòng)點(diǎn)的軌跡方法。
(解決辦法:先使學(xué)生了解相關(guān)點(diǎn)法的思路,再用例題進(jìn)行講解。)
教具準(zhǔn)備:與教材內(nèi)容相關(guān)的資料。
教學(xué)設(shè)想:激發(fā)學(xué)生的學(xué)習(xí)熱情,激發(fā)學(xué)生的求知欲,培養(yǎng)嚴(yán)謹(jǐn)?shù)膶W(xué)習(xí)態(tài)度,培養(yǎng)積極進(jìn)取的精神。
三、教學(xué)過(guò)程
。ㄒ唬⿵(fù)習(xí)引入
大家知道,平面解析幾何研究的主要問(wèn)題是:
。1)根據(jù)已知條件,求出表示平面曲線的方程;
(2)通過(guò)方程,研究平面曲線的性質(zhì)。
我們已經(jīng)對(duì)常見曲線圓、橢圓、雙曲線以及拋物線進(jìn)行過(guò)這兩個(gè)方面的研究,今天在上面已經(jīng)研究的基礎(chǔ)上來(lái)對(duì)根據(jù)已知條件求曲線的軌跡方程的常見技巧與方法進(jìn)行系統(tǒng)分析。
(二)幾種常見求軌跡方程的方法
1、直接法
由題設(shè)所給(或通過(guò)分析圖形的幾何性質(zhì)而得出)的動(dòng)點(diǎn)所滿足的幾何條件列出等式,再用坐標(biāo)代替這等式,化簡(jiǎn)得曲線的方程,這種方法叫直接法。
例1(1)求和定圓x2+y2=k2的.圓周的距離等于k的動(dòng)點(diǎn)P的軌跡方程;
。2)過(guò)點(diǎn)A(a,o)作圓O∶x2+y2=R2(a>R>o)的割線,求割線被圓O截得弦的中點(diǎn)的軌跡。
對(duì)(1)分析:
動(dòng)點(diǎn)P的軌跡是不知道的,不能考查其幾何特征,但是給出了動(dòng)點(diǎn)P的運(yùn)動(dòng)規(guī)律:|OP|=2R或|OP|=0。
解:設(shè)動(dòng)點(diǎn)P(x,y),則有|OP|=2R或|OP|=0。
即x2+y2=4R2或x2+y2=0。
故所求動(dòng)點(diǎn)P的軌跡方程為x2+y2=4R2或x2+y2=0。
對(duì)(2)分析:
題設(shè)中沒(méi)有具體給出動(dòng)點(diǎn)所滿足的幾何條件,但可以通過(guò)分析圖形的幾何性質(zhì)而得出,即圓心與弦的中點(diǎn)連線垂直于弦,它們的斜率互為負(fù)倒數(shù)。由學(xué)生演板完成,解答為:
設(shè)弦的中點(diǎn)為M(x,y),連結(jié)OM,則OM⊥AM!遦OM·kAM=—1,其軌跡是以O(shè)A為直徑的圓在圓O內(nèi)的一段。ú缓它c(diǎn))。
2、定義法
利用所學(xué)過(guò)的圓的定義、橢圓的定義、雙曲線的定義、拋物線的定義直接寫出所求的動(dòng)點(diǎn)的軌跡方程,這種方法叫做定義法。這種方法要求題設(shè)中有定點(diǎn)與定直線及兩定點(diǎn)距離之和或差為定值的條件,或利用平面幾何知識(shí)分析得出這些條件。
直平分線l交半徑OQ于點(diǎn)P(見圖2-45),當(dāng)Q點(diǎn)在圓周上運(yùn)動(dòng)時(shí),求點(diǎn)P的軌跡方程。
分析:
∵點(diǎn)P在AQ的垂直平分線上,∴|PQ|=|PA|。
又P在半徑OQ上!鄚PO|+|PQ|=R,即|PO|+|PA|=R。
故P點(diǎn)到兩定點(diǎn)距離之和是定值,可用橢圓定義
寫出P點(diǎn)的軌跡方程。
解:連接PA ∵l⊥PQ,∴|PA|=|PQ|。
又P在半徑OQ上。∴|PO|+|PQ|=2。
由橢圓定義可知:P點(diǎn)軌跡是以O(shè)、A為焦點(diǎn)的橢圓。
3、相關(guān)點(diǎn)法
若動(dòng)點(diǎn)P(x,y)隨已知曲線上的點(diǎn)Q(x0,y0)的變動(dòng)而變動(dòng),且x0、y0可用x、y表示,則將Q點(diǎn)坐標(biāo)表達(dá)式代入已知曲線方程,即得點(diǎn)P的軌跡方程。這種方法稱為相關(guān)點(diǎn)法(或代換法)。
例3已知拋物線y2=x+1,定點(diǎn)A(3,1)、B為拋物線上任意一點(diǎn),點(diǎn)P在線段AB上,且有BP∶PA=1∶2,當(dāng)B點(diǎn)在拋物線上變動(dòng)時(shí),求點(diǎn)P的軌跡方程。
分析:
P點(diǎn)運(yùn)動(dòng)的原因是B點(diǎn)在拋物線上運(yùn)動(dòng),因此B可作為相關(guān)點(diǎn),應(yīng)先找出點(diǎn)P與點(diǎn)B的聯(lián)系。
解:設(shè)點(diǎn)P(x,y),且設(shè)點(diǎn)B(x0,y0)
∵BP∶PA=1∶2,4、待定系數(shù)法
求圓、橢圓、雙曲線以及拋物線的方程常用待定系數(shù)法求。
例4已知拋物線y2=4x和以坐標(biāo)軸為對(duì)稱軸、實(shí)軸在y軸上的雙曲
曲線方程。
分析:
因?yàn)殡p曲線以坐標(biāo)軸為對(duì)稱軸,實(shí)軸在y軸上,所以可設(shè)雙曲線方
ax2—4b2x+a2b2=0
∵拋物線和雙曲線僅有兩個(gè)公共點(diǎn),根據(jù)它們的對(duì)稱性,這兩個(gè)點(diǎn)的橫坐標(biāo)應(yīng)相等,因此方程ax2—4b2x+a2b2=0應(yīng)有等根。
∴△=16b4—4a4b2=0,即a2=2b。
。ㄒ韵掠蓪W(xué)生完成)
由弦長(zhǎng)公式得:
即a2b2=4b2—a2。
。ㄈ╈柟叹毩(xí)
用十多分鐘時(shí)間作一個(gè)小測(cè)驗(yàn),檢查一下教學(xué)效果。練習(xí)題用一小黑板給出。
1、△ABC一邊的兩個(gè)端點(diǎn)是B(0,6)和C(0,—6),另兩邊斜率的
2、點(diǎn)P與一定點(diǎn)F(2,0)的距離和它到一定直線x=8的距離的比是1∶2,求點(diǎn)P的軌跡方程,并說(shuō)明軌跡是什么圖形?
3、求拋物線y2=2px(p>0)上各點(diǎn)與焦點(diǎn)連線的中點(diǎn)的軌跡方程。
答案:
義法)
由中點(diǎn)坐標(biāo)公式得:
。ㄋ模、教學(xué)反思
求曲線的軌跡方程一般地有直接法、定義法、相關(guān)點(diǎn)法、待定系數(shù)法,還有參數(shù)法、復(fù)數(shù)法也是求曲線的軌跡方程的常見方法,這等到講了參數(shù)方程、復(fù)數(shù)以后再作介紹。
四、布置作業(yè)
1、兩定點(diǎn)的距離為6,點(diǎn)M到這兩個(gè)定點(diǎn)的距離的平方和為26,求點(diǎn)M的軌跡方程。
2、動(dòng)點(diǎn)P到點(diǎn)F1(1,0)的距離比它到F2(3,0)的距離少2,求P點(diǎn)的軌跡。
3、已知圓x2+y2=4上有定點(diǎn)A(2,0),過(guò)定點(diǎn)A作弦AB,并延長(zhǎng)到點(diǎn)P,使3|AB|=2|AB|,求動(dòng)點(diǎn)P的軌跡方程。
作業(yè)答案:
1、以兩定點(diǎn)A、B所在直線為x軸,線段AB的垂直平分線為y軸建立直角坐標(biāo)系,得點(diǎn)M的軌跡方程x2+y2=4。
2、∵|PF2|—|PF|=2,且|F1F2|∴P點(diǎn)只能在x軸上且x<1,軌跡是一條射線。
高二數(shù)學(xué)教案4
教學(xué)目標(biāo):
1、理解平面直角坐標(biāo)系的意義;掌握在平面直角坐標(biāo)系中刻畫點(diǎn)的位置的方法。
2、掌握坐標(biāo)法解決幾何問(wèn)題的步驟;體會(huì)坐標(biāo)系的作用。
教學(xué)重點(diǎn):
體會(huì)直角坐標(biāo)系的作用。
教學(xué)難點(diǎn):
能夠建立適當(dāng)?shù)闹苯亲鴺?biāo)系,解決數(shù)學(xué)問(wèn)題。
授課類型:
新授課
教學(xué)模式:
啟發(fā)、誘導(dǎo)發(fā)現(xiàn)教學(xué)。
教具:
多媒體、實(shí)物投影儀
教學(xué)過(guò)程:
一、復(fù)習(xí)引入:
情境1:為了確保宇宙飛船在預(yù)定的軌道上運(yùn)行,并在按計(jì)劃完成科學(xué)考察任務(wù)后,安全、準(zhǔn)確的返回地球,從火箭升空的時(shí)刻開始,需要隨時(shí)測(cè)定飛船在空中的位置機(jī)器運(yùn)動(dòng)的軌跡。
情境2:運(yùn)動(dòng)會(huì)的開幕式上常常有大型團(tuán)體操的表演,其中不斷變化的背景圖案是由看臺(tái)上座位排列整齊的人群不斷翻動(dòng)手中的一本畫布構(gòu)成的。要出現(xiàn)正確的背景圖案,需要缺點(diǎn)不同的畫布所在的位置。
問(wèn)題1:如何刻畫一個(gè)幾何圖形的位置?
問(wèn)題2:如何創(chuàng)建坐標(biāo)系?
二、學(xué)生活動(dòng)
學(xué)生回顧
刻畫一個(gè)幾何圖形的位置,需要設(shè)定一個(gè)參照系
1、數(shù)軸它使直線上任一點(diǎn)P都可以由惟一的實(shí)數(shù)x確定
2、平面直角坐標(biāo)系
在平面上,當(dāng)取定兩條互相垂直的直線的交點(diǎn)為原點(diǎn),并確定了度量單位和這兩條直線的方向,就建立了平面直角坐標(biāo)系。它使平面上任一點(diǎn)P都可以由惟一的實(shí)數(shù)對(duì)(x,y)確定。
3、空間直角坐標(biāo)系
在空間中,選擇兩兩垂直且交于一點(diǎn)的三條直線,當(dāng)取定這三條直線的交點(diǎn)為原點(diǎn),并確定了度量單位和這三條直線方向,就建立了空間直角坐標(biāo)系。它使空間上任一點(diǎn)P都可以由惟一的實(shí)數(shù)對(duì)(x,y,z)確定。
三、講解新課:
1、建立坐標(biāo)系是為了確定點(diǎn)的位置,因此,在所建的坐標(biāo)系中應(yīng)滿足:
任意一點(diǎn)都有確定的坐標(biāo)與其對(duì)應(yīng);反之,依據(jù)一個(gè)點(diǎn)的坐標(biāo)就能確定這個(gè)點(diǎn)的位置
2、確定點(diǎn)的位置就是求出這個(gè)點(diǎn)在設(shè)定的坐標(biāo)系中的坐標(biāo)
四、數(shù)學(xué)運(yùn)用
例1選擇適當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系,表示邊長(zhǎng)為1的正六邊形的頂點(diǎn)。
變式訓(xùn)練
如何通過(guò)它們到點(diǎn)O的距離以及它們相對(duì)于點(diǎn)O的方位來(lái)刻畫,即用”距離和方向”確定點(diǎn)的位置
例2已知B村位于A村的.正西方1公里處,原計(jì)劃經(jīng)過(guò)B村沿著北偏東60的方向設(shè)一條地下管線m、但在A村的西北方向400米出,發(fā)現(xiàn)一古代文物遺址W、根據(jù)初步勘探的結(jié)果,文物管理部門將遺址W周圍100米范圍劃為禁區(qū)。試問(wèn):埋設(shè)地下管線m的計(jì)劃需要修改嗎?
變式訓(xùn)練
1一炮彈在某處爆炸,在A處聽到爆炸的時(shí)間比在B處晚2s,已知A、B兩地相距800米,并且此時(shí)的聲速為340m/s,求曲線的方程
2在面積為1的中,建立適當(dāng)?shù)淖鴺?biāo)系,求以M,N為焦點(diǎn)并過(guò)點(diǎn)P的橢圓方程
例3已知Q(a,b),分別按下列條件求出P的坐標(biāo)
。1)P是點(diǎn)Q關(guān)于點(diǎn)M(m,n)的對(duì)稱點(diǎn)
。2)P是點(diǎn)Q關(guān)于直線l:x-y+4=0的對(duì)稱點(diǎn)(Q不在直線1上)
變式訓(xùn)練
用兩種以上的方法證明:三角形的三條高線交于一點(diǎn)。
思考
通過(guò)平面變換可以把曲線變?yōu)橹行脑谠c(diǎn)的單位圓,請(qǐng)求出該復(fù)合變換?
五、小結(jié):本節(jié)課學(xué)習(xí)了以下內(nèi)容:
1.平面直角坐標(biāo)系的意義。
2、利用平面直角坐標(biāo)系解決相應(yīng)的數(shù)學(xué)問(wèn)題。
六、課后作業(yè):
高二數(shù)學(xué)教案5
一、教學(xué)內(nèi)容分析
圓錐曲線的定義反映了圓錐曲線的本質(zhì)屬性,它是無(wú)數(shù)次實(shí)踐后的高度抽象、恰當(dāng)?shù)乩脁x解題,許多時(shí)候能以簡(jiǎn)馭繁。因此,在學(xué)習(xí)了橢圓、雙曲線、拋物線的定義及標(biāo)準(zhǔn)方程、幾何性質(zhì)后,再一次強(qiáng)調(diào)定義,學(xué)會(huì)利用圓錐曲線定義來(lái)熟練的解題”。
二、學(xué)生學(xué)習(xí)情況分析
我所任教班級(jí)的學(xué)生參與課堂教學(xué)活動(dòng)的積極性強(qiáng),思維活躍,但計(jì)算能力較差,推理能力較弱,使用數(shù)學(xué)語(yǔ)言的表達(dá)能力也略顯不足。
三、設(shè)計(jì)思想
由于這部分知識(shí)較為抽象,如果離開感性認(rèn)識(shí),容易使學(xué)生陷入困境,降低學(xué)習(xí)熱情、在教學(xué)時(shí),借助多媒體動(dòng)畫,引導(dǎo)學(xué)生主動(dòng)發(fā)現(xiàn)問(wèn)題、解決問(wèn)題,主動(dòng)參與教學(xué),在輕松愉快的環(huán)境中發(fā)現(xiàn)、獲取新知,提高教學(xué)效率、
四、教學(xué)目標(biāo)
1、深刻理解并熟練掌握?qǐng)A錐曲線的定義,能靈活應(yīng)用xx解決問(wèn)題;熟練掌握焦點(diǎn)坐標(biāo)、頂點(diǎn)坐標(biāo)、焦距、離心率、準(zhǔn)線方程、漸近線、焦半徑等概念和求法;能結(jié)合平面幾何的基本知識(shí)求解圓錐曲線的方程。
2、通過(guò)對(duì)練習(xí),強(qiáng)化對(duì)圓錐曲線定義的理解,提高分析、解決問(wèn)題的能力;通過(guò)對(duì)問(wèn)題的不斷引申,精心設(shè)問(wèn),引導(dǎo)學(xué)生學(xué)習(xí)解題的`一般方法。
3、借助多媒體輔助教學(xué),激發(fā)學(xué)習(xí)數(shù)學(xué)的興趣、
五、教學(xué)重點(diǎn)與難點(diǎn):
教學(xué)重點(diǎn)
1、對(duì)圓錐曲線定義的理解
2、利用圓錐曲線的定義求“最值”
3、“定義法”求軌跡方程
教學(xué)難點(diǎn):
巧用圓錐曲線xx解題
六、教學(xué)過(guò)程設(shè)計(jì)
【設(shè)計(jì)思路】
開門見山,提出問(wèn)題
例題:
。1)已知a(-2,0),b(2,0)動(dòng)點(diǎn)m滿足|ma|+|mb|=2,則點(diǎn)m的軌跡是()。
(a)橢圓(b)雙曲線(c)線段(d)不存在
。2)已知?jiǎng)狱c(diǎn)m(x,y)滿足(x1)2(y2)2|3x4y|,則點(diǎn)m的軌跡是()。
(a)橢圓(b)雙曲線(c)拋物線(d)兩條相交直線
【設(shè)計(jì)意圖】
定義是揭示概念內(nèi)涵的邏輯方法,熟悉不同概念的不同定義方式,是學(xué)習(xí)和研究數(shù)學(xué)的一個(gè)必備條件,而通過(guò)一個(gè)階段的學(xué)習(xí)之后,學(xué)生們對(duì)圓錐曲線的定義已有了一定的認(rèn)識(shí),他們是否能真正掌握它們的本質(zhì),是我本節(jié)課首先要弄清楚的問(wèn)題。
為了加深學(xué)生對(duì)圓錐曲線定義理解,我以圓錐曲線的定義的運(yùn)用為主線,精心準(zhǔn)備了兩道練習(xí)題。
【學(xué)情預(yù)設(shè)】
估計(jì)多數(shù)學(xué)生能夠很快回答出正確答案,但是部分學(xué)生對(duì)于圓錐曲線的定義可能并未真正理解,因此,在學(xué)生們回答后,我將要求學(xué)生接著說(shuō)出:若想答案是其他選項(xiàng)的話,條件要怎么改?這對(duì)于已學(xué)完圓錐曲線這部分知識(shí)的學(xué)生來(lái)說(shuō),并不是什么難事。但問(wèn)題(2)就可能讓學(xué)生們費(fèi)一番周折——如果有學(xué)生提出:可以利用變形來(lái)解決問(wèn)題,那么我就可以循著他的思路,先對(duì)原等式做變形:(x1)2(y2)2這樣,很快就能得出正確結(jié)果。如若不然,我將啟發(fā)他們從等式兩端的式子|3x4y|入手,考慮通過(guò)適當(dāng)?shù)淖冃,轉(zhuǎn)化為學(xué)生們熟知的兩個(gè)距離公式。
在對(duì)學(xué)生們的解答做出判斷后,我將把問(wèn)題引申為:該雙曲線的中心坐標(biāo)是,實(shí)軸長(zhǎng)為,焦距為。以深化對(duì)概念的理解。
高二數(shù)學(xué)教案6
教學(xué)目標(biāo)
1、知識(shí)與技能
。1)了解周期現(xiàn)象在現(xiàn)實(shí)中廣泛存在;(2)感受周期現(xiàn)象對(duì)實(shí)際工作的意義;(3)理解周期函數(shù)的概念;(4)能熟練地判斷簡(jiǎn)單的實(shí)際問(wèn)題的周期;(5)能利用周期函數(shù)定義進(jìn)行簡(jiǎn)單運(yùn)用。
2、過(guò)程與方法
通過(guò)創(chuàng)設(shè)情境:?jiǎn)螖[運(yùn)動(dòng)、時(shí)鐘的圓周運(yùn)動(dòng)、潮汐、波浪、四季變化等,讓學(xué)生感知周期現(xiàn)象;從數(shù)學(xué)的角度分析這種現(xiàn)象,就可以得到周期函數(shù)的定義;根據(jù)周期性的定義,再在實(shí)踐中加以應(yīng)用。
3、情感態(tài)度與價(jià)值觀
通過(guò)本節(jié)的學(xué)習(xí),使同學(xué)們對(duì)周期現(xiàn)象有一個(gè)初步的認(rèn)識(shí),感受生活中處處有數(shù)學(xué),從而激發(fā)學(xué)生的學(xué)習(xí)積極性,培養(yǎng)學(xué)生學(xué)好數(shù)學(xué)的信心,學(xué)會(huì)運(yùn)用聯(lián)系的觀點(diǎn)認(rèn)識(shí)事物。
教學(xué)重難點(diǎn)
重點(diǎn):感受周期現(xiàn)象的存在,會(huì)判斷是否為周期現(xiàn)象。
難點(diǎn):周期函數(shù)概念的理解,以及簡(jiǎn)單的應(yīng)用。
教學(xué)工具
投影儀
教學(xué)過(guò)程
【創(chuàng)設(shè)情境,揭示課題】
同學(xué)們:我們生活在海南島非常幸福,可以經(jīng)常看到大海,陶冶我們的情操。眾所周知,海水會(huì)發(fā)生潮汐現(xiàn)象,大約在每一晝夜的時(shí)間里,潮水會(huì)漲落兩次,這種現(xiàn)象就是我們今天要學(xué)到的周期現(xiàn)象。再比如,[取出一個(gè)鐘表,實(shí)際操作]我們發(fā)現(xiàn)鐘表上的時(shí)針、分針和秒針每經(jīng)過(guò)一周就會(huì)重復(fù),這也是一種周期現(xiàn)象。所以,我們這節(jié)課要研究的主要內(nèi)容就是周期現(xiàn)象與周期函數(shù)。(板書課題)
【探究新知】
1、我們已經(jīng)知道,潮汐、鐘表都是一種周期現(xiàn)象,請(qǐng)同學(xué)們觀察錢塘江潮的圖片(投影圖片),注意波浪是怎樣變化的?可見,波浪每隔一段時(shí)間會(huì)重復(fù)出現(xiàn),這也是一種周期現(xiàn)象。請(qǐng)你舉出生活中存在周期現(xiàn)象的例子。(單擺運(yùn)動(dòng)、四季變化等)
(板書:一、我們生活中的周期現(xiàn)象)
2、那么我們?cè)鯓訌臄?shù)學(xué)的角度研究周期現(xiàn)象呢?教師引導(dǎo)學(xué)生自主學(xué)習(xí)課本P3——P4的相關(guān)內(nèi)容,并思考回答下列問(wèn)題:
、偃绾卫斫狻吧Ⅻc(diǎn)圖”?
、趫D1-1中橫坐標(biāo)和縱坐標(biāo)分別表示什么?
、廴绾卫斫鈭D1-1中的“H/m”和“t/h”?
、軐(duì)于周期函數(shù)的定義,你的理解是怎樣?
以上問(wèn)題都由學(xué)生來(lái)回答,教師加以點(diǎn)撥并總結(jié):周期函數(shù)定義的理解要掌握三個(gè)條件,即存在不為0的常數(shù)T;x必須是定義域內(nèi)的任意值;f(x+T)=f(x)。
。ò鍟憾⒅芷诤瘮(shù)的`概念)
3、[展示投影]練習(xí):
。1)已知函數(shù)f(x)滿足對(duì)定義域內(nèi)的任意x,均存在非零常數(shù)T,使得f(x+T)=f(x)。
求f(x+2T),f(x+3T)
略解:f(x+2T)=f[(x+T)+T]=f(x+T)=f(x)
f(x+3T)=f[(x+2T)+T]=f(x+2T)=f(x)
本題小結(jié),由學(xué)生完成,總結(jié)出“周期函數(shù)的周期有無(wú)數(shù)個(gè)”,教師指出一般情況下,為避免引起混淆,特指最小正周期。
。2)已知函數(shù)f(x)是R上的周期為5的周期函數(shù),且f(1)=20xx,求f(11)
略解:f(11)=f(6+5)=f(6)=f(1+5)=f(1)=20xx
。3)已知奇函數(shù)f(x)是R上的函數(shù),且f(1)=2,f(x+3)=f(x),求f(8)
略解:f(8)=f(2+2×3)=f(2)=f(-1+3)=f(-1)=-f(1)=-2
【鞏固深化,發(fā)展思維】
1、請(qǐng)同學(xué)們先自主學(xué)習(xí)課本P4倒數(shù)第五行——P5倒數(shù)第四行,然后各個(gè)學(xué)習(xí)小組之間展開合作交流。
2、例題講評(píng)
例1、地球圍繞著太陽(yáng)轉(zhuǎn),地球到太陽(yáng)的距離y是時(shí)間t的函數(shù)嗎?如果是,這個(gè)函數(shù)
y=f(t)是不是周期函數(shù)?
例2、圖1-4(見課本)是鐘擺的示意圖,擺心A到鉛垂線MN的距離y是時(shí)間t的函數(shù),y=g(t)。根據(jù)鐘擺的知識(shí),容易說(shuō)明g(t+T)=g(t),其中T為鐘擺擺動(dòng)一周(往返一次)所需的時(shí)間,函數(shù)y=g(t)是周期函數(shù)。若以鐘擺偏離鉛垂線MN的角θ的度數(shù)為變量,根據(jù)物理知識(shí),擺心A到鉛垂線MN的距離y也是θ的周期函數(shù)。
例3、圖1-5(見課本)是水車的示意圖,水車上A點(diǎn)到水面的距離y是時(shí)間t的函數(shù)。假設(shè)水車5min轉(zhuǎn)一圈,那么y的值每經(jīng)過(guò)5min就會(huì)重復(fù)出現(xiàn),因此,該函數(shù)是周期函數(shù)。
3、小組課堂作業(yè)
。1)課本P6的思考與交流
(2)(回答)今天是星期三那么7k(k∈Z)天后的那一天是星期幾?7k(k∈Z)天前的那一天是星期幾?100天后的那一天是星期幾?
五、歸納整理,整體認(rèn)識(shí)
。1)請(qǐng)學(xué)生回顧本節(jié)課所學(xué)過(guò)的知識(shí)內(nèi)容有哪些?所涉及到的主要數(shù)學(xué)思想方法有那些?
(2)在本節(jié)課的學(xué)習(xí)過(guò)程中,還有那些不太明白的地方,請(qǐng)向老師提出。
。3)你在這節(jié)課中的表現(xiàn)怎樣?你的體會(huì)是什么?
六、布置作業(yè)
1、作業(yè):習(xí)題1、1第1,2,3題。
2、多觀察一些日常生活中的周期現(xiàn)象的例子,進(jìn)一步理解它的特點(diǎn)。
課后小結(jié)
歸納整理,整體認(rèn)識(shí)
。1)請(qǐng)學(xué)生回顧本節(jié)課所學(xué)過(guò)的知識(shí)內(nèi)容有哪些?所涉及到的主要數(shù)學(xué)思想方法有那些?
。2)在本節(jié)課的學(xué)習(xí)過(guò)程中,還有那些不太明白的地方,請(qǐng)向老師提出。
。3)你在這節(jié)課中的表現(xiàn)怎樣?你的體會(huì)是什么?
課后習(xí)題
作業(yè)
1、作業(yè):習(xí)題1、1第1,2,3題。
2、多觀察一些日常生活中的周期現(xiàn)象的例子,進(jìn)一步理解它的特點(diǎn)。
板書
略
高二數(shù)學(xué)教案7
一:創(chuàng)設(shè)情境,引入新課
1、從0開始,將5的倍數(shù)按從小到大的順序排列,得到的數(shù)列是什么?
2、水庫(kù)管理人員為了保證優(yōu)質(zhì)魚類有良好的生活環(huán)境,用定期放水清庫(kù)的辦法清理水庫(kù)中的雜魚。如果一個(gè)水庫(kù)的水位為18m,自然放水每天水位降低2.5m,低降至5m、那么從開始放水算起,到可以進(jìn)行清理工作的那天,水庫(kù)每天的水位(單位:m)組成一個(gè)什么數(shù)列?
3、我國(guó)現(xiàn)行儲(chǔ)蓄制度規(guī)定銀行支付存款利息的方式為單利,即不把利息加入本息計(jì)算下一期的利息。按照單利計(jì)算本利和的公式是:本利和=本金×(1+利率×存期)、按活期存入10000元錢,年利率是0.72%,那么按照單利,5年內(nèi)各年末的本利和(單位:元)組成一個(gè)什么數(shù)列?
教師:以上三個(gè)問(wèn)題中的數(shù)蘊(yùn)涵著三列數(shù)。
學(xué)生:
1:0,5,10,15,20,25,…、
2:18,15.5,13,10.5,8,5.5、
3:10072,10144,10216,10288,10360、
(設(shè)置意圖:從實(shí)例引入,實(shí)質(zhì)是給出了等差數(shù)列的現(xiàn)實(shí)背景,目的是讓學(xué)生感受到等差數(shù)列是現(xiàn)實(shí)生活中大量存在的數(shù)學(xué)模型。通過(guò)分析,由特殊到一般,激發(fā)學(xué)生學(xué)習(xí)探究知識(shí)的自主性,培養(yǎng)學(xué)生的歸納能力。
二:觀察歸納,形成定義
①0,5,10,15,20,25,…、
②18,15.5,13,10.5,8,5.5、
、10072,10144,10216,10288,10360、
思考1上述數(shù)列有什么共同特點(diǎn)?
思考2根據(jù)上數(shù)列的共同特點(diǎn),你能給出等差數(shù)列的一般定義嗎?
思考3你能將上述的'文字語(yǔ)言轉(zhuǎn)換成數(shù)學(xué)符號(hào)語(yǔ)言嗎?
教師:引導(dǎo)學(xué)生思考這三列數(shù)具有的共同特征,然后讓學(xué)生抓住數(shù)列的特征,歸納得出等差數(shù)列概念。
學(xué)生:分組討論,可能會(huì)有不同的答案:前數(shù)和后數(shù)的差符合一定規(guī)律;這些數(shù)都是按照一定順序排列的…只要合理教師就要給予肯定。
教師引導(dǎo)歸納出:等差數(shù)列的定義;另外,教師引導(dǎo)學(xué)生從數(shù)學(xué)符號(hào)角度理解等差數(shù)列的定義。
(設(shè)計(jì)意圖:通過(guò)對(duì)一定數(shù)量感性材料的觀察、分析,提煉出感性材料的本質(zhì)屬性;使學(xué)生體會(huì)到等差數(shù)列的規(guī)律和共同特點(diǎn);一開始抓。骸皬牡诙(xiàng)起,每一項(xiàng)與它的前一項(xiàng)的差為同一常數(shù)”,落實(shí)對(duì)等差數(shù)列概念的準(zhǔn)確表達(dá)。)
三:舉一反三,鞏固定義
1、判定下列數(shù)列是否為等差數(shù)列?若是,指出公差d、
(1)1,1,1,1,1;
(2)1,0,1,0,1;
(3)2,1,0,-1,-2;
(4)4,7,10,13,16、
教師出示題目,學(xué)生思考回答。教師訂正并強(qiáng)調(diào)求公差應(yīng)注意的問(wèn)題。
注意:公差d是每一項(xiàng)(第2項(xiàng)起)與它的前一項(xiàng)的差,防止把被減數(shù)與減數(shù)弄顛倒,而且公差可以是正數(shù),負(fù)數(shù),也可以為0、
(設(shè)計(jì)意圖:強(qiáng)化學(xué)生對(duì)等差數(shù)列“等差”特征的理解和應(yīng)用)、
2思考4:設(shè)數(shù)列{an}的通項(xiàng)公式為an=3n+1,該數(shù)列是等差數(shù)列嗎?為什么?
(設(shè)計(jì)意圖:強(qiáng)化等差數(shù)列的證明定義法)
四:利用定義,導(dǎo)出通項(xiàng)
1、已知等差數(shù)列:8,5,2,…,求第200項(xiàng)?
2、已知一個(gè)等差數(shù)列{an}的首項(xiàng)是a1,公差是d,如何求出它的任意項(xiàng)an呢?
教師出示問(wèn)題,放手讓學(xué)生探究,然后選擇列式具有代表性的上去板演或投影展示。根據(jù)學(xué)生在課堂上的具體情況進(jìn)行具體評(píng)價(jià)、引導(dǎo),總結(jié)推導(dǎo)方法,體會(huì)歸納思想以及累加求通項(xiàng)的方法;讓學(xué)生初步嘗試處理數(shù)列問(wèn)題的常用方法。
(設(shè)計(jì)意圖:引導(dǎo)學(xué)生觀察、歸納、猜想,培養(yǎng)學(xué)生合理的推理能力。學(xué)生在分組合作探究過(guò)程中,可能會(huì)找到多種不同的解決辦法,教師要逐一點(diǎn)評(píng),并及時(shí)肯定、贊揚(yáng)學(xué)生善于動(dòng)腦、勇于創(chuàng)新的品質(zhì),激發(fā)學(xué)生的創(chuàng)造意識(shí)。鼓勵(lì)學(xué)生自主解答,培養(yǎng)學(xué)生運(yùn)算能力)
五:應(yīng)用通項(xiàng),解決問(wèn)題
1判斷100是不是等差數(shù)列2,9,16,…的項(xiàng)?如果是,是第幾項(xiàng)?
2在等差數(shù)列{an}中,已知a5=10,a12=31,求a1,d和an、
3求等差數(shù)列3,7,11,…的第4項(xiàng)和第10項(xiàng)
教師:給出問(wèn)題,讓學(xué)生自己操練,教師巡視學(xué)生答題情況。
學(xué)生:教師叫學(xué)生代表總結(jié)此類題型的解題思路,教師補(bǔ)充:已知等差數(shù)列的首項(xiàng)和公差就可以求出其通項(xiàng)公式
(設(shè)計(jì)意圖:主要是熟悉公式,使學(xué)生從中體會(huì)公式與方程之間的聯(lián)系。初步認(rèn)識(shí)“基本量法”求解等差數(shù)列問(wèn)題。)
六:反饋練習(xí):教材13頁(yè)練習(xí)1
七:歸納總結(jié):
1、一個(gè)定義:
等差數(shù)列的定義及定義表達(dá)式
2、一個(gè)公式:
等差數(shù)列的通項(xiàng)公式
3、二個(gè)應(yīng)用:
定義和通項(xiàng)公式的應(yīng)用
教師:讓學(xué)生思考整理,找?guī)讉(gè)代表發(fā)言,后教師給出補(bǔ)充
(設(shè)計(jì)意圖:引導(dǎo)學(xué)生去聯(lián)想本節(jié)課所涉及到的各個(gè)方面,溝通它們之間的聯(lián)系,使學(xué)生能在新的高度上去重新認(rèn)識(shí)和掌握基本概念,并靈活運(yùn)用基本概念。)
高二數(shù)學(xué)教案8
一、設(shè)計(jì)構(gòu)思
1、設(shè)計(jì)理念
注重發(fā)展學(xué)生的創(chuàng)新意識(shí)。學(xué)生的數(shù)學(xué)學(xué)習(xí)活動(dòng)不應(yīng)只限于接受、記憶、模仿和練習(xí),倡導(dǎo)學(xué)生積極主動(dòng)探索、動(dòng)手實(shí)踐與相互合作交流的數(shù)學(xué)學(xué)習(xí)方式。這種方式有助于發(fā)揮學(xué)生學(xué)習(xí)主動(dòng)性,使學(xué)生的學(xué)習(xí)過(guò)程成為在教師引導(dǎo)下的“再創(chuàng)造”過(guò)程。我們應(yīng)積極創(chuàng)設(shè)條件,讓學(xué)生體驗(yàn)數(shù)學(xué)發(fā)現(xiàn)和創(chuàng)造的歷程,發(fā)展他們的創(chuàng)新意識(shí)。
注重提高學(xué)生數(shù)學(xué)思維能力。課堂教學(xué)是促進(jìn)學(xué)生數(shù)學(xué)思維能力發(fā)展的主陣地。問(wèn)題解決是培養(yǎng)學(xué)生思維能力的主要途徑。所設(shè)計(jì)的問(wèn)題應(yīng)有利于學(xué)生主動(dòng)地進(jìn)行觀察、實(shí)驗(yàn)、猜測(cè)、驗(yàn)證、推理與交流等教學(xué)活動(dòng)。內(nèi)容的呈現(xiàn)應(yīng)采用不同的表達(dá)方式,以滿足多樣化的學(xué)習(xí)需求。伴隨新的問(wèn)題發(fā)現(xiàn)和問(wèn)題解決后成功感的滿足,由此刺激學(xué)生非認(rèn)知深層系統(tǒng)的良性運(yùn)行,使其產(chǎn)生“樂(lè)學(xué)”的余味,學(xué)生學(xué)習(xí)的積極性與主動(dòng)性在教學(xué)中便自發(fā)生成。本節(jié)主要安排應(yīng)用類比法進(jìn)行探討,加深學(xué)生對(duì)類比法的體會(huì)與應(yīng)用。
注重學(xué)生多層次的發(fā)展。在問(wèn)題解決的探究過(guò)程中應(yīng)體現(xiàn)“以人為本”,充分體現(xiàn)“人人學(xué)有價(jià)值的數(shù)學(xué),人人都能獲得必需的數(shù)學(xué)”,“不同的人在數(shù)學(xué)上得到不同的發(fā)展”的教學(xué)理念。有意義的數(shù)學(xué)學(xué)習(xí)必須建立在學(xué)生的主觀愿望和知識(shí)經(jīng)驗(yàn)基礎(chǔ)之上,而學(xué)生的基礎(chǔ)知識(shí)和學(xué)習(xí)能力是多層次的,所以設(shè)計(jì)的問(wèn)題也應(yīng)有層次性,使各層次學(xué)生都得到發(fā)展。
注重信息技術(shù)與數(shù)學(xué)課程的整合。高中數(shù)學(xué)課程應(yīng)盡量使用科學(xué)型計(jì)算器,各種數(shù)學(xué)教育技術(shù)平臺(tái),加強(qiáng)數(shù)學(xué)教學(xué)與信息技術(shù)的結(jié)合,鼓勵(lì)學(xué)生運(yùn)用計(jì)算機(jī)、計(jì)算器等進(jìn)行探索和發(fā)現(xiàn)。
另外,在數(shù)學(xué)教學(xué)中,強(qiáng)調(diào)數(shù)學(xué)本質(zhì)的同時(shí),也讓學(xué)生通過(guò)適度的形式化,較好的理解和使用數(shù)學(xué)概念、性質(zhì)。
2、教材分析
冪函數(shù)是江蘇教育出版社普通高中課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書數(shù)學(xué)(必修1)第二章第四節(jié)的內(nèi)容。該教學(xué)內(nèi)容在人教版試驗(yàn)修訂本(必修)中已被刪去。標(biāo)準(zhǔn)將該內(nèi)容重新提出,正是考慮到冪函數(shù)在實(shí)際生活的應(yīng)用。故在教學(xué)過(guò)程及后繼學(xué)習(xí)過(guò)程中,應(yīng)能夠讓學(xué)生體會(huì)其實(shí)際應(yīng)用!稑(biāo)準(zhǔn)》將冪函數(shù)限定為五個(gè)具體函數(shù),通過(guò)研究它們來(lái)了解冪函數(shù)的性質(zhì)。其中,學(xué)生在初中已經(jīng)學(xué)習(xí)了y=x、y=x2、y=x-1等三個(gè)簡(jiǎn)單的冪函數(shù),對(duì)它們的圖象和性質(zhì)已經(jīng)有了一定的感性認(rèn)識(shí),F(xiàn)在明確提出冪函數(shù)的概念,有助于學(xué)生形成完整的知識(shí)結(jié)構(gòu)。學(xué)生已經(jīng)了解了函數(shù)的基本概念、性質(zhì)和圖象,研究了兩個(gè)特殊函數(shù):指數(shù)函數(shù)和對(duì)數(shù)函數(shù),對(duì)研究函數(shù)已經(jīng)有了基本思路和方法。因此,教材安排學(xué)習(xí)冪函數(shù),除內(nèi)容本身外,掌握研究函數(shù)的一般思想方法是另一目的,另外應(yīng)讓學(xué)生了解利用信息技術(shù)來(lái)探索函數(shù)圖象及性質(zhì)是一個(gè)重要途徑。該內(nèi)容安排一課時(shí)。
3、教學(xué)目標(biāo)的確定
鑒于上述對(duì)教材的分析和新課程的理念確定如下教學(xué)目標(biāo):
⑴掌握冪函數(shù)的形式特征,掌握具體冪函數(shù)的圖象和性質(zhì)。
、颇軕(yīng)用冪函數(shù)的圖象和性質(zhì)解決有關(guān)簡(jiǎn)單問(wèn)題。
、羌由顚W(xué)生對(duì)研究函數(shù)性質(zhì)的基本方法和流程的經(jīng)驗(yàn)。
、扰囵B(yǎng)學(xué)生觀察、分析、歸納能力。了解類比法在研究問(wèn)題中的作用。
、蓾B透辨證唯物主義觀點(diǎn)和方法論,培養(yǎng)學(xué)生運(yùn)用具體問(wèn)題具體分析的方法分析問(wèn)題、解決問(wèn)題的能力。
4、教學(xué)方法和教具的選擇
基于對(duì)課程理念的理解和對(duì)教材的分析,運(yùn)用問(wèn)題情境可以使學(xué)生較快的進(jìn)入數(shù)學(xué)知識(shí)情景,使學(xué)生對(duì)數(shù)學(xué)知識(shí)結(jié)構(gòu)作主動(dòng)性的擴(kuò)展,通過(guò)問(wèn)題的導(dǎo)引,學(xué)生對(duì)數(shù)學(xué)問(wèn)題探究,進(jìn)行數(shù)學(xué)建構(gòu),并能運(yùn)用數(shù)學(xué)知識(shí)解決問(wèn)題,讓學(xué)生有運(yùn)用數(shù)學(xué)成功的體驗(yàn)。本課采用教師在學(xué)生原有的知識(shí)經(jīng)驗(yàn)和方法上,引導(dǎo)學(xué)生提出問(wèn)題、解決問(wèn)題的教學(xué)方法,體現(xiàn)以學(xué)生為主體,教師主導(dǎo)作用的教學(xué)思想。
教具:多媒體。制作多媒體課件以提高教學(xué)效率。
5、教學(xué)重點(diǎn)和難點(diǎn)
重點(diǎn)是從具體冪函數(shù)歸納認(rèn)識(shí)冪函數(shù)的一些性質(zhì)并作簡(jiǎn)單應(yīng)用。
難點(diǎn)是引導(dǎo)學(xué)生概括出冪函數(shù)性質(zhì)。
6、教學(xué)流程
基于新課程理念在教學(xué)過(guò)程中的體現(xiàn),教學(xué)流程的基線為:
考慮到學(xué)生已經(jīng)學(xué)習(xí)了指數(shù)函數(shù)與對(duì)數(shù)函數(shù),對(duì)函數(shù)的學(xué)習(xí)、研究有了一定的經(jīng)驗(yàn)和基本方法,所以教學(xué)流程又分兩條線,一條以內(nèi)容為明線,另一條以研究函數(shù)的.基本內(nèi)容和方法為暗線,教學(xué)過(guò)程中同時(shí)展開。
明線:
暗線:
二、實(shí)施方案
問(wèn)題導(dǎo)引師生活動(dòng)設(shè)計(jì)意圖
問(wèn)題情境⑴寫出下列y關(guān)于x的函數(shù)解析式:
①正方形邊長(zhǎng)x、面積y
、谡襟w棱長(zhǎng)x、體積y
③正方形面積x、邊長(zhǎng)y
④某人騎車x秒內(nèi)勻速前進(jìn)了1km,騎車速度為y
、菀晃矬w位移y與位移時(shí)間x,速度1m/s
學(xué)生口答,教師板書答案;脽羝菔締(wèn)題。
由具體問(wèn)題入手,從熟悉的情景引入,提高學(xué)生的參與程度。符合學(xué)生認(rèn)識(shí)特點(diǎn)。
、粕鲜龊瘮(shù)解析式有什么共同特征?是否為指數(shù)函數(shù)?學(xué)生相互討論,必要時(shí),教師將解析式寫成指數(shù)冪形式,以啟發(fā)學(xué)生歸納。投影演示定義。引導(dǎo)學(xué)生觀察,訓(xùn)練學(xué)生歸納能力。并與前面知識(shí)進(jìn)行區(qū)分,以進(jìn)一步幫助學(xué)生明晰概念。
、桥袆e下列函數(shù)中有幾個(gè)冪函數(shù)?
、賧=②y=2x2③y=x④y=x2+x⑤y=-x3
學(xué)生獨(dú)立思考,回答。學(xué)生鑒別;脽羝菔绢}目。
鞏固概念,強(qiáng)化學(xué)生對(duì)概念形式特征的把握。
、葍绾瘮(shù)具有哪些性質(zhì)?研究函數(shù)應(yīng)該是哪些方面的內(nèi)容。前面指數(shù)函數(shù)、對(duì)數(shù)函數(shù)研究了哪些內(nèi)容?
學(xué)生討論,教師引導(dǎo)。學(xué)生回答。
引導(dǎo)學(xué)生回想前面學(xué)習(xí)指數(shù)函數(shù)與對(duì)數(shù)函數(shù)的研究?jī)?nèi)容和過(guò)程。啟發(fā)學(xué)生用類比思想進(jìn)行研究?jī)绾瘮?shù)。
、蓛绾瘮(shù)的定義域是否與對(duì)數(shù)函數(shù)、指數(shù)函數(shù)一樣,具有相同的定義域?學(xué)生小組討論,得到結(jié)論。引導(dǎo)學(xué)生舉例研究。結(jié)論:冪指數(shù)不同,定義域并不完全相同,應(yīng)區(qū)別對(duì)待。
激發(fā)學(xué)生探討的欲望,提高學(xué)生主動(dòng)參與程度。
⑹寫出下列函數(shù)的定義域,并指出它們的奇偶性:①y=x②y=③y=x④y=x
學(xué)生解答,并歸納解決辦法。引導(dǎo)學(xué)生與指數(shù)函數(shù)、對(duì)數(shù)函數(shù)對(duì)照比較。(幻燈片演示)引導(dǎo)學(xué)生具體問(wèn)題具體分析,并作簡(jiǎn)單歸納:分?jǐn)?shù)指數(shù)應(yīng)化成根式,負(fù)指數(shù)寫成正數(shù)指數(shù)再寫出定義域。冪函數(shù)的奇偶性也應(yīng)具體分析。
、松鲜龊瘮(shù)的單調(diào)性如何?如何判斷?
學(xué)生思考:作圖引發(fā)學(xué)生作圖研究函數(shù)性質(zhì)的興趣。函數(shù)單調(diào)性的判斷,既可以使用定義,也可以通過(guò)圖象解決,直觀,易理解。
、淘谕蛔鴺(biāo)系內(nèi)作出上述函數(shù)的圖象。學(xué)生作圖,教師巡視。將學(xué)生作圖用實(shí)物投影儀演示,指出優(yōu)點(diǎn)和錯(cuò)誤之處。教師利用幾何畫板演示(附圖1)通過(guò)超級(jí)鏈接幾何畫板演示。訓(xùn)練學(xué)生作圖的基本功,加強(qiáng)學(xué)生的實(shí)踐,讓學(xué)生在自己的經(jīng)驗(yàn)中認(rèn)識(shí)冪函數(shù)的圖象。避免教師直接使用計(jì)算機(jī)演示圖象,剝奪學(xué)生動(dòng)手的機(jī)會(huì)。
、蜕鲜龊瘮(shù)圖象有哪些共同點(diǎn)?學(xué)生討論,總結(jié)。教師引導(dǎo)?蓪W(xué)生已熟悉的函數(shù)y=,y=x一同投影,幫助學(xué)生觀察。(投影演示結(jié)論)
訓(xùn)練學(xué)生觀察分析能力。
、位卮鸬7個(gè)問(wèn)題。
學(xué)生思考,回答。教師注意學(xué)生敘述的嚴(yán)密。訓(xùn)練學(xué)生的語(yǔ)言敘述能力。再次體會(huì)與指數(shù)函數(shù)、對(duì)數(shù)函數(shù)性質(zhì)的區(qū)別。體會(huì)冪指數(shù)的不同情況對(duì)函數(shù)單調(diào)性的影響。
⑾圖象之間有什么區(qū)別?特別是在分布上。與常數(shù)有什么聯(lián)系?
教師通過(guò)幾何畫板演示圖象在第一象限內(nèi)的變化規(guī)律,以驗(yàn)證學(xué)生猜想。通過(guò)超級(jí)鏈接幾何畫板演示。(附圖2)
這是較高要求,可以讓學(xué)生自由猜想和發(fā)言。進(jìn)一步提高學(xué)生觀察,歸納能力。
、徐柟叹毩(xí)寫出下列函數(shù)的定義域,并指出它們的奇偶性和單調(diào)性:①y=x②y=x③y=x。
學(xué)生獨(dú)立思考并回答。
訓(xùn)練學(xué)生自覺運(yùn)用冪函數(shù)圖象性質(zhì)的基本規(guī)律。
、押(jiǎn)單應(yīng)用1:比較下列各組中兩個(gè)值的大小,并說(shuō)明理由:
、0.75,0.76;
②(-0、95),(-0、96);
③0、23,0、24;
④0、31,0、31
學(xué)生思考,作答,教師引導(dǎo)學(xué)生敘述語(yǔ)言的邏輯性。
訓(xùn)練學(xué)生用函數(shù)性質(zhì)進(jìn)行解釋,強(qiáng)化學(xué)生邏輯意識(shí)。其中第④小題是利用指數(shù)函數(shù)性質(zhì)解決,注意區(qū)別。
⒁請(qǐng)學(xué)生考慮可以如何驗(yàn)證上述答案的正確。
學(xué)生實(shí)踐。使用計(jì)算器驗(yàn)證,提高學(xué)生使用學(xué)習(xí)工具的意識(shí)。
⒂簡(jiǎn)單應(yīng)用2:冪函數(shù)y=(m-3m-3)x在區(qū)間上是減函數(shù),求m的值。
學(xué)生思考,作答。教師板演。對(duì)冪函數(shù)定義進(jìn)一步鞏固,對(duì)函數(shù)性質(zhì)作初步應(yīng)用。同時(shí)訓(xùn)練學(xué)生對(duì)初步答案進(jìn)行篩選。
、院(jiǎn)單應(yīng)用2:
已知(a+1)<(3-2a),試求a的取值范圍。
學(xué)生思考,作答。教師板演。
訓(xùn)練學(xué)生靈活使用性質(zhì)解題。
數(shù)學(xué)交流⒄小結(jié):今天的學(xué)習(xí)內(nèi)容和方法有哪些?你有哪些收獲和經(jīng)驗(yàn)?學(xué)生思考、小組討論,教師引導(dǎo)。讓學(xué)生回顧,小結(jié),將對(duì)學(xué)生形成知識(shí)系統(tǒng)產(chǎn)生積極影響。
數(shù)學(xué)再現(xiàn)
、植贾米鳂I(yè):
課本p.732、3、4、思考5思考5作為訓(xùn)練學(xué)生應(yīng)用數(shù)學(xué)于實(shí)際的較好例子,應(yīng)讓能力較好學(xué)生得到充分發(fā)展。
幾點(diǎn)說(shuō)明:
、疟竟(jié)課開始時(shí)要注意用相關(guān)熟悉例子引入新課。
、飘嫼瘮(shù)圖象時(shí),如果學(xué)生已能夠運(yùn)用計(jì)算器或相關(guān)計(jì)算機(jī)軟件作圖,可以讓學(xué)生自己操作,以提高學(xué)生探索問(wèn)題的興趣和能力,并提高教學(xué)效率。
、怯捎谡n程標(biāo)準(zhǔn)對(duì)冪函數(shù)的研究范圍有相對(duì)限制,故第11個(gè)問(wèn)題要求較高,建議視具體情況選擇教學(xué)。
、缺驹O(shè)計(jì)相關(guān)課件采用PowerPoint演示文稿,其中部分使用超級(jí)鏈接至幾何畫板(4、06版本)進(jìn)行演示。
高二數(shù)學(xué)教案9
[新知初探]
1、向量的數(shù)乘運(yùn)算
。1)定義:規(guī)定實(shí)數(shù)λ與向量a的積是一個(gè)向量,這種運(yùn)算叫做向量的數(shù)乘,記作:λa,它的長(zhǎng)度和方向規(guī)定如下:
、質(zhì)λa|=|λ||a|;
②當(dāng)λ>0時(shí),λa的方向與a的方向相同;
當(dāng)λ<0時(shí),λa的.方向與a的方向相反。
。2)運(yùn)算律:設(shè)λ,μ為任意實(shí)數(shù),則有:
、佴耍é蘟)=(λμ)a;
、冢é+μ)a=λa+μa;
、郐耍╝+b)=λa+λb;
特別地,有(—λ)a=—(λa)=λ(—a);
λ(a—b)=λa—λb。
[點(diǎn)睛](1)實(shí)數(shù)與向量可以進(jìn)行數(shù)乘運(yùn)算,但不能進(jìn)行加減運(yùn)算,如λ+a,λ—a均無(wú)法運(yùn)算。
(2)λa的結(jié)果為向量,所以當(dāng)λ=0時(shí),得到的結(jié)果為0而不是0。
2、向量共線的條件
向量a(a≠0)與b共線,當(dāng)且僅當(dāng)有一個(gè)實(shí)數(shù)λ,使b=λa。
[點(diǎn)睛](1)定理中a是非零向量,其原因是:若a=0,b≠0時(shí),雖有a與b共線,但不存在實(shí)數(shù)λ使b=λa成立;若a=b=0,a與b顯然共線,但實(shí)數(shù)λ不,任一實(shí)數(shù)λ都能使b=λa成立。
(2)a是非零向量,b可以是0,這時(shí)0=λa,所以有λ=0,如果b不是0,那么λ是不為零的實(shí)數(shù)。
3、向量的線性運(yùn)算
向量的加、減、數(shù)乘運(yùn)算? 對(duì)于任意向量a,b及任意實(shí)數(shù)λ,μ1,μ2,恒有λ(μ1a±μ2b)=λμ1a±λμ2b。
[小試身手]
1、判斷下列命題是否正確。(正確的打“√”,錯(cuò)誤的打“×”)
(1)λa的方向與a的方向一致。()
。2)共線向量定理中,條件a≠0可以去掉。()
。3)對(duì)于任意實(shí)數(shù)m和向量a,b,若ma=mb,則a=b。()
答案:(1)×(2)×(3)×
2、若|a|=1|b|=2,且a與b方向相同,則下列關(guān)系式正確的是()
A、b=2aB、b=—2a
C、a=2bD、a=—2b
答案:A
3、在四邊形ABCD中,若=—12,則此四邊形是()
A、平行四邊形B、菱形
C、梯形D、矩形
答案:C
4、化簡(jiǎn):2(3a+4b)—7a=XXXXXX。
答案:—a+8b
向量的線性運(yùn)算
[例1]化簡(jiǎn)下列各式:
。1)3(6a+b)—9a+13b;
。2)12?3a+2b?—a+12b—212a+38b;
。3)2(5a—4b+c)—3(a—3b+c)—7a。
[解](1)原式=18a+3b—9a—3b=9a。
。2)原式=122a+32b—a—34b=a+34b—a—34b=0。
(3)原式=10a—8b+2c—3a+9b—3c—7a=b—c。
向量線性運(yùn)算的方法
向量的線性運(yùn)算類似于代數(shù)多項(xiàng)式的運(yùn)算,共線向量可以合并,即“合并同類項(xiàng)”“提取公因式”,這里的“同類項(xiàng)”“公因式”指的是向量。
高二數(shù)學(xué)教案10
教學(xué)目的:
1、使學(xué)生理解線段的垂直平分線的性質(zhì)定理及逆定理,掌握這兩個(gè)定理的關(guān)系并會(huì)用這兩個(gè)定理解決有關(guān)幾何問(wèn)題。
2、了解線段垂直平分線的軌跡問(wèn)題。
3、結(jié)合教學(xué)內(nèi)容培養(yǎng)學(xué)生的動(dòng)作思維、形象思維和抽象思維能力。
教學(xué)重點(diǎn):
線段的垂直平分線性質(zhì)定理及逆定理的引入證明及運(yùn)用。
教學(xué)難點(diǎn):
線段的垂直平分線性質(zhì)定理及逆定理的關(guān)系。
教學(xué)關(guān)鍵:
1、垂直平分線上所有的點(diǎn)和線段兩端點(diǎn)的距離相等。
2、到線段兩端點(diǎn)的距離相等的所有點(diǎn)都在這條線段的垂直平分線上。
教具:投影儀及投影膠片。
教學(xué)過(guò)程:
一、提問(wèn)
1、角平分線的性質(zhì)定理及逆定理是什么?
2、怎樣做一條線段的垂直平分線?
二、新課
1、請(qǐng)同學(xué)們?cè)谡n堂練習(xí)本上做線段AB的垂直平分線EF(請(qǐng)一名同學(xué)在黑板上做)。
2、在EF上任取一點(diǎn)P,連結(jié)PA、PB量出PA=?,PB=?引導(dǎo)學(xué)生觀察這兩個(gè)值有什么關(guān)系?
通過(guò)學(xué)生的觀察、分析得出結(jié)果PA=PB,再取一點(diǎn)P'試一試仍然有P'A=P'B,引導(dǎo)學(xué)生猜想EF上的所有點(diǎn)和點(diǎn)A、點(diǎn)B的距離都相等,再請(qǐng)同學(xué)把這一結(jié)論敘述成命題(用幻燈展示)。
定理:線段的垂直平分線上的點(diǎn)和這條線段的兩個(gè)端點(diǎn)的距離相等。
這個(gè)命題,是我們通過(guò)作圖、觀察、猜想得到的,還得在理論上加以證明是真命題才能做為定理。
例題:
已知:如圖,直線EF⊥AB,垂足為C,且AC=CB,點(diǎn)P在EF上
求證:PA=PB
如何證明PA=PB學(xué)生分析得出只要證RTΔPCA≌RTΔPCB
答:證明:∵PC⊥AB(已知)
∴∠PCA=∠PCB(垂直的定義)
在ΔPCA和ΔPCB中
∴ΔPCA≌ΔPCB(SAS)
即:PA=PB(全等三角形的對(duì)應(yīng)邊相等)。
反過(guò)來(lái),如果PA=PB,P1A=P1B,點(diǎn)P,P1在什么線上?
過(guò)P,P1做直線EF交AB于C,可證明ΔPAP1≌PBP1(SSS)
∴EF是等腰三角型ΔPAB的頂角平分線
∴EF是AB的垂直平分線(等腰三角形三線合一性質(zhì))
∴P,P1在AB的垂直平分線上,于是得出上述定理的逆定理(啟發(fā)學(xué)生敘述)(用幻燈展示)。
逆定理:和一條線段兩個(gè)端點(diǎn)距離相等的點(diǎn),在這條線段的垂直平分線上。
根據(jù)上述定理和逆定理可以知道:直線MN可以看作和兩點(diǎn)A、B的距離相等的所有點(diǎn)的集合。
線段的垂直平分線可以看作是和線段兩個(gè)端點(diǎn)距離相等的所有點(diǎn)的集合。
三、舉例(用幻燈展示)
例:已知,如圖ΔABC中,邊AB,BC的垂直平分線相交于點(diǎn)P,求證:PA=PB=PC。
證明:∵點(diǎn)P在線段AB的垂直平分線上
∴PA=PB
同理PB=PC
∴PA=PB=PC
由例題PA=PC知點(diǎn)P在AC的垂直平分線上,所以三角形三邊的垂直平分線交于一點(diǎn)P,這點(diǎn)到三個(gè)頂點(diǎn)的距離相等。
四、小結(jié)
正確的運(yùn)用這兩個(gè)定理的關(guān)鍵是區(qū)別它們的條件與結(jié)論,加強(qiáng)證明前的分析,找出證明的途徑。定理的作用是可證明兩條線段相等或點(diǎn)在線段的垂直平分線上。
《教案設(shè)計(jì)說(shuō)明》
線段的垂直平分線的性質(zhì)定理及逆定理,都是幾何中的重要定理,也是一條重要軌跡。在幾何證明、計(jì)算、作圖中都有重要應(yīng)用。我講授這節(jié)課是線段垂直平分線的第一節(jié)課,主要完成定理的引出、證明和初步的運(yùn)用。
在設(shè)計(jì)教案時(shí),我結(jié)合教材內(nèi)容,對(duì)如何導(dǎo)入新課,引出定理以及證明進(jìn)行了探索。在導(dǎo)入新課這一環(huán)節(jié)上我先讓學(xué)生做一條線段AB的垂直平分線EF,在EF上取一點(diǎn)P,讓學(xué)生量出PA、PB的長(zhǎng)度,引導(dǎo)學(xué)生觀察、討論每個(gè)人量得的這兩個(gè)長(zhǎng)度之間有什么關(guān)系:得到什么結(jié)論?學(xué)生回答:PA=PB。然后再讓學(xué)生取一點(diǎn)試一試,這兩個(gè)長(zhǎng)度也相等,由此引導(dǎo)學(xué)生猜想到線段垂直平分線的性質(zhì)定理。在這一過(guò)程中讓學(xué)生主動(dòng)積極的參與到教學(xué)中來(lái),使學(xué)生通過(guò)作圖、觀察、量一量再得出結(jié)論。從而把知識(shí)的形成過(guò)程轉(zhuǎn)化為學(xué)生親自參與、發(fā)現(xiàn)、探索的過(guò)程。在教學(xué)時(shí),引導(dǎo)學(xué)生分析性質(zhì)定理的題設(shè)與結(jié)論,畫圖寫出已知、求證,通過(guò)分析由學(xué)生得出證明性質(zhì)定理的方法,這個(gè)過(guò)程既是探索過(guò)程也是調(diào)動(dòng)學(xué)生動(dòng)腦思考的`過(guò)程,只有學(xué)生動(dòng)腦思考了,才能真正理解線段垂直平分線的性質(zhì)定理,以及證明方法。在此基礎(chǔ)上再提出如果有兩點(diǎn)到線段的兩端點(diǎn)的距離相等,這樣的點(diǎn)應(yīng)在什么樣的直線上?由條件得出這樣的點(diǎn)在線段的垂直平分線上,從而引出性質(zhì)定理的逆定理,由上述兩個(gè)定理使學(xué)生再進(jìn)一步知道線段的垂直平分線可以看作是到線段兩端點(diǎn)距離的所有點(diǎn)的集合。這樣可以幫助學(xué)生認(rèn)識(shí)理論來(lái)源于實(shí)踐又服務(wù)于實(shí)踐的道理,也能提高他們學(xué)習(xí)的積極性,加深對(duì)所學(xué)知識(shí)的理解。在講解例題時(shí)引導(dǎo)學(xué)生用所學(xué)的線段垂直平分線的性質(zhì)定理以及逆定理來(lái)證,避免用三角形全等來(lái)證。最后總結(jié)點(diǎn)P是三角形三邊垂直平分線的交點(diǎn),這個(gè)點(diǎn)到三個(gè)頂點(diǎn)的距離相等。為了使學(xué)生當(dāng)堂掌握兩個(gè)定理的靈活運(yùn)用,讓學(xué)生做87頁(yè)的兩個(gè)練習(xí),以達(dá)到鞏固知識(shí)的目的。
高二數(shù)學(xué)教案11
【教學(xué)目標(biāo)】
1、能夠用語(yǔ)言描述棱柱、棱錐、圓柱、圓錐、棱臺(tái)、圓臺(tái)、球的結(jié)構(gòu)特征。
2、能夠根據(jù)幾何結(jié)構(gòu)特征對(duì)空間物體進(jìn)行分類。
3、提高學(xué)生的觀察能力,培養(yǎng)學(xué)生的空間想象能力和抽象思維能力。
【教學(xué)重難點(diǎn)】
教學(xué)重點(diǎn):通過(guò)讓學(xué)生觀察真實(shí)的空間物體和模型,概括出柱、錐、臺(tái)、球的結(jié)構(gòu)特征。
教學(xué)難點(diǎn):如何概括柱、錐、臺(tái)、球的結(jié)構(gòu)特征。
【教學(xué)過(guò)程】
1、情景引入
教師提出問(wèn)題,引導(dǎo)學(xué)生觀察、舉例和相互交流,介紹本節(jié)課所學(xué)內(nèi)容,出示課題。
2、闡述目標(biāo),檢查預(yù)習(xí)
3、合作探究、交流展示
(1)引導(dǎo)學(xué)生觀察棱柱的實(shí)物和圖片,說(shuō)出它們各自的特點(diǎn)是什么?它們有什么共同點(diǎn)?
(2)組織學(xué)生分組討論,每組選出一名同學(xué)發(fā)表本組討論結(jié)果。
在此基礎(chǔ)上得出棱柱的主要結(jié)構(gòu)特征:
(1)有兩個(gè)面互相平行;
(2)其余各面都是平行四邊形;
(3)每相鄰兩個(gè)平行四邊形的公共邊互相平行。概括出棱柱的定義。
(3)提出問(wèn)題:請(qǐng)列舉身邊的棱柱并進(jìn)行分類。
(4)以類似的方法,讓學(xué)生思考、討論、概括出棱錐、棱臺(tái)的。結(jié)構(gòu)特征,并得出相關(guān)的定義、分類和表示。
(5)讓學(xué)生觀察圓柱,并演示圓柱的實(shí)物模型,概括出圓柱的定義以及相關(guān)的.定義和表示。
(6)引導(dǎo)學(xué)生思考圓錐、圓臺(tái)、球的結(jié)構(gòu)特征,并得出相關(guān)定義、表示以及分類,借助演示模型引導(dǎo)學(xué)生思考、討論、概括。
(7)教師指出圓柱和棱柱?
4、提問(wèn)回答,解決問(wèn)題,擴(kuò)展思維,教師提出問(wèn)題,讓學(xué)生思考。
(1)有兩個(gè)面互相平行,其余各面都是平行四邊形的幾何體是否為棱柱?(通過(guò)反例說(shuō)明)
(2)棱柱的任何兩個(gè)平面都可選修1-1,第三章《導(dǎo)數(shù)》,根據(jù)教研室的計(jì)劃,應(yīng)該安排在春節(jié)前。鑒于期末考試臨近,這一章沒(méi)有學(xué)習(xí),所以這學(xué)期的教學(xué)內(nèi)容有以下幾個(gè)部分:選修1-1《導(dǎo)數(shù)》,選修1-2,共四章《統(tǒng)計(jì)案例》,《推理與證明》,《數(shù)系的擴(kuò)充與復(fù)數(shù)的引入》。
二、教學(xué)策略
根據(jù)年山東省高考數(shù)學(xué)(文科)大綱的要求,應(yīng)及時(shí)調(diào)整教學(xué)計(jì)劃,切實(shí)重視學(xué)生學(xué)習(xí)的實(shí)施,讓學(xué)生的學(xué)精心備課,精心指導(dǎo),針對(duì)目標(biāo)學(xué)生不放松,努力使目標(biāo)學(xué)生數(shù)學(xué)成績(jī)有效,積極交流,提高教學(xué)水平,同時(shí)認(rèn)真學(xué)習(xí)《框圖》,學(xué)習(xí)新課程,應(yīng)用新課程。
三、具體措施
這學(xué)期我主要從以下幾個(gè)方面做好教學(xué)工作:
1、注重學(xué)習(xí)計(jì)劃指導(dǎo)學(xué)習(xí),善用好學(xué)案例。注重研究老師如何說(shuō)話,就是注重研究學(xué)生如何學(xué)習(xí)。
2、盡量分層次做作業(yè),尤其是加餐,提高尖子生的學(xué)習(xí)成績(jī)。
3、特別注意學(xué)生作業(yè)的落實(shí),不定時(shí)查看學(xué)生的集錦和作業(yè)本。
4、組織單位通過(guò),做好試卷講評(píng)工作。
5、積極溝通目標(biāo)學(xué)生的想法和感受。
高二數(shù)學(xué)教案12
教學(xué)目標(biāo)
(1)了解算法的含義,體會(huì)算法思想。
。2)會(huì)用自然語(yǔ)言和數(shù)學(xué)語(yǔ)言描述簡(jiǎn)單具體問(wèn)題的算法;
。3)學(xué)習(xí)有條理地、清晰地表達(dá)解決問(wèn)題的步驟,培養(yǎng)邏輯思維能力與表達(dá)能力
教學(xué)重難點(diǎn)
重點(diǎn):算法的含義、解二元一次方程組的算法設(shè)計(jì)。
難點(diǎn):把自然語(yǔ)言轉(zhuǎn)化為算法語(yǔ)言。
情境導(dǎo)入
電影《神槍手》中描述的凌靖是一個(gè)天生的狙擊手,他百發(fā)百中,最難打的位置對(duì)他來(lái)說(shuō)也是輕而易舉,是香港警察狙擊手隊(duì)伍的第一神槍手。作為一名狙擊手,要想成功地完成一次狙擊任務(wù),一般要按步驟完成以下幾步:
第一步:觀察、等待目標(biāo)出現(xiàn)(用望遠(yuǎn)鏡或瞄準(zhǔn)鏡);
第二步:瞄準(zhǔn)目標(biāo);
第三步:計(jì)算(或估測(cè))風(fēng)速、距離、空氣濕度、空氣密度;
第四步:根據(jù)第三步的結(jié)果修正彈著點(diǎn);
第五步:開槍;
第六步:迅速轉(zhuǎn)移(或隱蔽)。
以上這種完成狙擊任務(wù)的方法、步驟在數(shù)學(xué)上我們叫算法。
●課堂探究
預(yù)習(xí)提升
1、定義:算法可以理解為由基本運(yùn)算及規(guī)定的運(yùn)算順序所構(gòu)成的完整的解題步驟,或者看成按照要求設(shè)計(jì)好的有限的確切的計(jì)算序列,并且這樣的步驟或序列能夠解決一類問(wèn)題。
2、描述方式
自然語(yǔ)言、數(shù)學(xué)語(yǔ)言、形式語(yǔ)言(算法語(yǔ)言)、框圖。
3、算法的要求
(1)寫出的算法,必須能解決一類問(wèn)題,且能重復(fù)使用;
。2)算法過(guò)程要能一步一步執(zhí)行,每一步執(zhí)行的操作,必須確切,不能含混不清,而且經(jīng)過(guò)有限步后能得出結(jié)果。
4、算法的特征
(1)有限性:一個(gè)算法應(yīng)包括有限的操作步驟,能在執(zhí)行有窮的操作步驟之后結(jié)束。
。2)確定性:算法的計(jì)算規(guī)則及相應(yīng)的計(jì)算步驟必須是確定的
。3)可行性:算法中的每一個(gè)步驟都是可以在有限的時(shí)間內(nèi)完成的`基本操作,并能得到確定的結(jié)果。
。4)順序性:算法從初始步驟開始,分為若干個(gè)明確的步驟,前一步是后一步的前提,后一步是前一步的后續(xù),且除了最后一步外,每一個(gè)步驟只有一個(gè)確定的后續(xù)。
(5)不性:解決同一問(wèn)題的算法可以是不的
高二數(shù)學(xué)教案13
一、教材分析
推理是高考的重要的內(nèi)容,推理包括合情推理與演繹推理,由于解答高考題的過(guò)程就是推理的過(guò)程,因此本部分內(nèi)容的考察將會(huì)滲透到每一個(gè)高考題中,考察推理的基本思想和方法,既可能在選擇題中和填空題中出現(xiàn),也可能在解答題中出現(xiàn)。
二、教學(xué)目標(biāo)
(1)知識(shí)與能力:了解演繹推理的含義及特點(diǎn),會(huì)將推理寫成三段論的形式
(2)過(guò)程與方法:了解合情推理和演繹推理的區(qū)別與聯(lián)系
(3)情感態(tài)度價(jià)值觀:了解演繹推理在數(shù)學(xué)證明中的重要地位和日常生活中的作用,養(yǎng)成言之有理論證有據(jù)的習(xí)慣。
三、教學(xué)重點(diǎn)難點(diǎn)
教學(xué)重點(diǎn):演繹推理的含義與三段論推理及合情推理和演繹推理的區(qū)別與聯(lián)系
教學(xué)難點(diǎn):演繹推理的應(yīng)用
四、教學(xué)方法:探究法
五、課時(shí)安排:1課時(shí)
六、教學(xué)過(guò)程
1. 填一填:
、 所有的金屬都能夠?qū)щ,銅是金屬,所以 ;
、 太陽(yáng)系的大行星都以橢圓形軌道繞太陽(yáng)運(yùn)行,冥王星是太陽(yáng)系的大行星,因此 ;
、 奇數(shù)都不能被2整除,2007是奇數(shù),所以 .
2.討論:上述例子的推理形式與我們學(xué)過(guò)的合情推理一樣嗎?
3.小結(jié):
① 概念:從一般性的原理出發(fā),推出某個(gè)特殊情況下的結(jié)論,我們把這種推理稱為____________.
要點(diǎn):由_____到_____的推理.
② 討論:演繹推理與合情推理有什么區(qū)別?
、 思考:所有的金屬都能夠?qū)щ,銅是金屬,所以銅能導(dǎo)電,它由幾部分組成,各部分有什么特點(diǎn)?
小結(jié):三段論是演繹推理的一般模式:
第一段:_________________________________________;
第二段:_________________________________________;
第三段:____________________________________________.
、 舉例:舉出一些用三段論推理的例子.
例1:證明函數(shù) 在 上是增函數(shù).
例2:在銳角三角形ABC中, ,D,E是垂足. 求證:AB的中點(diǎn)M到D,E的距離相等.
當(dāng)堂檢測(cè):
討論:因?yàn)橹笖?shù)函數(shù) 是增函數(shù), 是指數(shù)函數(shù),則結(jié)論是什么?
討論:演繹推理怎樣才能使得結(jié)論正確?
比較:合情推理與演繹推理的區(qū)別與聯(lián)系?
課堂小結(jié)
課后練習(xí)與提高
1.演繹推理是以下列哪個(gè)為前提,推出某個(gè)特殊情況下的結(jié)論的推理方法( )
A.一般的原理原則; B.特定的命題;
C.一般的`命題; D.定理、公式.
2.因?yàn)閷?duì)數(shù)函數(shù) 是增函數(shù)(大前提),而 是對(duì)數(shù)函數(shù)(小前提),所以 是增函數(shù)(結(jié)論).上面的推理的錯(cuò)誤是( )
A.大前提錯(cuò)導(dǎo)致結(jié)論錯(cuò); B.小前提錯(cuò)導(dǎo)致結(jié)論錯(cuò);
C.推理形式錯(cuò)導(dǎo)致結(jié)論錯(cuò); D.大前提和小前提都錯(cuò)導(dǎo)致結(jié)論錯(cuò).
3.下面幾種推理過(guò)程是演繹推理的是( )
A.兩條直線平行,同旁內(nèi)角互補(bǔ),如果A和B是兩條平行直線的同旁內(nèi)角,則B =180B.由平面三角形的性質(zhì),推測(cè)空間四面體的性質(zhì);.
4.補(bǔ)充下列推理的三段論:
(1)因?yàn)榛橄喾磾?shù)的兩個(gè)數(shù)的和為0,又因?yàn)?與 互為相反數(shù)且________________________,所以 =8.
(2)因?yàn)開____________________________________,又因?yàn)?是無(wú)限不循環(huán)小數(shù),所以 是無(wú)理數(shù).
七、板書設(shè)計(jì)
八、教學(xué)反思
高二數(shù)學(xué)教案14
教學(xué)目標(biāo)
1.掌握橢圓的定義,掌握橢圓標(biāo)準(zhǔn)方程的兩種形式及其推導(dǎo)過(guò)程;
2.能根據(jù)條件確定橢圓的標(biāo)準(zhǔn)方程,掌握運(yùn)用待定系數(shù)法求橢圓的標(biāo)準(zhǔn)方程;
3.通過(guò)對(duì)橢圓概念的引入教學(xué),培養(yǎng)學(xué)生的觀察能力和探索能力;
4.通過(guò)橢圓的標(biāo)準(zhǔn)方程的推導(dǎo),使學(xué)生進(jìn)一步掌握求曲線方程的一般方法,并滲透數(shù)形結(jié)合和等價(jià)轉(zhuǎn)化的思想方法,提高運(yùn)用坐標(biāo)法解決幾何問(wèn)題的能力;
5.通過(guò)讓中國(guó)學(xué)習(xí)聯(lián)盟膽探索橢圓的定義和標(biāo)準(zhǔn)方程,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的積極性,培養(yǎng)學(xué)生的學(xué)習(xí)興趣和創(chuàng)新意識(shí).
教學(xué)建議
教材分析
1.知識(shí)結(jié)構(gòu)
2.重點(diǎn)難點(diǎn)分析
重點(diǎn)是橢圓的定義及橢圓標(biāo)準(zhǔn)方程的兩種形式.難點(diǎn)是橢圓標(biāo)準(zhǔn)方程的建立和推導(dǎo).關(guān)鍵是掌握建立坐標(biāo)系與根式化簡(jiǎn)的方法.
橢圓及其標(biāo)準(zhǔn)方程這一節(jié)教材整體來(lái)看是兩大塊內(nèi)容:一是橢圓的定義;二是橢圓的標(biāo)準(zhǔn)方程.橢圓是圓錐曲線這一章所要研究的三種圓錐曲線中首先遇到的,所以教材把對(duì)橢圓的研究放在了重點(diǎn),在雙曲線和拋物線的教學(xué)中鞏固和應(yīng)用.先講橢圓也與第七章的圓的方程銜接自然.學(xué)好橢圓對(duì)于學(xué)生學(xué)好圓錐曲線是非常重要的.
。1)對(duì)于橢圓的定義的理解,要抓住橢圓上的點(diǎn)所要滿足的條件,即橢圓上點(diǎn)的幾何性質(zhì),可以對(duì)比圓的定義來(lái)理解.
另外要注意到定義中對(duì)“常數(shù)”的限定即常數(shù)要大于.這樣規(guī)定是為了避免出現(xiàn)兩種特殊情況,即:“當(dāng)常數(shù)等于時(shí)軌跡是一條線段;當(dāng)常數(shù)小于時(shí)無(wú)軌跡”.這樣有利于集中精力進(jìn)一步研究橢圓的標(biāo)準(zhǔn)方程和幾何性質(zhì).但講解橢圓的定義時(shí)注意不要忽略這兩種特殊情況,以保證對(duì)橢圓定義的準(zhǔn)確性.
。2)根據(jù)橢圓的定義求標(biāo)準(zhǔn)方程,應(yīng)注意下面幾點(diǎn):
①曲線的方程依賴于坐標(biāo)系,建立適當(dāng)?shù)淖鴺?biāo)系,是求曲線方程首先應(yīng)該注意的地方.應(yīng)讓學(xué)生觀察橢圓的圖形或根據(jù)橢圓的定義進(jìn)行推理,發(fā)現(xiàn)橢圓有兩條互相垂直的對(duì)稱軸,以這兩條對(duì)稱軸作為坐標(biāo)系的兩軸,不但可以使方程的推導(dǎo)過(guò)程變得簡(jiǎn)單,而且也可以使最終得出的方程形式整齊和簡(jiǎn)潔.
、谠O(shè)橢圓的焦距為,橢圓上任一點(diǎn)到兩個(gè)焦點(diǎn)的距離為,令,這些措施,都是為了簡(jiǎn)化推導(dǎo)過(guò)程和最后得到的方程形式整齊、簡(jiǎn)潔,要讓學(xué)生認(rèn)真領(lǐng)會(huì).
、墼诜匠痰耐茖(dǎo)過(guò)程中遇到了無(wú)理方程的化簡(jiǎn),這既是我們今后在求軌跡方程時(shí)經(jīng)常遇到的問(wèn)題,又是學(xué)生的難點(diǎn).要注意說(shuō)明這類方程的化簡(jiǎn)方法:①方程中只有一個(gè)根式時(shí),需將它單獨(dú)留在方程的一側(cè),把其他項(xiàng)移至另一側(cè);②方程中有兩個(gè)根式時(shí),需將它們分別放在方程的兩側(cè),并使其中一側(cè)只有一項(xiàng).
、芙炭茣蠈(duì)橢圓標(biāo)準(zhǔn)方程的推導(dǎo),實(shí)際上只給出了“橢圓上點(diǎn)的坐標(biāo)都適合方程“而沒(méi)有證明,”方程的解為坐標(biāo)的點(diǎn)都在橢圓上”.這實(shí)際上是方程的同解變形問(wèn)題,難度較大,對(duì)同學(xué)們不作要求.
。3)兩種標(biāo)準(zhǔn)方程的橢圓異同點(diǎn)
中心在原點(diǎn)、焦點(diǎn)分別在軸上,軸上的橢圓標(biāo)準(zhǔn)方程分別為:,.它們的相同點(diǎn)是:形狀相同、大小相同,都有,.不同點(diǎn)是:兩種橢圓相對(duì)于坐標(biāo)系的位置不同,它們的焦點(diǎn)坐標(biāo)也不同.
橢圓的焦點(diǎn)在軸上標(biāo)準(zhǔn)方程中項(xiàng)的分母較大;
橢圓的焦點(diǎn)在軸上標(biāo)準(zhǔn)方程中項(xiàng)的分母較大.
另外,形如中,只要,同號(hào),就是橢圓方程,它可以化為.
。4)教科書上通過(guò)例3介紹了另一種求軌跡方程的常用方法——中間變量法.例3有三個(gè)作用:第一是教給學(xué)生利用中間變量求點(diǎn)的軌跡的方法;第二是向?qū)W生說(shuō)明,如果求得的點(diǎn)的軌跡的方程形式與橢圓的標(biāo)準(zhǔn)方程相同,那么這個(gè)軌跡是橢圓;第三是使學(xué)生知道,一個(gè)圓按某一個(gè)方向作伸縮變換可以得到橢圓.
教法建議
。1)使學(xué)生了解圓錐曲線在生產(chǎn)和科學(xué)技術(shù)中的應(yīng)用,激發(fā)學(xué)生的學(xué)習(xí)興趣.
為激發(fā)學(xué)生學(xué)習(xí)圓錐曲線的興趣,體會(huì)圓錐曲線知識(shí)在實(shí)際生活中的作用,可由實(shí)際問(wèn)題引入,從中提出圓錐曲線要研究的問(wèn)題,使學(xué)生對(duì)所要研究的內(nèi)容心中有數(shù),如書中所給的例子,還可以啟發(fā)學(xué)生尋找身邊與圓錐曲線有關(guān)的例子。
例如,我們生活的地球每時(shí)每刻都在環(huán)繞太陽(yáng)的軌道——橢圓上運(yùn)行,太陽(yáng)系的其他行星也如此,太陽(yáng)則位于橢圓的一個(gè)焦點(diǎn)上.如果這些行星運(yùn)動(dòng)的速度增大到某種程度,它們就會(huì)沿拋物線或雙曲線運(yùn)行.人類發(fā)射人造地球衛(wèi)星或人造行星就要遵循這個(gè)原理.相對(duì)于一個(gè)物體,按萬(wàn)有引力定律受它吸引的另一個(gè)物體的運(yùn)動(dòng),不可能有任何其他的軌道.因而,圓錐曲線在這種意義上講,它構(gòu)成了我們宇宙的基本形式,另外,工廠通氣塔的外形線、探照燈反光鏡的`軸截面曲線,都和圓錐曲線有關(guān),圓錐曲線在實(shí)際生活中的價(jià)值是很高的.
。2)安排學(xué)生課下切割圓錐形的事物,使學(xué)生了解圓錐曲線名稱的來(lái)歷
為了讓學(xué)生了解圓錐曲線名稱的來(lái)歷,但為了節(jié)約課堂時(shí)間,教學(xué)時(shí)應(yīng)安排讓學(xué)生課后親自動(dòng)手切割圓錐形的蘿卜、膠泥等,以加深對(duì)圓錐曲線的認(rèn)識(shí).
。3)對(duì)橢圓的定義的引入,要注意借助于直觀、形象的模型或教具,讓學(xué)生從感性認(rèn)識(shí)入手,逐步上升到理性認(rèn)識(shí),形成正確的概念。
教師可從太陽(yáng)、地球、人造地球衛(wèi)星的運(yùn)行軌道,談到圓蘿卜的切片、陽(yáng)光下圓盤在地面上的影子等等,讓學(xué)生先對(duì)橢圓有一個(gè)直觀的了解。
教師可事先準(zhǔn)備好一根細(xì)線及兩根釘子,在給出橢圓在數(shù)學(xué)上的嚴(yán)格定義之前,教師先在黑板上取兩個(gè)定點(diǎn)(兩定點(diǎn)之間的距離小于細(xì)線的長(zhǎng)度),再讓兩名學(xué)生按教師的要求在黑板上畫一個(gè)橢圓。畫好后,教師再在黑板上取兩個(gè)定點(diǎn)(兩定點(diǎn)之間的距離大于細(xì)線的長(zhǎng)度),然后再請(qǐng)剛才兩名學(xué)生按同樣的要求作圖。學(xué)生通過(guò)觀察兩次作圖的過(guò)程,總結(jié)出經(jīng)驗(yàn)和教訓(xùn),教師因勢(shì)利導(dǎo),讓學(xué)生自己得出橢圓的嚴(yán)格的定義。這樣,學(xué)生對(duì)這一定義就會(huì)有深刻的了解。
。4)將提出的問(wèn)題分解為若干個(gè)子問(wèn)題,借助多媒體課件來(lái)體現(xiàn)橢圓的定義的實(shí)質(zhì)
在教學(xué)時(shí),可以設(shè)置幾個(gè)問(wèn)題,讓學(xué)生動(dòng)手動(dòng)腦,獨(dú)立思考,自主探索,使學(xué)生根據(jù)提出的問(wèn)題,利用多媒體,通過(guò)觀察、實(shí)驗(yàn)、分析去尋找解決問(wèn)題的途徑。在橢圓的定義的教學(xué)過(guò)程()中,可以提出“到兩定點(diǎn)的距離的和為定值的點(diǎn)的軌跡一定是橢圓嗎”,讓學(xué)生通過(guò)課件演示“改變焦距或定值”,觀察軌跡的形狀,從而挖掘出定義的內(nèi)涵,這樣就使得學(xué)生對(duì)橢圓的定義留下了深刻的印象。
。5)注意橢圓的定義與橢圓的標(biāo)準(zhǔn)方程的聯(lián)系
在講解橢圓的定義時(shí),就要啟發(fā)學(xué)生注意橢圓的圖形特征,一般學(xué)生比較容易發(fā)現(xiàn)橢圓的對(duì)稱性,這樣在建立坐標(biāo)系時(shí),學(xué)生就比較容易選擇適當(dāng)?shù)淖鴺?biāo)系了,即使焦點(diǎn)在坐標(biāo)軸上,對(duì)稱中心是原點(diǎn)(此時(shí)不要過(guò)多的研究幾何性質(zhì)).雖然這時(shí)學(xué)生并不一定能說(shuō)明白為什么這樣選擇坐標(biāo)系,但在有了一定感性認(rèn)識(shí)的基礎(chǔ)上再講解選擇適當(dāng)坐標(biāo)系的一般原則,學(xué)生就較為容易接受,也向?qū)W生逐步滲透了坐標(biāo)法.
。6)推導(dǎo)橢圓的標(biāo)準(zhǔn)方程時(shí)教師要注意化解難點(diǎn),適時(shí)地補(bǔ)充根式化簡(jiǎn)的方法.
推導(dǎo)橢圓的標(biāo)準(zhǔn)方程時(shí),由于列出的方程為兩個(gè)跟式的和等于一個(gè)非零常數(shù),化簡(jiǎn)時(shí)要進(jìn)行兩次平方,方程中字母超過(guò)三個(gè),且次數(shù)高、項(xiàng)數(shù)多,教學(xué)時(shí)要注意化解難點(diǎn),盡量不要把跟式化簡(jiǎn)的困難影響學(xué)生對(duì)橢圓的標(biāo)準(zhǔn)方程的推導(dǎo)過(guò)程的整體認(rèn)識(shí).通過(guò)具體的例子使學(xué)生循序漸進(jìn)的解決帶跟式的方程的化簡(jiǎn),即:(1)方程中只有一個(gè)跟式時(shí),需將它單獨(dú)留在方程的一邊,把其他各項(xiàng)移至另一邊;(2)方程中有兩個(gè)跟式時(shí),需將它們放在方程的兩邊,并使其中一邊只有一項(xiàng).(為了避免二次平方運(yùn)算)
。7)講解了焦點(diǎn)在x軸上的橢圓的標(biāo)準(zhǔn)方程后,教師要啟發(fā)學(xué)生自己研究焦點(diǎn)在y軸上的標(biāo)準(zhǔn)方程,然后鼓勵(lì)學(xué)生探索橢圓的兩種標(biāo)準(zhǔn)方程的異同點(diǎn),加深對(duì)橢圓的認(rèn)識(shí).
(8)在學(xué)習(xí)新知識(shí)的基礎(chǔ)上要鞏固舊知識(shí)
橢圓也是一種曲線,所以第七章所講的曲線和方程的知識(shí)仍然使用,在推導(dǎo)橢圓的標(biāo)準(zhǔn)方程中要注意進(jìn)一步鞏固曲線和方程的概念.對(duì)于教材上在推出橢圓的標(biāo)準(zhǔn)方程后,并沒(méi)有證明所求得的方程確是橢圓的方程,要注意向?qū)W生說(shuō)明并不與前面所講的曲線和方程的概念矛盾,而是由于橢圓方程的化簡(jiǎn)過(guò)程是等價(jià)變形,而證明過(guò)程較繁,所以教材沒(méi)有要求也沒(méi)有給出證明過(guò)程,但學(xué)生要注意并不是以后都不需要證明,注意只有方程的化簡(jiǎn)是等價(jià)變形的才可以不用證明,而實(shí)際上學(xué)生在遇到一些具體的題目時(shí),還需要具體問(wèn)題具體分析.
。9)要突出教師的主導(dǎo)作用,又要強(qiáng)調(diào)學(xué)生的主體作用,課上盡量讓全體學(xué)生參與討論,由基礎(chǔ)較差的學(xué)生提出猜想,由基礎(chǔ)較好的學(xué)生幫助證明,培養(yǎng)學(xué)生的團(tuán)結(jié)協(xié)作的團(tuán)隊(duì)精神。
高二數(shù)學(xué)教案15
【教材分析】
1、知識(shí)內(nèi)容與結(jié)構(gòu)分析
集合論是現(xiàn)代數(shù)學(xué)的一個(gè)重要的基礎(chǔ)。在高中數(shù)學(xué)中,集合的初步知識(shí)與其他內(nèi)容有著密切的聯(lián)系,是學(xué)習(xí)、掌握和使用數(shù)學(xué)語(yǔ)言的基礎(chǔ),集合論以及它所反映的數(shù)學(xué)思想在越來(lái)越廣泛的領(lǐng)域中得到應(yīng)用。課本從學(xué)生熟悉的集合(自然數(shù)集合、有理數(shù)的集合等)出發(fā),結(jié)合實(shí)例給出了元素、集合的含義,學(xué)生通過(guò)對(duì)具體實(shí)例的抽象、概括發(fā)展了邏輯思維能力。
2、知識(shí)學(xué)習(xí)意義分析
通過(guò)自主探究的學(xué)習(xí)過(guò)程,了解集合的含義,體會(huì)元素與集合的“屬于”關(guān)系,能選擇合適的語(yǔ)言描述不同的具體問(wèn)題,感受集合語(yǔ)言的意義和作用。
3、教學(xué)建議與學(xué)法指導(dǎo)
由于本節(jié)新概念、新符號(hào)較多,雖然內(nèi)容較為淺顯,但不應(yīng)講得過(guò)快,應(yīng)在講解概念的同時(shí),讓學(xué)生多閱讀課本,互相交流,在此基礎(chǔ)上理解概念并熟悉新符號(hào)的使用。通過(guò)問(wèn)題探究、自主探索、合作交流、自我總結(jié)等形式,調(diào)動(dòng)學(xué)生的積極性。
【學(xué)情分析】
在初中,學(xué)生學(xué)習(xí)過(guò)一些點(diǎn)的集合或軌跡,如:平面內(nèi)到一個(gè)定點(diǎn)的距離等于定長(zhǎng)的點(diǎn)的集合(圓);到一條線段的兩個(gè)端點(diǎn)的距離相等的點(diǎn)的集合(線段的垂直平分線)。這對(duì)學(xué)生學(xué)習(xí)本節(jié)課的知識(shí)有一定的幫助,只不過(guò)現(xiàn)在我們要把這個(gè)“集合”推廣,它不僅僅是點(diǎn)的集合或圖形的集合,而是“指定的某些對(duì)象的全體”。集合語(yǔ)言是現(xiàn)代數(shù)學(xué)的基本語(yǔ)言,使用這種語(yǔ)言,不僅有助于簡(jiǎn)潔、準(zhǔn)確地表達(dá)數(shù)學(xué)內(nèi)容,還可以用來(lái)刻畫和解決生活中的許多問(wèn)題。學(xué)習(xí)集合,可以發(fā)展同學(xué)們用數(shù)學(xué)語(yǔ)言進(jìn)行交流的能力。
【教學(xué)目標(biāo)】
1、知識(shí)與技能
。1)學(xué)生通過(guò)自主學(xué)習(xí),初步理解集合的概念,理解元素與集合間的關(guān)系,了解集合元素的確定性、互異性,無(wú)序性,知道常用數(shù)集及其記法;
。2)掌握集合的常用表示法——列舉法和描述法。
2、過(guò)程與方法
通過(guò)實(shí)例了解集合的含義,體會(huì)元素與集合的“屬于”關(guān)系,能選擇合適的語(yǔ)言(如自然語(yǔ)言、圖形語(yǔ)言、集合語(yǔ)言)描述不同的具體問(wèn)題,提高語(yǔ)言轉(zhuǎn)換和抽象概括能力,樹立用集合語(yǔ)言表示數(shù)學(xué)內(nèi)容的意識(shí)。
3、情態(tài)與價(jià)值
在掌握基本概念的基礎(chǔ)上,能夠解決相關(guān)問(wèn)題,獲得數(shù)學(xué)學(xué)習(xí)的成就感,提高學(xué)生分析問(wèn)題和解決問(wèn)題的能力,培養(yǎng)學(xué)生的應(yīng)用意識(shí)。
【重點(diǎn)難點(diǎn)】
1、教學(xué)重點(diǎn):集合的基本概念與表示方法。
2、教學(xué)難點(diǎn):選擇合適的方法正確表示集合。
【教學(xué)思路】
通過(guò)實(shí)例以及學(xué)生熟悉的數(shù)集,引入集合的概念,進(jìn)而給出集合的表示方法,學(xué)生通過(guò)自我體會(huì)、自主學(xué)習(xí)、自我總結(jié)達(dá)到掌握本節(jié)課內(nèi)容的目的。教學(xué)過(guò)程按照“提出問(wèn)題——學(xué)生討論——?dú)w納總結(jié)——獲得新知——自我檢測(cè)”環(huán)節(jié)安排。
【教學(xué)過(guò)程】
課前準(zhǔn)備:
提前留給學(xué)生預(yù)習(xí)方案:a、預(yù)習(xí)初中數(shù)學(xué)中有關(guān)集合的章節(jié);b、預(yù)習(xí)本節(jié)內(nèi)容,試著找出與以往的聯(lián)系;c、搜集生活中的集合的使用實(shí)例。
導(dǎo)入新課:同學(xué)們,我們今天要學(xué)習(xí)的是集合的知識(shí),在小學(xué)和初中,我們已經(jīng)接觸過(guò)了一些集合,例如,自然數(shù)的集合,有理數(shù)的集合,不等式x-7<3的解得集合,到一個(gè)頂點(diǎn)的距離等于定長(zhǎng)的點(diǎn)的集合(即圓),等等,F(xiàn)在呢,我要說(shuō)的是:我們大家通過(guò)對(duì)初中知識(shí)的預(yù)習(xí)和對(duì)本節(jié)課的預(yù)習(xí)我相信你們能夠很大一部分已經(jīng)掌握了本節(jié)知識(shí)的'主要問(wèn)題,對(duì)不對(duì)?(同學(xué)們會(huì)高興地說(shuō):對(duì)。
下面我們分三個(gè)小組,做個(gè)游戲,好不好?我們互相競(jìng)賽答題,互相評(píng)論優(yōu)點(diǎn)與不足,好不好?(同學(xué)們?cè)诒徽{(diào)動(dòng)起情緒的時(shí)候應(yīng)該說(shuō):好。
教與學(xué)的過(guò)程:
預(yù)設(shè)問(wèn)題設(shè)計(jì)意圖師生活動(dòng)教師活動(dòng)
一組二組三組活動(dòng)同學(xué)們,通過(guò)看課本2頁(yè)的(1)至(8)個(gè)例子,同學(xué)們有什么啟發(fā)嗎?提出一個(gè)模糊一點(diǎn)的問(wèn)題,留給三組學(xué)生更寬的思考空間。啟發(fā)思考,激發(fā)興趣。教師點(diǎn)撥,及時(shí)糾正偏差的回答方向。(理想答案:我們學(xué)過(guò)很多集合的知識(shí)了。我們會(huì)舉出一些集合的例子。)
學(xué)生三個(gè)組分組輪流回答。你能說(shuō)出他們有什么共同的特征嗎?為集合的定義及含義的給出作出鋪墊,并培養(yǎng)學(xué)生的總結(jié)概括能力。引導(dǎo)學(xué)生共同得出正確的結(jié)論。最后給出準(zhǔn)確的定義:我們把研究的對(duì)象稱為元素(element);把一些元素組成的總體叫做集合(set)(簡(jiǎn)稱集)。學(xué)生討論,分組輪流回答。你們能說(shuō)出元素與集合是什么關(guān)系嗎?怎么表示呀?用什么額符號(hào)表示。客ㄟ^(guò)學(xué)生自己總結(jié),對(duì)元素與集合的關(guān)系記憶更深刻。教師指導(dǎo)學(xué)生得出準(zhǔn)確答案。(理想答案:集合是整體,元素是個(gè)體,集合有元素組成。集合用大寫字母表示,例如A;元素用小寫字母表示,例如a、如果a是集合A的元素,就說(shuō)a屬于A集合A,記做a∈A,如果a不是集合A中的元素,就說(shuō)a不屬于集合A,記做A)學(xué)生討論,分組輪流回答。
可以互相挑出對(duì)方回答問(wèn)題的錯(cuò)誤來(lái)比賽。我們描述集合常用哪些方法呢?怎么表示?引導(dǎo)學(xué)生認(rèn)識(shí)集合的兩種常見表示方法。教師引導(dǎo)指正。(理想答案:列舉法:把集合的元素一一列舉出來(lái),并用花括號(hào)“{}”括起來(lái)表示集合的方法叫做列舉法。描述法:用集合所含元素的共同特征表示集合的方法稱為描述法。具體方法是:在花括號(hào)內(nèi)線寫上表示這個(gè)集合元素的一般符號(hào)及取值(或變化)范圍,再畫一條豎線,在豎線后寫出這個(gè)集合中元素所具有的共同特征。同學(xué)們上黑板邊回答邊演練。誰(shuí)能試著說(shuō)說(shuō)集合中的元素有什么特點(diǎn)啊?拓展知識(shí),讓學(xué)生對(duì)元素的特征有極愛哦理性的認(rèn)識(shí),并開發(fā)其探究思維。教師點(diǎn)撥。(理想答案:元素一旦給出是確定的,確定性,沒(méi)有相同的,互異性,是沒(méi)有順序的,無(wú)序性。
即(1)確定性:對(duì)于任意一個(gè)元素,要么它屬于某個(gè)指定集合,要么它不屬于該集合,二者必居其一。
(2)互異性:同一個(gè)集合中的元素是互不相同的。
。3)無(wú)序性:任意改變集合中元素的排列次序,它們?nèi)匀槐硎就粋(gè)集合。)學(xué)生探究討論,回答。什么叫兩個(gè)集合相等呢?深刻理解集合。教師給出答案。(如果構(gòu)成兩個(gè)集合的元素是一樣的,我們稱這兩個(gè)集合是相等的。)學(xué)生探討回答。
【高二數(shù)學(xué)教案】相關(guān)文章:
高二數(shù)學(xué)教案01-26
職高高二數(shù)學(xué)教案06-20
高二語(yǔ)文的說(shuō)課稿11-07
高二《勸學(xué)》教案02-27
高二青春作文11-08
“等待”高二作文04-07
樟樹高二作文03-14
高二作文親情04-14