當(dāng)前位置:育文網(wǎng)>教學(xué)文檔>教學(xué)反思> 《解方程》教學(xué)反思

《解方程》教學(xué)反思

時(shí)間:2023-04-07 13:00:50 教學(xué)反思 我要投稿

《解方程》教學(xué)反思(15篇)

  身為一名剛到崗的教師,我們的任務(wù)之一就是課堂教學(xué),寫(xiě)教學(xué)反思可以很好的把我們的教學(xué)記錄下來(lái),那么教學(xué)反思應(yīng)該怎么寫(xiě)才合適呢?下面是小編收集整理的《解方程》教學(xué)反思,歡迎閱讀,希望大家能夠喜歡。

《解方程》教學(xué)反思(15篇)

《解方程》教學(xué)反思1

  本節(jié)課的內(nèi)容包括兩個(gè)方面:

  一是理解“等式兩邊同時(shí)加上或減去同一個(gè)數(shù),所得結(jié)果仍然是等式”

  二是應(yīng)用等式的性質(zhì)解只含有加法和減法運(yùn)算的簡(jiǎn)單方程。解方程是學(xué)生剛接觸的新知識(shí),學(xué)生原有的知識(shí)儲(chǔ)備與生活經(jīng)驗(yàn)不足,因此教學(xué)中老師要時(shí)刻關(guān)注學(xué)生的學(xué)習(xí)的情況,引導(dǎo)學(xué)生經(jīng)歷將現(xiàn)實(shí)生活問(wèn)題加以數(shù)學(xué)化,引導(dǎo)學(xué)生通過(guò)操作、觀察、分析和比較,由具體的知識(shí)滲透到抽象的去理解等式的性質(zhì),并應(yīng)用等式的性質(zhì)來(lái)解方程。在這節(jié)課的教學(xué)中,應(yīng)讓學(xué)生理解并掌握等式的性質(zhì),這是為學(xué)生后續(xù)學(xué)習(xí)方程打下較扎實(shí)的基矗

  一、讓學(xué)生通過(guò)動(dòng)手、操作、觀察中去發(fā)現(xiàn)等式的性質(zhì)

  老師先出示天平,并在天平兩邊各放一個(gè)20克的砝碼,“你能用式子表示出兩邊的關(guān)系?”生寫(xiě)出20=20;教師在天平的一邊增加一個(gè)10克砝碼,“這時(shí)的關(guān)系怎么表示?”生寫(xiě)出20+10>20,“這時(shí)天平的兩邊不相等,怎樣才能讓天平兩邊相等?”生交流得出在天平的另一邊增加同樣重量的砝碼;然后依次出現(xiàn)后續(xù)的三幅天平圖,學(xué)生觀察,教師板書(shū),并組織學(xué)生小組討論交流:“你有什么發(fā)現(xiàn)嗎?”通過(guò)全班交流,在交流中教師應(yīng)逐步提示,因?yàn)檫@是一個(gè)全新的知識(shí),得出等式的性質(zhì)。最后,讓學(xué)生自己寫(xiě)幾個(gè)等式看一看。通過(guò)具體的操作為學(xué)生探究問(wèn)題,尋找結(jié)論提供了真實(shí)的情境,富有啟發(fā)性、引領(lǐng)性,讓學(xué)生經(jīng)歷了解決問(wèn)題的過(guò)程,并在問(wèn)題的解決中發(fā)現(xiàn)并掌握了知識(shí)。

  二、讓學(xué)生運(yùn)用等式的性質(zhì)解方程

  引入了等式的性質(zhì),其目的就是讓學(xué)生應(yīng)用這一性質(zhì)去解方程,第一次學(xué)習(xí)解方程,學(xué)生心理上難免會(huì)有些準(zhǔn)備不足,為了幫助學(xué)生應(yīng)用等式的性質(zhì)解方程,課前布置了學(xué)生預(yù)習(xí),課中我先讓學(xué)生嘗試練習(xí),但巡視中發(fā)現(xiàn)學(xué)生沒(méi)有根本理解,我就利用天平所顯示的數(shù)量關(guān)系,引導(dǎo)學(xué)生發(fā)現(xiàn)“在方程的'兩邊都減去10,使方程的左邊只剩下x”,并詳細(xì)講解解方程的書(shū)寫(xiě)格式,包括檢驗(yàn)。通過(guò)這樣有步驟的練習(xí),幫助學(xué)生逐漸掌握解方程的方法。然后讓學(xué)再次通過(guò)修正,試一試,鞏固解方程的知識(shí)。本節(jié)課達(dá)到了預(yù)期的效果。

  三、遺憾的是,由于星期一集體活動(dòng)的沖突,導(dǎo)致今天的上課時(shí)間30分鐘都不到,因此學(xué)生的交流顯得不充分,教師的重點(diǎn)講解顯得不到位

《解方程》教學(xué)反思2

  今天上了解方程(二)的內(nèi)容,感覺(jué)沒(méi)什么明顯的精彩地方。學(xué)生由于有了關(guān)于加減的等式的性質(zhì)的了解,在通過(guò)例題中兩組方程的觀察,適當(dāng)提醒學(xué)生聯(lián)系前面學(xué)習(xí)的等式的性質(zhì),很自然的就能得出有關(guān)乘除的等式的性質(zhì)。

  只是在讓學(xué)生舉例的時(shí)候,沒(méi)有學(xué)生能想到同時(shí)除以0,結(jié)果是怎樣的。只能由自己向?qū)W生提出問(wèn)題,簡(jiǎn)單討論后,很快想到除法中除數(shù)不能為0,因而得出同時(shí)除以一個(gè)不為0的數(shù)的.范圍。

  計(jì)算中有較多的問(wèn)題,特別是很多學(xué)生對(duì)于小數(shù)的乘除法計(jì)算,有很多的錯(cuò)誤,需要加強(qiáng)鞏固訓(xùn)練。

《解方程》教學(xué)反思3

  最近課堂上學(xué)習(xí)了《解方程》,是以等式的基本性質(zhì)為基礎(chǔ)來(lái)解決的。過(guò)去在小學(xué)教學(xué)簡(jiǎn)易方程,方程變形的依據(jù)是加減運(yùn)算的關(guān)系或乘除運(yùn)算的關(guān)系。這實(shí)際上是用算數(shù)的思路求未知數(shù),但學(xué)生到了中學(xué)又要另起爐灶,引入等式的基本形式或方程的同解原理來(lái)學(xué)習(xí)解方程,F(xiàn)在,根據(jù)《標(biāo)準(zhǔn)(20xx)》的要求,從小學(xué)起就引起等式的基本性質(zhì),并以此為基礎(chǔ)導(dǎo)出解方程的方法。新課程數(shù)學(xué)教學(xué)這樣安排體現(xiàn)了“瞻前顧后”的道理,更加注重知識(shí)的遷移和聯(lián)系,使得小學(xué)的知識(shí)要與初中的'知識(shí)更加的接軌。

  教材中分為5個(gè)例題,分別是不同類(lèi)型:x±a=b;

  ax=b;

  a-x=b;

  ax+b=c;

  a(x±b)=c,這幾個(gè)類(lèi)型層次依次遞進(jìn),難度由簡(jiǎn)到難。其中例1不僅是教授x±a=b類(lèi)型的解方程,還要讓學(xué)生理解“方程的解”、“解方程”兩個(gè)概念。剛開(kāi)始時(shí)學(xué)生不易區(qū)分,但隨著后面例題的講解,并且在解方程的過(guò)程中,學(xué)生慢慢理解并內(nèi)化能區(qū)分開(kāi)這兩個(gè)概念。

  通過(guò)幾天對(duì)解方程的練習(xí),大部分學(xué)生對(duì)解方程的目的以及檢驗(yàn)的方法和步驟都有了較好的掌握,也能分清該利用哪個(gè)等式性質(zhì)來(lái)解方程。但是在課堂練習(xí)和改作業(yè)時(shí),發(fā)現(xiàn)部分學(xué)生還有一些問(wèn)題存在:

  一、用方程來(lái)表示較復(fù)雜的數(shù)量關(guān)系學(xué)生出現(xiàn)困難,是通過(guò)我的幫助列出方程,應(yīng)及時(shí)讓學(xué)生鞏固方法。

  二、對(duì)于例3形式的解方程,學(xué)生還容易出錯(cuò),如32-x=45,6÷x=3這樣的方程,x前面是“-和÷”,學(xué)生不好理解為什么方程兩邊同時(shí)“+x”或同時(shí)“×x”,我又借助天平講解:如果兩邊同時(shí)減32或同時(shí)除以6,依然算不出x,如果同時(shí)加x或同時(shí)×x,然后就能變成x+a=b或ax=b的形式,再利用所學(xué)方法進(jìn)行解方程就可以了。這個(gè)類(lèi)型還需要加強(qiáng)訓(xùn)練,讓學(xué)生能快速區(qū)分開(kāi)來(lái)是加數(shù)還是要加一個(gè)含有未知數(shù)的式子。

  三、解方程時(shí)學(xué)生丟步驟,如:2x+6=18這樣的方程,學(xué)生都知道第一步要等式兩邊同時(shí)減去6,得到“2x=12”,但這一步有部分學(xué)生會(huì)直接寫(xiě)成“x=12”,說(shuō)明還需強(qiáng)調(diào)2x是一個(gè)整體,第一步解完后并不是最后的解,還需讓等式兩邊同時(shí)除以2才能得出。

  四、檢驗(yàn)時(shí)學(xué)生的步驟丟三落四較多,或丟掉“=方程右邊”;

  或丟掉最后一句話(huà)“x=2是方程的解”。

  《簡(jiǎn)易方程》這單元是本冊(cè)的重點(diǎn),解方程又是本單元的一大難點(diǎn),所以后面的教學(xué)時(shí),我除了讓學(xué)生觀察方程中未知數(shù)的位置和前面符號(hào)來(lái)解方程外,還應(yīng)要求學(xué)生說(shuō)得清,能講清楚理由,從而在理解變形依據(jù)、過(guò)程的基礎(chǔ)上掌握所學(xué)方程的解法。

《解方程》教學(xué)反思4

  學(xué)生從五年級(jí)就開(kāi)始接觸簡(jiǎn)易方程,經(jīng)歷一年多的學(xué)習(xí)對(duì)于方程有了一定的認(rèn)識(shí),然而為何要設(shè)單位“1”的量為未知數(shù)這個(gè)問(wèn)題在列方程解決稍復(fù)雜的分?jǐn)?shù)實(shí)際問(wèn)題時(shí)就一直困擾著學(xué)生。列方程解決稍復(fù)雜的百分?jǐn)?shù)實(shí)際問(wèn)題是小學(xué)階段的最后一個(gè)有關(guān)方程學(xué)習(xí)的單元,因此有必要從本質(zhì)上去撥開(kāi)學(xué)生心中為何要設(shè)單位“1”的量為未知數(shù)的那團(tuán)云。正好借助這節(jié)課通過(guò)對(duì)比分析的方法幫助學(xué)生很好的解決這個(gè)困惑。

  案例描述:蘇教版數(shù)學(xué)六年級(jí)下冊(cè)教材

  教材例5:朝陽(yáng)小學(xué)美術(shù)組有36人,女生人數(shù)是男生人數(shù)的80%。美術(shù)組男生、女生各多少人?

  學(xué)生能很快根據(jù)題目條件進(jìn)行相關(guān)的找單位“1”分析數(shù)量關(guān)系的解題前期準(zhǔn)備,經(jīng)歷這這兩步后學(xué)生通過(guò)已有經(jīng)驗(yàn)可以很快確定用方程的策略來(lái)解決這個(gè)問(wèn)題。

  在教學(xué)的過(guò)程中,筆者故意提出:這里男生人數(shù)和女生人數(shù)都是未知的,那么你們覺(jué)得怎樣設(shè)未知數(shù)比較合理呢?學(xué)生在底下開(kāi)始異口同聲地回答設(shè)單位“1”的量也就是男生人數(shù)為未知數(shù)比較合理。設(shè)美術(shù)組有男生X人,女生就有80%X人。那么根據(jù)等量關(guān)系式:男人人數(shù)+女生人數(shù)=36學(xué)生很自然地列出方程

  X+80%X=36。就在大家十分“得意”的時(shí)候,一個(gè)小男孩發(fā)表了自己不同的意見(jiàn):“也可以把女生人數(shù)設(shè)為X!眲傞_(kāi)始很多同學(xué)覺(jué)得有點(diǎn)不可思議,以前做這類(lèi)問(wèn)題不都是將男生人數(shù)(單位“1”)設(shè)為未知數(shù)X的嗎?抓住這個(gè)千載難逢的機(jī)會(huì),我就讓他說(shuō)說(shuō)他是怎么想的。他是這么說(shuō)的:設(shè)女生人數(shù)是X人,男生人數(shù)是X÷80%人,根據(jù)等量關(guān)系式:男人人數(shù)+女生人數(shù)=36列出方程:X+X÷80%=36。聽(tīng)完他精彩的發(fā)言,大家恍然大悟,原來(lái)還可以這樣?

  仔細(xì)回想這個(gè)聰明男孩的問(wèn)題,原來(lái)數(shù)學(xué)真的需要?jiǎng)幽X。這個(gè)問(wèn)題在學(xué)習(xí)分?jǐn)?shù)除法之前教材是一直在回避的,到了這里我靈機(jī)一動(dòng)將題目改成:教材例5:朝陽(yáng)小學(xué)美術(shù)組有36人,女生人數(shù)是男生人數(shù)的2倍。美術(shù)組男生、女生各多少人?那你覺(jué)得這個(gè)問(wèn)題我們以前是怎么解決的?學(xué)生很自然的想到把一份數(shù)男生人數(shù)設(shè)為X人,女生有2X人,方程:X+2X=36。那如果一定要把女生人數(shù)設(shè)為X人呢?學(xué)生思考了一會(huì)列出:X+X÷2=36,這個(gè)方程沒(méi)有學(xué)習(xí)分?jǐn)?shù)除法之前學(xué)生是沒(méi)有辦法解出來(lái)的,可能這就是教材一直回避的重要原因吧。但是學(xué)生學(xué)習(xí)了分?jǐn)?shù)除法,理解了分?jǐn)?shù)和百分?jǐn)?shù)的'意義之后憑借自己的理解列出超乎常規(guī)的方程的勇氣是值得肯定的。經(jīng)過(guò)這兩個(gè)問(wèn)題的對(duì)比,學(xué)生明白了設(shè)未知量也是很重要的。課上到這里,并不是去推翻學(xué)生已有的經(jīng)驗(yàn),而是讓學(xué)生有這樣一種意識(shí):數(shù)學(xué)很多時(shí)候不是一種硬性規(guī)定,遇到這類(lèi)問(wèn)題只能設(shè)單位“1”的量為未知數(shù)。于是我順?biāo)浦圩寣W(xué)生比較了這兩個(gè)方程:X+80%X=36、X+X÷80%=36哪一個(gè)解起來(lái)不較容易?學(xué)生通過(guò)計(jì)算終于明白:X+80%X=36方程的優(yōu)越性,于是又回到了:男生人數(shù)和女生人數(shù)都是未知的,那么你們覺(jué)得怎樣設(shè)未知數(shù)比較合理呢?通過(guò)這樣的對(duì)比進(jìn)一步讓學(xué)生體驗(yàn)到了:設(shè)男生人有X人(單位“1”的量為未知數(shù)的)合理性,不僅僅能很快表示出女生80%X人,而且X+80%X=36是學(xué)生熟悉的形如:aX+bX=c(這里a,b,c已知),而X+X÷80%=36這個(gè)方程不是學(xué)生熟悉的類(lèi)型,是需要學(xué)生根據(jù)除法將它轉(zhuǎn)化為aX+bX=c,這一步轉(zhuǎn)化至關(guān)重要。經(jīng)過(guò)上述的兩次對(duì)比學(xué)生終于明白了:為什么在設(shè)未知量的時(shí)候一般要把單位“1”的量設(shè)為未知數(shù)了。有了這樣的深刻的體驗(yàn),學(xué)生解決這類(lèi)問(wèn)題就十分自然,心中的困惑可能就會(huì)煙消云散。

《解方程》教學(xué)反思5

  今天對(duì)五年級(jí)上冊(cè)《解方程》進(jìn)行了教學(xué)。本課主要對(duì)教學(xué)例一和例二進(jìn)行了教學(xué)。

  一、本節(jié)課的教學(xué)重點(diǎn)和難點(diǎn)是:理解“方程的解”、“解方程”兩個(gè)概念;會(huì)運(yùn)用天平平衡的道理解簡(jiǎn)單的方程。在教學(xué)環(huán)節(jié)的設(shè)計(jì)和安排上,盡量為突破教學(xué)重點(diǎn)和難點(diǎn)服務(wù),因此我進(jìn)行了大膽的嘗試,在講解方程的解時(shí),給學(xué)生一個(gè)明確的目的,告訴他們:“解方程就是為了求出“方程的解”而“方程的解”是一個(gè)神奇的數(shù),由此引起了學(xué)生的好奇心,通過(guò)練習(xí)讓學(xué)生充分感知“方程的解”的神奇之處。既讓學(xué)生充分理解“方程的解”是一個(gè)數(shù),“解方程”是一個(gè)過(guò)程,同時(shí)又為最后的檢驗(yàn)做好充分的準(zhǔn)備。每一次的解方程我讓孩子們看成是解謎,是尋寶,比一比看誰(shuí)找的是寶石,誰(shuí)找的是石頭,用你自己的方法就可以驗(yàn)證。孩子們做的是津津有味,尋得異常開(kāi)心。在不知不覺(jué)中學(xué)會(huì)了本節(jié)課的知識(shí)。對(duì)于概念的理解也很扎實(shí)。

  二、在練習(xí)題的安排上也做了精心的安排,當(dāng)講授完利用天平平衡的道理解方程后,馬上進(jìn)行了“填空練習(xí)”,這四個(gè)練習(xí)題的安排也是經(jīng)過(guò)精心考慮的:第一個(gè)方程中的數(shù)是整數(shù),與例題相符合,較容易。第二個(gè)方程中的數(shù)變成小數(shù),難度有所提高。第三和第四個(gè)方程,又有所變化,但解方程的`方法是沒(méi)有變的。從課堂的教學(xué)和課后的練習(xí)看,學(xué)生對(duì)解方程掌握的還不錯(cuò)。

  三、本課主要對(duì)解方程進(jìn)行了解題練習(xí)。通過(guò)搶奪小紅花等游戲的形式大大提高了學(xué)生學(xué)習(xí)數(shù)學(xué)的樂(lè)趣和興趣!

  四、通過(guò)本課的作業(yè)檢測(cè),有少量學(xué)生還是對(duì)本課的內(nèi)容練習(xí)不是很到位。需要教師在課下不斷的指導(dǎo)。

  五、學(xué)生對(duì)于方程的書(shū)寫(xiě)格式掌握的很好,這一點(diǎn)很讓人欣喜。

  總之,“興趣是學(xué)生最好的老師”,只要緊緊抓住這一點(diǎn),教學(xué)質(zhì)量的提高指日可待。

《解方程》教學(xué)反思6

  解方程是是數(shù)學(xué)知識(shí)里面很關(guān)鍵很重要的一個(gè)知識(shí)點(diǎn)。,在實(shí)際中,擁有方程的解法之后,很多人不會(huì)算式解題,但是能用方程解題,足以見(jiàn)得方程可以做到一些算式無(wú)法超越的能力。而如今五年級(jí)的學(xué)生開(kāi)始學(xué)習(xí)解方程,作為教師的我更應(yīng)該讓學(xué)生吃透這方程,突破這重難點(diǎn)。

  在教這單元之前,我一直困惑解方程要采用初中的“移項(xiàng)”解題,還是運(yùn)用書(shū)本的“等式性質(zhì)”解題,面對(duì)困惑,向老教師請(qǐng)教,原來(lái)還有第三種老教材的“四則運(yùn)算之間的關(guān)系”解題,方法多了,學(xué)生該吸收那種方法呢?困惑,學(xué)生該如何下手,運(yùn)用“移項(xiàng)”解題,學(xué)生對(duì)于這個(gè)概念或許不會(huì)系統(tǒng)清晰,但是“等式性質(zhì)”解題時(shí),在碰到a-x=b和a÷x=b此類(lèi)的方程,學(xué)生能如何下手,“四則運(yùn)算之間的關(guān)系”老教材的方式改變,必有他的理由,能用嗎?困惑!我先了解改革的原因(摘自教學(xué)參考書(shū)):新教材編寫(xiě)者如此說(shuō)明:長(zhǎng)期以來(lái),小學(xué)教學(xué)簡(jiǎn)易方程時(shí),方程變形的依據(jù)總是加減運(yùn)算的關(guān)系或乘除運(yùn)算之間的關(guān)系,這實(shí)際上是用算術(shù)的思路求未知數(shù)。到了中學(xué)又要另起爐灶,引入等式的基本性質(zhì)或方程的同解原理來(lái)教學(xué)解方程。小學(xué)的思路及其算法掌握得越牢固,對(duì)中學(xué)代數(shù)起步教學(xué)的負(fù)遷移就越明顯。

  因此,現(xiàn)在根據(jù)《標(biāo)準(zhǔn)》的要求,從小學(xué)起就引入等式的基本性質(zhì),并以此為基礎(chǔ)導(dǎo)出解方程的方法。這就較為徹底地避免了同一內(nèi)容兩種思路、兩種算理解釋的現(xiàn)象,有利于加強(qiáng)中小學(xué)數(shù)學(xué)教學(xué)的銜接。從這不難看出,為了和中學(xué)教學(xué)解方程的方法保持一致,是此次改革的主要原因。但是從另一方面看出老教材的方法并無(wú)錯(cuò)誤,而且能讓學(xué)生清楚準(zhǔn)確地掌握實(shí)際解題,面對(duì)題目不會(huì)盲目,而采用等式基本性質(zhì)給學(xué)生帶來(lái)的是局部的銜接,而存在局部對(duì)學(xué)生會(huì)更困難,如a-x=b和a÷x=b此類(lèi)的方程。了解這一信息,我決定采用新老教材一起使用,先從教材中的運(yùn)用等式基本性質(zhì)教學(xué)孩子會(huì)解簡(jiǎn)單的方程,以便初中學(xué)習(xí)可以銜接,而初中的“移項(xiàng)”也會(huì)順利的接收,但是面對(duì)現(xiàn)在五年級(jí)的思維和解題的`方便性,我再教學(xué)老教材的“四則運(yùn)算關(guān)系”解放程,至少這樣能讓現(xiàn)在的學(xué)生會(huì)解各種題型的方程。在我看來(lái),這樣的教學(xué)書(shū)本的知識(shí)不丟,方法又可以多種變通。所以我在教學(xué)解方程的時(shí)候,給他們灌輸了兩種方法,第一種方法就是課本上的根據(jù)等式的性質(zhì)去解方程,另一種方式就是初中階段的“移項(xiàng)”,在這里的時(shí)候,我給初中的“移項(xiàng)”起了一個(gè)新的名字:移——變號(hào)。引入了這一個(gè)方法,學(xué)生解方程的興致有了很大的提高,解方程也變得容易了許多。

  但是在移-變號(hào)這種情況下,有出現(xiàn)了21÷x=7,和20-x=3的這樣的特殊情況,而我則讓他們記住,只要x在后面,就要運(yùn)用到四則運(yùn)算“除數(shù)=被除數(shù)÷商”和“減數(shù)=被減數(shù)-差”這兩種情況。通過(guò)練習(xí),學(xué)生解方程正確率有了很大的提高,但是與之而來(lái)的是,學(xué)生忘了等式的興致,忘了移—變號(hào)是怎么來(lái)的,而我,則在移-變號(hào)的基礎(chǔ)上,再一次的回顧,讓他們明白移-變號(hào)的立腳點(diǎn)就是等式的性質(zhì),如此反復(fù),學(xué)生加強(qiáng)了對(duì)解方程的認(rèn)識(shí),也更牢固的記住了等式的興致。而通過(guò)這一次的上課,我意識(shí)到,老師在上課之前,一定要更好的預(yù)設(shè),只有在這樣的情況下,生成的結(jié)果,才不會(huì)顧此失彼。而身為老師,一定要好好的研究教材,鉆研透知識(shí)點(diǎn),只有這樣,才能夠給學(xué)生清晰的思路。

《解方程》教學(xué)反思7

  解方程的內(nèi)容主要是在五年級(jí)就學(xué)過(guò)的,但六年級(jí)上期仍然出現(xiàn)了解方程的內(nèi)容,說(shuō)明了這個(gè)知識(shí)點(diǎn)的重要性,既是重點(diǎn),又是難點(diǎn)。在具體的解方程過(guò)程中,通過(guò)學(xué)生的課堂活動(dòng)和課后作業(yè)反饋,總的說(shuō)來(lái),還是存在很大的問(wèn)題。我出了12個(gè)題,全對(duì)的占少數(shù),一般要錯(cuò)四個(gè)左右。下來(lái)后我進(jìn)行了深刻的反思。發(fā)現(xiàn)了幾個(gè)主要錯(cuò)誤:

  1 馬虎。體現(xiàn)在抄題抄錯(cuò),全班64人有6個(gè)抄錯(cuò)了題。

  2 較復(fù)雜點(diǎn)的解方程,思路混亂,不知道把哪一部分看作“整體”。 3 過(guò)于依賴(lài)計(jì)算器,對(duì)于除不盡的筆算出錯(cuò)。

  4錯(cuò)得最多的是減數(shù)和除數(shù)中含有未知數(shù)的情況。

  針對(duì)以上幾個(gè)錯(cuò)誤,我認(rèn)真做了分析,主要的原因有下面幾個(gè): 1 課前過(guò)于高估學(xué)生,沒(méi)有系統(tǒng)的'復(fù)習(xí)相關(guān)內(nèi)容。

  2 現(xiàn)在這個(gè)班是上個(gè)五年級(jí)兩個(gè)班重新分的班,下來(lái)我問(wèn)了前面教過(guò)的數(shù)學(xué)老師,兩個(gè)老師教的方法不一樣。

  3 作業(yè)量不夠。

  所以,在后期的教學(xué)中做了一些調(diào)整:

  1 系統(tǒng)復(fù)習(xí)了相關(guān)知識(shí)。

  2 多作例題講解,由易入難。

  3 有針對(duì)性的出題,容易出錯(cuò)的地方進(jìn)行大量的練習(xí)。

  4 搞了一個(gè)“我是一個(gè)小老師”的活動(dòng),全對(duì)的同學(xué)給其他同學(xué)當(dāng)老師,一個(gè)對(duì)一個(gè)的教。

  5 要求每個(gè)同學(xué)都獨(dú)立的出一個(gè)解方程的題,然后請(qǐng)一個(gè)同學(xué)完成并作評(píng)價(jià)。

  經(jīng)過(guò)鍛煉,現(xiàn)在對(duì)解方程這個(gè)這知識(shí)點(diǎn),同學(xué)們興趣和完成率大有提高。

《解方程》教學(xué)反思8

  有昨天加減法方程作鋪墊,今天乘除法方程的解答可以說(shuō)是順?biāo)浦,毫不費(fèi)力。學(xué)生完全能夠通過(guò)遷移自主探索出解法。但令我頭痛的是如何引導(dǎo)學(xué)生會(huì)解形如a-x=b及a÷x=b方程。

  本以為按新課標(biāo)教材這兩類(lèi)方程小學(xué)階段不用掌握,但在學(xué)期初教材分析會(huì)上教研員明確指明:這兩類(lèi)方程教師必須作為例題向?qū)W生補(bǔ)充講解,且屬于學(xué)生必會(huì)、考試必考內(nèi)容。原因如下:1、在列方程解決實(shí)際問(wèn)題時(shí),學(xué)生中往往會(huì)出現(xiàn)以上兩種類(lèi)型方程,教師難以回避。2、如果教師有意回避,會(huì)使學(xué)生產(chǎn)生等式的基本性質(zhì)只適用于部分方程的錯(cuò)誤理解。

  基于上述原因,我今天在教學(xué)完例2后為學(xué)生補(bǔ)充了相應(yīng)內(nèi)容,但教學(xué)效果較差。雖然許多學(xué)生能根據(jù)加減乘除各部分之間的關(guān)系推導(dǎo)出X的值,但當(dāng)要求他們根據(jù)等式的性質(zhì)來(lái)解答時(shí),嘗試成功。通過(guò)指導(dǎo),全班也只有50%左右的學(xué)生基本掌握解答的方法。分析此次教學(xué)失敗的原因可能是安排的時(shí)機(jī)還不夠成熟。因?yàn)閷W(xué)生剛接觸解方程沒(méi)多久,還須一段時(shí)間鞏固教材中最基本的常見(jiàn)方程類(lèi)型,而今天補(bǔ)充的兩種類(lèi)型雖然與例題一樣,都是根據(jù)等式的基本性質(zhì),但在解答第一步時(shí)不再是思考“怎樣才能使天平左邊只剩X,而保持天平平衡”的.問(wèn)題了。學(xué)困生聽(tīng)完拓展練習(xí)后,作業(yè)中出現(xiàn)明顯混淆的現(xiàn)象。如5X=1.5本應(yīng)根據(jù)等式的性質(zhì)直接將等號(hào)兩邊同時(shí)除以5求解的,可卻有學(xué)生先將等式兩邊同時(shí)除以X,變成了“1.5÷X=5”, 這可真是越變?cè)綇?fù)雜。

  值得思考的是,如果必須兩教a-x=b及a÷x=b兩類(lèi)方程,你們覺(jué)得是按加減乘除法各部分之間的關(guān)系教好呢,還是按等式的性質(zhì)教學(xué)好呢?

《解方程》教學(xué)反思9

  解方程這部分教學(xué)內(nèi)容與老教材相比有很大的差異,尤其是在方程的解法上,利用天平平衡的道理解方程,學(xué)生在理解和運(yùn)用上都有一定的困難,而且本部分教學(xué)很是枯燥無(wú)味,于是我加入了探秘的情節(jié),和本節(jié)課完全吻合。下面就我講授的這節(jié)課做一下反思:

  一、本節(jié)課的教學(xué)重點(diǎn)和難點(diǎn)是:理解“方程的解”、“解方程”兩個(gè)概念;會(huì)運(yùn)用天平平衡的道理解簡(jiǎn)單的方程。在教學(xué)環(huán)節(jié)的設(shè)計(jì)和安排上,盡量為突破教學(xué)重點(diǎn)和難點(diǎn)服務(wù),因此我進(jìn)行了大膽的嘗試,在講解方程的解時(shí),給學(xué)生一個(gè)明確的目的,告訴他們:“解方程就是為了求出“方程的解”而“方程的解”是一個(gè)神奇的數(shù),它能使方程的左右兩邊相等,不信咱們?cè)囈辉!庇纱艘鹆藢W(xué)生的好奇心,通過(guò)練習(xí)讓學(xué)生充分感知“方程的解”的神奇之處。既讓學(xué)生充分理解“方程的解”是一個(gè)數(shù),“解方程”是一個(gè)過(guò)程,同時(shí)又為最后的檢驗(yàn)做好充分的準(zhǔn)備。每一次的解方程我讓孩子們看成是解謎,是尋寶,比一比看誰(shuí)找的是寶石,誰(shuí)找的是石頭,用你自己的方法就可以驗(yàn)證。孩子們做的是津津有味,尋得異常開(kāi)心。在不知不覺(jué)中學(xué)會(huì)了本節(jié)課的知識(shí)。對(duì)于概念的理解也很扎實(shí)。

  二、在練習(xí)題的安排上也做了精心的安排,當(dāng)講授完利用天平平衡的道理解方程后,馬上進(jìn)行了“填空練習(xí)”,這四個(gè)練習(xí)題的安排也是經(jīng)過(guò)精心考慮的:第一個(gè)方程中的數(shù)是整數(shù),與例題相符合,較容易。第二個(gè)方程中的數(shù)變成小數(shù),難度有所提高。第三和第四個(gè)方程,又有所變化,但解方程的`方法是沒(méi)有變的。從課堂的教學(xué)和課后的練習(xí)看,學(xué)生對(duì)解方程掌握的還不錯(cuò)。本節(jié)課不足之處在于最后留的時(shí)間過(guò)少,檢驗(yàn)的格式?jīng)]有完整的交給孩子們?蓛(nèi)心矛盾:檢驗(yàn)的目的已經(jīng)達(dá)到了,必須要重視其格式嗎?

《解方程》教學(xué)反思10

  一、認(rèn)知基礎(chǔ)的“頑固性”

  心理學(xué)研究表明,當(dāng)人們熟練地掌握某種法則以后,往往就很難從另一種角度去思考問(wèn)題,從而也就不容易順利地實(shí)現(xiàn)由“過(guò)程”向“對(duì)象”的轉(zhuǎn)變。在一至四年級(jí),學(xué)生都是根據(jù)四則運(yùn)算各部分之間的關(guān)系來(lái)做計(jì)算的,它既是學(xué)生十分熟悉的運(yùn)算規(guī)律,同時(shí)又為新知的學(xué)習(xí)提供了合適的基礎(chǔ)。方程是把已知和未知看作同等的地位,一樣參與運(yùn)算,從這個(gè)角度去看,當(dāng)然也可以運(yùn)用四則運(yùn)算各部分之間的關(guān)系來(lái)做。而且,四則運(yùn)算各部分之間的關(guān)系學(xué)生是先入為主、根深蒂固的,具有相對(duì)的“頑固性”,甚至在一定程度上會(huì)排斥新學(xué)的等式的性質(zhì),導(dǎo)致思維的“過(guò)早封閉”。因此,大多數(shù)學(xué)生這樣做也就可以理解了。

  以前教材中,學(xué)習(xí)解方程之前首先要求學(xué)生掌握加、減、乘、除法各部分之間的關(guān)系,然后利用:一個(gè)加數(shù)=和-另一個(gè)加數(shù);被減數(shù)=減數(shù)+差等關(guān)系來(lái)求出方程中的未知數(shù)。而新教材則是借用天平游戲使學(xué)生首先感悟“等式”,比較兩種思路:第一種方法是把未知數(shù)x優(yōu)先從背景中篩選出來(lái),依據(jù)四則運(yùn)算各部分之間的關(guān)系求出x的值;第二種方法用“結(jié)構(gòu)性觀點(diǎn)”去看待方程,著眼于其所表明的等量關(guān)系,體現(xiàn)了方程思想的本質(zhì),較好地解決了中小學(xué)關(guān)于方程解法的銜接問(wèn)題!稊(shù)學(xué)課程標(biāo)準(zhǔn)》也明確要求學(xué)生能“理解等式的性質(zhì),會(huì)利用等式的性質(zhì)解簡(jiǎn)單的方程”。那么,教材編排的價(jià)值是不容置疑的,即不能因?yàn)閷W(xué)生思維的輕車(chē)熟路,而忽視新知的教學(xué),忽視學(xué)生數(shù)學(xué)思想的進(jìn)一步提升。利用關(guān)系式這種方法解方程書(shū)寫(xiě)較少,形式簡(jiǎn)單,但教學(xué)時(shí)總碰到差生不理解關(guān)系式也記不住關(guān)系式,因此在解方程時(shí)因想不起關(guān)系式而不會(huì)解。這幾星期的教學(xué),我發(fā)現(xiàn)孩子們還是比較喜歡學(xué)的,學(xué)得也不錯(cuò),教材利用天平這樣的事物原形來(lái)揭示等式的性質(zhì),把抽象的解方程的.過(guò)程用形象化的方式表現(xiàn)出來(lái),使學(xué)生更好的理解解方程的過(guò)程是一個(gè)等式的恒等變形。教材又通過(guò)天平平衡原理過(guò)渡到等式的性質(zhì),從而利用等式的性質(zhì)教學(xué)解方程,使得解方程變得順理成章、水到渠成。學(xué)生深刻認(rèn)識(shí)到:利用等式的性質(zhì)解方程,看似麻煩,實(shí)則簡(jiǎn)單,不須思考各部分之間的關(guān)系。雖然這樣教學(xué)學(xué)生有興趣,學(xué)得不錯(cuò),但也存在局限性,如a-x=b和a÷x=b,雖然教材沒(méi)有要求解這類(lèi)方程,但試卷和相應(yīng)的練習(xí)有出現(xiàn),因此,有必要特別利用一些時(shí)間給學(xué)生補(bǔ)充講解這類(lèi)方程解法。我發(fā)現(xiàn)用等式性質(zhì)教這類(lèi)方程,比較麻煩,學(xué)生學(xué)起來(lái)有一定難度。

  二、兩種方法形式上的相似引發(fā)學(xué)生思維的惰性

  第一種方法書(shū)寫(xiě)較少,形式簡(jiǎn)單。第二種方法從表面看,顯得煩瑣、麻煩,而且方程左邊的“40x÷40”可以直接簡(jiǎn)寫(xiě)成“x”,這樣從表面上看就和第一種方法一樣了。根據(jù)已有的經(jīng)驗(yàn)已經(jīng)能夠正確地解方程了,何必又多此一舉,再去理解、掌握等式的性質(zhì)呢?學(xué)生形成思維惰性,就不會(huì)再去深究思路和觀念的不同,更不會(huì)創(chuàng)新解法。

  方程變得順理成章、水到渠成。學(xué)生深刻認(rèn)識(shí)到:利用等式的性質(zhì)解方程,看似麻煩,實(shí)則簡(jiǎn)單,不須思考各部分之間的關(guān)系。這時(shí),教師再適時(shí)介紹教材之所以這樣編排是為了中小學(xué)方程解法的銜接,使學(xué)生認(rèn)識(shí)到利用等式的性質(zhì)解方程的必要性,觀念得以更新、深化。

《解方程》教學(xué)反思11

  本節(jié)課的教學(xué)重點(diǎn)和難點(diǎn)是:

  理解“方程的解”、“解方程”兩個(gè)概念;會(huì)運(yùn)用天平平衡的道理解簡(jiǎn)單的方程。在教學(xué)環(huán)節(jié)的設(shè)計(jì)和安排上,盡量為突破教學(xué)重點(diǎn)和難點(diǎn),因此我進(jìn)行了大膽的嘗試,在講解方程的解時(shí),新課程解方程教學(xué)與以往的'最大不同就是,不是利用加減乘除各部分間的關(guān)系來(lái)解,而是利用天平保持平衡的原理,也就是我們常說(shuō)的等式的基本性質(zhì)解方程。教學(xué)中我先利用演示了天平兩端同時(shí)加上或減去同樣的重量,同時(shí)擴(kuò)大或縮小相同倍數(shù),天平任然保持平衡,目的是讓學(xué)生直觀感受天平保持平衡原理,為學(xué)生遷移類(lèi)推到方程中打基礎(chǔ)。然后出示例1,讓學(xué)生列出方程x+3=9,用演示x+3個(gè)方塊=9個(gè)方塊,提問(wèn):“如果要稱(chēng)出x有多少塊,改怎么辦?”,引導(dǎo)學(xué)生思考,只要將天平兩端同時(shí)減去3個(gè)方塊,天平仍平衡,得到一個(gè)x相當(dāng)于6個(gè)方塊,從而得到x=6。你能把稱(chēng)的過(guò)程用算式表示出來(lái)嗎?大部分學(xué)生快速的寫(xiě)出了我想要的答案:x+3-3=9-3,于是我問(wèn):為什么方程兩邊要同時(shí)減去3,而不減去其它數(shù)呢?

  學(xué)生沉默,終于有兩雙小手舉起來(lái)了,“為了得到一個(gè)x得多少”,我又強(qiáng)調(diào)了一遍,我們的目標(biāo)是求一個(gè)x的多少,所以要把多余的3減去。在此基礎(chǔ)上我引導(dǎo)學(xué)生總結(jié)天平保持平衡的道理,得到等式的基本性質(zhì):方程的兩邊同時(shí)加上或減去相同的數(shù),除以或乘上同一個(gè)不為0的數(shù),方程兩邊仍然相等。 另外我還要求學(xué)生掌握加、減、乘、除法各部分之間的關(guān)系,然后利用:一個(gè)加數(shù)=和-另一個(gè)加數(shù);被減數(shù)=減數(shù)+差等關(guān)系來(lái)求出方程中的未知數(shù)。在做練習(xí)時(shí)我發(fā)現(xiàn)大部分的學(xué)生在解方程的時(shí)候,還是運(yùn)用了加、減法各部分間的關(guān)系來(lái)求出方程中的未知數(shù),只有個(gè)別學(xué)生懂得運(yùn)用等式的性質(zhì)來(lái)求出方程中的未知數(shù)。在講授“解方程”定義概念時(shí),我主要從教材思想出發(fā),通過(guò)讓學(xué)生說(shuō)出采用各自不同的方法求解方程的過(guò)程叫解方程,使方程左右兩邊相等的未知數(shù)的值,叫做方程的解。

《解方程》教學(xué)反思12

  《解方程》是學(xué)生接觸方程以來(lái)的第一堂計(jì)算課,理解“方程的解”、“解方程”兩個(gè)概念;會(huì)運(yùn)用天平平衡的道理解簡(jiǎn)單的方程。本著孩子比較感興趣的基礎(chǔ)上,本節(jié)課我采用的`是課前預(yù)習(xí),課上交流的形式進(jìn)行,整節(jié)課大多數(shù)孩子在預(yù)習(xí)的基礎(chǔ)上能夠掌握方程的解法,但是個(gè)別孩子沒(méi)有掌握,F(xiàn)反思如下:

  1、出示預(yù)習(xí)提綱,讓孩子預(yù)習(xí)有根據(jù)。

  為讓孩子形成自覺(jué)的學(xué)習(xí)習(xí)慣,師指導(dǎo)孩子進(jìn)行預(yù)習(xí),出示了以下三個(gè)問(wèn)題:

  一是什么是方程的解?舉例說(shuō)明。

  二是什么是解方程?你是根據(jù)什么來(lái)解方程?

  三是如何進(jìn)行方程的檢驗(yàn)?

  好多孩子能夠?qū)@幾個(gè)問(wèn)題進(jìn)行探究,并對(duì)意義理解比較深刻。

  2、課上交流。

  交流是學(xué)生思維火花的碰撞。對(duì)于什么是方程的解,孩子們舉例子,根據(jù)例題來(lái)詮釋方程的解的意義。在進(jìn)行交流根據(jù)什么來(lái)解方程的環(huán)節(jié)中,孩子們各抒已見(jiàn),有的是用加法中各部分間的關(guān)系,有的是用等式的性質(zhì),還有的還接口答。依次把方法展示給大家,讓孩子明白方程的解的意義和解方程的過(guò)程。再確定統(tǒng)一的解答方法,這個(gè)環(huán)節(jié)孩子興趣很高,大部分孩子能夠?qū)W會(huì)利用等式的性質(zhì)進(jìn)行解方程。整個(gè)的環(huán)節(jié)讓孩子在探究中發(fā)現(xiàn)規(guī)律,找到方法,學(xué)生學(xué)的開(kāi)心,對(duì)于概念的理解也很扎實(shí)。

《解方程》教學(xué)反思13

  1、教材的編排上難度下降。有意避開(kāi)了,形如:7.8—X=2.6,12÷X=1.2等類(lèi)型的題目。把用等式解決的方法單一化了,這和提倡算法多樣化又有了矛盾。盡管老師一再?gòu)?qiáng)調(diào)用等式的性質(zhì)解,還是有多數(shù)學(xué)生用原來(lái)的方法解答。

  2、強(qiáng)調(diào)書(shū)寫(xiě)格式得有層次。告訴學(xué)生利用等式的性質(zhì)來(lái)解方程熟練以后特別快。同時(shí)強(qiáng)調(diào)書(shū)寫(xiě)格式。通過(guò)教學(xué),學(xué)生利用等式的性質(zhì)學(xué)生能解決簡(jiǎn)單的方程,如果有過(guò)程,方程中的等號(hào)不易上下對(duì)齊,這點(diǎn)問(wèn)題不大。到熟練之后省去過(guò)程時(shí)再?gòu)?qiáng)調(diào)格式。

 。场(nèi)容看似少實(shí)際教得多。難度下降后,看起來(lái)教師要教的內(nèi)容變得少了,()可以實(shí)際上反而是多了。教師要給他們補(bǔ)充X在后面的方程的解法。要教他們列方程時(shí)怎么避免X在后面這樣方程的出現(xiàn)等等。

  在實(shí)際教學(xué)中我們要求學(xué)生較熟練地利用等式的方法來(lái)解方程,用這樣的方法來(lái)解方程之后,書(shū)本中不再出現(xiàn)X做減數(shù),除數(shù)的方程題了,但學(xué)生在列方程解實(shí)際應(yīng)用時(shí),學(xué)生列出的方程中還有這樣的題目,但不會(huì)解答,這時(shí)我們又要強(qiáng)調(diào)算法多樣化,我們會(huì)讓他們嘗試接受——解答X在后面這類(lèi)方程的`解答方法,就是等號(hào)二邊同時(shí)加上X,再左右換位置,再二邊減一個(gè)數(shù),真有點(diǎn)麻煩了。而且有的學(xué)生還很難掌握這樣方法。有的學(xué)生又不得不用除、減法各部分間的關(guān)系做題。在實(shí)際的方程應(yīng)用中,這種情況是不可避免的。很顯然這存在著目前的局限性了。因此教學(xué)中我還是對(duì)學(xué)生說(shuō)盡量用方程的性質(zhì)解,若遇到用等式的性質(zhì)解決不了時(shí),可以用以前學(xué)過(guò)的知識(shí)解答。認(rèn)識(shí)方程教學(xué)反思解方程教學(xué)反思方程教學(xué)反思

《解方程》教學(xué)反思14

  本節(jié)課中學(xué)生學(xué)習(xí)等式的性質(zhì)是沒(méi)有多大的難度的,在運(yùn)用等式的性質(zhì)進(jìn)行解方程時(shí),難度也不是很大。課本安排了不少解方程的題目,學(xué)生都能一一解決。仔細(xì)觀察課本,其實(shí)會(huì)發(fā)現(xiàn)課本上在慢慢增加根據(jù)具體情境列出方程并解方程的.題目。這是本單元的難點(diǎn),這就需要讓學(xué)生根據(jù)題目中的等量關(guān)系來(lái)寫(xiě)出方程。將等量關(guān)系寫(xiě)出方程和學(xué)生之前根據(jù)等量關(guān)系解答是不同的。

  學(xué)生不太習(xí)慣,導(dǎo)致列的方程奇形怪狀。這里有必要深入探究方程的含義。根據(jù)上節(jié)課的學(xué)習(xí)學(xué)生知道:方程是從等式演變而來(lái)。含有字母的等式才叫作方程。換言之,方程其實(shí)是一種含有未知量的等量關(guān)系的一種表達(dá)式。我們只需要將等量關(guān)系找到再將其表達(dá)成方程即可。學(xué)生出現(xiàn)問(wèn)題的原因是以往大部分的解題經(jīng)驗(yàn)所寫(xiě)出的等量關(guān)系是從結(jié)果出發(fā)來(lái)寫(xiě)的,一切為結(jié)果服務(wù)這樣一種逆向的思維過(guò)程。而現(xiàn)在寫(xiě)出題目中的等量關(guān)系卻是從條件出發(fā)的一種正向思維。

  雖然在三年級(jí)時(shí),我們學(xué)習(xí)了從條件出發(fā)和問(wèn)題出發(fā)兩種不同的解題策略,但這離幫助學(xué)生形成這兩種思維還是遠(yuǎn)遠(yuǎn)不夠的。通過(guò)這樣的分析,那我們?cè)谝龑?dǎo)孩子列方程時(shí),就要從條件出發(fā),找等量關(guān)系來(lái)列方程了。先要幫助學(xué)生找出等量關(guān)系,在引導(dǎo)孩子根據(jù)等量關(guān)系表達(dá)出相應(yīng)的方程。這一點(diǎn)的學(xué)習(xí)時(shí)必須的。

《解方程》教學(xué)反思15

  方程最大的意義,就是讓未知數(shù)參與進(jìn)式子,利用順向思維,降低思考的難度。

  五年級(jí)數(shù)學(xué)上冊(cè)第四單元的教學(xué)內(nèi)容是“簡(jiǎn)易方程”。為了更好地實(shí)現(xiàn)小學(xué)與初中知識(shí)的接軌,新教材對(duì)簡(jiǎn)易方程的解法進(jìn)行了一次改革,將舊教材利用加減乘除法各部分之間關(guān)系解方程,改為讓學(xué)生根據(jù)天平的原理來(lái)學(xué)習(xí)方程解法,也就是利用等式的基本性質(zhì)來(lái)解方程。舉個(gè)例子:

  舊教材:

  x+48=127

  x=127-48

  依據(jù)運(yùn)算之間的關(guān)系:一個(gè)加數(shù)等于和減另一個(gè)加數(shù)。

  新教材:

  x+48=127

  x+48-48=127-48

  依據(jù)等式的基本性質(zhì)1:等式兩邊加上或減去相等的數(shù),等式不變。

  在實(shí)際教學(xué)中發(fā)現(xiàn),同舊教材的方法相比,現(xiàn)行教材中的這種解法,學(xué)生更容易接受,他們不必再去記“一個(gè)加數(shù)=和-另一個(gè)加數(shù)、被減數(shù)=減數(shù)+差……”這些關(guān)系式了,只需根據(jù)等式的'基本性質(zhì),想辦法讓方程左邊只剩下X就行。學(xué)生很快就將這種解法運(yùn)用自如,毫不費(fèi)力。

  可是,當(dāng)學(xué)到用方程解決實(shí)際問(wèn)題時(shí),卻出現(xiàn)了狀況。

  新教材在改革方程解法的同時(shí),有一個(gè)相應(yīng)的調(diào)整,那就是它把形如a-x=b和a÷x=b的方程回避掉了。因?yàn)槔玫仁降幕拘再|(zhì)解a-x=b、a÷x=b,方程變形的過(guò)程及算理解釋比較麻煩。然而,在列方程解決實(shí)際問(wèn)題時(shí),卻不可避免地會(huì)出現(xiàn)以上兩種類(lèi)型的方程。如:“一本書(shū)有65頁(yè),王紅看了一部分后,還剩27頁(yè)。王紅已經(jīng)看了多少頁(yè)?”學(xué)生很自然就列出65—x=27這樣的方程。

  如何解決這個(gè)難題?細(xì)讀教參,發(fā)現(xiàn)編者的思路是,當(dāng)需要列出形如a-x=b或a÷x=b的方程時(shí),要求學(xué)生根據(jù)實(shí)際問(wèn)題的數(shù)量關(guān)系,改列成形如x+b=a或bx=a的方程。這樣的處理方法倒是可以繼續(xù)回避上述的兩種特殊方程,可是,新的矛盾又出現(xiàn)了。

  我們知道,方程最大的意義,就是讓未知數(shù)參與進(jìn)式子,利用順向思維,降低思考的難度。這是方程方法的優(yōu)越性。然而,在刻意回避a-x=b或a÷x=b這樣的方程時(shí),往往會(huì)出現(xiàn)和方程思想的基本理念相違背的現(xiàn)象。

  如“6枝鋼筆比4枝鉛筆貴12元。鋼筆每枝3元,鉛筆每枝多少元?”

  合理的做法應(yīng)是“設(shè)鉛筆每枝X元”,從順向思考,列出方程為“6×3-4X=12”。然而,按新教材的編排,學(xué)生無(wú)法解這樣的方程,只能轉(zhuǎn)列成“4X+12=6×3”。再如:一共有128人平均分成Х組,每組8人,學(xué)生們都不假思索地列出了128÷X=8,等到解方程時(shí)才發(fā)現(xiàn)利用天平的原理沒(méi)法繼續(xù),只好改列成8X=128。

  如此一來(lái),學(xué)生怎么能充分體會(huì)方程順向思維的優(yōu)越性?

  如果說(shuō)用舊教材的思路解方程對(duì)初中學(xué)習(xí)有負(fù)遷移,需要改革,現(xiàn)在改成用等式基本性質(zhì)解方程,同樣出現(xiàn)問(wèn)題,如何是好?

  我只能把新舊教材兩種方法進(jìn)行互補(bǔ),告訴學(xué)生,遇到這類(lèi)方程時(shí),一種解決的辦法是按減法和除法各部分之間的關(guān)系進(jìn)行解答;另一種方法就是先按等式的性質(zhì),把方程的左右邊都加或乘一個(gè)x,然后把方程的左右兩邊交換一下位置,再按照a-x=b及a÷x=b的方法進(jìn)行解答。

【《解方程》教學(xué)反思】相關(guān)文章:

《解方程》教學(xué)反思04-07

《解方程》的教學(xué)反思04-07

解方程的教學(xué)反思03-10

解方程教學(xué)反思02-05

《解方程(二)》教學(xué)反思04-07

《解方程二》教學(xué)反思04-07

數(shù)學(xué)解方程教學(xué)反思04-05

解方程二的教學(xué)反思02-05

《解方程》教學(xué)反思15篇04-07