初中數(shù)學教案集合15篇
作為一位不辭辛勞的人民教師,時常需要編寫教案,借助教案可以恰當?shù)剡x擇和運用教學方法,調動學生學習的積極性。我們應該怎么寫教案呢?下面是小編精心整理的初中數(shù)學教案,僅供參考,大家一起來看看吧。
初中數(shù)學教案1
教材分析
立體圖形的翻折問題是高二《代數(shù)》(下)中立體幾何的一個學習內容,它融會貫通于各種立體幾何和幾何體中,對學生進一步理解立體圖形起著至關重要的作用。立體圖形的翻折是從學生生活周圍熟悉的物體入手,使學生進一步認識立體圖形于平面圖形的關系;不僅要讓學生了解幾何體可由平面圖形折疊而成,更重要的是讓學生通過觀察、思考和自己動手操作、經歷和體驗圖形的變化過程,使學生了解研究立體圖形的方法。
教學重點
了解平面圖形于折疊后的立體圖形之間的關系,找到變化過程中的不變量。
教學難點
轉化思想的運用及發(fā)散思維的培養(yǎng)。
學生分析
學生在前面已經對一些簡單幾何體有了一定的認識,對于求解空間角及空間距離已具備了一定的能力,并且在班級中已初步形成合作交流,敢于探索與實踐的良好習慣。學生間相互評價、相互提問的互動的氣氛較濃。
設計理念
根據(jù)教育課程改革的具體目標,結合“注重開放與生成,構建充滿生命活力的課堂教學運行體系”的要求,改變課程過于注重知識傳授的傾向,強調形成積極生動的學習態(tài)度,關注學生的學習興趣和經驗,實施開放式教學,讓學生主動參與學習活動,并引導學生在課堂活動中感悟知識的生成、發(fā)展與變化。
教學目標
1、使學生掌握翻折問題的解題方法,并會初步應用。
2、培養(yǎng)學生的動手實踐能力。在實踐過程中,使學生提高對立體圖形的分析能力,并在設疑的同時培養(yǎng)學生的發(fā)散思維。
3、通過平面圖形與折疊后的立體圖形的對比,向學生滲透事物間的變化與聯(lián)系觀點,在解題過程中,使學生理解,將立體圖形中的問題化歸到平面圖形中去解決的轉化思想。
教學流程
一、創(chuàng)設問題情境,引導學生觀察、設想、導入課題。
1、如圖(圖略),是一個正方體的展開圖,在原正方體中,有下列命題
(1)AB與EF所在直線平行
。2)AB與CD所在直線異面
(3)MN與EF所在直線成60度
。4)MN與CD所在直線互相垂直其中正確命題的序號是
2、引入課題----翻折
二、學生通過直觀感知、操作確認等實踐活動,加強對圖形的認識和感受(引導學生在解題的'過程中如何突破難點,從而體現(xiàn)在平面圖形中求解一些不變量對于解空間問題的重要性)。
1、給學生一個展示自我的空間和舞臺,讓學生自己講解。教師根據(jù)學生的講解進一步提出問題。
。1)線段AE與EF的夾角為什么不是60度呢?
(2)AE與FG所成角呢?
(3)AE與GC所成角呢?
(4)在此正四棱柱上若有一小蟲從A點爬到C點最短路徑是什么?經過各面呢?
(通過對發(fā)散問題的提出培養(yǎng)學生的培養(yǎng)精神及轉化的教學思想方法,讓學生體會折疊圖與展開圖的不同應用。)
2、讓學生觀察電腦演示折疊過程后,再親自動手折疊,針對問題做出回答。
。1)E、F分別處于G1G2、G2G3的什么位置?
(2)選擇哪種擺放方式更利于求解體積呢?
(3)如何求G點到面PEF的距離呢?
。4)PG與面PEF所成角呢?
。5)面GEF與面PEF所成角呢?
。▽W生會發(fā)現(xiàn)這幾個問題可在同一個直角三角形中找到答案,然后讓學生在折紙中找到這個三角形的位置,既而發(fā)現(xiàn)折疊過程中的不變量。)
3、演示MN的運動過程,讓學生觀察分析解題過程強調證PN垂直AB的困難性。與學生共同品位解出這道20xx高考題的喜悅的同時,引導學生用上題的思路能否更快捷地解出此題呢?
(學生大膽想象,并通過模型制作確認想象結果的正確性,從而開辟一條簡捷的翻折思想解題思路。)
三、小結
1、畫平面圖,并折前圖與折后圖中的字母盡量保持一致。
2、尋找立體圖形中的不變量到平面圖形中求解是關鍵。
3、注意培養(yǎng)轉化思想和發(fā)散思維。
。ㄍㄟ^提問方式引導學生小結本節(jié)主要知識及學習活動,養(yǎng)成學習、總結、學習的良好學習習慣,發(fā)散自我評價的作用,培養(yǎng)學生的語言表達能力。)
四、課外活動
1、完成課上未解決的問題。
2、對與1題折成正三棱柱結果會怎樣?對于2題改變E、F兩點位置剪成正三棱柱呢?
(通過課外活動學習本節(jié)知識內容,培養(yǎng)學生的發(fā)散思維。)
課后反思
本課設計中,有梯度性的先安排三個小題,讓學生經歷先動手、思考、預習這一學習過程,然后在課堂上給學生一個充分展示自我的空間,并且適時發(fā)問的同時幫助學生找到解決方法。歸納總結解翻折問題的技巧和作為解題方法的優(yōu)越性。在實施開放式教學的過程中,注重引導學生在課堂活動過程中感悟知識的生成、發(fā)展與變化,培養(yǎng)學生主動探索、敢于實踐、善于發(fā)現(xiàn)的科學精神以及合作交流的精神和創(chuàng)新意識,將創(chuàng)新的教材、創(chuàng)新的教法與創(chuàng)新的課堂環(huán)境有機地結合起來,將學生自主學習與創(chuàng)新意識的培養(yǎng)落到實處。
初中數(shù)學教案2
問題描述:
初中數(shù)學教學案例
初中的,隨便那個年級.20xx字.案例和反思
1個回答 分類:數(shù)學 20xx-11-30
問題解答:
我來補答
2.3 平行線的性質
一、教材分析:
本節(jié)課是人民教育出版社義務教育課程標準實驗教科書(五四學制)七年級上冊第2章 第3節(jié) 平行線的性質,它是平行線及直線平行的繼續(xù),是后面研究平移等內容的基礎,是“空間與圖形”的重要組成部分.
二、教學目標:
知識與技能:掌握平行線的性質,能應用性質解決相關問題.
數(shù)學思考:在平行線的性質的探究過程中,讓學生經歷觀察、比較、聯(lián)想、分析、歸納、猜想、概括的全過程.
解決問題:通過探究平行線的性質,使學生形成數(shù)形結合的數(shù)學思想方法,以及建模能力、創(chuàng)新意識和創(chuàng)新精神.
情感態(tài)度與價值觀:在探究活動中,讓學生獲得親自參與研究的情感體驗,從而增強學生學習數(shù)學的熱情和勇于探索、鍥而不舍的精神.
三、教學重、難點:
重點:平行線的性質
難點:“性質1”的探究過程
四、教學方法:
“引導發(fā)現(xiàn)法”與“動像探索法”
五、教具、學具:
教具:多媒體課件
學具:三角板、量角器.
六、教學媒體:大屏幕、實物投影
七、教學過程:
。ㄒ唬﹦(chuàng)設情境,設疑激思:
1.播放一組幻燈片.內容:①火車行駛在鐵軌上;②游泳池;③橫格紙.
2.聲音:日常生活中我們經常會遇到平行線,你能說出直線平行的條件嗎?
學生活動:
思考回答.①同位角相等兩直線平行;②內錯角相等兩直線平行;③同旁內角互補兩直線平行;
教師:首先肯定學生的回答,然后提出問題.
問題:若兩直線平行,那么同位角、內錯角、同旁內角各有什么關系呢?
引出課題——平行線的性質.
。ǘ⿺(shù)形結合,探究性質
1.畫圖探究,歸納猜想
任意畫出兩條平行線(a‖b),畫一條截線c與這兩條平行線相交,標出8個角(如圖).
問題一:指出圖中的同位角,并度量這些角,把結果填入下表:
第一組
第二組
第三組
第四組
同位角
∠1
∠5
角的度數(shù)
數(shù)量關系
學生活動:畫圖——度量——填表——猜想
結論:兩直線平行,同位角相等.
問題二:再畫出一條截線d,看你的猜想結論是否仍然成立?
學生:探究、討論,最后得出結論:仍然成立.
2.教師用《幾何畫板》課件驗證猜想
3.性質1.兩條直線被第三條直線所截,同位角相等.(兩直線平行,同位角相等)
(三)引申思考,培養(yǎng)創(chuàng)新
問題三:請判斷內錯角、同旁內角各有什么關系?
學生活動:獨立探究——小組討論——成果展示.
教師活動:引導學生說理.
因為a‖b 因為a‖b
所以∠1=∠2 所以∠1=∠2
又 ∠1=∠3 又 ∠1+∠4=180°
所以∠2=∠3 所以∠2+∠4=180°
語言敘述:
性質2 兩條直線被第三條直線所截,內錯角相等.
(兩直線平行,內錯角相等)
性質3 兩條直線被第三條直線所截,同旁內角互補.
。▋芍本平行,同旁內角互補)
。ㄋ模⿲嶋H應用,優(yōu)勢互補
1.(搶答)
。1)如圖,平行線AB、CD被直線AE所截
、偃簟1 = 110°,則∠2 = °.理由:.
、谌簟1 = 110°,則∠3 = °.理由:.
、廴簟1 = 110°,則∠4 = °.理由:.
。2)如圖,由AB‖CD,可得( )
(A)∠1=∠2 (B)∠2=∠3
。–)∠1=∠4 (D)∠3=∠4
。3)如圖,AB‖CD‖EF,
那么∠BAC+∠ACE+∠CEF=( )
。ˋ) 180°(B)270° (C)360° (D)540°
(4)誰問誰答:如圖,直線a‖b,
如:∠1=54°時,∠2= .
學生提問,并找出回答問題的同學.
2.(討論解答)
如圖是一塊梯形鐵片的殘余部分,量得∠A=100°,
∠B=115°,求梯形另外兩角分別是多少度?
。ㄎ澹└爬ù鎯Γㄐ〗Y)
1.平行線的性質1、2、3;
2.用“運動”的觀點觀察數(shù)學問題;
3.用數(shù)形結合的方法來解決問題.
(六)作業(yè) 第69頁 2、4、7.
八、教學反思:
、俳痰霓D變:本節(jié)課教師的角色從知識的傳授者轉變?yōu)閷W生學習的組織者、引導者、合作者與共同研究者.在引導學生畫圖、測量、發(fā)現(xiàn)結論后,利用幾何畫板直觀地、動態(tài)地展示同位角的關系,激發(fā)學生自覺地探究數(shù)學問題,體驗發(fā)現(xiàn)的`樂趣.
②學的轉變:學生的角色從學會轉變?yōu)闀䦟W.本節(jié)課學生不是停留在學會課本知識的層面上,而是站在研究者的角度深入其境.
、壅n堂氛圍的轉變:整節(jié)課以“流暢、開放、合作、‘隱’導”為基本特征,教師對學生的思維活動減少干預,教學過程呈現(xiàn)一種比較流暢的特征,整節(jié)課學生與學生、學生與教師之間以“對話”、“討論”為出發(fā)點,以互助、合作為手段,以解決問題為目的,讓學生在一個較為寬松的環(huán)境中自主選擇獲得成功的方向,判斷發(fā)現(xiàn)的價值.
初中數(shù)學教案3
教學目標:
。1)能夠根據(jù)實際問題,熟練地列出二次函數(shù)關系式,并求出函數(shù)的自變量的取值范圍。
。2)注重學生參與,聯(lián)系實際,豐富學生的感性認識,培養(yǎng)學生的良好的學習習慣
重點難點:
能夠根據(jù)實際問題,熟練地列出二次函數(shù)關系式,并求出函數(shù)的自變量的取值范圍。
教學過程:
一、試一試
1.設矩形花圃的垂直于墻的一邊AB的長為xm,先取x的一些值,算出矩形的另一邊BC的長,進而得出矩形的面積ym2.試將計算結果填寫在下表的空格中,
2.x的值是否可以任意取?有限定范圍嗎?
3.我們發(fā)現(xiàn),當AB的長(x)確定后,矩形的面積(y)也隨之確定, y是x的函數(shù),試寫出這個函數(shù)的關系式,
對于1.,可讓學生根據(jù)表中給出的AB的長,填出相應的BC的長和面積,然后引導學生觀察表格中數(shù)據(jù)的變化情況,提出問題:(1)從所填表格中,你能發(fā)現(xiàn)什么?(2)對前面提出的問題的解答能作出什么猜想?讓學生思考、交流、發(fā)表意見,達成共識:當AB的`長為5cm,BC的長為10m時,圍成的矩形面積最大;最大面積為50m2。 對于2,可讓學生分組討論、交流,然后各組派代表發(fā)表意見。形成共識,x的值不可以任意取,有限定范圍,其范圍是0 <x <10。 對于3,教師可提出問題,(1)當AB=xm時,BC長等于多少m?(2)面積y等于多少?并指出y=x(20-2x)(0 <x <10)就是所求的函數(shù)關系式.
二、提出問題
某商店將每件進價為8元的某種商品按每件10元出售,一天可銷出約100件.該店想通過降低售價、增加銷售量的辦法來提高利潤,經過市場調查,發(fā)現(xiàn)這種商品單價每降低0.1元,其銷售量可增加10件。將這種商品的售價降低多少時,能使銷售利潤最大? 在這個問題中,可提出如下問題供學生思考并回答:
1.商品的利潤與售價、進價以及銷售量之間有什么關系?
[利潤=(售價-進價)×銷售量]
2.如果不降低售價,該商品每件利潤是多少元?一天總的利潤是多少元?
[10-8=2(元),(10-8)×100=200(元)]
3.若每件商品降價x元,則每件商品的利潤是多少元?一天可銷
售約多少件商品?
[(10-8-x);(100+100x)]
4.x的值是否可以任意取?如果不能任意取,請求出它的范圍,
[x的值不能任意取,其范圍是0≤x≤2]
5.若設該商品每天的利潤為y元,求y與x的函數(shù)關系式。
[y=(10-8-x) (100+100x)(0≤x≤2)]
將函數(shù)關系式y(tǒng)=x(20-2x)(0 <x <10=化為:
y=-2x2+20x(0<x<10)……………………………(1) 將函數(shù)關系式y(tǒng)=(10-8-x)(100+100x)(0≤x≤2)化為: y=-100x2+100x+20D (0≤x≤2)……………………(2)
三、觀察;概括
1.教師引導學生觀察函數(shù)關系式(1)和(2),提出以下問題讓學生思考回答;
(1)函數(shù)關系式(1)和(2)的自變量各有幾個?
(各有1個)
(2)多項式-2x2+20和-100x2+100x+200分別是幾次多項式? (分別是二次多項式)
(3)函數(shù)關系式(1)和(2)有什么共同特點?
(都是用自變量的二次多項式來表示的)
(4)本章導圖中的問題以及P1頁的問題2有什么共同特點? 讓學生討論、交流,發(fā)表意見,歸結為:自變量x為何值時,函數(shù)y取得最大值。
2.二次函數(shù)定義:形如y=ax2+bx+c (a、b、、c是常數(shù),a≠0)的函數(shù)叫做x的二次函數(shù),a叫做二次函數(shù)的系數(shù),b叫做一次項的系數(shù),c叫作常數(shù)項.
四、課堂練習
1.(口答)下列函數(shù)中,哪些是二次函數(shù)?
(1)y=5x+1 (2)y=4x2-1
(3)y=2x3-3x2 (4)y=5x4-3x+1
2.P3練習第1,2題。
五、小結
1.請敘述二次函數(shù)的定義.
2,許多實際問題可以轉化為二次函數(shù)來解決,請你聯(lián)系生活實際,編一道二次函數(shù)應用題,并寫出函數(shù)關系式。
六、作業(yè):略
初中數(shù)學教案4
知識技能
會通過“移項”變形求解“ax+b=cx+d”類型的一元一次方程。
數(shù)學思考
1.經歷探索具體問題中的數(shù)量關系過程,體會一元一次方程是刻畫實際問題的有效數(shù)學模型。進一步發(fā)展符號意識。
2.通過一元一次方程的學習,體會方程模型思想和化歸思想。
解決問題
能在具體情境中從數(shù)學角度和方法解決問題,發(fā)展應用意識。
經歷從不同角度尋求分析問題和解決問題的方法的過程,體驗解決問題方法的多樣性。
情感態(tài)度
經歷觀察、實驗計算、交流等活動,激發(fā)求知欲,體驗探究發(fā)現(xiàn)的快樂。
教學重點
建立方程解決實際問題,會通過移項解 “ax+b=cx+d”類型的一元一次方程。
教學難點
分析實際問題中的相等關系,列出方程。
教學過程
活動一 知識回顧
解下列方程:
1. 3x+1=4
2. x-2=3
3. 2x+0.5x=-10
4. 3x-7x=2
提問:解這些方程時,方程的解一般化成什么形式?這些題你采用了那些變形或運算?
教師:前面我們學習了簡單的一元一次方程的解法,下面請大家解下列方程。
出示問題(幻燈片)。
學生:獨立完成,板演2、4題,板演同學講解所用到的變形或運算,共同講評。
教師提問:(略)
教師追問:變形的依據(jù)是什么?
學生獨立思考、回答交流。
本次活動中教師關注:
。1)學生能否準確理解運用等式性質和合并同列項求解方程。
。2)學生對解一元一次方程的變形方向(化成x=a的形式)的理解。
通過這個環(huán)節(jié),引導學生回顧利用等式性質和合并同類項對方程進行變形,再現(xiàn)等式兩邊同時加上(或減去)同一個數(shù)、兩邊同時乘以(除以,不為0)同一個數(shù)、合并同類項等運算,為繼續(xù)學習做好鋪墊。
活動二 問題探究
問題2:把一些圖書分給某班學生閱讀,如果每人分3本,則剩余20本;如果每人分4本,則還缺25本.這個班有多少學生?
教師:出示問題(投影片)
提問:在這個問題中,你知道了什么?根據(jù)現(xiàn)有經驗你打算怎么做?
(學生嘗試提問)
學生:讀題,審題,獨立思考,討論交流。
1.找出問題中的已知數(shù)和已知條件。(獨立回答)
2.設未知數(shù):設這個班有x名學生。
3.列代數(shù)式:x參與運算,探索運算關系,表示相關量。(討論、回答、交流)
4.找相等關系:
這批書的總數(shù)是一個定值,表示它的兩個等式相等.(學生回答,教師追問)
5.列方程:3x+20=4x-25(1)
總結提問:通過列方程解決實際問題分析時,要經歷那些步驟?書寫時呢?
教師提問1:這個方程與我們前面解過的方程有什么不同?
學生討論后發(fā)現(xiàn):方程的兩邊都有含x的項(3x與4x)和不含字母的常數(shù)項(20與-25).
教師提問2:怎樣才能使它向x=a的形式轉化呢?
學生思考、探索:為使方程的右邊沒有含x的項,等號兩邊同減去4x,為使方程的左邊沒有常數(shù)項,等號兩邊同減去20.
3x-4x=-25-20(2)
教師提問3:以上變形依據(jù)是什么?
學生回答:等式的性質1。
歸納:像上面那樣把等式一邊的某項變號后移到另一邊,叫做移項。
師生共同完成解答過程。
設問4:以上解方程中“移項”起了什么作用?
學生討論、回答,師生共同整理:
通過移項,含未知數(shù)的項與常數(shù)項分別位于方程左右兩邊,使方程更接近于x=a的形式。
教師提問5:解這個方程,我們經歷了那些步驟?列方程時找了怎樣的相等關系?
學生思考回答。
教師關注:
。1)學生對列方程解決實際問題的一般步驟:設未知數(shù),列代數(shù)式,列方程,是否清楚?
在參與觀察、比較、嘗試、交流等數(shù)學活動中,體驗探究發(fā)現(xiàn)成功的快樂。
活動三 解法運用
例2解方程
3x+7=32-2x
教師:出示問題
提問:解這個方程時,第一步我們先干什么?
學生講解,獨立完成,板演。
提問:“移項”是注意什么?
學生:變號。
教師關注:學生“移項”時是否能夠注意變號。
通過這個例題,掌握“ax+b=cx+d”類型的一元一次方程的.解法。體驗“移項”這種變形在解方程中的作用,規(guī)范解題步驟。
活動四 鞏固提高
1.第91頁練習(1)(2)
2.某貨運公司要用若干輛汽車運送一批貨物。如果每輛拉6噸,則剩余15噸;如果每輛拉8噸,則差5噸才能將汽車全部裝滿。問運送這批貨物的汽車多少量?
3.小明步行由A地去B地,若每小時走6千米,則比規(guī)定時間遲到1小時;若每小時走8千米,則比規(guī)定時間早到0.5小時。求A、B兩地之間的距離。
教師按順序出示問題。
學生獨立完成,用實物投影展示部分學而生練習。
教師關注:
1.學生在計算中可能出現(xiàn)的錯誤。
2.x系數(shù)為分數(shù)時,可用乘的辦法,化系數(shù)為1。
3.用實物投影展示學困生的完成情況,進行評價、鼓勵。
鞏固“ax+b=cx+d”類型的一元一次方程的解法,反饋學生對解方程步驟的掌握情況和可能出現(xiàn)的計算錯誤。
2、3題的重點是在新情境中引導學生利用已有經驗解決實際問題,達到鞏固提高的目的。
活動五
提問1:今天我們學習了解方程的那種變形?它有什么作用、應注意什么?
提問2:本節(jié)課重點利用了什么相等關系,來列的方程?
教師組織學生就本節(jié)課所學知識進行小結。
學生進行總結歸納、回答交流,相互完善補充。
教師關注:學生能否提煉出本節(jié)課的重點內容,如果不能,教師則提出具體問題,引導學生思考、交流。
引導學生對本節(jié)所學知識進行歸納、總結和梳理,以便于學生掌握和運用。
布置作業(yè):
第93頁第3題
初中數(shù)學教案5
一、教學目標
1.使學生初步掌握一元一次方程解簡單應用題的方法和步驟;并會列出一元一次方程解簡單的應用題;
2.培養(yǎng)學生觀察能力,提高他們分析問題和解決問題的能力;
3.使學生初步養(yǎng)成正確思考問題的良好習慣。
二、教學重點和難點
一元一次方程解簡單的應用題的方法和步驟。
三、課堂教學過程設計
。ㄒ唬⿵膶W生原有的認知結構提出問題
在小學算術中,我們學習了用算術方法解決實際問題的有關知識,那么,一個實際問題能否應用一元一次方程來解決呢?若能解決,怎樣解?用一元一次方程解應用題與用算術方法解應用題相比較,它有什么優(yōu)越性呢?
為了回答上述這幾個問題,我們來看下面這個例題。
例1 某數(shù)的3倍減2等于某數(shù)與4的和,求某數(shù)。
。ㄊ紫龋盟阈g方法解,由學生回答,教師板書)
解法1:(4+2)÷(3-1)=3。
答:某數(shù)為3。
(其次,用代數(shù)方法來解,教師引導,學生口述完成)
解法2:設某數(shù)為x,則有3x-2=x+4。
解之,得x=3。
答:某數(shù)為3。
縱觀例1的這兩種解法,很明顯,算術方法不易思考,而應用設未知數(shù),列出方程并通過解方程求得應用題的解的方法,有一種化難為易之感,這就是我們學習運用一元一次方程解應用題的目的之一。
我們知道方程是一個含有未知數(shù)的等式,而等式表示了一個相等關系。因此對于任何一個應用題中提供的條件,應首先從中找出一個相等關系,然后再將這個相等關系表示成方程。
本節(jié)課,我們就通過實例來說明怎樣尋找一個相等的關系和把這個相等關系轉化為方程的方法和步驟。
。ǘ⿴熒餐治、研究一元一次方程解簡單應用題的方法和步驟
例2 某面粉倉庫存放的面粉運出15%后,還剩余42500千克,這個倉庫原來有多少面粉?
師生共同分析:
1.本題中給出的已知量和未知量各是什么?
2.已知量與未知量之間存在著怎樣的相等關系?(原來重量-運出重量=剩余重量)
3.若設原來面粉有x千克,則運出面粉可表示為多少千克?利用上述相等關系,如何布列方程?
上述分析過程可列表如下:
解:設原來有x千克面粉,那么運出了15%x千克,由題意,得
x-15%x=42 500,
所以x=50 000。
答:原來有50 000千克面粉。
此時,讓學生討論:本題的相等關系除了上述表達形式以外,是否還有其他表達形式?若有,是什么?
。ㄟ有,原來重量=運出重量+剩余重量;原來重量-剩余重量=運出重量)
教師應指出:
。1)這兩種相等關系的表達形式與“原來重量-運出重量=剩余重量”,雖形式上不同,但實質是一樣的,可以任意選擇其中的一個相等關系來列方程;
。2)例2的解方程過程較為簡捷,同學應注意模仿。
依據(jù)例2的分析與解答過程,首先請同學們思考列一元一次方程解應用題的方法和步驟;然后,采取提問的方式,進行反饋;最后,根據(jù)學生總結的情況,教師總結如下:
。1)仔細審題,透徹理解題意。即弄清已知量、未知量及其相互關系,并用字母(如x)表示題中的一個合理未知數(shù);
。2)根據(jù)題意找出能夠表示應用題全部含義的一個相等關系。(這是關鍵一步);
。3)根據(jù)相等關系,正確列出方程.即所列的方程應滿足兩邊的量要相等;方程兩邊的.代數(shù)式的單位要相同;題中條件應充分利用,不能漏也不能將一個條件重復利用等;
(4)求出所列方程的解;
。5)檢驗后明確地、完整地寫出答案.這里要求的檢驗應是,檢驗所求出的解既能使方程成立,又能使應用題有意義。
例3 (投影)初一2班第一小組同學去蘋果園參加勞動,休息時工人師傅摘蘋果分給同學,若每人3個還剩余9個;若每人5個還有一個人分4個,試問第一小組有多少學生,共摘了多少個蘋果?
。ǚ抡绽2的分析方法分析本題,如學生在某處感到困難,教師應做適當點撥.解答過程請一名學生板演,教師巡視,及時糾正學生在書寫本題時可能出現(xiàn)的各種錯誤。并嚴格規(guī)范書寫格式。)
解:設第一小組有x個學生,依題意,得
3x+9=5x-(5-4),
解這個方程:2x=10,
所以x=5。
其蘋果數(shù)為3× 5+9=24。
答:第一小組有5名同學,共摘蘋果24個。
學生板演后,引導學生探討此題是否可有其他解法,并列出方程。
(設第一小組共摘了x個蘋果,則依題意,得)
。ㄈ┱n堂練習
1.買4本練習本與3支鉛筆一共用了1.24元,已知鉛筆每支0.12元,問練習本每本多少元?
2.我國城鄉(xiāng)居民1988年末的儲蓄存款達到3 802億元,比1978年末的儲蓄存款的18倍還多4億元。求1978年末的儲蓄存款。
3.某工廠女工人占全廠總人數(shù)的35%,男工比女工多252人,求全廠總人數(shù)。
。ㄋ模⿴熒餐〗Y
首先,讓學生回答如下問題:
1.本節(jié)課學習了哪些內容?
2.列一元一次方程解應用題的方法和步驟是什么?
3.在運用上述方法和步驟時應注意什么?
依據(jù)學生的回答情況,教師總結如下:
。1)代數(shù)方法的基本步驟是:全面掌握題意;恰當選擇變數(shù);找出相等關系;布列方程求解;檢驗書寫答案.其中第三步是關鍵;
(2)以上步驟同學應在理解的基礎上記憶。
(五)作業(yè)
1.買3千克蘋果,付出10元,找回3角4分。問每千克蘋果多少錢?
2.用76厘米長的鐵絲做一個長方形的教具,要使寬是16厘米,那么長是多少厘米?
3.某廠去年10月份生產電視機20xx臺,這比前年10月產量的2倍還多150臺。這家工廠前年10月生產電視機多少臺?
4.大箱子裝有洗衣粉36千克,把大箱子里的洗衣粉分裝在4個同樣大小的小箱里,裝滿后還剩余2千克洗衣粉.求每個小箱子里裝有洗衣粉多少千克?
5.把1400獎金分給22名得獎者,一等獎每人200元,二等獎每人50元。求得到一等獎與二等獎的人數(shù)。
初中數(shù)學教案6
、俳Y合你對一元一次方程中的一次的理解,說一說你對一次函數(shù)中的“一次”的理解. ②k可以是怎樣的數(shù)?
、勰阍鯓诱J識一次函數(shù)和正比例函數(shù)的關系?
一個常數(shù)b的和即 Y=kx+b 定義:一般地,形
如
Y=kx+b( k,b 是常數(shù),k≠0 )的.函數(shù),叫做一次函數(shù), 當
b=0時,
Y=kx+b即Y=kx,所以說正比例函數(shù)是一種特殊的一次函數(shù)。
例1、下列函數(shù)中,Y是X的一次函數(shù)的是( )①Y=X-6②Y=3X③Y=X2④Y=7-X
學生獨立
A①②③B①③④C①②④D①②③④
例2、寫出下列各題中x與y之間的關系式,并判
解釋與應用
斷,y是否為x的一次函數(shù)?是否為正比例函數(shù)?①汽車以60千米/時的速度勻速行駛,行駛路程中y(千米)與行駛時間(時)之間的關系式;②圓的面積y(厘米2)與他的半徑x(厘米)之間的關系:③一棵樹現(xiàn)在高50厘米,每個月長高2厘米,x月后這棵樹的高度y(厘米)之間的關系式
初中數(shù)學教案7
教學目標:
1.會用待定系數(shù)法求反比例函數(shù)的解析式.
2.通過實例進一步加深對反比例函數(shù)的認識,能結合具體情境,體會反比例函數(shù)的意義,理解比例系數(shù)的具體的意義.
3.會通過已知自變量的值求相應的反比例函數(shù)的值.運用已知反比例函數(shù)的值求相應自變量的值解決一些簡單的問題.
重點:用待定系數(shù)法求反比例函數(shù)的解析式.
難點:例3要用科學知識,又要用不等式的知識,學生不易理解.
教學過程:
一.復習
1、反比例函數(shù)的定義:
判斷下列說法是否正確(對‖√‖,錯‖3‖)
(1)一矩形的面積為20cm2,相鄰的兩條邊長分別為x(cm)和y(cm),變量y是變量x的反比例函數(shù).(2)圓的面積公式s??r2中,s與r成正比例.(3)矩形的長為a,寬為b,周長為C,當C為常量時,a是b的反比例函數(shù).方形的邊長為x,高為y,當其體積V為常量時,y是x的反比例函數(shù).(4)一個正四棱柱的底面正
定時,商和除數(shù)成反比例.(5)當被除數(shù)(不為零)一
(6)計劃修建鐵路1200km,則鋪軌天數(shù)y(d)是每日鋪軌量x(km/d)的反比例函數(shù).
2、思考:如何確定反比例函數(shù)的解析式?
(1)已知y是x的反比例函數(shù),比例系數(shù)是3,則函數(shù)解析式是_______
(2)當m為何值時,函數(shù)4是反比例函數(shù),并求出其函數(shù)解析式.y?2m?2關鍵是確定比例系數(shù)!x
二.新課
1.例2:已知變量y與x成反比例,且當x=2時y=9,寫出y與x之間的.函數(shù)解析式和自變量的取值范圍。小結:要確定一個反比例函數(shù)y?k的解析式,只需求出比例系數(shù)k。如果已知一對自變量與函數(shù)的對應值,x
3時,y=2,求這個函數(shù)的解析式和自變量的取值范圍。4就可以先求出比例系數(shù),然后寫出所要求的反比例函數(shù)。2.練習:已知y是關于x的反比例函數(shù),當x=?
3.說一說它們的求法:
(1)已知變量y與x-5成反比例,且當x=2時y=9,寫出y與x之間的函數(shù)解析式.
(2)已知變量y-1與x成反比例,且當x=2時y=9,寫出y與x之間的函數(shù)解析式.
4.例3、設汽車前燈電路上的電壓保持不變,選用燈泡的電阻為R(Ω),通過電流的強度為I(A)。
。1)已知一個汽車前燈的電阻為30Ω,通過的電流為0.40A,求I關于R的函數(shù)解析式,并說明比例系數(shù)的實際意義。
。2)如果接上新燈泡的電阻大于30Ω,那么與原來的相比,汽車前燈的亮度將發(fā)生什么變化?
在例3的教學中可作如下啟發(fā):
。1)電流、電阻、電壓之間有何關系?
。2)在電壓U保持不變的前提下,電流強度I與電阻R成哪種函數(shù)關系?
。3)前燈的亮度取決于哪個變量的大?如何決定?
先讓學生嘗試練習,后師生一起點評。
三.鞏固練習:
1.當質量一定時,二氧化碳的體積V與密度p成反比例。且V=5m3時,p=1.98kg/m3
。1)求p與V的函數(shù)關系式,并指出自變量的取值范圍。
(2)求V=9m3時,二氧化碳的密度。
四.拓展:
1.已知y與z成正比例,z與x成反比例,當x=-4時,z=3,y=-4.求:
(1)Y關于x的函數(shù)解析式;
(2)當z=-1時,x,y的值.
2.已知y?y1?y2,y1與x成正例,y2與x成反比例,并且x?2與x?3時,y的
值都等于10,求y與x之間的函數(shù)關系。
五.交流反思
求反比例函數(shù)的解析式一般有兩種情形:一種是在已知條件中明確告知變量之間成反比例函數(shù)關系,如例2;另一種是變量之間的關系由已學的數(shù)量關系直接給出,如例3中的I?
六、布置作業(yè):P4B組
教學后記:
U由歐姆定律得到。R
初中數(shù)學教案8
一年級學生認知水平處于啟蒙階段,尚未形成完整的知識結構體系。由于學生所特有的年齡特點,學生有意注意力占主要地位,以形象思維為主。從整體上看一年級學生都比較活躍,大多數(shù)學生上課基本上能夠跟上教師講課的思路,教師上課組織課堂紀律并不難,而且學生的學習積極性也很容易調動。但每個班都有個別的學生上課不注意聽講,我行我素。
對于他們數(shù)學知識和能力掌握情況的分析:
1、對于一年級的數(shù)學學習,新生無論在數(shù)學知識上還是數(shù)學能力上都有所準備。就數(shù)的認識來看,新生二十以內的數(shù)數(shù)非常流利和連貫,可以正數(shù)倒數(shù)。學生在這方面具有良好的知識準備的原因之一是學生受過這方面的訓練,在幼兒園中大部分學生學習過十以內的加減法,同時在一些家長在家中也進行過輔導,另一方面,數(shù)數(shù)和十以內數(shù)的分解組合學生在生活中有機會使用,因此這方面的準備比較好。
2、在數(shù)的計算中,學生對于十以內數(shù)的計算較為熟練,這和學生的生活需要、學習需要有關。
3、新生在數(shù)感方面的發(fā)展是不平衡的數(shù)感——學生對數(shù)的意義理解有一定困難。通過個別訪談,了解到學生對于蘊涵在實際生活中的數(shù)的意義的理解較為準確,例如對于“你的小組中有幾個小朋友,從前往后數(shù),你是第幾個,從后往前數(shù),你是第幾個,第幾個小朋友是誰”這樣的問題,學生的解答沒有問題,都能根據(jù)實際情況作出正確的回答,但是對于圖形,學生的理解有一定的困難。這可能是學生對圖形的認識造成了對數(shù)的基數(shù)序數(shù)意義理解的干擾。
4、概括能力和推理能力——普遍學生關注的范圍比較小,角度單一。全冊教材分析
本冊教材一共分為八個單元,本冊教材主要是通過各種各樣的活動對學生進行數(shù)感及觀察能力、思維能力、口頭表達能力、學習習慣、合作與交流的能力等方面的培養(yǎng),讓學生對數(shù)學產生濃厚的學習興趣,同時鼓勵學生用自己喜歡的方式去學習自己有用的知識,對學生進行有效地思想品德教育,初步了解一定的學習方法、思考方式。
全冊教學目標
1、熟練地數(shù)出數(shù)量在20以內的物體的個數(shù),會區(qū)分幾個和第幾個,掌握數(shù)的順序和大小,掌握10以內各數(shù)的組成,會讀、寫0――20各數(shù)。
2、初步知道加、減法的含義和加減法算式中各部分部分名稱,初步知道加法和減法的關系,比較熟練地計算一位數(shù)的加法和10以內的減法。
3、初步學會根據(jù)加、減法的含義和算法解決一些簡單的實際問題。
4、認識符號“=”“<”“>”,會使用這些符號表示數(shù)的大小。
5、直觀認識長方體、正方體、圓柱、球、長方形、正方形、三角形和圓。
6、初步了解分類的方法,會進行簡單的分類。
7、初步了解鐘表,會認識整時和半時。
8、體會學習數(shù)學的樂趣,提高學習數(shù)學的興趣,建立學好數(shù)學的信心。
9、認真作業(yè)、書寫整潔的良好習慣。
10、通過實踐活動體驗數(shù)學與日常生活的密切聯(lián)系。
全冊重、難點:
教材重點:在具體的情境中能熟練的認讀、寫、20以內的數(shù),能用數(shù)表示物體的個數(shù)或事物的位置與順序;建立初步的空間觀念;能按照給定的標準或選擇某個標準對物體進行比較和分類。
教材難點:體會20以內加減法的意義,能熟練的口算20以內的數(shù)的加減法;初步形成空間觀念;經歷簡單的數(shù)據(jù)收集過程,形成初步的統(tǒng)計觀念。教學準備
畫有田字格的小黑板掛圖小棒圓片
多媒體課件視頻展示臺部分實物模型
智能培養(yǎng)
1、培養(yǎng)學生應用數(shù)學知識解決問題的能力。
2、培養(yǎng)學生獨立思考與合作交流的能力。
3、培養(yǎng)學生學習數(shù)學的良好情感。
4、培養(yǎng)學生學習數(shù)學的興趣和良好的學習習慣。
教學思路及措施
1.一年級學生的計算學習要和意義理解與思維訓練相結合。在小學數(shù)學課堂教學中要重視計算策略的優(yōu)化和算理的.滲透,同時在計算教學過程中要滲透思維的訓練。
2.數(shù)學教學中加強學生的生活經驗的積累和對學習對象的直接感知。學生的生活經驗和已有的知識能力對學生解決問題有著很大的幫助,甚至很多學生都是建立在生活經驗的基礎上進行學習的。因此,一年級的數(shù)學教學應該加強學生的實際感知,豐富學生的生活經驗,讓學生在現(xiàn)實情景中把握數(shù)的意義和運算的意義,發(fā)展數(shù)感和符號感。擴大學生的信息貯備,提供有利于學生理解數(shù)學、探究數(shù)學的生活情景,給學生機會在實際情景中感知、操作、認識數(shù)學知識,理解數(shù)學,學習數(shù)學。
3.空間觀念的培養(yǎng)要把握好度,在具體和抽象的空間觀念的建立,在低段
要緊密和學生的動手操作相聯(lián)系,可以通過觀察、接觸(摸、折、剪、拼等)等各種手段來讓學生認識幾何形體,建立空間觀念。同時,要將生活材料數(shù)學化,在具體、半抽象、抽象之間建立一座橋梁,發(fā)展學生的空間想象能力。
4.在教學中要逐步滲透重要的數(shù)學概念和數(shù)學思想方法。數(shù)學思想方法已經作為數(shù)學知識的一部分,教師在教學中要逐步隨著數(shù)學知識的學習進行滲透。例如一年級教材中有很多地方可以滲透一一對應思想、函數(shù)思想、符號化思想的,要在平時的教學中加以落實。
初中數(shù)學教案9
教學目標:
(一)知識與技能
理解單項式及單項式系數(shù)、次數(shù)的概念;能準確迅速地確定一個單項式的系數(shù)和次數(shù);會用含字母的式子表示實際問題中的數(shù)量關系。
(二)過程與方法
1.在經歷用字母表示數(shù)量關系的過程中,發(fā)展符號感;
2. 通過小組討論、合作學習等方式,經歷概念的形成過程,培養(yǎng)學生自主探索知識和合作交流能力
(三)情感態(tài)度價值觀
1.通過豐富多彩的現(xiàn)實情景,讓學生經歷從具體問題中抽象出數(shù)量關系,在解決問題中了解數(shù)學的價值,增長“用數(shù)學”的信心.
2.通過用含字母的式子描述現(xiàn)實世界中的數(shù)量關系,認識到它是解決實際問題的重要數(shù)學工具之一。
教學重、難點:
重點:單項式及單項式系數(shù)、次數(shù)的概念。
難點:單項式次數(shù)的概念;單項式的書寫格式及注意點。
教學方法:
引導——探究式
在感性材料的基礎上,學生自主探究現(xiàn)實情景中用字母表示數(shù)的問題,通過觀察、分析、比較,找出材料中個體的共同點,教師引導學生共同抽象、概括單項式及相關的概念.
教具準備:
多媒體課件、小黑板.
教學過程:
一、 創(chuàng)設情境,引入新課
出示一張奔馳在青藏鐵路線上的列車照片,并配上歌曲《天路》,邊欣賞邊向學生介紹青藏鐵路所創(chuàng)造的歷史之最。
情境問題:
青藏鐵路西線上,在格爾木到拉薩之間有一段很長的凍土地段。列車在凍土地段的行駛速度是100千米/時,在非凍土地段的行駛速度可以達到120千米/時,請根據(jù)這些數(shù)據(jù)回答:列車在凍土地段行駛時,2小時能行駛多少千米?3小時呢?t小時呢?
設計意圖:從學生熟悉的情境出發(fā),創(chuàng)設情境,讓學生感受青藏鐵路的偉大成就,激發(fā)
愛國主義情感,得到一次情感教育。
解:根據(jù)路程、速度、時間之間的關系:路程=速度×時間
2小時行駛的路程是:100×2=200(千米)
3小時行駛的路程是:100×3=300(千米)
t小時行駛的路程是:100×t=100t(千米)
注意:在含有字母的式子中若出現(xiàn)乘號,通常將乘號寫作“ · ”或省略不寫。
如:100×a可以寫成100a或100a。
代數(shù)式:用基本的運算符號(運算包括加、減、乘除、乘方等)把數(shù)和表示數(shù)的字母連接起來的式子。
代數(shù)式可以簡明地表示數(shù)量和數(shù)量的關系,本節(jié)我們就來學習最基本也是最重要的一類代數(shù)式整式。
設計意圖:從學生已有的數(shù)學經驗:路程=速度×時間出發(fā),建立新舊知識之間的聯(lián)系
讓學生歷一個從一般到特殊再到一般的認識過程,發(fā)展學生的認知觀念。
二、合作交流,探究新知
探究
思考:用含字母的式子填空(獨立完成),并觀察列出的式子有什么共同特點(小組可交流討論)。
1、邊長為a的正方體的表面積是__,體積是__.
2、鉛筆的單價是x元,圓珠筆的單價是鉛筆的2.5倍,則圓珠筆的單價是___元。
3、一輛汽車的速度是v千米∕小時,它t小時行駛的路程為__千米。
4、數(shù)n的相反數(shù)是__。
解:(1)6a2、 a3 (2)2.5x (3) vt (4)-n
思考:它們有什么共同的特點?
6a 2=6·a·a a3=a·a·a 2.5x=2.5·x vt=v·t -n=-1·n
單項式:數(shù)與字母、字母與字母的乘積。
注意:單獨的一個數(shù)或字母也是單項式。
設計意圖:從熟悉的實際背景出發(fā),充分讓學生自己觀察、自己發(fā)現(xiàn)、自己描述,進行自主學習和合作交流,獲得數(shù)學猜想和數(shù)學經驗,滿足學生的表現(xiàn)欲和探究欲,使學生學得輕松愉快,充分體現(xiàn)課堂教學的開放性。
火眼金睛
下列各代數(shù)式中哪些是單項式哪些不是?
(1)a (2) 0 (3) a2
(4) 6a (5)
(6)
(7)3a+2b (8)xy2
設計意圖:加強學生對不同形式的單項式的直觀認識。
解剖單項式
系數(shù):單項式中的數(shù)字因數(shù)。
如:-3x的系數(shù)是 ,-ab的系數(shù)是 , 的系數(shù)是 。
次數(shù):一個單項式中的所有字母的指數(shù)的和。
如:-3x的次數(shù)是 ,ab的次數(shù)是 。
小試身手
單項式 2a 2 -1.2h xy2 -t2 -32x2y
系數(shù)
次數(shù)
設計意圖:了解學生對單項式系數(shù)、次數(shù)的概念是否理解,找出存在的問題,從而進一步鞏固概念。
單項式的注意點:
(1)數(shù)與字母相乘時,數(shù)應寫在字母的___,且乘號可_________;
(2)帶分數(shù)作為系數(shù)時,應改寫成_______的形式;
(3)式子中若出現(xiàn)相除時,應把除號寫成____的形式;
(4)把“1”或“-1”作為項的系數(shù)時,“1”可以__不寫。
行家看門道
、1x ②-1x
、踑×3 ④a÷2
、 ⑥m的系數(shù)為1,次數(shù)為0
、 的系數(shù)為2,次數(shù)為2
設計意圖:單項式的書寫和表示有其特有的格式和注意點,通過以上兩個題目讓學生進一步明確注意點。
三、例題講解,鞏固新知
例1:用單項式填空,并指出它們的系數(shù)和次數(shù):
(1)每包書有12冊,n包書有 冊;
(2)底邊長為a,高為h的三角形的面積 ;
(3)一個長方體的長和寬都是a,高是h,它的體積是 ;
(4)一臺電視機原價a元,現(xiàn)按原價的9折出售,這臺電視機現(xiàn)在的售價
為 元;
(5)一個長方形的`長0.9,寬是a,這個長方形的面積是 .
解:(1)12n,它的系數(shù)是12,次數(shù)是1
(2) ,它的系數(shù)是 , 次數(shù)是2;
(3)a2h,它的系數(shù)是1,次數(shù)是3;
(4)0.9a,它的系數(shù)是0.9,次數(shù)是1;
(5)0.9a,它的系數(shù)是0.9,次數(shù)是1。
設計意圖:學生能用單項式表示簡單的實際問題中的數(shù)量關系,并進一步鞏固單項式的系數(shù)、次數(shù)的概念。
試一試
你還能賦予0.9a一個含義嗎?
設計意圖:同一個式子可以表示不同的含義,通過這個例子讓學生進一步體會式子更具有一般性,而且發(fā)散學生思維。
大膽嘗試
寫出一個單項式,使它的系數(shù)是2,次數(shù)是3.
設計意圖:充分發(fā)揮學生的想象力,讓每一個學生都有獲得成功的體驗,為不同程度的學生一個展示自我的機會,激發(fā)他們的學習興趣。
四、拓展提高
嘗試應用
用單項式填空,并指出它們的系數(shù)和次數(shù):
(1)全校學生總數(shù)是x,其中女生占總數(shù)48%,則女生人數(shù)是 ,男生人數(shù)是 ;
(2)一輛長途汽車從楊柳村出發(fā),3小時后到達相距s千米的溪河鎮(zhèn),這輛長途汽車的平均速度是 ;
(3)產量由m千克增長10%,就達到 千克;
設計意圖:讓學生感受單項式在實際生活中的應用,進一步掌握單項式及單項式系數(shù)、次數(shù)的概念。
能力提升
1、已知-xay是關于x、y的三次單項式,那么a= ,b= .
2、若-ax2yb+1是關于x、y的五次單項式,且系數(shù)為-3,則a= ,b= .
設計意圖:照顧學有余力的學生,拓展學生思維,讓學生體會跳一跳、摘桃子的樂趣。
五、小結:
本節(jié)課你感受到了嗎?
生活中處處有數(shù)學
本節(jié)課我們學了什么?你能說說你的收獲嗎?
1、單項式的概念: 數(shù)與字母、字母與字母的乘積。
2、單項式的系數(shù)、次數(shù)的概念。
系數(shù):單項中的數(shù)字因數(shù);
次數(shù):單項中所有字母的指數(shù)和。
3、會用單項式表示實際問題中的數(shù)量關系,注意列式時式子要規(guī)范書寫。
設計意圖:通過回顧和反思,讓學生看到自己的進步,激勵學生,使學生相信自己在今后的學習中不斷進步,不斷積累數(shù)學活動經驗,促進學生形成良好的心理品質。
結束寄語
悟性的高低取決于有無悟“心”,其實,人與人的差別就在于你是否去思考,去發(fā)現(xiàn)!
設計意圖:這是對學生的激勵也是對學生的一種期盼,可以增進師生間的情感交流。
六、板書設計
2.1 整式
單項式概念 探究 例1 多
單項式的系數(shù)概念 觀察交流 嘗試應用 媒
單項式的次數(shù)概念 能力提升 體
七、作業(yè):
1.作業(yè)本(必做)。
2. 請下面圖片設計一個故事情境,要求其中包含的數(shù)量關系能夠用單項式表示,并且指出它們的系數(shù)和次數(shù)(選做)。
設計意圖:布置分層作業(yè),既讓學生掌握基礎知識,又使學有余力的學生有所提高。讓學生自行編題是一種創(chuàng)造性的思維活動,它可以改變一味由教師出題的形式,活躍學生思維,使學生能夠透徹理解知識,同時培養(yǎng)同學之間的競爭意識。
八、設計理念:
本節(jié)課是研究整式的起始課,它是進一步學習多項式的基礎,因此對單項式有關概念的理解和掌握情況,將直接影響到后續(xù)學習。為突出重點,突破難點,教學中要加強直觀性,即為學生提供足夠的感知材料,豐富學生的感性認識,幫助學生認識概念,同時也要注重分析,亦即在剖析單項式結構時,借助反例練習,抓住概念易混淆處和判斷易出錯處,強化認識,幫助學生理解單項式系數(shù)、次數(shù),為進一步學習新知做好鋪墊。
針對七年級學生學習熱情高,但觀察、分析、認識問題能力較弱的特點,教學時將提供大量感性材料,以啟發(fā)引導為主,同時輔之以討論、練習、合作交流等學習活動,達到掌握知識的目的,并逐步培養(yǎng)起學生觀察、分析、抽象、概括的能力,同時注重培養(yǎng)學生由感性認識上升到理性認識,為進一步學習同類項打下堅實的基礎。
初中數(shù)學教案10
【教學目標】
1進一步認識方程及其解的概念。
2理解一元一次方程的概念,會根據(jù)簡單數(shù)量關系列一元一次方程。 3體驗用嘗試、檢驗解一元一次方程的思想與方法。
【教學重點】
一元一次方程的概念和解法貫穿整章,因此“一元一次方程的概念”與“嘗試檢驗法”求解是本節(jié)教學的重點。
【教學難點】
用嘗試、檢驗的方法解一元一次方程的過程比較復雜,是本節(jié)教學的難點。
【學習準備】
1.下面哪些式子是方程?
。1)3
(2)1;
(2)x31;
。3)3x5;
。4)2xy4;
。5)x31;
。6)3x14.
2.方程與等式有什么聯(lián)系與區(qū)別?
方程是解決實際問題的一個重要數(shù)學模型,需要我們進一步學習研究。
【課本導學】
思考一閱讀并解答課本第114頁“合作學習”的三個問題,思考:
1.列方程就是根據(jù)問題中的相等關系,寫出含有未知數(shù)的等式。
。1)原價為50元的衣服,按8折銷售,售價是多少元?原價若為x元呢?
。2)你能舉例說明你對“物體在水下,水深每增加10米,物體承受的壓力就增加
(3)張明投進x個,那么“小杰投進的球的個數(shù)”可以怎樣表示?“3人一共投進的球數(shù)”怎樣表示?
你是怎么理解“三人平均每人投進14個球”這句話的?
思考二觀察你所列的方程,這些方程之間有哪些共同的特點?請思考:
1.你可以從哪些角度對這些方程進行觀察呢?說說你的想法。
2.具有“合作學習”中所列方程一樣特點的方程叫做一元一次方程,你能說說這個名稱中“元”和“次”的含義嗎?[練習]完成課本第115頁課內練習
1.『歸納』判斷一個方程是不是一元一次方程應抓住哪幾個關鍵特點?
思考三閱讀課本第114頁倒數(shù)3行至第115頁正文結束,并思考下面的問題:
1.(1)如果一個數(shù)是方程有什么關系?
(2)如果一個數(shù)是方程350應該是多少?
。3)要判斷一個數(shù)是不是方程3m?2?1?m的解,你會怎么做?2.對方程2x12
14的解,這個數(shù)代入方程的左邊計算得到的值與14 3 1
x500的解,這個數(shù)代入方程的左邊計算得到的值10 2x12
14進行嘗試求解時,你認為x必須是整數(shù)嗎
x可以取21嗎20呢?x可以取10或者比10還小的值嗎?為什么?說說你的想法。
[練習]完成課本第115頁課內練習
2.『歸納』1.檢驗一個數(shù)是不是一元一次方程的解的步驟有哪些?
2.用嘗試檢驗的方法解一元一次方程,你覺得關鍵的步驟有哪些?【盤點收獲】
【學習檢測】
1.下列說法正確的是()
。╝)x1是等式(b)x1是方程(c)方程是等式(d)等式是方程
2.下列式子中,屬于一元一次方程的是()(a)5x 1
。╞)ab8(c)1257(d)5x82x9 3
3.設某數(shù)為x,根據(jù)下列條件列出求該數(shù)的'方程:
。1)某數(shù)加上1,再乘以2,得6.
(2)某數(shù)與7的和的2倍等于10.
。3)某數(shù)的5倍比某數(shù)小3.
4.某校初一年級328名師生乘車外出春游,己有2輛校車可乘坐64人,還需租用44座的客車多少輛?
設還需租用x輛,則可列出方程44x+64=328.
(1)寫出一個方程,使它的解是
2.【作業(yè)布置】略
【課后反思】
課堂教學總是在“預設”與“生成”間交融進行,如何根據(jù)學情做好充分的預設,又根據(jù)課堂生成靈活應變,這既能反映教師的專業(yè)素養(yǎng),又能展示教師的教學功底.反芻本課,筆者認為還有以下幾方面值得反思與改進:
1.忽略課堂“火花”,錯失追問良機
在交流對方程的共同特征探討的環(huán)節(jié),有一個同學直接說出了“一元一次方程”的名稱.【片斷實錄】
師:討論好了吧.哪個小組先來說說你們所歸納的特點.生8:這些等式都含有未知數(shù)的,用x或y來表示.師(板書):嗯,都含有未知數(shù),這個未知數(shù)呢,有的地方是x,有的地方是y.還有呢?生8:還有黑板上的所有等式都是一元一次方程.
師(驚喜):嗯,你都知道了所有的等式都是我們今天接下來要具體研究的一元一次方程,這位同學已經預習了呢.我們看,剛才這位同學歸納了:都含有未知數(shù).那么請同學們看得更仔細一點,未知數(shù)在這里具有什么特征呢?
不難看出,筆者在這里沒有很好地抓住學生的課堂即時生成資源,用一句“嗯,……,這位同學已經預習了呢.”輕輕帶過,仍然拉著學生回到了預設的軌道“……,請同學們看得更仔細一點,未知數(shù)在這里具有什么特征呢?”如果當時直接問她“那么請你講講什
初中數(shù)學教案11
一、內容特點
在知識與方法上類似于數(shù)系的第一次擴張。也是后繼內容學習的基礎。
內容定位:了解無理數(shù)、實數(shù)概念,了解(算術)平方根的概念;會用根號表示數(shù)的(算術)平方根,會求平方根、立方根,用有理數(shù)估計一個無理數(shù)的大致范圍,實數(shù)簡單的四則運算(不要求分母有理化)。
二、設計思路
整體設計思路:
無理數(shù)的引入----無理數(shù)的表示----實數(shù)及其相關概念(包括實數(shù)運算),實數(shù)的應用貫穿于內容的始終。
學習對象----實數(shù)概念及其運算;學習過程----通過拼圖活動引進無理數(shù),通過具體問題的解決說明如何表示無理數(shù),進而建立實數(shù)概念;以類比,歸納探索的方式,尋求實數(shù)的運算法則;學習方式----操作、猜測、抽象、驗證、類比、推理等。
具體過程:
首先通過拼圖活動和計算器探索活動,給出無理數(shù)的概念,然后通過具體問題的解決,引入平方根和立方根的概念和開方運算。最后教科書總結實數(shù)的概念及其分類,并用類比的方法引入實數(shù)的相關概念、運算律和運算性質等。
第一節(jié):數(shù)怎么又不夠用了:通過拼圖活動,讓學生感受無理數(shù)產生的'實際背景和引入的必要性;借助計算器探索無理數(shù)是無限不循環(huán)小數(shù),并從中體會無限逼近的思想;會判斷一個數(shù)是有理數(shù)還是無理數(shù)。
第二、三節(jié):平方根、立方根:如何表示正方形的邊長?它的值到底是多少?并引入算術平方根、平方根、立方根等概念和開方運算。
第四節(jié):公園有多寬:在實際生活和生產實際中,對于無理數(shù)我們常常通過估算來求它的近似值,為此這一節(jié)內容介紹估算的方法,包括通過估算比較大小,檢驗計算結果的合理性等,其目的是發(fā)展學生的數(shù)感。
第五節(jié):用計算器開方:會用計算器求平方根和立方根。經歷運用計算器探求數(shù)學規(guī)律的活動,發(fā)展合情推理的能力。
第六節(jié):實數(shù)?偨Y實數(shù)的概念及其分類,并用類比的方法引入實數(shù)的相關概念、運算律和運算性質等。
三、一些建議
1.注重概念的形成過程,讓學生在概念的形成的過程中,逐步理解所學的概念;關注學生對無理數(shù)和實數(shù)概念的意義理解。
2.鼓勵學生進行探索和交流,重視學生的分析、概括、交流等能力的考察。
3.注意運用類比的方法,使學生清楚新舊知識的區(qū)別和聯(lián)系。
4.淡化二次根式的概念。
初中數(shù)學教案12
教學目標:
1、 在現(xiàn)實情境中理解線段、射線、直線等簡單圖形(知識目標)
2、 會說出線段、射線、直線的特征;會用字母表示線段、射線、直線(能力目標)
3、 通過操作活動,了解兩點確定一條直線等事實,積累操作活動的經驗,培養(yǎng)學生的興趣、愛好,感受圖形世界的豐富多彩。(情感態(tài)度目標)
教學難點:了解“兩點確定一條直線”等事實,并應用它解決一些實際問題
教 具: 多媒體、棉線、三角板
教學過程:
情景創(chuàng)設:觀察電腦展示圖,使學生感受圖形世界的豐富多彩,激發(fā)學習興趣。
如何來描述我們所看到的現(xiàn)象?
教學過程:
1、 一段拉直的棉線可近似地看作線段
師生畫線段
演示投影片1:①將線段向一個方向無限延長,就形成了______
學生畫射線
②將線段向兩個方向無限延長就形成了_______
學生畫直線
2、 討論小組交流:
、 生活中,還有哪些物體可以近似地看作線段、射線、直線?
。◤娬{近似兩個字,注意引導學生線段、射線、直線是從生活上抽象出來的`)
、诰段、射線、直線,有哪些不同之處, 有哪些相同之處?
(鼓勵學生用自己的語言描述它們各自的特點)
3、 問題1:圖中有幾條線段?哪幾條?
“要說清楚哪幾條,必須先給線段起名字!”從而引出線段的記法。
點的記法: 用一個大寫英文字母
線段的記法:①用兩個端點的字母來表示
、谟靡粋小寫英文字母表示
自己想辦法表示射線,讓學生充分討論,并比較如何表示合理
射線的記法:
用端點及射線上一點來表示,注意端點的字母寫在前面
直線的記法:
① 用直線上兩個點來表示
、 用一個小寫字母來表示
強調大寫字母與小寫字母來表示它們時的區(qū)別
(我們知道他們是無限延長的,我們?yōu)榱朔奖阊芯考s定成俗的用上面的方法來表示它們。)
練習1:讀句畫圖(如圖示)
。1) 連BC、AD
(2) 畫射線AD
。3) 畫直線AB、CD相交于E
。4) 延長線段BC,反向延長線段DA相交與F
。5) 連結AC、BD相交于O
練習2:右圖中,有哪幾條線段、射線、直線
4、 問題2 請過一點A畫直線,可以畫幾條?過兩點A、B呢?
學生通過畫圖,得出結論:過一點可以畫無數(shù)條直線
經過兩點有且只有一條直線
問題3 如果你想將一硬紙條固定在硬紙板上,至少需要幾根圖釘?
為什么?(學生通過操作,回答)
小組討論交流:
你還能舉出一個能反映“經過兩點有且只有一條直線”的實例嗎?
適當引導:栽樹時只要確定兩個樹坑的位置,就能確定同一行的樹坑所在的直線。建筑工人在砌墻時,經常在兩個墻角分別立一根標志桿,在兩根標志桿之間拉一根繩,沿這根繩就可以砌出直的墻來。
5、 小結:
① 學生回憶今天這節(jié)課學過的內容
進一步清晰線段、射線、直線的概念
、 強調線段、射線、直線表示方法的掌握
6、 作業(yè):①閱讀“讀一讀” P121
②習題4的1、2、3。4作為思考題
初中數(shù)學教案13
一、素質教育目標
。ㄒ唬┲R教學點
1.使學生理解多項式的概念.
2.使學生能準確地確定一個多項式的次數(shù)和項數(shù).
3.能正確區(qū)分單項式和多項式.
(二)能力訓練點
通過區(qū)別單項式與多項式,培養(yǎng)學生發(fā)散思維.
。ㄈ┑掠凉B透點
在本節(jié)教學中向學生滲透數(shù)學知識來源于生活,又為生活而服務的辯證思想.
。ㄋ模┟烙凉B透點
單項式和多項式在前二章,特別是第一章已有新接觸,本節(jié)課來研究多項式的概念可謂水到渠成,體現(xiàn)了數(shù)學的結構美
二、學法引導
1.教學方法:采用對比法,以訓練為主,注重嘗試指導.
2.學生學法:觀察分析→多項式有關概念→練習鞏固
三、重點、難點、疑點及解決辦法
1.重點:多項式的概念及單項式的聯(lián)系與區(qū)別.
2.難點:多項式的次數(shù)的確定,以及多項式與單項式的聯(lián)系與區(qū)別.
3.疑點:多項式中各項的符號問題.
四、課時安排
1課時
五、教具學具準備
投影儀或電腦、自制膠片.
六、師生互動活動設計
教師出示探索性練習,學生分析討論得出多項式有關概念,教師出示鞏固性練習,學生多種形式完成.
七、教學步驟
(一)復習引入,創(chuàng)設情境
師:上節(jié)課我們學習了單項式的有關概念,同學們看下面一些問題.
。ǔ鍪就队1)
1.下列代數(shù)式中,哪些是單項式?是單項式的請指出它的系數(shù)與次數(shù).
, , ,2, , , ,
2.圓的半徑為 ,則半圓的面積為_____________,半圓的總長為_____________.
學生活動:回答上述兩個問題,可以進行搶答,看誰想的全面,回答的準確,教師對回答準確、速度快的給予表揚和鼓勵.
【教法說明】讓學生通過1題回顧有關單項式的一些知識點,再通過2題中半圓周長為 很自然地引出本節(jié)內容.
師:上述2題中,表示半圓面積的代數(shù)式是單項式嗎?為什么?表示半圓的周長的式子呢?
學生活動:同座進行討論,然后選代表回答.
師:誰能把1題中不是單項式的式子讀出來?(師做相應板書)
學生活動:小組討論, 、 , , 對于這些代數(shù)式的結構特點,由小組選代表說明,若不完整,其他同學可做補充.
。ǘ┨剿餍轮,講授新課
師:像以上這樣的式子叫多項式,這節(jié)課我們就研究多項式,上面幾個式子都是多項式.
。郯鍟3.1整式(多項式)
學生活動:討論歸納什么叫多項式.可讓學生互相補充.
教師概括并板書
[板書]多項式:幾個單項式的和叫多項式.
師:強調每個單項式的符號問題,使學生引起注意.
(出示投影2)
練習:下裂代數(shù)式 , , , , , ,
, , 中,是多項式的有:
___________________________________________________________.
學生活動:學生搶答以上問題,然后每個學生在練習本上寫出兩個多項式,同桌互相交換打分,有疑問的提出再討論.
【教法說明】通過觀察式子特點,討論歸納多項式的概念,體現(xiàn)了學生的主體作用和參與意識.多項式的概念是本節(jié)教學重點,為使學生對概念真正理解,讓學生每個人寫出兩個多項式,可及時反饋學生掌握知識中存在的問題,以便及時糾正.
師:提出問題,多項式 、 , , 各是由幾個單項式相加而得到的?每個單項式各指的是誰?各是幾次單項式?引導學生回答,教師根據(jù)學生回答,給予肯定、否定與糾正.
師:在 中,是兩個單項式相加得到,就叫做二項式,兩個單項式中, 次數(shù)是1, 次數(shù)是1,最高次數(shù)是一次,所以我們說這個多項式的次數(shù)是一次,整個式子叫做一次二項式.
。郯鍟
學生活動:同桌討論,, , ,應怎樣稱謂,然后找學生回答.
師:給予歸納,并做適當板書:
[板書]
學生活動:通過上例,學生討論多項式的項、次數(shù),然后選代表回答.
根據(jù)學生回答,師歸納:
在多項式中,每個單項式叫多項式的項,是幾個單項式的和就叫做幾項式.每一項包含它的符號,如 中, 這一項不是 .多項式里次數(shù)最高的項的次數(shù),就叫做多項式次數(shù),即最高次項是幾次,就叫做幾次多項式,不含字母的項叫做常數(shù)項.
。郯鍟
【教法說明】通過學生對以上幾個多項式的.感知,學生對多項式的特片已有了一定的了解,教師可逐步引導,讓學生自己總結歸納一些結論,以訓練學生的口頭表達能力和歸納能力.
。ㄈ﹪L試反饋,鞏固練習
。ǔ鍪就队3)
1.填空:
2.填空:
(1) 是_________次__________項式; 是_________次_________項式; 的常數(shù)項是___________.
(2) 是_________次________項式,最高次數(shù)是___________,最高次項的系數(shù)是__________,常數(shù)項是___________.
學生活動:1題搶答,同桌同學給予肯定或否定,且肯定地說出依據(jù),否定的再說出正確答案;2題學生觀察后,在練習本或投影膠片上完成,部分膠片打出投影,師生一起分析、討論,對所做答案給予肯定或更正.
【教法說明】在此組練習題中,1題目的是以填表的形式感知一個多項式就是單項式的和,多項式的項就是單項式;使學生能進一步了解多項式與單項式的關系,避免死記硬背概念,而不能準確應用于解題中的弊病.2題是在理解概念和完成1題單一問題的基礎上進行綜合訓練,使學生逐步學會使用數(shù)學語言.
。ㄋ模w納小結
師:今天我們學習了《整式》一節(jié)中“多項式”的有關概念;在掌握多項式概念時,要注意它的項數(shù)和次數(shù).前面我們還學習了單項式,掌握單項式時要注意它的系數(shù)和次數(shù).
歸納:單項式和多項式統(tǒng)稱為整式.
。郯鍟
說明:教師邊小結邊板書出多項式、單項式,然后再提出它們統(tǒng)稱為整式,并做了述板書,使所學知識納入知識系統(tǒng).
鞏固練習:
。ǔ鍪就队4)
下列各代數(shù)式:0, , , , , , 中,單項式有__________,多項式有____________,整式有_____________.
學生活動:觀察后學生回答,互相補充、糾正,提醒學生不能遺漏.
【教法說明】數(shù)學要領重在于應用,通過上題的訓練,可使學生很清楚地了解單項式、多項式的區(qū)別與聯(lián)系,它們與整式的關系.
。ㄎ澹┳兪接柧,培養(yǎng)能力
。ǔ鍪就队5)
1.單項式 , , 的和_________,它是__________次__________項式.
2. 是_______次________項式 是__________次_________項式,它的常數(shù)項_________.
3. 是________次________項式,最高次項是_________,最高次項的系數(shù)是_________,常數(shù)項是__________.
4. 的2倍與 的平方的 的和,用代數(shù)式表示__________,它是__________(填單項式或多項式).
學生活動:每個學生先獨立在練習本上完成,然后小組互相交流補充,最后小組選出代表發(fā)言.
師:做肯定或否定,強調3題中最高次項的系數(shù)是 , 是一個數(shù)字,不是字母,因為它只能代表圓周率這一個數(shù)值,而一個字母是可以取不同的值的.
【教法說明】本組是在前面掌握了本節(jié)課基本知識后安排的一組訓練題,目的是使學生進一步理解多項式的次數(shù)與項數(shù),特別是對 這個數(shù)字要有一個明確的認識.
自編題目練習:
每個學生寫出6個整式,并要求既有單項式,又有多項式,然后交給同桌的同學,完成以下任務,①先找出單項式、多項式,②是單項式的寫出系數(shù)與次數(shù),是多項式的寫出是幾次幾項式,最高次數(shù)是什么?常數(shù)項是什么,然后再互相討論對方的解答是否正確.
【教學說明】自編題目的訓練,一是可活躍課堂氣氛,增強了學生的參與意識;二是可以培養(yǎng)學生的發(fā)散思維和逆向思維能力.
師:通過上面編題、解題練習,同學們對整式的概念有了清楚的理解,下面再按老師的要求編題,編一個四次三項式,看誰編的又快又準確,再編一個不高于三次的多項式.
學生活動:學生邊回答師邊板書,然后學生討論是否符合要求.
【教法說明】通過上面訓練,使學生進一步鞏固多項式項數(shù)、次數(shù)的概念,同時也可以培養(yǎng)學生逆向思維的能力.
八、隨堂練習
1.判斷題
。1)-5不是多項式( )
。2) 是二次二項式( )
(3) 是二次三項式( )
。4) 是一次三項式( )
。5) 的最高次項系數(shù)是3( )
2.填空題
(1)把上列代數(shù)式分別填在相應的括號里
, , ,0, , ,
; ;
; ;
.
。2)如果代數(shù)式 是關于 的三次二項式則 , .
九、布置作業(yè)
(一)必做題:課本第149頁習題3.1A組12.
。ǘ┻x做題:課本第150頁習題3.1B組3.
十、板書設計
隨堂練習答案
1.√ × × √ ×
2.(1)單項式 ,多項式 ;
整式 ;
二項式 ;
三次三項式 ;
。2) , .
作業(yè)答案
教材P.149中A組12題:(1)三次二項式 (2)二次三項式
。3)一次二項式 (4)四次三項式
初中數(shù)學教案14
一、教學目標:
1.知識目標:
、倌軠蚀_理解絕對值的幾何意義和代數(shù)意義。
、谀軠蚀_熟練地求一個有理數(shù)的絕對值。
③使學生知道絕對值是一個非負數(shù),能更深刻地理解相反數(shù)的概念。
2.能力目標:
①初步培養(yǎng)學生觀察、分析、歸納和概括的思維能力。
、诔醪脚囵B(yǎng)學生由抽象到具體再到抽象的思維能力。
3.情感目標:
、偻ㄟ^向學生滲透數(shù)形結合思想和分類討論的思想,讓學生領略到數(shù)學的奧妙,從而激起他們的好奇心和求知欲望。
、谕ㄟ^課堂上生動、活潑和愉快、輕松地學習,使學生感受到學習數(shù)學的快樂,從而增強他們的自信心。
二、教學重點和難點
教學重點:絕對值的幾何意義和代數(shù)意義,以及求一個數(shù)的絕對值。
教學難點:絕對值定義的得出、意義的理解及求一個負數(shù)的絕對值。
三、教學方法
啟發(fā)引導式、討論式和談話法
四、教學過程
(一)復習提問
問題:相反數(shù)6與-6在數(shù)軸上與原點的距離各是多少?兩個相反數(shù)在數(shù)軸上的點有什么特征?
。ǘ┬率
1.引入
結合教材P63圖2-11和復習問題,講解6與-6的絕對值的意義。
2.數(shù)a的絕對值的意義
①幾何意義
一個數(shù)a的絕對值就是數(shù)軸上表示數(shù)a的點到原點的距離。數(shù)a的絕對值記作|a|.
舉例說明數(shù)a的絕對值的幾何意義。(按教材P63的倒數(shù)第二段進行講解。)
強調:表示0的點與原點的距離是0,所以|0|=0.
指出:表示“距離”的數(shù)是非負數(shù),所以絕對值是一個非負數(shù)。
、诖鷶(shù)意義
把有理數(shù)分成正數(shù)、零、負數(shù),根據(jù)絕對值的幾何意義可以得出絕對值的代數(shù)意義:一個正數(shù)的.絕對值是它本身,一個負數(shù)的絕對值是它的相反數(shù),0的絕對值是0.
用字母a表示數(shù),則絕對值的代數(shù)意義可以表示為:
指出:絕對值的代數(shù)定義可以作為求一個數(shù)的絕對值的方法。
3.例題精講
例1.求8,-8,,-的絕對值。
按教材方法講解。
例2.計算:|2.5|+|-3|-|-3|.
解:|2.5|+|-3|-|-3|=2.5+3-3=6-3=3
例3.已知一個數(shù)的絕對值等于2,求這個數(shù)。
解:∵|2|=2,|-2|=2
∴這個數(shù)是2或-2.
五、鞏固練習
練習一:教材P641、2,P66習題2.4A組1、2.
練習二:
1.絕對值小于4的整數(shù)是____.
2.絕對值最小的數(shù)是____.
3.已知|2x-1|+|y-2|=0,求代數(shù)式3x2y的值。
六、歸納小結
本節(jié)課從幾何與代數(shù)兩個方面說明了絕對值的意義,由絕對值的意義可知,任何數(shù)的絕對值都是非負數(shù)。絕對值的代數(shù)意義可以作為求一個數(shù)的絕對值的方法。
七、布置作業(yè)
教材P66習題2.4A組3、4、5.
初中數(shù)學教案15
一、教學案例的特點
1、案例與論文的區(qū)別
從文體和表述方式上看,論文是以說理為目的,以議論為主;案例則以記錄為目的,以記敘為主,兼有議論和說明。也就是說,案例是講一個故事,是通過故事說明道理。
從寫作的思路和思維方式來看,論文寫作一般是一種演繹思維,思維的方式是從抽象到具體;案例寫作是一種歸納思維,思維的方式是從具體到抽象。
2、案例與教案、教學設計的區(qū)別
教案和教學設計都是事先設想的教學思路,是對準備實施的教學措施的簡要說明;教學案例則是對已經發(fā)生的教學過程的反映。一個寫在教之前,一個寫在教之后;一個是預期達到什么目標,一個是結果達到什么水平。教學設計不宜于交流,教學案例適宜于交流。
3、案例與教學實錄的區(qū)別
案例與教學實錄的體例比較接近,它們都是對教學情景的描述,但教學實錄是有聞必錄,而案例則是有所選擇的,教學案例是根據(jù)目的和功能選擇內容,并且必須有作者的反思(價值判斷或理性思考)。
4、教學案例的特點是
——真實性:案例必須是在課堂教學中真實發(fā)生的事件;
——典型性:必須是包括特殊情境和典型案例問題的故事;
——濃縮性:必須多角度地呈現(xiàn)問題,提供足夠的信息;
——啟發(fā)性:必須是經過研究,能夠引起討論,提供分析和反思。
二、數(shù)學案例的結構要素
從文章結構上看,數(shù)學案例一般包含以下幾個基本的元素。
(1)背景。案例需要向讀者交代故事發(fā)生的有關情況:時間、地點、人物、事情的起因等。如介紹一堂課,就有必要說明這堂課是在什么背景情況下上的,是一所重點學校還是普通學校,是一個重點班級還是普通班級,是有經驗的優(yōu)秀教師還是年青的新教師執(zhí)教,是經過準備的“公開課”還是平時的“家常課”,等等。背景介紹并不需要面面俱到,重要的是說明故事的發(fā)生是否有什么特別的原因或條件。
(2)主題。案例要有一個主題:寫案例首先要考慮我這個案例想反映什么問題,例如是想說明怎樣轉變學困生,還是強調怎樣啟發(fā)思維,或者是介紹如何組織小組討論,或是觀察學生的獨立學習情況,等等;蛘呤且粋什么樣的數(shù)學任務解決過程和方法,在課程標準中數(shù)學任務認知水平的要求怎么樣,在課堂教學中數(shù)學任務認知水平的發(fā)展怎么樣等等。動筆前都要有一個比較明確的想法。比如學校開展研究性學習活動,不同的研究課題、研究小組、研究階段,會面臨不同的問題、情境、經歷,都有自己的獨特性。寫作時應該從最有收獲、最有啟發(fā)的角度切入,選擇并確立主題。
(3)情節(jié)。有了主題,寫作時就不會有聞必錄,而要是對原始材料進行篩選。首先需要教師對課堂教學中師生雙方(外顯的和內隱的)活動的清晰感知,然后是有針對性地向讀者交代特定的內容,把關鍵性的細節(jié)寫清楚。比如介紹教師如何指導學生掌握學習數(shù)學的方法,就要把學生怎么從“不會”到“會”的轉折過程,要把學習發(fā)生發(fā)展過程的細節(jié)寫清楚,要把教師觀察到的學生學習行為,學習行為反映的學生思想、情感、態(tài)度寫清楚,或者把小組合作學習的突出情況寫清楚,或者把個別學生獨立學習的典型行為寫清楚。不能把“任務”布置了一番,把“方法”介紹了一番,說到“任務”的完成過程,說到“掌握”的程度就一筆帶過了。
(4)結果。一般來說,教案和教學設計只有設想的措施而沒有實施的結果,教學實錄通常也只記錄教學的過程而不介紹教學的效果;而案例則不僅要說明教學的思路、描述教學的過程,還要交代學生學習的結果,即這種教學措施的即時效果,包括學生的反映和教師的感受等。讀者知道了結果,將有助于加深對整個過程的內涵的了解。
(5)反思。對于案例所反映的.主題和內容,包括教育教學指導思想、過程、結果,對其利弊得失,作者要有一定的看法和分析。反思是在記敘基礎上的議論,可以進一步揭示事件的意義和價值。比如同樣是一個學困生轉化的事例,我們可以從社會學、教育學、心理學、學習理論等不同的理論角度切入,揭示成功的原因和科學的規(guī)律。反思不一定是理論闡述,也可以是就事論事、有感而發(fā),引起人的共鳴,給人以啟發(fā)。
三、初中數(shù)學教學案例主題的選擇
新課程理念下的初中數(shù)學教學案例,可從以下六方面選擇主題:
(1)體現(xiàn)讓學生動手實踐、自主探究、合作交流的教學方式;
(2)體現(xiàn)教師幫助學生在自主探究、合作交流的過程中真正理解和掌握基本的數(shù)學知識和技能、數(shù)學思想和方法,獲得廣泛的數(shù)學活動經驗;
(3)體現(xiàn)讓學生親身經歷將實際問題抽象成數(shù)學模型并進行解釋與應用的過程,采用“問題情境——建立模型——解釋、應用與拓展”的模式教學的成功經驗;
(4)體現(xiàn)數(shù)學與信息技術整合的教學方法;
(5)體現(xiàn)教師在教學過程中的組織者、引導者與合作者的作用;
(6)體現(xiàn)教學中對學生情感、態(tài)度的關注和評價,以及怎樣幫助不同的人在數(shù)學上獲得不同的發(fā)展,等等。
【初中數(shù)學教案】相關文章:
初中數(shù)學教案【經典】07-23
初中數(shù)學教案05-28
【熱】初中數(shù)學教案07-25
人教版初中數(shù)學教案12-29
【薦】初中數(shù)學教案02-27
初中數(shù)學教案【熱門】05-26
初中數(shù)學教案【薦】09-11
初中數(shù)學教案【精】10-09
【精】初中數(shù)學教案02-24
初中數(shù)學教案模板02-06