當(dāng)前位置:育文網(wǎng)>教學(xué)文檔>教案> 因式分解教案

因式分解教案

時(shí)間:2024-10-15 13:28:35 教案 我要投稿

因式分解教案模板集錦9篇

  作為一無名無私奉獻(xiàn)的教育工作者,就不得不需要編寫教案,借助教案可以讓教學(xué)工作更科學(xué)化。那要怎么寫好教案呢?以下是小編收集整理的因式分解教案9篇,歡迎閱讀,希望大家能夠喜歡。

因式分解教案模板集錦9篇

因式分解教案 篇1

  第十五章 整式的乘除與因式分解

  根據(jù)定義,我們不難得出a+b+c、t-5、3x+5+2z、 ab-3.12r2、x2+2x+18都是多項(xiàng)式.請(qǐng)分別指出它們的`項(xiàng)和次數(shù).

  15.1.2 整式的加減

 。3)x-(1-2x+x2)+(-1-x2) (4)(8x-3x2)-5x-2(3x-2x2)

  四、提高練習(xí):

  1、已知A=a2+b2-c2,B=-4a2+2b2+3c2,并且A+B+C=0,問C是什么樣的多項(xiàng)式?

  2、設(shè)A=2x2-3x+2-x+2,B=4x2-6x+22-3x-,若│x-2a│+(+3)2=0,且B-2A=a,求A的值。

  3、已知有理數(shù)a、b、c在數(shù)軸上(0為數(shù)軸原點(diǎn))的對(duì)應(yīng)點(diǎn)如圖:

  試化簡(jiǎn):│a│-│a+b│+│c-a│+│b+c│

  小 結(jié):要善于在圖形變化中發(fā)現(xiàn)規(guī)律,能熟練的對(duì)整式加減進(jìn)行運(yùn)算。

  作 業(yè):課本P14習(xí)題1.3:1(2)、(3)、(6),2。

  《課堂感悟與探究》

因式分解教案 篇2

  一、教材分析

  1、教材的地位與作用

  “整式的乘法”是整式的加減的后續(xù)學(xué)習(xí)從冪的運(yùn)算到各種整式的乘法,整章教材都突出了學(xué)生的自主探索過程,依據(jù)原有的知識(shí)基礎(chǔ),或運(yùn)用乘法的各種運(yùn)算規(guī)律,或借助直觀而又形象的圖形面積,得到各種運(yùn)算的基本法則、兩個(gè)主要的乘法公式及因式分解的基本方法學(xué)生自己對(duì)知識(shí)內(nèi)容的探索、認(rèn)識(shí)與體驗(yàn),完全有利于學(xué)生形成合理的知識(shí)結(jié)構(gòu),提高數(shù)學(xué)思維能力.利用公式法進(jìn)行因式分解時(shí),注意把握多項(xiàng)式的特點(diǎn),對(duì)比乘法公式乘積結(jié)果的形式,選擇正確的.分解方法。

  因式分解是一種常用的代數(shù)式的恒等變形,因式分解是多項(xiàng)式乘法公式的逆向變形,它是將一個(gè)多項(xiàng)式變形為多項(xiàng)式與多項(xiàng)式的乘積。

  2、教學(xué)目標(biāo)

 。1)會(huì)推導(dǎo)乘法公式

 。2)在應(yīng)用乘法公式進(jìn)行計(jì)算的基礎(chǔ)上,感受乘法公式的作用和價(jià)值。

  (3)會(huì)用提公因式法、公式法進(jìn)行因式分解。

  (4)了解因式分解的一般步驟。

 。5)在因式分解中,經(jīng)歷觀察、探索和做出推斷的過程,提高分析問題和解決問題的能力。

  3、重點(diǎn)、難點(diǎn)和關(guān)鍵

  重點(diǎn):乘法公式的意義、分式的由來和正確運(yùn)用;用提公因式法和公式法進(jìn)行因式分解。

  難點(diǎn):正確運(yùn)用乘法公式;正確分解因式。

  關(guān)鍵:正確理解乘法公式和因式分解的意義。

  二、本單元教學(xué)的方法和策略:

  1.注重知識(shí)形成的探索過程,讓學(xué)生在探索過程中領(lǐng)悟知識(shí),在領(lǐng)悟過程中建構(gòu)體系,從而更好地實(shí)現(xiàn)知識(shí)體系的更新和知識(shí)的正向遷移.

  2.知識(shí)內(nèi)容的呈現(xiàn)方式力求與學(xué)生已有的知識(shí)結(jié)構(gòu)相聯(lián)系,同時(shí)兼顧學(xué)生的思維水平和心理特征.

  3.讓學(xué)生掌握基本的數(shù)學(xué)事實(shí)與數(shù)學(xué)活動(dòng)經(jīng)驗(yàn),減輕不必要的記憶負(fù)擔(dān).

  4.注意從生活中選取素材,給學(xué)生提供一些交流、討論的空間,讓學(xué)生從中體會(huì)數(shù)學(xué)的應(yīng)用價(jià)值,逐步養(yǎng)成談數(shù)學(xué)、想數(shù)學(xué)、做數(shù)學(xué)的良好習(xí)慣.

  三、課時(shí)安排:

  2.1平方差公式 1課時(shí)

  2.2完全平方公式 2課時(shí)

  2.3用提公因式法進(jìn)行因式分解 1課時(shí)

  2.4用公式法進(jìn)行因式分解 2課時(shí)

因式分解教案 篇3

  教學(xué)設(shè)計(jì)思想:

  本小節(jié)依次介紹了平方差公式和完全平方公式,并結(jié)合公式講授如何運(yùn)用公式進(jìn)行多項(xiàng)式的因式分解。第一課時(shí)的內(nèi)容是用平方差公式對(duì)多項(xiàng)式進(jìn)行因式分解,首先提出新問題:x2-4與y2-25怎樣進(jìn)行因式分解,讓學(xué)生自主探索,通過整式乘法的平方差公式,逆向得出用公式法分解因式的方法,發(fā)展學(xué)生的逆向思維和推理能力,然后讓學(xué)生獨(dú)立去做例題、練習(xí)中的題目,并對(duì)結(jié)果通過展示、解釋、相互點(diǎn)評(píng),達(dá)到能較好的運(yùn)用平方差公式進(jìn)行因式分解的目的。第二課時(shí)利用完全平方公式進(jìn)行多項(xiàng)式的因式分解是在學(xué)生已經(jīng)學(xué)習(xí)了提取公因式法及利用平方差公式分解因式的基礎(chǔ)上進(jìn)行的,因此在教學(xué)設(shè)計(jì)中,重點(diǎn)放在判斷一個(gè)多項(xiàng)式是否為完全平方式上,采取啟發(fā)式的教學(xué)方法,引導(dǎo)學(xué)生積極思考問題,從中培養(yǎng)學(xué)生的思維品質(zhì)。

  教學(xué)目標(biāo)

  知識(shí)與技能:

  會(huì)用平方差公式對(duì)多項(xiàng)式進(jìn)行因式分解;

  會(huì)用完全平方公式對(duì)多項(xiàng)式進(jìn)行因式分解;

  能夠綜合運(yùn)用提公因式法、平方差公式、完全平方公式對(duì)多項(xiàng)式進(jìn)行因式分解;

  提高全面地觀察問題、分析問題和逆向思維的.能力。

  過程與方法:

  經(jīng)歷用公式法分解因式的探索過程,進(jìn)一步體會(huì)這兩個(gè)公式在因式分解和整式乘法中的不同方向,加深對(duì)整式乘法和因式分解這兩個(gè)相反變形的認(rèn)識(shí),體會(huì)從正逆兩方面認(rèn)識(shí)和研究事物的方法。

  情感態(tài)度價(jià)值觀:

  通過學(xué)習(xí)進(jìn)一步理解數(shù)學(xué)知識(shí)間有著密切的聯(lián)系。

  教學(xué)重點(diǎn)和難點(diǎn)

  重點(diǎn):①運(yùn)用平方差公式分解因式;②運(yùn)用完全平方式分解因式。

  難點(diǎn):①靈活運(yùn)用平方差公式分解因式,正確判斷因式分解的徹底性;②靈活運(yùn)用完全平方公式分解因式

  關(guān)鍵:把握住因式分解的基本思路,觀察多項(xiàng)式的特征,靈活地運(yùn)用換元和劃歸思想。

因式分解教案 篇4

  第6.4因式分解的簡(jiǎn)單應(yīng)用

  背景材料:

  因式分解是初中數(shù)學(xué)中的一個(gè)重點(diǎn)內(nèi)容,也是一項(xiàng)重要的基本技能和基礎(chǔ)知識(shí),更是一種數(shù)學(xué)的變形方法,在今后的學(xué)習(xí)中有著重要的作用。因此,除了單純的因式分解問題外,因式分解在解某些數(shù)學(xué)問題中有著廣泛的作用,因式分解在三角形中的應(yīng)用,因式分解可以用來證明代數(shù)問題,用于代數(shù)式的求值,用于求不定方程,用于解應(yīng)用題解決有關(guān)復(fù)雜數(shù)值的計(jì)算,本節(jié)課的例題因式分解在數(shù)學(xué)題中的簡(jiǎn)單應(yīng)用。

  教材分析:

  本節(jié)課是本章的最后一節(jié),是學(xué)生學(xué)習(xí)因式分解初步應(yīng)用,首先要使學(xué)生體會(huì)到因式分解在數(shù)學(xué)中應(yīng)用,其次給學(xué)生提供更多機(jī)會(huì)體驗(yàn)主動(dòng)學(xué)習(xí)和探索的“過程”與“經(jīng)歷”,使多數(shù)學(xué)里擁有一定問題解決的經(jīng)驗(yàn)。

  教學(xué)目標(biāo):

  1、在整除的情況下,會(huì)應(yīng)用因式分解,進(jìn)行多項(xiàng)式相除。

  2、會(huì)應(yīng)用因式分解解簡(jiǎn)單的一元二次方程。

  3、體驗(yàn)數(shù)學(xué)問題中的`矛盾轉(zhuǎn)化思想。

  4、培養(yǎng)觀察和動(dòng)手能力,自主探索與合作交流能力。

  教學(xué)重點(diǎn):

  學(xué)會(huì)應(yīng)用因式分解進(jìn)行多項(xiàng)式除法和解簡(jiǎn)單一元二次方程。

  教學(xué)難點(diǎn):

  應(yīng)用因式分解解簡(jiǎn)單的一元二次方程。

  設(shè)計(jì)理念:

  根據(jù)本節(jié)課的內(nèi)容特點(diǎn),主要采用師生合作控討式課堂教學(xué)方法,以教師為主導(dǎo),學(xué)生為主體,動(dòng)手實(shí)踐訓(xùn)練為主線,創(chuàng)新思維為核心,態(tài)度情感能力為目標(biāo),引導(dǎo)學(xué)生自主探索,動(dòng)手實(shí)踐,合作交流。注重使學(xué)生經(jīng)辦觀察、操作、推理等探索過程。這種教學(xué)理念,反映了時(shí)代精神,有利于提高學(xué)生的數(shù)學(xué)素養(yǎng),能有效地激發(fā)學(xué)生的思維積極性,學(xué)生在學(xué)習(xí)過程中調(diào)動(dòng)各種感官,進(jìn)行觀察與抽象、操作與思考、自主與交流等,進(jìn)而改進(jìn)學(xué)生的學(xué)習(xí)方法。

  教學(xué)過程:

  一、創(chuàng)設(shè)情境,復(fù)習(xí)提問

  1、將正式各式因式分解

 。1)(a+b)2-10(a+b)+25 (2)-xy+2x2y+x3y

 。3)2 a2b-8a2b (4)4x2-9

  [四位同學(xué)到黑板上演板,本課時(shí)用復(fù)習(xí)“練習(xí)引入”也不失為一種好方法,既先復(fù)習(xí)因式分解的提取分因式和公式法,又為下面解決多項(xiàng)式除法運(yùn)算作鋪墊]

  教師訂正

  提出問題:怎樣計(jì)算(2 a2b-8a2b)÷(4a-b)

  二、導(dǎo)入新課,探索新知

  (先讓學(xué)生思考上面所提出的問題,教師從旁啟發(fā))

  師:如果出現(xiàn)豎式計(jì)算,教師可以給予肯定;可能出現(xiàn)(2 a2b-8a2b)÷(4a-b)= ab-8a2追問學(xué)生怎么得來的,運(yùn)算的依據(jù)是什么?這樣暴露學(xué)生的思維,讓學(xué)生自己發(fā)現(xiàn)錯(cuò)誤之處;觀察2 a2b-8a2b=2 ab(b-4a),其中一個(gè)因式正好是除式4a-b的相反數(shù),如果用“換元”思想,我們就可以把問題轉(zhuǎn)化為單項(xiàng)式除以單項(xiàng)式。

 。2 a2b-8a2b)÷(4a-b)

  =-2ab(4a-b)÷(4a-b)

  =-2ab

  (讓學(xué)生自己比較哪種方法好)

  利用上面的數(shù)學(xué)解題思路,同學(xué)們嘗試計(jì)算

 。4x2-9)÷(3-2x)

  學(xué)生總結(jié)解題步驟:1、因式分解;2、約去公因式)

 。ㄈw學(xué)生動(dòng)手動(dòng)腦,然后叫學(xué)生回答,及時(shí)表?yè)P(yáng),講練結(jié)合, [運(yùn)用多項(xiàng)式的因式分解和換元的思想,可以把兩個(gè)多項(xiàng)式相除,轉(zhuǎn)化為單項(xiàng)式的除法]

  練習(xí)計(jì)算

 。1)(a2-4)÷(a+2)

 。2)(x2+2xy+y2)÷(x+y)

 。3)[(a-b)2+2(b-a)] ÷(a-b)

  三、合作學(xué)習(xí)

  1、以四人為一組討論下列問題

  若A?B=0,下面兩個(gè)結(jié)論對(duì)嗎?

 。1)A和B同時(shí)都為零,即A=0且B=0

  (2)A和B至少有一個(gè)為零即A=0或B=0

  [合作學(xué)習(xí),四個(gè)小組討論,教師逐步引導(dǎo),讓學(xué)生講自己的想法,及解題步驟,培養(yǎng)語(yǔ)言表達(dá)能力,體會(huì)運(yùn)用因式分解的實(shí)際運(yùn)用作用,增加學(xué)習(xí)興趣]

  2、你能用上面的結(jié)論解方程

 。1)(2x+3)(2x-3)=0 (2)2x2+x=0

  解:

  ∵(2x+3)(2x-3)=0

  ∴2x+3=0或2x-3=0

  ∴方程的解為x=-3/2或x=3/2

  解:x(2x+1)=0

  則x=0或2x+1=0

  ∴原方程的解是x1=0,x2=-1/2

  [讓學(xué)生先獨(dú)立完成,再組織交流,最后教師針對(duì)性地講解,讓學(xué)生總結(jié)步驟:1、移項(xiàng),使方程一邊變形為零;2、等式左邊因式分解;3、轉(zhuǎn)化為解一元一次方程]

  3、練習(xí),解下列方程

 。1)x2-2x=0 4x2=(x-1)2

  四、小結(jié)

  (1)應(yīng)用因式分解和換元思想可以把某些多項(xiàng)式除法轉(zhuǎn)化為單項(xiàng)式除法。

 。2)如果方程的等號(hào)一邊是零,另一邊含有未知數(shù)x的多項(xiàng)式可以分解成若干個(gè)x的一次式的積,那么就可以應(yīng)用因式分解把原方程轉(zhuǎn)化成幾個(gè)一元一次方程來解。

  設(shè)計(jì)理念:

  根據(jù)本節(jié)課的內(nèi)容特點(diǎn),主要采用師生合作討論式課堂教學(xué)方法,以教師為主導(dǎo),學(xué)生為主體,動(dòng)手實(shí)踐訓(xùn)練為主線,創(chuàng)新思維為核心,態(tài)度情感能力為目標(biāo),引導(dǎo)學(xué)生自主探索,動(dòng)手實(shí)踐,合作交流。注重使學(xué)生經(jīng)辦觀察、操作、推理等探索過程。這種教學(xué)理念,反映了時(shí)代精神,有利于提高學(xué)生的數(shù)學(xué)素養(yǎng),能有效地激發(fā)學(xué)生的思維積極性,學(xué)生在學(xué)習(xí)過程中調(diào)動(dòng)各種感官,進(jìn)行觀察與抽象、操作與思考、自主與交流等,進(jìn)而改進(jìn)學(xué)生的學(xué)習(xí)方法。

因式分解教案 篇5

  教學(xué)目標(biāo):

  1、進(jìn)一步鞏固因式分解的概念; 2、鞏固因式分解常用的三種方法

  3、選擇恰當(dāng)?shù)姆椒ㄟM(jìn)行因式分解 4、應(yīng)用因式分解來解決一些實(shí)際問題

  5、體驗(yàn)應(yīng)用知識(shí)解決問題的樂趣

  教學(xué)重點(diǎn):靈活運(yùn)用因式分解解決問題

  教學(xué)難點(diǎn):靈活運(yùn)用恰當(dāng)?shù)囊蚴椒纸獾姆椒,拓展練?xí)2、3

  教學(xué)過程:

  一、創(chuàng)設(shè)情景:若a=101,b=99,求a2-b2的值

  利用因式分解往往能將一些復(fù)雜的運(yùn)算簡(jiǎn)單化,那么我們先來回顧一下什么是因式分解和怎樣來因式分解。

  二、知識(shí)回顧

  1、因式分解定義:把一個(gè)多項(xiàng)式化成幾個(gè)整式積的形式,這種變形叫做把這個(gè)多項(xiàng)式分解因式.

  判斷下列各式哪些是因式分解?(讓學(xué)生先思考,教師提問講解,讓學(xué)生明確因式分解的概念以及與乘法的關(guān)系)

  (1).x2-4y2=(x+2y)(x-2y) 因式分解 (2).2x(x-3y)=2x2-6xy 整式乘法

  (3).(5a-1)2=25a2-10a+1 整式乘法 (4).x2+4x+4=(x+2)2 因式分解

  (5).(a-3)(a+3)=a2-9 整式乘法 (6).m2-4=(m+4)(m-4) 因式分解

  (7).2πR+2πr=2π(R+r) 因式分解

  2、.規(guī)律總結(jié)(教師講解): 分解因式與整式乘法是互逆過程.

  分解因式要注意以下幾點(diǎn): (1).分解的`對(duì)象必須是多項(xiàng)式.

  (2).分解的結(jié)果一定是幾個(gè)整式的乘積的形式. (3).要分解到不能分解為止.

  3、因式分解的方法

  提取公因式法:-6x2+6xy+3x=-3x(2x-2y-1) 公因式的概念;公因式的求法

  公式法: 平方差公式:a2-b2=(a+b)(a-b) 完全平方公式:a2+2ab+b2=(a+b)2

  4、強(qiáng)化訓(xùn)練

  試一試把下列各式因式分解:

  (1).1-x2=(1+x)(1-x) (2).4a2+4a+1=(2a+1)2

  (3).4x2-8x=4x(x-2) (4).2x2y-6xy2 =2xy(x-3y)

  三、例題講解

  例1、分解因式

  (1)-x3y3+x2y+xy (2)6(x-2)+2x(2-x)

  (3) (4)y2+y+例2、分解因式

  1、a3-ab2= 2、(a-b)(x-y)-(b-a)(x+y)= 3、(a+b) 2+2(a+b)-15=

  4、-1-2a-a2= 5、x2-6x+9-y2 6、x2-4y2+x+2y=

  例3、分解因式

  1、72-2(13x-7) 2 2、8a2b2-2a4b-8b3

  三、知識(shí)應(yīng)用

  1、(4x2-9y2)÷(2x+3y) 2、(a2b-ab2)÷(b-a)

  3、解方程:(1)x2=5x (2) (x-2)2=(2x+1)2

  4、.若x=-3,求20x2-60x的值. 5、1993-199能被200整除嗎?還能被哪些整數(shù)整除?

  四、拓展應(yīng)用

  1.計(jì)算:7652×17-2352×17 解:7652×17-2352×17=17(7652-2352)=17(765+235)(765-235)

  2、20042+20xx被20xx整除嗎?

  3、若n是整數(shù),證明(2n+1)2-(2n-1)2是8的倍數(shù).

  五、課堂小結(jié):今天你對(duì)因式分解又有哪些新的認(rèn)識(shí)?

因式分解教案 篇6

  教學(xué)目標(biāo)

  1.知識(shí)與技能

  了解因式分解的意義,以及它與整式乘法的關(guān)系.

  2.過程與方法

  經(jīng)歷從分解因數(shù)到分解因式的類比過程,掌握因式分解的概念,感受因式分解在解決問題中的作用.

  3.情感、態(tài)度與價(jià)值觀

  在探索因式分解的方法的活動(dòng)中,培養(yǎng)學(xué)生有條理的思考、表達(dá)與交流的能力,培養(yǎng)積極的進(jìn)取意識(shí),體會(huì)數(shù)學(xué)知識(shí)的內(nèi)在含義與價(jià)值.

  重、難點(diǎn)與關(guān)鍵

  1.重點(diǎn):了解因式分解的意義,感受其作用.

  2.難點(diǎn):整式乘法與因式分解之間的關(guān)系.

  3.關(guān)鍵:通過分解因數(shù)引入到分解因式,并進(jìn)行類比,加深理解.

  教學(xué)方法

  采用“激趣導(dǎo)學(xué)”的教學(xué)方法.

  教學(xué)過程

  一、創(chuàng)設(shè)情境,激趣導(dǎo)入

  【問題牽引】

  請(qǐng)同學(xué)們探究下面的2個(gè)問題:

  問題1:720能被哪些數(shù)整除?談?wù)勀愕南敕ǎ?/p>

  問題2:當(dāng)a=102,b=98時(shí),求a2-b2的值.

  二、豐富聯(lián)想,展示思維

  探索:你會(huì)做下面的填空嗎?

  1.ma+mb+mc=( )( );

  2.x2-4=( )( );

  3.x2-2xy+y2=( )2.

  【師生共識(shí)】把一個(gè)多項(xiàng)式化成幾個(gè)整式的積的形式,叫做把這個(gè)多項(xiàng)式因式分解,也叫做分解因式.

  三、小組活動(dòng),共同探究

  【問題牽引】

 。1)下列各式從左到右的變形是否為因式分解:

 、伲▁+1)(x-1)=x2-1;

 、赼2-1+b2=(a+1)(a-1)+b2;

 、7x-7=7(x-1).

 。2)在下列括號(hào)里,填上適當(dāng)?shù)捻?xiàng),使等式成立.

 、9x2(______)+y2=(3x+y)(_______);

 、趚2-4xy+(_______)=(x-_______)2.

  四、隨堂練習(xí),鞏固深化

  課本練習(xí).

  【探研時(shí)空】計(jì)算:993-99能被100整除嗎?

  五、課堂總結(jié),發(fā)展?jié)撃?/strong>

  由學(xué)生自己進(jìn)行小結(jié),教師提出如下綱目:

  1.什么叫因式分解?

  2.因式分解與整式運(yùn)算有何區(qū)別?

  六、布置作業(yè),專題突破

  選用補(bǔ)充作業(yè).

  板書設(shè)計(jì)

  15.4.1 因式分解

  1、因式分解 例:

  練習(xí):

  15.4.2 提公因式法

  教學(xué)目標(biāo)

  1.知識(shí)與技能

  能確定多項(xiàng)式各項(xiàng)的公因式,會(huì)用提公因式法把多項(xiàng)式分解因式.

  2.過程與方法

  使學(xué)生經(jīng)歷探索多項(xiàng)式各項(xiàng)公因式的過程,依據(jù)數(shù)學(xué)化歸思想方法進(jìn)行因式分解.

  3.情感、態(tài)度與價(jià)值觀

  培養(yǎng)學(xué)生分析、類比以及化歸的思想,增進(jìn)學(xué)生的合作交流意識(shí),主動(dòng)積極地積累確定公因式的初步經(jīng)驗(yàn),體會(huì)其應(yīng)用價(jià)值.

  重、難點(diǎn)與關(guān)鍵

  1.重點(diǎn):掌握用提公因式法把多項(xiàng)式分解因式.

  2.難點(diǎn):正確地確定多項(xiàng)式的最大公因式.

  3.關(guān)鍵:提公因式法關(guān)鍵是如何找公因式.方法是:一看系數(shù)、二看字母.公因式的系數(shù)取各項(xiàng)系數(shù)的最大公約數(shù);字母取各項(xiàng)相同的字母,并且各字母的指數(shù)取最低次冪.

  教學(xué)方法

  采用“啟發(fā)式”教學(xué)方法.

  教學(xué)過程

  一、回顧交流,導(dǎo)入新知

  【復(fù)習(xí)交流】

  下列從左到右的變形是否是因式分解,為什么?

 。1)2x2+4=2(x2+2); (2)2t2-3t+1= (2t3-3t2+t);

 。3)x2+4xy-y2=x(x+4y)-y2; (4)m(x+y)=mx+my;

 。5)x2-2xy+y2=(x-y)2.

  問題:

  1.多項(xiàng)式mn+mb中各項(xiàng)含有相同因式嗎?

  2.多項(xiàng)式4x2-x和xy2-yz-y呢?

  請(qǐng)將上述多項(xiàng)式分別寫成兩個(gè)因式的乘積的形式,并說明理由.

  【教師歸納】我們把多項(xiàng)式中各項(xiàng)都有的'公共的因式叫做這個(gè)多項(xiàng)式的公因式,如在mn+mb中的公因式式是m,在4x2-x中的公因式是x,在xy2-yz-y中的公因式是y.

  概念:如果一個(gè)多項(xiàng)式的各項(xiàng)含有公因式,那么就可以把這個(gè)公因式提出來,從而將多項(xiàng)式化成兩個(gè)因式乘積形式,這種分解因式的方法叫做提公因式法.

  二、小組合作,探究方法

  【教師提問】 多項(xiàng)式4x2-8x6,16a3b2-4a3b2-8ab4各項(xiàng)的公因式是什么?

  【師生共識(shí)】提公因式的方法是先確定各項(xiàng)的公因式再將多項(xiàng)式除以這個(gè)公因式得到另一個(gè)因式,找公因式一看系數(shù)、二看字母,公因式的系數(shù)取各項(xiàng)系數(shù)的最大公約數(shù);字母取各項(xiàng)相同的字母,并且各字母的指數(shù)取最低次冪.

  三、范例學(xué)習(xí),應(yīng)用所學(xué)

  【例1】把-4x2yz-12xy2z+4xyz分解因式.

  解:-4x2yz-12xy2z+4xyz

  =-(4x2yz+12xy2z-4xyz)

  =-4xyz(x+3y-1)

  【例2】分解因式,3a2(x-y)3-4b2(y-x)2

  【思路點(diǎn)撥】觀察所給多項(xiàng)式可以找出公因式(y-x)2或(x-y)2,于是有兩種變形,(x-y)3=-(y-x)3和(x-y)2=(y-x)2,從而得到下面兩種分解方法.

  解法1:3a2(x-y)3-4b2(y-x)2

  =-3a2(y-x)3-4b2(y-x)2

  =-[(y-x)23a2(y-x)+4b2(y-x)2]

  =-(y-x)2 [3a2(y-x)+4b2]

  =-(y-x)2(3a2y-3a2x+4b2)

  解法2:3a2(x-y)3-4b2(y-x)2

  =(x-y)23a2(x-y)-4b2(x-y)2

  =(x-y)2 [3a2(x-y)-4b2]

  =(x-y)2(3a2x-3a2y-4b2)

  【例3】用簡(jiǎn)便的方法計(jì)算:0.84×12+12×0.6-0.44×12.

  【教師活動(dòng)】引導(dǎo)學(xué)生觀察并分析怎樣計(jì)算更為簡(jiǎn)便.

  解:0.84×12+12×0.6-0.44×12

  =12×(0.84+0.6-0.44)

  =12×1=12.

  【教師活動(dòng)】在學(xué)生完全例3之后,指出例3是因式分解在計(jì)算中的應(yīng)用,提出比較例1,例2,例3的公因式有什么不同?

  四、隨堂練習(xí),鞏固深化

  課本P167練習(xí)第1、2、3題.

  【探研時(shí)空】

  利用提公因式法計(jì)算:

  0.582×8.69+1.236×8.69+2.478×8.69+5.704×8.69

  五、課堂總結(jié),發(fā)展?jié)撃?/strong>

  1.利用提公因式法因式分解,關(guān)鍵是找準(zhǔn)最大公因式.在找最大公因式時(shí)應(yīng)注意:(1)系數(shù)要找最大公約數(shù);(2)字母要找各項(xiàng)都有的;(3)指數(shù)要找最低次冪.

  2.因式分解應(yīng)注意分解徹底,也就是說,分解到不能再分解為止.

  六、布置作業(yè),專題突破

  課本P170習(xí)題15.4第1、4(1)、6題.

  板書設(shè)計(jì)

  15.4.2 提公因式法

  1、提公因式法 例:

  練習(xí):

  15.4.3 公式法(一)

  教學(xué)目標(biāo)

  1.知識(shí)與技能

  會(huì)應(yīng)用平方差公式進(jìn)行因式分解,發(fā)展學(xué)生推理能力.

  2.過程與方法

  經(jīng)歷探索利用平方差公式進(jìn)行因式分解的過程,發(fā)展學(xué)生的逆向思維,感受數(shù)學(xué)知識(shí)的完整性.

  3.情感、態(tài)度與價(jià)值觀

  培養(yǎng)學(xué)生良好的互動(dòng)交流的習(xí)慣,體會(huì)數(shù)學(xué)在實(shí)際問題中的應(yīng)用價(jià)值.

  重、難點(diǎn)與關(guān)鍵

  1.重點(diǎn):利用平方差公式分解因式.

  2.難點(diǎn):領(lǐng)會(huì)因式分解的解題步驟和分解因式的徹底性.

  3.關(guān)鍵:應(yīng)用逆向思維的方向,演繹出平方差公式,對(duì)公式的應(yīng)用首先要注意其特征,其次要做好式的變形,把問題轉(zhuǎn)化成能夠應(yīng)用公式的方面上來.

  教學(xué)方法

  采用“問題解決”的教學(xué)方法,讓學(xué)生在問題的牽引下,推進(jìn)自己的思維.

  教學(xué)過程

  一、觀察探討,體驗(yàn)新知

  【問題牽引】

  請(qǐng)同學(xué)們計(jì)算下列各式.

  (1)(a+5)(a-5); (2)(4m+3n)(4m-3n).

  【學(xué)生活動(dòng)】動(dòng)筆計(jì)算出上面的兩道題,并踴躍上臺(tái)板演.

  (1)(a+5)(a-5)=a2-52=a2-25;

 。2)(4m+3n)(4m-3n)=(4m)2-(3n)2=16m2-9n2.

  【教師活動(dòng)】引導(dǎo)學(xué)生完成下面的兩道題目,并運(yùn)用數(shù)學(xué)“互逆”的思想,尋找因式分解的規(guī)律.

  1.分解因式:a2-25; 2.分解因式16m2-9n.

  【學(xué)生活動(dòng)】從逆向思維入手,很快得到下面答案:

 。1)a2-25=a2-52=(a+5)(a-5).

 。2)16m2-9n2=(4m)2-(3n)2=(4m+3n)(4m-3n).

  【教師活動(dòng)】引導(dǎo)學(xué)生完成a2-b2=(a+b)(a-b)的同時(shí),導(dǎo)出課題:用平方差公式因式分解.

  平方差公式:a2-b2=(a+b)(a-b).

  評(píng)析:平方差公式中的字母a、b,教學(xué)中還要強(qiáng)調(diào)一下,可以表示數(shù)、含字母的代數(shù)式(單項(xiàng)式、多項(xiàng)式).

  二、范例學(xué)習(xí),應(yīng)用所學(xué)

  【例1】把下列各式分解因式:(投影顯示或板書)

 。1)x2-9y2; (2)16x4-y4;

 。3)12a2x2-27b2y2; (4)(x+2y)2-(x-3y)2;

 。5)m2(16x-y)+n2(y-16x).

  【思路點(diǎn)撥】在觀察中發(fā)現(xiàn)1~5題均滿足平方差公式的特征,可以使用平方差公式因式分解.

  【教師活動(dòng)】啟發(fā)學(xué)生從平方差公式的角度進(jìn)行因式分解,請(qǐng)5位學(xué)生上講臺(tái)板演.

  【學(xué)生活動(dòng)】分四人小組,合作探究.

  解:(1)x2-9y2=(x+3y)(x-3y);

 。2)16x4-y4=(4x2+y2)(4x2-y2)=(4x2+y2)(2x+y)(2x-y);

  (3)12a2x2-27b2y2=3(4a2x2-9b2y2)=3(2ax+3by)(2ax-3by);

  (4)(x+2y)2-(x-3y)2=[(x+2y)+(x-3y)][(x+2y)-(x-3y)] =5y(2x-y);

 。5)m2(16x-y)+n2(y-16x)

  =(16x-y)(m2-n2)=(16x-y)(m+n)(m-n).

  三、隨堂練習(xí),鞏固深化

  課本P168練習(xí)第1、2題.

  【探研時(shí)空】

  1.求證:當(dāng)n是正整數(shù)時(shí),n3-n的值一定是6的倍數(shù).

  2.試證兩個(gè)連續(xù)偶數(shù)的平方差能被一個(gè)奇數(shù)整除.連續(xù)偶數(shù)的平方差能被一個(gè)奇數(shù)整除.

  四、課堂總結(jié),發(fā)展?jié)撃?/strong>

  運(yùn)用平方差公式因式分解,首先應(yīng)注意每個(gè)公式的特征.分析多項(xiàng)式的次數(shù)和項(xiàng)數(shù),然后再確定公式.如果多項(xiàng)式是二項(xiàng)式,通?紤]應(yīng)用平方差公式;如果多項(xiàng)式中有公因式可提,應(yīng)先提取公因式,而且還要“提”得徹底,最后應(yīng)注意兩點(diǎn):一是每個(gè)因式要化簡(jiǎn),二是分解因式時(shí),每個(gè)因式都要分解徹底.

  五、布置作業(yè),專題突破

  課本P171習(xí)題15.4第2、4(2)、11題.

  板書設(shè)計(jì)

  15.4.3 公式法(一)

  1、平方差公式: 例:

  a2-b2=(a+b)(a-b) 練習(xí):

  15.4.3 公式法(二)

  教學(xué)目標(biāo)

  1.知識(shí)與技能

  領(lǐng)會(huì)運(yùn)用完全平方公式進(jìn)行因式分解的方法,發(fā)展推理能力.

  2.過程與方法

  經(jīng)歷探索利用完全平方公式進(jìn)行因式分解的過程,感受逆向思維的意義,掌握因式分解的基本步驟.

  3.情感、態(tài)度與價(jià)值觀

  培養(yǎng)良好的推理能力,體會(huì)“化歸”與“換元”的思想方法,形成靈活的應(yīng)用能力.

  重、難點(diǎn)與關(guān)鍵

  1.重點(diǎn):理解完全平方公式因式分解,并學(xué)會(huì)應(yīng)用.

  2.難點(diǎn):靈活地應(yīng)用公式法進(jìn)行因式分解.

  3.關(guān)鍵:應(yīng)用“化歸”、“換元”的思想方法,把問題進(jìn)行形式上的轉(zhuǎn)化,達(dá)到能應(yīng)用公式法分解因式的目的.

  教學(xué)方法

  采用“自主探究”教學(xué)方法,在教師適當(dāng)指導(dǎo)下完成本節(jié)課內(nèi)容.

  教學(xué)過程

  一、回顧交流,導(dǎo)入新知

  【問題牽引】

  1.分解因式:

 。1)-9x2+4y2; (2)(x+3y)2-(x-3y)2;

 。3) x2-0.01y2.

因式分解教案 篇7

  15.1.1 整式

  教學(xué)目標(biāo)

  1.單項(xiàng)式、單項(xiàng)式的定義.

  2.多項(xiàng)式、多項(xiàng)式的次數(shù).

  3、理解整式概念.

  教學(xué)重點(diǎn)

  單項(xiàng)式及多項(xiàng)式的有關(guān)概念.

  教學(xué)難點(diǎn)

  單項(xiàng)式及多項(xiàng)式的有關(guān)概念.

  教學(xué)過程

 、瘢岢鰡栴},創(chuàng)設(shè)情境

  在七年級(jí),我們已經(jīng)學(xué)習(xí)了用字母可以表示數(shù),思考下列問題

  1.要表示△ABC的周長(zhǎng)需要什么條件?要表示它的面積呢?

  2.小王用七小時(shí)行駛了Skm的路程,請(qǐng)問他的平均速度是多少?

  結(jié)論:

  1、要表示△ABC的周長(zhǎng),需要知道它的各邊邊長(zhǎng).要表示△ABC的面積需要知道一條邊長(zhǎng)和這條邊上的高.如果設(shè)BC=a,AC=b,AB=c.AB邊上的高為h,那么△ABC的周長(zhǎng)可以表示為a+b+c;△ABC的面積可以表示為 ?c?h.

  2.小王的平均速度是 .

  問題:這些式子有什么特征呢?

 。1)有數(shù)字、有表示數(shù)字的字母.

 。2)數(shù)字與字母、字母與字母之間還有運(yùn)算符號(hào)連接.

  歸納:用基本的運(yùn)算符號(hào)(運(yùn)算包括加、減、乘、除、乘方與開方)把數(shù)和表示數(shù)的字母連接起來的式子叫做代數(shù)式.

  判斷上面得到的三個(gè)式子:a+b+c、 ch、 是不是代數(shù)式?(是)

  代數(shù)式可以簡(jiǎn)明地表示數(shù)量和數(shù)量的關(guān)系.今天我們就來學(xué)習(xí)和代數(shù)式有關(guān)的整式.

 、颍鞔_和鞏固整式有關(guān)概念

 。ǔ鍪就队埃

  結(jié)論:(1)正方形的周長(zhǎng):4x.

  (2)汽車走過的路程:vt.

 。3)正方體有六個(gè)面,每個(gè)面都是正方形,這六個(gè)正方形全等,所以它的表面積為6a2;正方體的體積為長(zhǎng)×寬×高,即a3.

 。4)n的相反數(shù)是-n.

  分析這四個(gè)數(shù)的特征.

  它們符合代數(shù)式的定義.這五個(gè)式子都是數(shù)與字母或字母與字母的積,而a+b+c、 ch、 中還有和與商的運(yùn)算符號(hào).還可以發(fā)現(xiàn)這五個(gè)代數(shù)式中字母指數(shù)各不相同,字母的個(gè)數(shù)也不盡相同.

  請(qǐng)同學(xué)們閱讀課本P160~P161單項(xiàng)式有關(guān)概念.

  根據(jù)這些定義判斷4x、vt、6a2、a3、-n、a+b+c、 ch、 這些代數(shù)式中,哪些是單項(xiàng)式?是單項(xiàng)式的,寫出它的系數(shù)和次數(shù).

  結(jié)論:4x、vt、6a2、a3、-n、 ch是單項(xiàng)式.它們的系數(shù)分別是4、1、6、1、-1、 .它們的次數(shù)分別是1、2、2、3、1、2.所以4x、-n都是一次單項(xiàng)式;vt、6a2、 ch都是二次單項(xiàng)式;a3是三次單項(xiàng)式.

  問題:vt中v和t的指數(shù)都是1,它不是一次單項(xiàng)式嗎?

  結(jié)論:不是.根據(jù)定義,單項(xiàng)式vt中含有兩個(gè)字母,所以它的次數(shù)應(yīng)該是這兩個(gè)字母的指數(shù)的和,而不是單個(gè)字母的指數(shù),所以vt是二次單項(xiàng)式而不是一次單項(xiàng)式.

  生活中不僅僅有單項(xiàng)式,像a+b+c,它不是單項(xiàng)式,和單項(xiàng)式有什么聯(lián)系呢?

  寫出下列式子(出示投影)

  結(jié)論:(1)t-5.(2)3x+5y+2z.

 。3)三角尺的面積應(yīng)是直角三角形的面積減去圓的面積,即 ab-3.12r2.

  (4)建筑面積等于四個(gè)矩形的面積之和.而右邊兩個(gè)已知矩形面積分別為3×2、4×3,所以它們的面積和是18.于是得這所住宅的建筑面積是x2+2x+18.

  我們可以觀察下列代數(shù)式:

  a+b+c、t-5、3x+5y+2z、 ab-3.12r2、x2+2x+18.發(fā)現(xiàn)它們都是由單項(xiàng)式的和組成的式子.是多個(gè)單項(xiàng)式的和,能不能叫多項(xiàng)式?

  這樣推理合情合理.請(qǐng)看投影,熟悉下列概念.

  根據(jù)定義,我們不難得出a+b+c、t-5、3x+5y+2z、 ab-3.12r2、x2+2x+18都是多項(xiàng)式.請(qǐng)分別指出它們的項(xiàng)和次數(shù).

  a+b+c的項(xiàng)分別是a、b、c.

  t-5的項(xiàng)分別是t、-5,其中-5是常數(shù)項(xiàng).

  3x+5y+2z的項(xiàng)分別是3x、5y、2z.

  ab-3.12r2的項(xiàng)分別是 ab、-3.12r2.

  x2+2x+18的項(xiàng)分別是x2、2x、18. 找多項(xiàng)式的次數(shù)應(yīng)抓住兩條,一是找準(zhǔn)每個(gè)項(xiàng)的次數(shù),二是取每個(gè)項(xiàng)次數(shù)的最大值.根據(jù)這兩條很容易得到這五個(gè)多項(xiàng)式中前三個(gè)是一次多項(xiàng)式,后兩個(gè)是二次多項(xiàng)式.

  這節(jié)課,通過探究我們得到單項(xiàng)式和多項(xiàng)式的有關(guān)概念,它們可以反映變化的世界.同時(shí),我們也到符號(hào)的魅力所在.我們把單項(xiàng)式與多項(xiàng)式統(tǒng)稱為整式.

 、螅S堂練習(xí)

  1.課本P162練習(xí)

 、簦n時(shí)小結(jié)

  通過探究,我們了解了整式的概念.理解并掌握單項(xiàng)式、多項(xiàng)式的有關(guān)概念是本節(jié)的重點(diǎn),特別是它們的次數(shù).在現(xiàn)實(shí)情景中進(jìn)一步理解了用字母表示數(shù)的意義,發(fā)展符號(hào)感.

 、酰n后作業(yè)

  1.課本P165~P166習(xí)題15.1─1、5、8、9題.

  2.預(yù)習(xí)“整式的加減”.

  課后作業(yè):《課堂感悟與探究》

  15.1.2 整式的加減(1)

  教學(xué)目的:

  1、解字母表示數(shù)量關(guān)系的過程,發(fā)展符號(hào)感。

  2、會(huì)進(jìn)行整式加減的運(yùn)算,并能說明其中的算理,發(fā)展有條理的思考及語(yǔ)言表達(dá)能力。

  教學(xué)重點(diǎn):

  會(huì)進(jìn)行整式加減的運(yùn)算,并能說明其中的算理。

  教學(xué)難點(diǎn):

  正確地去括號(hào)、合并同類項(xiàng),及符號(hào)的正確處理。

  教學(xué)過程:

  一、課前練習(xí):

  1、填空:整式包括 和

  2、單項(xiàng)式 的系數(shù)是 、次數(shù)是

  3、多項(xiàng)式 是 次 項(xiàng)式,其中二次項(xiàng)

  系數(shù)是 一次項(xiàng)是 ,常數(shù)項(xiàng)是

  4、下列各式,是同類項(xiàng)的一組是( )

  (A) 與 (B) 與 (C) 與

  5、去括號(hào)后合并同類項(xiàng):

  二、探索練習(xí):

  1、如果用a 、b分別表示一個(gè)兩位數(shù)的十位數(shù)字和個(gè)位數(shù)字,那么這個(gè)兩位數(shù)可以表示為 交換這個(gè)兩位數(shù)的十位數(shù)字和個(gè)位數(shù)字后得到的兩位數(shù)為

  這兩個(gè)兩位數(shù)的和為

  2、如果用a 、b、c分別表示一個(gè)三位數(shù)的百位數(shù)字、十位數(shù)字和個(gè)位數(shù)字,那么這個(gè)三位數(shù)可以表示為 交換這個(gè)三位數(shù)的百位數(shù)字和個(gè)位數(shù)字后得到的三位數(shù)為

  這兩個(gè)三位數(shù)的差為

  ●議一議:在上面的兩個(gè)問題中,分別涉及到了整式的什么運(yùn)算?

  說說你是如何運(yùn)算的?

  ▲整式的加減運(yùn)算實(shí)質(zhì)就是

  運(yùn)算的結(jié)果是一個(gè)多項(xiàng)式或單項(xiàng)式。

  三、鞏固練習(xí):

  1、填空:(1) 與 的差是

  (2)、單項(xiàng)式 、 、 、 的和為

 。3)如圖所示,下面為由棋子所組成的三角形,

  一個(gè)三角形需六個(gè)棋子,三個(gè)三角形需

 。 )個(gè)棋子,n個(gè)三角形需 個(gè)棋子

  2、計(jì)算:

 。1)

 。2)

 。3)

  3、(1)求 與 的和

  (2)求 與 的差

  4、先化簡(jiǎn),再求值: 其中

  四、提高練習(xí):

  1、若A是五次多項(xiàng)式,B是三次多項(xiàng)式,則A+B一定是

 。ˋ)五次整式 (B)八次多項(xiàng)式

 。–)三次多項(xiàng)式 (D)次數(shù)不能確定

  2、足球比賽中,如果勝一場(chǎng)記3a分,平一場(chǎng)記a分,負(fù)一場(chǎng)

  記0分,那么某隊(duì)在比賽勝5場(chǎng),平3場(chǎng),負(fù)2場(chǎng),共積多

  少分?

  3、一個(gè)兩位數(shù)與把它的`數(shù)字對(duì)調(diào)所成的數(shù)的和,一定能被14

  整除,請(qǐng)證明這個(gè)結(jié)論。

  4、如果關(guān)于字母x的二次多項(xiàng)式 的值與x的取值無關(guān),

  試求m、n的值。

  五、小結(jié):整式的加減運(yùn)算實(shí)質(zhì)就是去括號(hào)和合并同類項(xiàng)。

  六、作業(yè):第8頁(yè)習(xí)題1、2、3

  15.1.2整式的加減(2)

  教學(xué)目標(biāo):1.會(huì)進(jìn)行整式加減的運(yùn)算,并能說明其中的算理,發(fā)展有條理的思考及其語(yǔ)言表達(dá)能力。

  2.通過探索規(guī)律的問題,進(jìn)一步符號(hào)表示的意義,發(fā)展符號(hào)感,發(fā)展推理能力。

  教學(xué)重點(diǎn)整式加減的運(yùn)算。

  教學(xué)難點(diǎn):探索規(guī)律的猜想。

  教學(xué)方法:嘗試練習(xí)法,討論法,歸納法。

  教學(xué)用具:投影儀

  教學(xué)過程:

  I探索練習(xí):

  擺第1個(gè)“小屋子”需要5枚棋子,擺第2個(gè)需要 枚棋子,擺第3個(gè)需要 枚棋子。按照這樣的方式繼續(xù)擺下去。

  (1)擺第10個(gè)這樣的“小屋子”需要 枚棋子

 。2)擺第n個(gè)這樣的“小屋子”需要多少枚棋子?你是如何得到的?你能用不同的方法解決這個(gè)問題嗎?小組討論。

  二、例題講解:

  三、鞏固練習(xí):

  1、計(jì)算:

 。1)(14x3-2x2)+2(x3-x2) (2)(3a2+2a-6)-3(a2-1)

 。3)x-(1-2x+x2)+(-1-x2) (4)(8xy-3x2)-5xy-2(3xy-2x2)

  2、已知:A=x3-x2-1,B=x2-2,計(jì)算:(1)B-A (2)A-3B

  3、列方程解應(yīng)用題:三角形三個(gè)內(nèi)角的和等于180°,如果三角形中第一個(gè)角等于第二個(gè)角的3倍,而第三個(gè)角比第二個(gè)角大15°,那么

 。1)第一個(gè)角是多少度?

 。2)其他兩個(gè)角各是多少度?

  四、提高練習(xí):

  1、已知A=a2+b2-c2,B=-4a2+2b2+3c2,并且A+B+C=0,問C是什么樣的多項(xiàng)式?

  2、設(shè)A=2x2-3xy+y2-x+2y,B=4x2-6xy+2y2-3x-y,若│x-2a│+

  (y+3)2=0,且B-2A=a,求A的值。

  3、已知有理數(shù)a、b、c在數(shù)軸上(0為數(shù)軸原點(diǎn))的對(duì)應(yīng)點(diǎn)如圖:

  試化簡(jiǎn):│a│-│a+b│+│c-a│+│b+c│

  小 結(jié):要善于在圖形變化中發(fā)現(xiàn)規(guī)律,能熟練的對(duì)整式加減進(jìn)行運(yùn)算。

  作 業(yè):課本P14習(xí)題1.3:1(2)、(3)、(6),2。

因式分解教案 篇8

  學(xué)習(xí)目標(biāo)

  1、 學(xué)會(huì)用公式法因式法分解

  2、綜合運(yùn)用提取公式法、公式法分解因式

  學(xué)習(xí)重難點(diǎn) 重點(diǎn):

  完全平方公式分解因式.

  難點(diǎn):綜合運(yùn)用兩種公式法因式分解

  自學(xué)過程設(shè)計(jì)

  完全平方公式:

  完全平方公式的逆運(yùn)用:

  做一做:

  1.(1)16x2-8x+_______=(4x-1)2;

  (2)_______+6x+9=(x+3)2;

  (3)16x2+_______+9y2=(4x+3y)2;

  (4)(a-b)2-2(a-b)+1=(______-1)2.

  2.在代數(shù)式(1)a2+ab+b2;(2)4a2+4a+1;(3)a2-b2+2ab;(4)-4a2+12ab-9b2中,可用完全平方公式因式分解的是_________(填序號(hào))

  3.下列因式分解正確的是( )

  A.x2+y2=(x+y)2 B.x2-xy+x2=(x-y)2

  C.1+4x-4x2=(1-2x)2 D.4-4x+x2=(x-2)2

  4.分解因式:(1)x2-22x+121 (2)-y2-14y-49 (3)(a+b)2+2(a+b)+1

  5.計(jì)算:20062-40102006+20052=___________________.

  6.若x+y=1,則 x2+xy+ y2的.值是_________________.

  想一想

  你還有哪些地方不是很懂?請(qǐng)寫出來。

  ____________________________________________________________________________________ 預(yù)習(xí)展示一:

  1.判別下列各式是不是完全平方式.

  2、把下列各式因式分解:

  (1)-x2+4xy-4y2

  (2)3ax2+6axy+3ay2

  (3)(2x+y)2-6(2x+y)+9

  應(yīng)用探究:

  1、用簡(jiǎn)便方法計(jì)算

  49.92+9.98 +0.12

  拓展提高:

  (1)( a2+b2)( a2+b2 10)+25=0 求a2+b2

  (2)4x2+y2-4xy-12x+6y+9=0

  求x、y關(guān)系

  (3)分解因式:m4+4

  教后反思 考察利用公式法因式分解的題目不會(huì)很難,但是需要學(xué)生記住公式的形式,之后利用公式把式子進(jìn)行變形,從而達(dá)到進(jìn)行因式分解的目的,但是這里有用到實(shí)際中去的例子,對(duì)學(xué)生來說會(huì)難一些。

因式分解教案 篇9

  【教學(xué)目標(biāo)】

  1、了解因式分解的概念和意義;

  2、認(rèn)識(shí)因式分解與整式乘法的相互關(guān)系——相反變形,并會(huì)運(yùn)用它們之間的相互關(guān)系尋求因式分解的方法。

  【教學(xué)重點(diǎn)、難點(diǎn)】

  重點(diǎn)是因式分解的概念,難點(diǎn)是理解因式分解與整式乘法的相互關(guān)系,并運(yùn)用它們之間的相互關(guān)系尋求因式分解的方法。

  【教學(xué)過程】

 、、情境導(dǎo)入

  看誰(shuí)算得快:(搶答)

  (1)若a=101,b=99,則a2-b2=___________;

  (2)若a=99,b=-1,則a2-2ab+b2=____________;

  (3)若x=-3,則20x2+60x=____________。

 、、探究新知

  1、請(qǐng)每題答得最快的同學(xué)談思路,得出最佳解題方法。(多媒體出示答案)(1)a2-b2=(a+b)(a-b)=(101+99)(101-99)=400;

  (2)a2-2ab+b2=(a-b) 2=(99+1)2 =10000;

  (3)20x2+60x=20x(x+3)=20x(-3)(-3+3)=0。

  2、觀察:a2-b2=(a+b)(a-b),a2-2ab+b2 = (a-b)2, 20x2+60x=20x(x+3),找出它們的`特點(diǎn)。(等式的左邊是一個(gè)什么式子,右邊又是什么形式?)

  3、類比小學(xué)學(xué)過的因數(shù)分解概念,得出因式分解概念。(學(xué)生概括,老師補(bǔ)充。)

  板書課題:§6.1 因式分解

  因式分解概念:把一個(gè)多項(xiàng)式化成幾個(gè)整式的積的形式叫做因式分解,也叫分解因式。

 、、前進(jìn)一步

  1、讓學(xué)生繼續(xù)觀察:(a+b)(a-b)= a2-b2, (a-b)2= a2-2ab+b2, 20x(x+3)= 20x2+60x,它們是什么運(yùn)算?與因式分解有何關(guān)系?它們有何聯(lián)系與區(qū)別?

  2、因式分解與整式乘法的關(guān)系:

  因式分解

  結(jié)合:a2-b2 (a+b)(a-b)

  整式乘法

  說明:從左到右是因式分解其特點(diǎn)是:由和差形式(多項(xiàng)式)轉(zhuǎn)化成整式的積的形式;從右到左是整式乘法其特點(diǎn)是:由整式積的形式轉(zhuǎn)化成和差形式(多項(xiàng)式)。

  結(jié)論:因式分解與整式乘法的相互關(guān)系——相反變形。

  ㈣、鞏固新知

  1、 下列代數(shù)式變形中,哪些是因式分解?哪些不是?為什么?

  (1)x2-3x+1=x(x-3)+1 ;(2)(m+n)(a+b)+(m+n)(x+y)=(m+n)(a+b+x+y);

  (3)2m(m-n)=2m2-2mn; (4)4x2-4x+1=(2x-1)2;(5)3a2+6a=3a(a+2);

  (6)x2-4+3x=(x-2)(x+2)+3x; (7)k2++2=(k+)2;(8)18a3bc=3a2b·6ac。

  2、你能寫出整式相乘(其中至少一個(gè)是多項(xiàng)式)的兩個(gè)例子,并由此得到相應(yīng)的兩個(gè)多項(xiàng)式的因式分解嗎?把結(jié)果與你的同伴交流。

 、椤(yīng)用解釋

  例 檢驗(yàn)下列因式分解是否正確:

  (1)x2y-xy2=xy(x-y);(2)2x2-1=(2x+1)(2x-1);(3)x2+3x+2=(x+1)(x+2).

  分析:檢驗(yàn)因式分解是否正確,只要看等式右邊幾個(gè)整式相乘的積與右邊的多項(xiàng)式是否相等。

  練習(xí) 計(jì)算下列各題,并說明你的算法:(請(qǐng)學(xué)生板演)

  (1)872+87×13

  (2)1012-992

 、、思維拓展

  1.若 x2+mx-n能分解成(x-2)(x-5),則m= ,n=

  2.機(jī)動(dòng)題:(填空)x2-8x+m=(x-4)( ),且m=

 、、課堂回顧

  今天這節(jié)課,你學(xué)到了哪些知識(shí)?有哪些收獲與感受?說出來大家分享。

  ㈧、布置作業(yè)

  作業(yè)本(1) ,一課一練

  (九)教學(xué)反思:

【因式分解教案】相關(guān)文章:

因式分解教案07-23

因式分解教案04-02

因式分解教案(15篇)04-02

初中數(shù)學(xué)因式分解教案03-01

因式分解教案集錦(15篇)08-23

關(guān)于因式分解教案匯編八篇04-04

因式分解教案模板集合5篇04-08

因式分解教案匯編十篇04-08

因式分解教案錦集7篇04-07

因式分解教案錦集10篇12-25