- 因式分解教案 推薦度:
- 因式分解教案 推薦度:
- 因式分解教案 推薦度:
- 相關(guān)推薦
實用的因式分解教案3篇
作為一名辛苦耕耘的教育工作者,就不得不需要編寫教案,教案是教學(xué)活動的依據(jù),有著重要的地位。那么寫教案需要注意哪些問題呢?以下是小編為大家整理的因式分解教案3篇,供大家參考借鑒,希望可以幫助到有需要的朋友。
因式分解教案 篇1
【教學(xué)目標(biāo)】
1、了解因式分解的概念和意義;
2、認識因式分解與整式乘法的相互關(guān)系——相反變形,并會運用它們之間的相互關(guān)系尋求因式分解的方法。
【教學(xué)重點、難點】
重點是因式分解的概念,難點是理解因式分解與整式乘法的相互關(guān)系,并運用它們之間的相互關(guān)系尋求因式分解的.方法。
【教學(xué)過程】
㈠、情境導(dǎo)入
看誰算得快:(搶答)
(1)若a=101,b=99,則a2-b2=___________;
(2)若a=99,b=-1,則a2-2ab+b2=____________;
(3)若x=-3,則20x2+60x=____________。
、妗⑻骄啃轮
1、請每題答得最快的同學(xué)談思路,得出最佳解題方法。(多媒體出示答案)(1)a2-b2=(a+b)(a-b)=(101+99)(101-99)=400;
(2)a2-2ab+b2=(a-b) 2=(99+1)2 =10000;
(3)20x2+60x=20x(x+3)=20x(-3)(-3+3)=0。
2、觀察:a2-b2=(a+b)(a-b),a2-2ab+b2 = (a-b)2, 20x2+60x=20x(x+3),找出它們的特點。(等式的左邊是一個什么式子,右邊又是什么形式?)
3、類比小學(xué)學(xué)過的因數(shù)分解概念,得出因式分解概念。(學(xué)生概括,老師補充。)
板書課題:§6.1 因式分解
因式分解概念:把一個多項式化成幾個整式的積的形式叫做因式分解,也叫分解因式。
㈢、前進一步
1、讓學(xué)生繼續(xù)觀察:(a+b)(a-b)= a2-b2, (a-b)2= a2-2ab+b2, 20x(x+3)= 20x2+60x,它們是什么運算?與因式分解有何關(guān)系?它們有何聯(lián)系與區(qū)別?
2、因式分解與整式乘法的關(guān)系:
因式分解
結(jié)合:a2-b2 (a+b)(a-b)
整式乘法
說明:從左到右是因式分解其特點是:由和差形式(多項式)轉(zhuǎn)化成整式的積的形式;從右到左是整式乘法其特點是:由整式積的形式轉(zhuǎn)化成和差形式(多項式)。
結(jié)論:因式分解與整式乘法的相互關(guān)系——相反變形。
、、鞏固新知
1、 下列代數(shù)式變形中,哪些是因式分解?哪些不是?為什么?
(1)x2-3x+1=x(x-3)+1 ;(2)(m+n)(a+b)+(m+n)(x+y)=(m+n)(a+b+x+y);
(3)2m(m-n)=2m2-2mn; (4)4x2-4x+1=(2x-1)2;(5)3a2+6a=3a(a+2);
(6)x2-4+3x=(x-2)(x+2)+3x; (7)k2++2=(k+)2;(8)18a3bc=3a2b·6ac。
2、你能寫出整式相乘(其中至少一個是多項式)的兩個例子,并由此得到相應(yīng)的兩個多項式的因式分解嗎?把結(jié)果與你的同伴交流。
㈤、應(yīng)用解釋
例 檢驗下列因式分解是否正確:
(1)x2y-xy2=xy(x-y);(2)2x2-1=(2x+1)(2x-1);(3)x2+3x+2=(x+1)(x+2).
分析:檢驗因式分解是否正確,只要看等式右邊幾個整式相乘的積與右邊的多項式是否相等。
練習(xí) 計算下列各題,并說明你的算法:(請學(xué)生板演)
(1)872+87×13
(2)1012-992
、、思維拓展
1.若 x2+mx-n能分解成(x-2)(x-5),則m= ,n=
2.機動題:(填空)x2-8x+m=(x-4)( ),且m=
㈦、課堂回顧
今天這節(jié)課,你學(xué)到了哪些知識?有哪些收獲與感受?說出來大家分享。
㈧、布置作業(yè)
作業(yè)本(1) ,一課一練
(九)教學(xué)反思:
因式分解教案 篇2
整式乘除與因式分解
一.回顧知識點
1、主要知識回顧:
冪的運算性質(zhì):
aman=am+n(m、n為正整數(shù))
同底數(shù)冪相乘,底數(shù)不變,指數(shù)相加.
=amn(m、n為正整數(shù))
冪的乘方,底數(shù)不變,指數(shù)相乘.
(n為正整數(shù))
積的乘方等于各因式乘方的積.
=am-n(a≠0,m、n都是正整數(shù),且m>n)
同底數(shù)冪相除,底數(shù)不變,指數(shù)相減.
零指數(shù)冪的概念:
a0=1(a≠0)
任何一個不等于零的數(shù)的零指數(shù)冪都等于l.
負指數(shù)冪的概念:
a-p=(a≠0,p是正整數(shù))
任何一個不等于零的數(shù)的-p(p是正整數(shù))指數(shù)冪,等于這個數(shù)的p指數(shù)冪的倒數(shù).
也可表示為:(m≠0,n≠0,p為正整數(shù))
單項式的乘法法則:
單項式相乘,把系數(shù)、同底數(shù)冪分別相乘,作為積的因式;對于只在一個單項式里含有的字母,則連同它的指數(shù)作為積的一個因式.
單項式與多項式的乘法法則:
單項式與多項式相乘,用單項式和多項式的每一項分別相乘,再把所得的積相加.
多項式與多項式的乘法法則:
多項式與多項式相乘,先用一個多項式的每一項與另一個多項式的每一項相乘,再把所得的積相加.
單項式的除法法則:
單項式相除,把系數(shù)、同底數(shù)冪分別相除,作為商的因式:對于只在被除式里含有的字母,則連同它的指數(shù)作為商的一個因式.
多項式除以單項式的法則:
多項式除以單項式,先把這個多項式的每一項除以這個單項式,再把所得的商相加.
2、乘法公式:
①平方差公式:(a+b)(a-b)=a2-b2
文字語言敘述:兩個數(shù)的和與這兩個數(shù)的差相乘,等于這兩個數(shù)的平方差.
②完全平方公式:(a+b)2=a2+2ab+b2
(a-b)2=a2-2ab+b2
文字語言敘述:兩個數(shù)的和(或差)的平方等于這兩個數(shù)的平方和加上(或減去)這兩個數(shù)的'積的2倍.
3、因式分解:
因式分解的定義.
把一個多項式化成幾個整式的乘積的形式,這種變形叫做把這個多項式因式分解.
掌握其定義應(yīng)注意以下幾點:
(1)分解對象是多項式,分解結(jié)果必須是積的形式,且積的因式必須是整式,這三個要素缺一不可;
(2)因式分解必須是恒等變形;
(3)因式分解必須分解到每個因式都不能分解為止.
弄清因式分解與整式乘法的內(nèi)在的關(guān)系.
因式分解與整式乘法是互逆變形,因式分解是把和差化為積的形式,而整式乘法是把積化為和差的形式.
二、熟練掌握因式分解的常用方法.
1、提公因式法
(1)掌握提公因式法的概念;
(2)提公因式法的關(guān)鍵是找出公因式,公因式的構(gòu)成一般情況下有三部分:①系數(shù)一各項系數(shù)的最大公約數(shù);②字母——各項含有的相同字母;③指數(shù)——相同字母的最低次數(shù);
(3)提公因式法的步驟:第一步是找出公因式;第二步是提取公因式并確定另一因式.需注意的是,提取完公因式后,另一個因式的項數(shù)與原多項式的項數(shù)一致,這一點可用來檢驗是否漏項.
(4)注意點:①提取公因式后各因式應(yīng)該是最簡形式,即分解到“底”;②如果多項式的第一項的系數(shù)是負的,一般要提出“-”號,使括號內(nèi)的第一項的系數(shù)是正的.
2、公式法
運用公式法分解因式的實質(zhì)是把整式中的乘法公式反過來使用;
常用的公式:
、倨椒讲罟剑篴2-b2=(a+b)(a-b)
、谕耆椒焦剑篴2+2ab+b2=(a+b)2
a2-2ab+b2=(a-b)2
因式分解教案 篇3
第6.4因式分解的簡單應(yīng)用
背景材料:
因式分解是初中數(shù)學(xué)中的一個重點內(nèi)容,也是一項重要的基本技能和基礎(chǔ)知識,更是一種數(shù)學(xué)的變形方法,在今后的學(xué)習(xí)中有著重要的作用。因此,除了單純的因式分解問題外,因式分解在解某些數(shù)學(xué)問題中有著廣泛的作用,因式分解在三角形中的應(yīng)用,因式分解可以用來證明代數(shù)問題,用于代數(shù)式的求值,用于求不定方程,用于解應(yīng)用題解決有關(guān)復(fù)雜數(shù)值的計算,本節(jié)課的例題因式分解在數(shù)學(xué)題中的簡單應(yīng)用。
教材分析:
本節(jié)課是本章的最后一節(jié),是學(xué)生學(xué)習(xí)因式分解初步應(yīng)用,首先要使學(xué)生體會到因式分解在數(shù)學(xué)中應(yīng)用,其次給學(xué)生提供更多機會體驗主動學(xué)習(xí)和探索的.“過程”與“經(jīng)歷”,使多數(shù)學(xué)里擁有一定問題解決的經(jīng)驗。
教學(xué)目標(biāo):
1、在整除的情況下,會應(yīng)用因式分解,進行多項式相除。
2、會應(yīng)用因式分解解簡單的一元二次方程。
3、體驗數(shù)學(xué)問題中的矛盾轉(zhuǎn)化思想。
4、培養(yǎng)觀察和動手能力,自主探索與合作交流能力。
教學(xué)重點:
學(xué)會應(yīng)用因式分解進行多項式除法和解簡單一元二次方程。
教學(xué)難點:
應(yīng)用因式分解解簡單的一元二次方程。
設(shè)計理念:
根據(jù)本節(jié)課的內(nèi)容特點,主要采用師生合作控討式課堂教學(xué)方法,以教師為主導(dǎo),學(xué)生為主體,動手實踐訓(xùn)練為主線,創(chuàng)新思維為核心,態(tài)度情感能力為目標(biāo),引導(dǎo)學(xué)生自主探索,動手實踐,合作交流。注重使學(xué)生經(jīng)辦觀察、操作、推理等探索過程。這種教學(xué)理念,反映了時代精神,有利于提高學(xué)生的數(shù)學(xué)素養(yǎng),能有效地激發(fā)學(xué)生的思維積極性,學(xué)生在學(xué)習(xí)過程中調(diào)動各種感官,進行觀察與抽象、操作與思考、自主與交流等,進而改進學(xué)生的學(xué)習(xí)方法。
教學(xué)過程:
一、創(chuàng)設(shè)情境,復(fù)習(xí)提問
1、將正式各式因式分解
。1)(a+b)2-10(a+b)+25 (2)-xy+2x2y+x3y
。3)2 a2b-8a2b (4)4x2-9
[四位同學(xué)到黑板上演板,本課時用復(fù)習(xí)“練習(xí)引入”也不失為一種好方法,既先復(fù)習(xí)因式分解的提取分因式和公式法,又為下面解決多項式除法運算作鋪墊]
教師訂正
提出問題:怎樣計算(2 a2b-8a2b)÷(4a-b)
二、導(dǎo)入新課,探索新知
。ㄏ茸寣W(xué)生思考上面所提出的問題,教師從旁啟發(fā))
師:如果出現(xiàn)豎式計算,教師可以給予肯定;可能出現(xiàn)(2 a2b-8a2b)÷(4a-b)= ab-8a2追問學(xué)生怎么得來的,運算的依據(jù)是什么?這樣暴露學(xué)生的思維,讓學(xué)生自己發(fā)現(xiàn)錯誤之處;觀察2 a2b-8a2b=2 ab(b-4a),其中一個因式正好是除式4a-b的相反數(shù),如果用“換元”思想,我們就可以把問題轉(zhuǎn)化為單項式除以單項式。
。2 a2b-8a2b)÷(4a-b)
=-2ab(4a-b)÷(4a-b)
=-2ab
。ㄗ寣W(xué)生自己比較哪種方法好)
利用上面的數(shù)學(xué)解題思路,同學(xué)們嘗試計算
。4x2-9)÷(3-2x)
學(xué)生總結(jié)解題步驟:1、因式分解;2、約去公因式)
。ㄈw學(xué)生動手動腦,然后叫學(xué)生回答,及時表揚,講練結(jié)合, [運用多項式的因式分解和換元的思想,可以把兩個多項式相除,轉(zhuǎn)化為單項式的除法]
練習(xí)計算
。1)(a2-4)÷(a+2)
。2)(x2+2xy+y2)÷(x+y)
。3)[(a-b)2+2(b-a)] ÷(a-b)
三、合作學(xué)習(xí)
1、以四人為一組討論下列問題
若A?B=0,下面兩個結(jié)論對嗎?
。1)A和B同時都為零,即A=0且B=0
。2)A和B至少有一個為零即A=0或B=0
[合作學(xué)習(xí),四個小組討論,教師逐步引導(dǎo),讓學(xué)生講自己的想法,及解題步驟,培養(yǎng)語言表達能力,體會運用因式分解的實際運用作用,增加學(xué)習(xí)興趣]
2、你能用上面的結(jié)論解方程
。1)(2x+3)(2x-3)=0 (2)2x2+x=0
解:
∵(2x+3)(2x-3)=0
∴2x+3=0或2x-3=0
∴方程的解為x=-3/2或x=3/2
解:x(2x+1)=0
則x=0或2x+1=0
∴原方程的解是x1=0,x2=-1/2
[讓學(xué)生先獨立完成,再組織交流,最后教師針對性地講解,讓學(xué)生總結(jié)步驟:1、移項,使方程一邊變形為零;2、等式左邊因式分解;3、轉(zhuǎn)化為解一元一次方程]
3、練習(xí),解下列方程
。1)x2-2x=0 4x2=(x-1)2
四、小結(jié)
。1)應(yīng)用因式分解和換元思想可以把某些多項式除法轉(zhuǎn)化為單項式除法。
。2)如果方程的等號一邊是零,另一邊含有未知數(shù)x的多項式可以分解成若干個x的一次式的積,那么就可以應(yīng)用因式分解把原方程轉(zhuǎn)化成幾個一元一次方程來解。
設(shè)計理念:
根據(jù)本節(jié)課的內(nèi)容特點,主要采用師生合作討論式課堂教學(xué)方法,以教師為主導(dǎo),學(xué)生為主體,動手實踐訓(xùn)練為主線,創(chuàng)新思維為核心,態(tài)度情感能力為目標(biāo),引導(dǎo)學(xué)生自主探索,動手實踐,合作交流。注重使學(xué)生經(jīng)辦觀察、操作、推理等探索過程。這種教學(xué)理念,反映了時代精神,有利于提高學(xué)生的數(shù)學(xué)素養(yǎng),能有效地激發(fā)學(xué)生的思維積極性,學(xué)生在學(xué)習(xí)過程中調(diào)動各種感官,進行觀察與抽象、操作與思考、自主與交流等,進而改進學(xué)生的學(xué)習(xí)方法。
【因式分解教案】相關(guān)文章:
因式分解教案04-02
因式分解復(fù)習(xí)教案09-06
初中數(shù)學(xué)因式分解教案03-01
因式分解教案(15篇)04-02
【精選】因式分解教案三篇02-17
因式分解教案15篇04-26
初中數(shù)學(xué)因式分解教案12-13
精選因式分解教案四篇03-03
精選因式分解教案三篇02-01
【精選】因式分解教案4篇02-09