當前位置:育文網(wǎng)>教學文檔>說課稿> 高中數(shù)學說課稿

高中數(shù)學說課稿

時間:2024-06-13 17:04:59 說課稿 我要投稿

[推薦]高中數(shù)學說課稿15篇

  作為一位兢兢業(yè)業(yè)的人民教師,可能需要進行說課稿編寫工作,說課稿有助于提高教師理論素養(yǎng)和駕馭教材的能力。那么說課稿應該怎么寫才合適呢?以下是小編為大家整理的高中數(shù)學說課稿,供大家參考借鑒,希望可以幫助到有需要的朋友。

[推薦]高中數(shù)學說課稿15篇

高中數(shù)學說課稿1

各位同仁,各位專家:

  我說課的課題是《任意角的三角函數(shù)》,內容取自蘇教版高中實驗教科書《數(shù)學》第四冊 第1。2節(jié)

  先對教材進行分析

  教學內容:任意角三角函數(shù)的定義、定義域,三角函數(shù)值的符號。

  地位和作用: 任意角的三角函數(shù)是本章教學內容的基本概念對三角內容的整體學習至關重要。同時它又為平面向量、解析幾何等內容的學習作必要的準備,通過這部分內容的學習,又可以幫助學生更加深入理解函數(shù)這一基本概念。所以這個內容要認真探討教材,精心設計過程。

  教學重點:任意角三角函數(shù)的定義

  教學難點:正確理解三角函數(shù)可以看作以實數(shù)為自變量的函數(shù)、初中用邊長比值來定義轉變?yōu)樽鴺讼迪掠米鴺吮戎刀x的觀念的轉換以及坐標定義的合理性的理解;

  學情分析:

  學生已經(jīng)掌握的`內容,學生學習能力

  1。初中學生已經(jīng)學習了基本的銳角三角函數(shù)的定義,掌握了銳角三角函數(shù)的一些常見的知識和求法。

  2。我們南山區(qū)經(jīng)過多年的初中課改,學生已經(jīng)具備較強的自學能力,多數(shù)同學對數(shù)學的學習有相當?shù)呐d趣和積極性。

  3。在探究問題的能力,合作交流的意識等方面發(fā)展不夠均衡,尚有待加強必須在老師一定的指導下才能進行

  針對對教材內容重難點的和學生實際情況的分析我們制定教學目標如下

  知識目標:

 。1)任意角三角函數(shù)的定義;三角函數(shù)的定義域;三角函數(shù)值的符號,

  能力目標:

 。1)理解并掌握任意角的三角函數(shù)的定義;

 。2)正確理解三角函數(shù)是以實數(shù)為自變量的函數(shù);

 。3)通過對定義域,三角函數(shù)值的符號的推導,提高學生分析探究解決問題的能力。

  德育目標:

 。1)學習轉化的思想,(2)培養(yǎng)學生嚴謹治學、一絲不茍的科學精神;

  針對學生實際情況為達到教學目標須精心設計教學方法

  教法學法:溫故知新,逐步拓展

 。1)在復習初中銳角三角函數(shù)的定義的基礎上一步一步擴展內容,發(fā)展新知識,形成新的概念;

 。2)通過例題講解分析,逐步引出新知識,完善三角定義

  運用多媒體工具

 。1)提高直觀性增強趣味性。

  教學過程分析

  總體來說, 由舊及新,由易及難,

  逐步加強,逐步推進

  先由初中的直角三角形中銳角三角函數(shù)的定義

  過度到直角坐標系中銳角三角函數(shù)的定義

  再發(fā)展到直角坐標系中任意角三角函數(shù)的定義

  給定定義后通過應用定義又逐步發(fā)現(xiàn)新知識拓展完善定義。

  具體教學過程安排

  引入: 復習提問:初中直角三角形中銳角的正弦余弦正切是怎樣定義的?

  由學生回答

  SinA=對邊/斜邊=BC/AB

  cosA=對邊/斜邊=AC/AB

  tanA=對邊/斜邊=BC/AC

  逐步拓展:在高中我們已經(jīng)建立了直角坐標系, 把“定義媒介”從直角三角形改為平面直角坐標系。

  我們知道,隨著角的概念的推廣,研究角時多放在直角坐標系里, 那么三角函數(shù)的定義能否也放到坐標系去研究呢?

  引導學生發(fā)現(xiàn)B的坐標和邊長的關系。進一步啟發(fā)他們發(fā)現(xiàn)由于相似三角形的相似比導致OB上任一P點都可以代換B,把三角函數(shù)的定義發(fā)展到用終邊上任一點的坐標來表示, 從而銳角三角函數(shù)可以使用直角坐標系來定義,自然地,要想定義任意一個角三角函數(shù),便考慮放在直角坐標中進行合理進行定義了

  從而得到

  知識點一:任意一個角的三角函數(shù)的定義

  提醒學生思考:由于相似比相等,對于確定的角A ,這三個比值的大小和P點在角的終邊上的位置無關。

  精心設計例題,引出新內容深化概念,完善定義

  例1已知角A 的終邊經(jīng)過P(2,—3),求角A的三個三角函數(shù)值

 。ù祟}由學生自己分析獨立動手完成)

  例題變式1,已知角A 的大小是30度,由定義求角A的三個三角函數(shù)值

  結合變式我們發(fā)現(xiàn)三個三角函數(shù)值的大小與角的大小有關,只會隨角的大小而變化,符合當初函數(shù)的定義,而我們又一直稱呼為三角函數(shù),

  提出問題:這三個新的定義確實問是函數(shù)嗎?為什么?

  從而引出函數(shù)極其定義域

  由學生分析討論,得出結論

  知識點二:三個三角函數(shù)的定義域

  同時教師強調:由于弧度制使角和實數(shù)建立了一一對應關系,所以三角函數(shù)是以實數(shù)為自變量的函數(shù)

  例題變式2, 已知角A 的終邊經(jīng)過P(—2a,—3a)( a不為0),求角A的三個三角函數(shù)值

  解答中需要對變量的正負即角所在象限進行討論, 讓學生意識到三角函數(shù)值的正負與角所在象限有關,從而導出第三個知識點

  知識點三:三角函數(shù)值的正負與角所在象限的關系

  由學生推出結論,教師總結符號記憶方法,便于學生記憶

  例題2:已知A在第二象限且 sinA=0。2 求cosA,tanA

  求cosA,tanA

  綜合練習鞏固提高,更為下節(jié)的同角關系式打下基礎

  拓展,如果不限制A的象限呢,可以留作課外探討

  小結回顧課堂內容

  課堂作業(yè)和課外作業(yè)以加強知識的記憶和理解

  課堂作業(yè)P16 1,2,4

 。▽W生演板,后集體討論修訂答案同桌討論,由學生回答答案)

  課后分層作業(yè)(有利于全體學生的發(fā)展)

  必作P23 1(2),5(2),6(2)(4) 選作P23 3,4

  板書設計(見PPT)

高中數(shù)學說課稿2

  我擔任高職單招輔導班的數(shù)學科教學,可以說每節(jié)課都是復習課。今天,我說的是復習課這種課型。內容是《函數(shù)》這一章中的“反函數(shù)”這一節(jié)。

  一、教材分析:

  反函數(shù)這一節(jié)在《函數(shù)》這章中是一個難點,篇幅不多(課時少),在高考考綱中的要求也比較簡單。但我個人這樣認為,復習課應盡量把與本節(jié)內容相關的新舊知識系統(tǒng)地串在一起,所以在備課時要找一條能把知識點連在一起的線索。這線索就是函數(shù)的三要素:

  (一)教學目標:

  ①使學生掌握反函數(shù)的概念并能求出簡單函數(shù)的反函數(shù)(考綱要求)。

 、诨榉春瘮(shù)的兩個函數(shù)具有的性質,以及這些性質在解題中的運用。

  ③通過知識的系統(tǒng)性,培養(yǎng)學生的逆向思維能力和邏輯思維能力。

  (二)重點、難點:

 、僦攸c:使學生能求出簡單函數(shù)的反函數(shù)。

 、陔y點:反函數(shù)概念的理解。

  二、教學方法:

  整節(jié)課采用傳統(tǒng)的講解法。

  首先要認識反函數(shù)應先有函數(shù)的'概念這知識,用例子來說明反函數(shù)的求法以及讓學生來完成一題沒有反函數(shù)的函數(shù),從而得出一個不滿足函數(shù)定義的關系式,通過分析來得到一個函數(shù)具有反函數(shù)的條件。這里是用“欲擒故縱”的手法,加深對概念的理解,也是突破難點的關鍵。

  三、學生學習方法:

  學生認識了反函數(shù)的求法(步驟),在老師的引導下得出三個結論,并運用這些結論來解題。希望能達到提高學生性質的解題能力和思維能力的目標。

  四、教學過程:

  (一)溫故:函數(shù)的概念、三要素

  (二)新課:例1:求y=2x+1的反函數(shù)

  解:

  即(x∈R)

  注意步驟,新關系式滿足從R到R是一個函數(shù)關系式。

  互這反函數(shù)的特點:

 、龠\算互逆;②順序倒置

  例2:y=x2(x∈R)用y的代數(shù)表示x

  得x=這x不是y的函數(shù),不滿足函數(shù)定義

  若對,y=x2的定義域改為x≥0

  可得x=,即y=(x≥0)

  當逆對應滿足函數(shù)定義,原函數(shù)才存在反函數(shù)。

  得到結論①互為反函數(shù)的定義域、值域交換

  即

  分別在同一坐標上畫出以上互為反函數(shù)的圖象

  得到結論②圖象關于y=x對稱

 、蹎握{性一致

 。ㄈ┚毩

  1、求的反函數(shù),并求出反函數(shù)的值域。

  2、函數(shù)的圖象關于對稱,求a的值。

  講評:略。

 。ㄋ模┬〗Y:

 。ㄎ澹┎贾米鳂I(yè):

高中數(shù)學說課稿3

  各位老師:

  大家好!

  我叫***,來自**。我說課的題目是《古典概型》,內容選自于高中教材新課程人教A版必修3第三章第二節(jié),課時安排為兩個課時,本節(jié)課內容為第一課時。下面我將從教材分析、教學目標分析、教法與學法分析、教學過程分析四大方面來闡述我對這節(jié)課的分析和設計:

  一、教材分析

  1.教材所處的地位和作用

  古典概型是一種特殊的數(shù)學模型,也是一種最基本的概率模型,在概率論中占有相當重要的地位。它承接著前面學過的隨機事件的概率及其性質,又是以后學習條件概率的基礎,起到承前啟后的作用。

  2.教學的重點和難點

  重點:理解古典概型及其概率計算公式。

  難點:古典概型的判斷及把一些實際問題轉化成古典概型。

  二、教學目標分析

  1.知識與技能目標

  (1)通過試驗理解基本事件的概念和特點

  (2)在數(shù)學建模的過程中,抽離出古典概型的兩個基本特征,推導出古典概型下的概率的計算公式。

  2、過程與方法:

  經(jīng)歷公式的推導過程,體驗由特殊到一般的數(shù)學思想方法。

  3、情感態(tài)度與價值觀:

 。1)用具有現(xiàn)實意義的實例,激發(fā)學生的學習興趣,培養(yǎng)學生勇于探索,善于發(fā)現(xiàn)的創(chuàng)新思想。

  (2)讓學生掌握"理論來源于實踐,并把理論應用于實踐"的辨證思想。

  三、教法與學法分析

  1、教法分析:根據(jù)本節(jié)課的特點,采用引導發(fā)現(xiàn)和歸納概括相結合的教學方法,通過提出問題、思考問題、解決問題等教學過程,觀察對比、概括歸納古典概型的概念及其概率公式,再通過具體問題的提出和解決,來激發(fā)學生的學習興趣,調動學生的主體能動性,讓每一個學生充分地參與到學習活動中來。

  2、學法分析:學生在教師創(chuàng)設的問題情景中,通過觀察、類比、思考、探究、概括、歸納和動手嘗試相結合,體現(xiàn)了學生的主體地位,培養(yǎng)了學生由具體到抽象,由特殊到一般的數(shù)學思維能力,形成了實事求是的科學態(tài)度。

 、鍎(chuàng)設情景、引入新課

  在課前,教師布置任務,以小組為單位,完成下面兩個模擬試驗:

  試驗一:拋擲一枚質地均勻的硬幣,分別記錄"正面朝上"和"反面朝上"的次數(shù),要求每個數(shù)學小組至少完成20次(最好是整十數(shù)),最后由代表匯總;

  試驗二:拋擲一枚質地均勻的骰子,分別記錄"1點"、"2點"、"3點"、"4點"、"5點"和"6點"的次數(shù),要求每個數(shù)學小組至少完成60次(最好是整十數(shù)),最后由代表匯總。

  在課上,學生展示模擬試驗的操作方法和試驗結果,并與同學交流活動感受,教師最后匯總方法、結果和感受,并提出兩個問題。

  1.用模擬試驗的方法來求某一隨機事件的概率好不好?為什么?

  不好,要求出某一隨機事件的概率,需要進行大量的試驗,并且求出來的結果是頻率,而不是概率。

  2.根據(jù)以前的學習,上述兩個模擬試驗的每個結果之間都有什么特點?]

  「設計意圖」通過課前的模擬實驗,讓學生感受與他人合作的重要性,培養(yǎng)學生運用數(shù)學語言的能力。隨著新問題的提出,激發(fā)了學生的求知欲望,通過觀察對比,培養(yǎng)了學生發(fā)現(xiàn)問題的能力。

  ㈡思考交流、形成概念

  學生觀察對比得出兩個模擬試驗的相同點和不同點,教師給出基本事件的概念,并對相關特點加以說明,加深對新概念的理解。

  [基本事件有如下的兩個特點:

  (1)任何兩個基本事件是互斥的;

 。2)任何事件(除不可能事件)都可以表示成基本事件的和.]

  「設計意圖」讓學生從問題的相同點和不同點中找出研究對象的對立統(tǒng)一面,這能培養(yǎng)學生分析問題的能力,同時也教會學生運用對立統(tǒng)一的辯證唯物主義觀點來分析問題的一種方法。教師的注解可以使學生更好的把握問題的關鍵。

  例1從字母a、b、c、d中任意取出兩個不同字母的'試驗中,有哪些基本事件?

  先讓學生嘗試著列出所有的基本事件,教師再講解用樹狀圖列舉問題的優(yōu)點。

  「設計意圖」將數(shù)形結合和分類討論的思想滲透到具體問題中來。由于沒有學習排列組合,因此用列舉法列舉基本事件的個數(shù),不僅能讓學生直觀的感受到對象的總數(shù),而且還能使學生在列舉的時候作到不重不漏。解決了求古典概型中基本事件總數(shù)這一難點

  觀察對比,發(fā)現(xiàn)兩個模擬試驗和例1的共同特點:

  讓學生先觀察對比,找出兩個模擬試驗和例1的共同特點,再概括總結得到的結論,教師最后補充說明。

  [經(jīng)概括總結后得到:

  (1)試驗中所有可能出現(xiàn)的基本事件只有有限個;(有限性)

  (2)每個基本事件出現(xiàn)的可能性相等。(等可能性)

  我們將具有這兩個特點的概率模型稱為古典概率概型,簡稱古典概型。

  「設計意圖」培養(yǎng)運用從具體到抽象、從特殊到一般的辯證唯物主義觀點分析問題的能力,充分體現(xiàn)了數(shù)學的化歸思想。啟發(fā)誘導的同時,訓練了學生觀察和概括歸納的能力。通過列出相同和不同點,能讓學生很好的理解古典概型。

 、缬^察分析、推導方程

  問題思考:在古典概型下,基本事件出現(xiàn)的概率是多少?隨機事件出現(xiàn)的概率如何計算?

  教師提出問題,引導學生類比分析兩個模擬試驗和例1的概率,先通過用概率加法公式求出隨機事件的概率,再對比概率結果,發(fā)現(xiàn)其中的聯(lián)系,最后概括總結得出古典概型計算任何事件的概率計算公式:

  「設計意圖」鼓勵學生運用觀察類比和從具體到抽象、從特殊到一般的辯證唯物主義方法來分析問題,同時讓學生感受數(shù)學化歸思想的優(yōu)越性和這一做法的合理性,突出了古典概型的概率計算公式這一重點。

  提問:

 。1)在例1的實驗中,出現(xiàn)字母"d"的概率是多少?

 。2)在使用古典概型的概率公式時,應該注意什么?

  「設計意圖」教師提問,學生回答,深化對古典概型的概率計算公式的理解,也抓住了解決古典概型的概率計算的關鍵。

 、枥}分析、推廣應用

  例2單選題是標準化考試中常用的題型,一般是從A,B,c,D四個選項中選擇一個正確答案。如果考生掌握了考差的內容,他可以選擇唯一正確的答案。假設考生不會做,他隨機的選擇一個答案,問他答對的概率是多少?

  學生先思考再回答,教師對學生沒有注意到的關鍵點加以說明。

  「設計意圖」讓學生明確決概率的計算問題的關鍵是:先要判斷該概率模型是不是古典概型,再要找出隨機事件A包含的基本事件的個數(shù)和試驗中基本事件的總數(shù)。鞏固學生對已學知識的掌握。

  例3同時擲兩個骰子,計算:

 。1)一共有多少種不同的結果?

  (2)其中向上的點數(shù)之和是5的結果有多少種?

 。3)向上的點數(shù)之和是5的概率是多少?

  先給出問題,再讓學生完成,然后引導學生分析問題,發(fā)現(xiàn)解答中存在的問題。引導學生用列表來列舉試驗中的基本事件的總數(shù)。

  「設計意圖」利用列表數(shù)形結合和分類討論,既能形象直觀地列出基本事件的總數(shù),又能做到列舉的不重不漏。深化鞏固對古典概型及其概率計算公式的理解。培養(yǎng)學生運用數(shù)形結合的思想,提高發(fā)現(xiàn)問題、分析問題、解決問題的能力,增強學生數(shù)學思維情趣,形成學習數(shù)學知識的積極態(tài)度。

  ㈤探究思想、鞏固深化

  問題思考:為什么要把兩個骰子標上記號?如果不標記號會出現(xiàn)什么情況?你能解釋其中的原因嗎?

  要求學生觀察對比兩種結果,找出問題產生的原因。

  「設計意圖」通過觀察對比,發(fā)現(xiàn)兩種結果不同的根本原因是--研究的問題是否滿足古典概型,從而再次突出了古典概型這一教學重點,體現(xiàn)了學生的主體地位,逐漸養(yǎng)成自主探究能力。

 、昕偨Y概括、加深理解

  1.基本事件的特點

  2.古典概型的特點

  3.古典概型的概率計算公式

  學生小結歸納,不足的地方老師補充說明。

  「設計意圖」使學生對本節(jié)課的知識有一個系統(tǒng)全面的認識,并把學過的相關知識有機地串聯(lián)起來,便于記憶和應用,也進一步升華了這節(jié)課所要表達的本質思想,讓學生的認知更上一層。

 、氩贾米鳂I(yè)

  課本練習1、2、3

  「設計意圖」進一步讓學生掌握古典概型及其概率公式,并能夠學以致用,加深對本節(jié)課的理解。

高中數(shù)學說課稿4

  尊敬的各位考官,大家好,我是今天的X號考生,今天我說課的題目是《向量減法運算及其幾何意義》。

  下面開始我的說課。

  一、說教材

  首先談談我對教材的理解!断蛄繙p法運算及其幾何意義》是人教A版實驗版高中數(shù)學必修4的內容。本節(jié)課主要學習向量減法運算的定義及幾何意義。本節(jié)課的學習建立在學生已經(jīng)掌握平面向量的基本概念以及向量加法運算的基礎之上。向量減法的學習是運算認識的一次飛躍,本節(jié)課的知識在整個章節(jié)中也起到了承上啟下的'重要作用。

  二、說學情

  接下來談談學生的實際情況。新課標指出學生是教學的主體,所以要成為符合新課標要求的教師,深入了解所面對的學生可以說是必修課。這一階段的學生思維較為活躍,求知欲也較強,但是未形成良好的思維習慣。

  三、說教學目標

  根據(jù)以上對教材的分析以及對學情的把握,我制定了如下三維教學目標:

  (一)知識與技能

  借助向量加法運算及相反向量的概念,理解向量減法運算的定義和幾何意義。

 。ǘ┻^程與方法

  通過將向量減法運算轉化為向量加法運算的計算過程,體會向量加、減法的內在聯(lián)系,滲透轉化的數(shù)學思想。

  (三)情感、態(tài)度與價值觀

  在探究向量減法運算定義及幾何意義的過程中,養(yǎng)成良好的學習習慣和嚴謹?shù)乃季S方式。

  四、說教學重難點

  根據(jù)授課內容可以確定本節(jié)課的教學重點是向量減法運算的定義及幾何意義,教學難點是向量減法幾何意義的理解。

  五、說教法和學法

  結合本節(jié)課的內容特點和學生的年齡特征,本節(jié)課我采用講授法、練習法的教法,觀察、分析、歸納概括探索知識的學法來進行教學。

  六、說教學過程

  下面我將重點談談我對教學過程的設計。

  (一)導入新課

  首先是導入環(huán)節(jié)。先回憶上節(jié)課學習的向量加法運算法則,再回憶實數(shù)運算中,減去一個數(shù)相當于什么?通過提問:向量的減法是否也有類似的法則?引出本節(jié)課的內容《向量減法運算及其幾何意義》。

  通過相關概念的復習和向量加法運算法則的鞏固,為后續(xù)向量減法運算的教學奠定理論基礎。

高中數(shù)學說課稿5

  一、教材分析

  (一)教材的地位和作用

  “一元二次不等式解法”既是初中一元一次不等式解法在知識上的延伸和發(fā)展,又是本章集合知識的運用與鞏固,也為下一章函數(shù)的定義域和值域教學作鋪墊,起著鏈條的作用。同時,這部分內容較好地反映了方程、不等式、函數(shù)知識的內在聯(lián)系和相互轉化,蘊含著歸納、轉化、數(shù)形結合等豐富的數(shù)學思想方法,能較好地培養(yǎng)學生的觀察能力、概括能力、探究能力及創(chuàng)新意識。

  (二)教學內容

  本節(jié)內容分2課時學習。本課時通過二次函數(shù)的圖象探索一元二次不等式的解集。通過復習“三個一次”的關系,即一次函數(shù)與一元一次方程、一元一次不等式的關系;以舊帶新尋找“三個二次”的關系,即二次函數(shù)與一元二次方程、一元二次不等式的關系;采用“畫、看、說、用”的思維模式,得出一元二次不等式的解集,品味數(shù)學中的和諧美,體驗成功的樂趣。

  二、教學目標分析

  根據(jù)教學大綱的要求、本節(jié)教材的特點和高一學生的認知規(guī)律,本節(jié)課的教學目標確定為:

  知識目標——理解“三個二次”的關系;掌握看圖象找解集的方法,熟悉一元二次不等式的解法。

  能力目標——通過看圖象找解集,培養(yǎng)學生“從形到數(shù)”的轉化能力,“從具體到抽象”、“從特殊到一般”的歸納概括能力。

  情感目標——創(chuàng)設問題情景,激發(fā)學生觀察、分析、探求的學習激情、強化學生參與意識及主體作用。

  三、重難點分析

  一元二次不等式是高中數(shù)學中最基本的不等式之一,是解決許多數(shù)學問題的重要工具。本節(jié)課的重點確定為:一元二次不等式的解法。

  要把握這個重點。關鍵在于理解并掌握利用二次函數(shù)的圖象確定一元二次不等式解集的方法——圖象法,其本質就是要能利用數(shù)形結合的思想方法認識方程的解,不等式的解集與函數(shù)圖象上對應點的橫坐標的內在聯(lián)系。由于初中沒有專門研究過這類問題,高一學生比較陌生,要真正掌握有一定的難度。因此,本節(jié)課的難點確定為:“三個二次”的關系。要突破這個難點,讓學生歸納“三個一次”的關系作鋪墊。

  四、教法與學法分析

  (一)學法指導

  教學矛盾的主要方面是學生的學。學是中心,會學是目的。因此在教學中要不斷指導學生學會學習。本節(jié)課主要是教給學生“動手畫、動眼看、動腦想、動口說、善提煉、勤鉆研”的研討式學習方法,這樣做增加了學生自主參與,合作交流的機會,教給了學生獲取知識的途徑、思考問題的方法,使學生真正成了教學的主體;只有這樣做,才能使學生“學”有新“思”,“思”有新“得”,“練”有新“獲”,學生也才會逐步感受到數(shù)學的美,會產生一種成功感,從而提高學生學習數(shù)學的興趣;也只有這樣做,課堂教學才富有時代特色,才能適應素質教育下培養(yǎng)“創(chuàng)新型”人才的需要。

  (二)教法分析

  本節(jié)課設計的.指導思想是:現(xiàn)代認知心理學——建構主義學習理論。

  建構主義學習理論認為:應把學習看成是學生主動的建構活動,學生應與一定的知識背景即情景相聯(lián)系,在實際情景下進行學習,可以使學生利用已有知識與經(jīng)驗同化和索引出當前要學習的新知識,這樣獲取的知識,不但便于保持,而且易于遷移到陌生的問題情景中。

  本節(jié)課采用“誘思引探教學法”。把問題作為出發(fā)點,指導學生“畫、看、說、用”。較好地探求一元二次不等式的解法。

  五、課堂設計

  本節(jié)課的教學設計充分體現(xiàn)以學生發(fā)展為本,培養(yǎng)學生的觀察、概括和探究能力,遵循學生的認知規(guī)律,體現(xiàn)理論聯(lián)系實際、循序漸進和因材施教的教學原則,通過問題情境的創(chuàng)設,激發(fā)興趣,使學生在問題解決的探索過程中,由學會走向會學,由被動答題走向主動探究。

  (一)創(chuàng)設情景,引出“三個一次”的關系

  本節(jié)課開始,先讓學生解一元二次方程x2-x-6=0,如果我把“=”改成“>”則變成一元二次不等式x2-x-6>0讓學生解,學生肯定感到很突然。但是“思維往往是從驚奇和疑問開始”,這樣直奔主題,目的在于構造懸念,激活學生的思維興趣。

  為此,我設計了以下幾個問題:

  1、請同學們解以下方程和不等式:

 、2x-7=0;②2x-7>0;③2x-7<0

  學生回答,我板書

高中數(shù)學說課稿6

尊敬的各位評委、老師們:

  大家好!

  今天我說課的內容是《函數(shù)的概念》,選自人教版高中數(shù)學必修一第一章第二節(jié)。下面介紹我對本節(jié)課的設計和構思,請您多提寶貴意見。

  我的說課有以下六個部分:

  一、背景分析

  1、學習任務分析

  本節(jié)課是必修1第1章第2節(jié)的內容,是函數(shù)這一章的起始課,它上承集合,下引性質,與方程、不等式、數(shù)列、三角函數(shù)、解析幾何、導數(shù)等內容聯(lián)系密切,是學好后繼知識的基礎和工具,所以本節(jié)課在數(shù)學教學中的地位和作用是至關重要的。

  2、學情分析

  學生在初中已經(jīng)學習了函數(shù)的概念,初步具備了學習函數(shù)概念的基本能力,但函數(shù)的概念從初中的變量學說到高中階段的對應說很抽象,不易理解。

  另外,通過對集合的學習,學生基本適應了有效教學的課堂模式,初步具備了小組合作、自主探究的學習能力。

  基于以上的分析,我認為本節(jié)課的教學重點為:函數(shù)的概念以及構成函數(shù)的三要素;

  教學難點為:函數(shù)概念的形成及理解。

  二、教學目標設計

  根據(jù)《課程標準》對本節(jié)課的學習要求,結合本班學生的情況,故而確立本節(jié)課的教學目標。

  1、知識與技能(方面)

  通過豐富的實例,讓學生

 、倭私夂瘮(shù)是非空數(shù)集到非空數(shù)集的一個對應;

 、诹私鈽嫵珊瘮(shù)的三要素;

 、劾斫夂瘮(shù)概念的本質;

 、芾斫鈌(x)與f(a)(a為常數(shù))的區(qū)別與聯(lián)系;

 、輹笠恍┖唵魏瘮(shù)的定義域。

  2、過程與方法(方面)

  在教學過程中,結合生活中的實例,通過師生互動、生生互動培養(yǎng)學生分析推理、歸納總結和表達問題的能力,在函數(shù)概念的構建過程中體會類比、歸納、猜想等數(shù)學思想方法。

  3、情感、態(tài)度與價值觀(方面)

  讓學生充分體驗函數(shù)概念的形成過程,參與函數(shù)定義域的求解過程以及函數(shù)的求值過程,使學生感受到數(shù)學的抽象美與簡潔美。

  三、課堂結構設計

  為充分調動學生的學習積極性,變被動學習為主動愉快的探究,我使用有效教學的課堂模式,課前學生通過結構化預習,完成問題生成單,課中采用師生互動、小組討論、學生展寫、展講例題,教師點評的方式完成問題解決單,課后完成問題拓展單,課堂結構包含:

  復習舊知,引出課題(約2分鐘)創(chuàng)設情境,形成概念(約5分鐘)剖析概念(約12分鐘)例題分析,鞏固知識——小組討論,展寫例題(約8分鐘)小組展講,教師點評(約10分鐘)總結反思,知識升華(約2分鐘)(最后)布置作業(yè),拓展練習。

  四、教學媒體設計

  教學中利用投影與黑板相結合的形式,利用投影直觀、生動地展示實例,并能增加課堂容量;利用黑板列舉本節(jié)重要內容,使學生對所學內容有一整體認識,并讓學生利用黑板展寫、展講例題,有問題及時發(fā)現(xiàn)及時解決。

  五、教學過程設計

  本節(jié)課圍繞問題的解決與重難點的突破,設計了下面的教學過程。

  整個教學過程按四個環(huán)節(jié)展開:

  首先,在第一環(huán)節(jié)——復習舊知,引出課題,先由兩個問題導入新課

 、俪踔袝r函數(shù)是如何定義的?

 、趛=1是函數(shù)嗎?

  [設計意圖]:學生通過對這兩個問題的思考與討論,發(fā)現(xiàn)利用初中的定義很難回答第②個問題,從而激起他們的好奇心:高中階段的函數(shù)概念會是什么?激發(fā)他們學習本節(jié)課的強烈愿望和情感,使他們處于積極主動的探究狀態(tài),大大提高了課堂效率。

  從學生的心理狀態(tài)與認知規(guī)律出發(fā),教學過程自然過渡到第二個環(huán)節(jié)——函數(shù)概念的形成。

  由于高中階段的函數(shù)概念本身比較抽象,看不見也摸不著,不易直接給出,因此在本環(huán)節(jié)中,我主要通過學生能看見能感知的生活中的3個實例出發(fā),由具體到抽象,由特殊到一般,一步步歸納形成函數(shù)的概念,此過程我稱之為“創(chuàng)設情境,形成概念”。

  對于這3個實例,我分別預設一個問題讓學生思考與體會。

  問題1:從炮彈發(fā)射到落地的0-26s時間內,集合A是否存在某一時間t,在B中沒有高度h與之對應?是否有兩個或多個高度與之相對應?

  問題2:從1979—20xx年,集合A是否存在某一時間t,在B中沒有面積S與之對應?是否有兩個或多個面積與它相對應嗎?

  問題3:從1991—20xx年間,集合A中是否存在某一時間t,在B中沒恩格爾系數(shù)與之對應?是否會有兩個或多個恩格爾系數(shù)與對應?

  [設計意圖]:通過循序漸進地提問,變教為誘,以誘達思,引導學生根據(jù)問題總結3個實例的各自特點,并綜合各自特點,歸納它們的公共特征,著重向學生滲透集合與對應的觀點,這樣,再讓學生經(jīng)歷由具體到抽象的概括過程,用集合、對應的語言來描述函數(shù)時就顯得水到渠成,難點得以突破。

  函數(shù)的概念既已形成,本節(jié)課自然進入了第3個環(huán)節(jié)——剖析概念,理解概念。

  函數(shù)概念的理解是本節(jié)課的重點也是難點,概念本身比較抽象,學生在理解上可能把握不準確,所以我分兩個步驟來進行剖析,由具體到抽象,螺旋上升。

  首先,在學生熟讀熟背函數(shù)概念的基礎上,我設計一個學生活動,讓學生充分參與,在參與中體會學習的快樂。

  我利用多媒體制作一個表格,請學號為01—05的同學填寫自己上次的數(shù)學考試成績,并提出3個問題:

  問題1:若學號構成集合A,成績構成集合B,對應關系f:上次數(shù)學考試成績,那么由A到B能否構成函數(shù)?

  問題2:若將問題1中“學號”改為“01—05的學生”,其余不變,那么由A到B能否構成函數(shù)?

  問題3:若學號04的學生上次考試因病缺考,無成績,那么對問題1學號與成績能否構成函數(shù)?

  [設計意圖]:通過層層提問,層層回答,讓學生對概念中關鍵詞的'把握更為準確,對函數(shù)概念的理解更為具體,為總結歸納函數(shù)概念的本質特征打下基礎。

  其次,我通過幻燈片的形式展示幾組數(shù)集的對應關系,讓學生分析討論哪些對應關系能構成函數(shù),在學生深刻認識到函數(shù)是非空數(shù)集到非空數(shù)集的一對一或多對一的對應關系,并能準確把握概念中的關鍵詞后,再著重強強在這兩種對應關系中,何為定義域,何為值域,值域和集合B有什么關系,強調函數(shù)的三要素,得出兩函數(shù)相等的條件。

  至此,本節(jié)課的第三個環(huán)節(jié)已經(jīng)完成,對于區(qū)間的概念,學生通過預習能夠理解課堂上不再多講,僅在多媒體上進行展示,但會在后面例題的使用中指出注意事項。

  在本節(jié)課的第四個環(huán)節(jié)——例題分析中,我重點以例題的形式考查函數(shù)的有關概念問題,簡單函數(shù)的定義域問題以及函數(shù)的求值問題,至于分段函數(shù)、復合函數(shù)的求值及定義域問題,將在下節(jié)課予以解決,本環(huán)節(jié)主要通過學生討論、展寫、展講、學生互評、教師點評的方式完成知識的鞏固,讓學生成為課堂的主人。

  最后,通過

  ——總結點評,完善知識體系

  ——課堂練習,鞏固知識掌握

  ——布置作業(yè),沉淀教學成果

  六、教學評價設計

  教學是動態(tài)生成的過程,課堂上必然會有難以預料的事情發(fā)生,具體的教學過程還應根據(jù)實際情況加以調整。

  最后,引用赫爾巴特的一句名言結束我的說課,那就是“發(fā)揮我們教師的創(chuàng)造性,使教育過程成為一種藝術的事業(yè),使我們不聰明的孩子變的聰明,使我們聰明的孩子變的更聰明”。

  謝謝大家!

高中數(shù)學說課稿7

  高三第一階段復習,也稱“知識篇”。在這一階段,學生重溫高一、高二所學課程,全面復習鞏固各個知識點,熟練掌握基本方法和技能;然后站在全局的高度,對學過的知識產生全新認識。在高一、高二時,是以知識點為主線索,依次傳授講解的,由于后面的相關知識還沒有學到,不能進行縱向聯(lián)系,所以,學的知識往往是零碎和散亂,而在第一輪復習時,以章節(jié)為單位,將那些零碎的、散亂的知識點串聯(lián)起來,并將他們系統(tǒng)化、綜合化,把各個知識點融會貫通。對于普通高中的學生,第一輪復習更為重要,我們希望能做高考試題中一些基礎題目,必須側重基礎,加強復習的針對性,講求實效。

  一、內容分析說明

  1、本小節(jié)內容是初中學習的多項式乘法的繼續(xù),它所研究的二項式的乘方的展開式,與數(shù)學的其他部分有密切的聯(lián)系:

 。1)二項展開式與多項式乘法有聯(lián)系,本小節(jié)復習可對多項式的變形起到復習深化作用。

 。2)二項式定理與概率理論中的二項分布有內在聯(lián)系,利用二項式定理可得到一些組合數(shù)的恒等式,因此,本小節(jié)復習可加深知識間縱橫聯(lián)系,形成知識網(wǎng)絡。

 。3)二項式定理是解決某些整除性、近似計算等問題的一種方法。

  2、高考中二項式定理的試題幾乎年年有,多數(shù)試題的難度與課本習題相當,是容易題和中等難度的

  試題,考察的題型穩(wěn)定,通常以選擇題或填空題出現(xiàn),有時也與應用題結合在一起求某些數(shù)、式的

  近似值。

  二、學校情況與學生分析

 。1)我校是一所鎮(zhèn)普通高中,學生的基礎不好,記憶力較差,反應速度慢,普遍感到數(shù)學難學。但大部分學生想考大學,主觀上有學好數(shù)學的愿望。

 。2)授課班是政治、地理班,學生聽課積極性不高,聽課率低(60﹪),注意力不能持久,不能連續(xù)從事某項數(shù)學活動。課堂上喜歡輕松詼諧的氣氛,大部分能機械的模仿,部分學生好記筆記。

  三、教學目標

  復習課二項式定理計劃安排兩個課時,本課是第一課時,主要復習二項展開式和通項。根據(jù)歷年高考對這部分的考查情況,結合學生的特點,設定如下教學目標:

  1、知識目標:(1)理解并掌握二項式定理,從項數(shù)、指數(shù)、系數(shù)、通項幾個特征熟記它的展開式。

 。2)會運用展開式的通項公式求展開式的特定項。

  2、能力目標:(1)教給學生怎樣記憶數(shù)學公式,如何提高記憶的持久性和準確性,從而優(yōu)化記憶品質。記憶力是一般數(shù)學能力,是其它能力的基礎。

 。2)樹立由一般到特殊的解決問題的意識,了解解決問題時運用的數(shù)學思想方法。

  3、情感目標:通過對二項式定理的復習,使學生感覺到能掌握數(shù)學的部分內容,樹立學好數(shù)學的信心。有意識地讓學生演練一些歷年高考試題,使學生體驗到成功,在明年的高考中,他們也能得分。

  四、教學過程

  1、知識歸納

  (1)創(chuàng)設情景:

  ①同學們,還記得嗎? 、 展開式是什么?

 、趯W生一起回憶、老師板書。

  設計意圖:

  ①提出比較容易的問題,吸引學生的注意力,組織教學。

  ②為學生能回憶起二項式定理作鋪墊:激活記憶,引起聯(lián)想。

 。2)二項式定理:①設問 展開式是什么?待學生思考后,老師板書

  = C an+C an-1b1+…+C an-rbr+…+C bn(n∈N__)

 、诶蠋熞髮W生說出二項展開式的特征并熟記公式:共有 項;各項里a的指數(shù)從n起依次減小1,直到0為止;b的指數(shù)從0起依次增加1,直到n為止。每一項里a、b的指數(shù)和均為n。

 、垤柟叹毩 填空

  設計意圖:

 、俳探o學生記憶的方法,比較分析公式的特點,記規(guī)律。

 、谧冇霉剑煜す。

 。3) 展開式中各項的系數(shù)C , C , C ,… , 稱為二項式系數(shù).

  展開式的通項公式Tr+1=C an-rbr , 其中r= 0,1,2,…n表示展開式中第r+1項.

  2、例題講解

  例1求 的展開式的第4項的二項式系數(shù),并求的第4項的系數(shù)。

  講解過程

  設問:這里 ,要求的第4項的有關系數(shù),如何解決?

  學生思考計算,回答問題;

  老師指明

 、佼旐棓(shù)是4時, ,此時 ,所以第4項的二項式系數(shù)是 ,②第4項的系數(shù)與的第4項的二項式系數(shù)區(qū)別。

  板書

  解:展開式的第4項

  所以第4項的系數(shù)為 ,二項式系數(shù)為 。

  選題意圖:

 、倮猛椆角箜椀南禂(shù)和二項式系數(shù);

 、趶土曋笖(shù)冪運算。

  例2 求 的展開式中不含的 項。

  講解過程

  設問:

  ①不含的 項是什么樣的項?即這一項具有什么性質?

 、趩栴}轉化為第幾項是常數(shù)項,誰能看出哪一項是常數(shù)項?

  師生討論 “看不出哪一項是常數(shù)項,怎么辦?”

  共同探討思路:利用通項公式,列出項數(shù)的方程,求出項數(shù)。

  老師總結思路:先設第 項為不含 的項,得 ,利用這一項的指數(shù)是零,得到關于 的方程,解出 后,代回通項公式,便可得到常數(shù)項。

  板書

  解:設展開式的第 項為不含 項,那么

  令 ,解得 ,所以展開式的第9項是不含的 項。

  因此 。

  選題意圖:

 、凫柟踢\用展開式的通項公式求展開式的特定項,形成基本技能。

  ②判斷第幾項是常數(shù)項運用方程的思想;找到這一項的項數(shù)后,實現(xiàn)了轉化,體現(xiàn)轉化的數(shù)學思想。

  例3求 的展開式中, 的系數(shù)。

  解題思路:原式局部展開后,利用加法原理,可得到展開式中的 系數(shù)。

  板書

  解:由于 ,則 的展開式中 的系數(shù)為 的展開式中 的系數(shù)之和。

  而 的展開式含 的項分別是第5項、第4項和第3項,則 的展開式中 的系數(shù)分別是: 。

  所以 的展開式中 的系數(shù)為

  例4 如果在( + )n的展開式中,前三項系數(shù)成等差數(shù)列,求展開式中的有理項.

  解:展開式中前三項的系數(shù)分別為1, , ,由題意得2× =1+ ,得n=8.

  設第r+1項為有理項,T =C · ·x ,則r是4的'倍數(shù),所以r=0,4,8.

  有理項為T1=x4,T5= x,T9= .

  3、課堂練習

  1.(20__年江蘇,7)(2x+ )4的展開式中x3的系數(shù)是

  A.6B.12 C.24 D.48

  解析:(2x+ )4=x2(1+2 )4,在(1+2 )4中,x的系數(shù)為C ·22=24.

  答案:C

  2.(20__年全國Ⅰ,5)(2x3- )7的展開式中常數(shù)項是

  A.14 B.14 C.42 D.-42

  解析:設(2x3- )7的展開式中的第r+1項是T =C (2x3) (- )r=C 2 ·

  (-1)r·x ,當- +3(7-r)=0,即r=6時,它為常數(shù)項,∴C (-1)6·21=14.

  答案:A

  3.(20__年湖北,文14)已知(x +x )n的展開式中各項系數(shù)的和是128,則展開式中x5的系數(shù)是_____________.(以數(shù)字作答)

  解析:∵(x +x )n的展開式中各項系數(shù)和為128,∴令x=1,即得所有項系數(shù)和為2n=128.

  ∴n=7.設該二項展開式中的r+1項為T =C (x ) ·(x )r=C ·x ,令 =5即r=3時,x5項的系數(shù)為C =35.

  答案:35

  五、課堂教學設計說明

  1、這是一堂復習課,通過對例題的研究、討論,鞏固二項式定理通項公式,加深對項的系數(shù)、項的二項式系數(shù)等有關概念的理解和認識,形成求二項式展開式某些指定項的基本技能,同時,要培養(yǎng)學生的運算能力,邏輯思維能力,強化方程的思想和轉化的思想。

  2、在例題的選配上,我設計了一定梯度。第一層次是給出二項式,求指定的項,即項數(shù)已知,只需直接代入通項公式即可(例1);第二層次(例2)則需要自己創(chuàng)造代入的條件,先判斷哪一項為所求,即先求項數(shù),利用通項公式中指數(shù)的關系求出,此后轉化為第一層次的問題。第三層次突出數(shù)學思想的滲透,例3需要變形才能求某一項的系數(shù),恒等變形是實現(xiàn)轉化的手段。在求每個局部展開式的某項系數(shù)時,又有分類討論思想的指導。而例4的設計是想增加題目的綜合性,求的n過程中,運用等差數(shù)列、組合數(shù)n等知識,求出后,有化歸為前面的問題。

  六、個人見解

高中數(shù)學說課稿8

  一、教材分析:

  1、教材的地位與作用。

  本節(jié)資料是在學生學習了"事件的可能性的基礎上來學習如何預測不確定事件(隨機事件)發(fā)生的可能性的大小。"用概率預測隨機發(fā)生的可能性大小,在日常生活、自然、科技領域有著廣泛的應用,學習本單元知識,無論是今后繼續(xù)深造(高中學習概率的乘法定理)還是參加社會實踐活動都是十分必要的。概率的概念比較抽象,概率的定義學生較難理解。

  在教材的處理上,采取小單元教學,本節(jié)課安排讓學生了解求隨機事件概率的兩種方法,目的是讓學生能夠比較系統(tǒng)地理解概率的意義及求概率的方法,為下頭學習求比較復雜的情景的概率打下基礎。

  2、重點與難點。

  重點:對概率意義的理解,經(jīng)過多次重復實驗,用頻率預測概率的方法,以及用列舉法求概率的方法。

  難點:對概率意義的理解和用列舉法求概率過程中在各種可能性相同條件下某一事件可能發(fā)生的總數(shù)及總的結果數(shù)的分析。

  二、目的分析:

  知識與技能:掌握用頻率預測概率和用列舉法求概率方法。

  過程與方法:組織學生自主探究,合作交流,引導學生觀察試驗和統(tǒng)計的結果,進而進行分析、歸納、總結,了解并感受概率的定義的過程,引導學生從數(shù)學的視角觀察客觀世界,用數(shù)學的思維思考客觀世界,以數(shù)學的語言描述客觀世界。

  情感態(tài)度價值觀:學生經(jīng)歷觀察、分析、歸納、確認等數(shù)學活動,感受數(shù)學活動充滿了探索性與創(chuàng)造性,感受量變與質變的對立統(tǒng)一規(guī)律,同時為概率的精準、新穎、獨特的思維方法所震撼,激發(fā)學生學習數(shù)學的熱情,增強對數(shù)學價值觀的認識。

  三、教法、學法分析:

  引導學生自主探究、合作交流、觀察分析、歸納總結,讓學生經(jīng)歷知識(概率定義計算公式)的產生和發(fā)展過程,讓學生在數(shù)學活動中學習數(shù)學、掌握數(shù)學,并能應用數(shù)學解決現(xiàn)實生活中的'實際問題,教師是學生學習的組織者、合作者和指導者,精心設計教學情境,有序組織學生活動,讓課堂充滿生機活力,體現(xiàn)"教"為"學"服務這一宗旨。

  四、教學過程分析:

  1、引導學生探究

  精心設計問題一,學生經(jīng)過對問題一的探究,一方面復習前面學過的"確定事件和不確定事件"的知識,為學好本節(jié)資料理清知識障礙,二是讓學生明確為什么要學習概率(如何預測隨機事件可能性發(fā)生大。。引導學生對問題二的探究與觀察實驗數(shù)據(jù),使學生了解概率這一重要概念的實際背景,感受并相信隨機事件的發(fā)生中存在著統(tǒng)計規(guī)律性,感受數(shù)學規(guī)律的真實的發(fā)現(xiàn)過程。

  2、歸納概括

  學生從試驗中得到的統(tǒng)計數(shù)字及概率呈現(xiàn)穩(wěn)定在某一數(shù)值附近這一規(guī)律,讓學生明確概率定義的由來。

  引導學生重新對問題一和問題二的探究,分析某事件發(fā)生的各種可能性在全部可能發(fā)生結果中所占比例,得到用列舉法求概率的公式,引導學生進行理性思維,邏輯分析,既培養(yǎng)學生的分析問題本事,又讓學生明確用列舉法求概率這一簡便快捷方法的合理性。

  3、舉例應用

 、乓龑W生對教材書例題、問題一、問題二中問題的進一步分析與探究,讓學生掌握用列舉法求概率的方法。

 、埔龑W生對練習中的問題思考與探究,鞏固對概率公式的應用及加深對概率意義的理解。

  4、深化發(fā)展

  ⑴設置3個小題目,引導學生歸納、分析、總結,加深對知識與方法的理解,并學會靈活運用。

 、谱寣W生設計活動資料,對知識進行升華和拓展,引導學生創(chuàng)造性地運用知識思考問題和解決問題,從而培養(yǎng)學生的創(chuàng)新意識和創(chuàng)新本事。

高中數(shù)學說課稿9

  尊敬的各位評委、各位老師大家好!我說課的題目是《直線的點斜式方程》,選自人民教育出版社普通高中課程標準試驗教科書數(shù)學必修2(A版),是第三章直線與方程中的第2節(jié)的第一課時3.2.1直線的點斜式方程的內容。下面我將從教學背景、教學方法、教學過程及教學特點等四個方面具體說明。

  一、教學背景的分析

  1.教材分析

  直線的方程是學生在初中學習了一次函數(shù)的概念和圖象及高中學習了直線的斜率后進行研究的。直線的方程屬于解析幾何學的基礎知識,是研究解析幾何學的開始,對后續(xù)研究兩條直線的位置關系、圓的方程、直線與圓的位置關系、圓錐曲線等內容,無論在知識上還是方法上都是地位顯要,作用非同尋常,是本章的重點內容之一!爸本的點斜式方程”可以說是直線的方程的形式中最重要、最基本的形式,在此花多大的時間和精力都不為過。直線作為常見的最簡單的曲線,在實際生活和生產實踐中有著廣泛的應用。同時在這一節(jié)中利用坐標法來研究曲線的數(shù)形結合、幾何直觀等數(shù)學思想將貫穿于我們整個高中數(shù)學教學。

  2.學情分析

  我校的生源較差,學生的基礎和學習習慣都有待加強。又由于剛開始學習解析幾何,第一次用坐標法來求曲線的方程,在學習過程中,會出現(xiàn)“數(shù)”與“形”相互轉化的困難。另外我校學生在探究問題的能力,合作交流的意識等方面更有待加強。

  根據(jù)上述教材分析,考慮到學生已有的認知結構和心理特征,我制定如下教學目標:

  3.教學目標

  (1)了解直線的方程的概念和直線的點斜式方程的推導過程及方法;

  (2)明確點斜式、斜截式方程的形式特點和適用范圍;初步學會準確地使用直線的點斜式、斜截式方程 ;

  (3)從實例入手,通過類比、推廣、特殊化等,使學生體會從特殊到一般再到特殊的認知規(guī)律;

  (4)提倡學生用舊知識解決新問題,通過體會直線的斜截式方程與一次函數(shù)的關系等活動,培養(yǎng)學生主動探究知識、合作交流的意識,并初步了解數(shù)形結合在解析幾何中的'應用。

  4. 教學重點與難點

  (1)重點: 直線點斜式、斜截式方程的特點及其初步應用。

  (2)難點:直線的方程的概念,點斜式方程的推導及點斜式、斜截式方程的應用。

  二、教法學法分析

  1.教法分析:根據(jù)學情,為了能調動學生學習的積極性,本節(jié)課采用“實例引導的啟發(fā)式”問題教學法。幫助學生將幾何問題代數(shù)化,用代數(shù)的語言描述直線的幾何要素及其關系,進而將直線的問題轉化為直線方程的問題,通過對直線的方程的研究,最終解決有關直線的一些簡單的問題。另外可以恰當?shù)睦枚嗝襟w課件進行輔助教學,激發(fā)學生的學習興趣。

  2.學法分析:學生從問題中嘗試、總結、質疑、運用,體會學習數(shù)學的樂趣;通過推導直線的點斜式方程的學習,要了解用坐標法求方程的思想;通過一個點和方向可以確定一條直線,進而可求出直線的點斜式方程,要能體會“形”與“數(shù)”的轉化思想。

  下面我就對具體的教學過程和設計加以說明:

  三、教學過程的設計及實施

  整個教學過程是由六個問題組成,共分為四個環(huán)節(jié),學習或涉及四個概念:

  溫故知新,澄清概念----直線的方程

  深入探究,獲得新知--------點斜式

  拓展知識,再獲新知--------斜截式

  小結引申,思維延續(xù)--------兩點式

  平面上的點可以用坐標表示,直線的傾斜程度可以用斜率表示,那么平面上的直線如何表示呢?這就是本節(jié)要學習的內容。

  (一)溫故知新,澄清概念----直線的方程

  問題一:畫出一次函數(shù)y=2x+1的圖象;y=2x+1是一個方程嗎?若是,那么方程的解與圖象上的點的坐標有何關系?

  [學生活動] 通過動手畫圖,思考并嘗試用語言進行初步的表述。

  [教師活動] 對于不同學生的表述進行分析、歸納,用規(guī)范的語言對方程和直線的方程進行描述。

  [設計意圖]從學生熟知的舊知識出發(fā)澄清直線的方程的概念,試圖做到“用學生已有的數(shù)學知識去學數(shù)學”,從而突破難點。通過對這個問題的研究,一方面認識到以方程的解為坐標的點在直線上,另一方面認識到直線上的點的坐標滿足方程;從而使同學意識到直線可以由直線上任意一點P(x,y)的坐標x和y之間的等量關系來表示。

  問題二:若直線經(jīng)過點A(-1, 3),斜率為-2,點P在直線l上。

  (1) 若點P在直線l上從A點開始運動,橫坐標增加1時,點P的坐標是 ;

  (2)畫出直線l,你能求出直線l的方程嗎?

  (3)若點P在直線l上運動,設P點的坐標為(x,y),你會有什么方法找到x,y滿足的關系式?

  [學生活動]學生獨立思考5分鐘,必要的話可進行分組討論、合作交流。

  [教師活動]巡視?隙▽W生的各種方法及大膽嘗試的行為;并引導學生觀察發(fā)現(xiàn),得到當點P在直線l上運動時(除點 A外),點P與定點A(-1, 3)所確定的直線的斜率恒等于-2,體會“動中有靜”的思維策略。

  [設計意圖]復習斜率公式;待定系數(shù)法;初步體會坐標法。同時引導學生注意為什么要把分式化簡?(若不化簡,就少一點),感受數(shù)學簡潔的美感和嚴謹性。還要指出這樣的事實:當點P在直線l上運動時,P的坐標(x,y)滿足方程2x+y-1=0.反過來,以方程2x+y-1=0的解為坐標的點在直線l上。把學生的思維引到用坐標法研究直線的方程上來,此時再把問題深入,進入第二環(huán)節(jié)。

  (二)深入探究,獲得新知----點斜式

  問題三: ① 若直線l經(jīng)過點P0(x0,y0),且斜率為k,求直線l的方程。

 、谥本的點斜式方程能否表示經(jīng)過P0(x0,y0)的所有直線?

  [學生活動] ①學生敘述,老師板書,強調斜率公式與點斜式的區(qū)別。 ②指導學生用筆轉一轉不難發(fā)現(xiàn),當直線l的傾斜角α=90°時,斜率k不存在,當然不存在點斜式方程;討論k=0的情況;觀察并總結點斜式方程的特征。

  [設計意圖] 由特殊到一般的學習思路,突破難點,培養(yǎng)學生的歸納概括能力。通過對這個問題的探究使學生獲得直線點斜式方程;由②知:當直線斜率k不存在時,不能用點斜式方程表示直線,培養(yǎng)思維的嚴謹性,這時直線l與y軸平行,它上面的每一點的橫坐標都等于x0,直線l的方程是:x=x0;通過學生的觀察討論總結,明確點斜式方程的形式特點和適用范圍,通過下面的例題和基礎練習,突破重難點。

  問題四:分別求經(jīng)過點且滿足下列條件的直線的方程

  (1) 斜率;(2)傾斜角; (3)與軸平行 ;(4)與軸垂直。

  [練習]P95.1、2。

  [學生活動]學生獨立完成并展示或敘述,老師點評。

  [設計意圖]充分用好教材的例題和習題,因為這些題都是專家精心編排的,充分體現(xiàn)必要性及合理性;做到及時反饋,便于反思本環(huán)節(jié)的教學,指導下個環(huán)節(jié)的安排;突破重點內容后,進入第三環(huán)節(jié)。

  (三)拓展知識,再獲新知----斜截式

  問題五:(1)一條直線與y軸交于點(0,3),直線的斜率為2,求這條直線的方程。

  (2)若直線l斜率為k,且與y軸的交點是 P(0,b),求直線l的方程。

  [學生活動]學生獨立完成后口述,教師板書。

  [設計意圖] 由一般到特殊再到一般,培養(yǎng)學生的推理能力,同時引出截距的概念及斜截式方程,強調截距不是距離。類比點斜式明確斜截式方程的形式特點和適用范圍及幾何意義,并討論其與一次函數(shù)的關系。通過下面的基礎練習,突破重點。

  [練習]P95.3。

  [設計意圖]充分用好教材習題,及時反饋本環(huán)節(jié)的教學情況,指導下個環(huán)節(jié)的安排。

  (四)小結引申,思維延續(xù)----兩點式

  課堂小結 1、有哪些收獲?(點斜式方程:;斜截式方程:;求直線方程的方法:公式法、等斜率法、待定系數(shù)法。)

  2、哪些地方還沒有學好?

  問題六:(1)直線l過(1,0)點,且與直線平行,求直線l的方程。

  (2)直線l過點(2,-1)和點(3,-3),求直線l的方程。

  [學生活動]學生獨立思考并嘗試自主完成,可以相互討論,探討解題思路。

  [教師活動]教師深入學生中,與學生交流,了解學生思考問題的進展過程,有時間的話,可以讓學生口述解題思路,也可以投影學生的證明過程,糾正出現(xiàn)的錯誤,規(guī)范書寫的格式;沒時間就布置分層作業(yè)。

  [設計意圖](1)小題與上一節(jié)的平行綜合,學生應該有思路求出方程;(2)小題解決方法較多,預設有利用公式法、等斜率法、待定系數(shù)法,讓好一點的學生有一些發(fā)散思維的機會,以及課后學習的空間,使探究氣氛有一點高潮。另外也為下節(jié)課研究直線的兩點式方程作了重要的準備。

  分層作業(yè) 必做題:P100.A組:1.(1)(2)(3)、5.

  選做題:P100.A組:1.(4)(5)(6).

  [設計意圖]通過分層作業(yè),做到因材施教,使不同的學生在數(shù)學上得到不同的發(fā)展,讓每一個學生都得到符合自身實踐的感悟,使不同層次的學生都可以獲得成功的喜悅,看到自己的潛能,從而激發(fā)學生飽滿的學習興趣,促進學生自主發(fā)展。

  四、教學特點分析

  (一)實例引導。在字母運算、公式推導之前,總是用實例作為鋪墊,使學生有學習知識的可能和興趣,關注學困生的成長與發(fā)展。

  (二)啟發(fā)式教學。教學中總是以提問的方式敘述所學內容,如:1.直角坐標系內的所有直線都有點斜式方程嗎?2.截距是距離嗎?它可以是負數(shù)嗎?3.你會求直線在軸上的截距嗎?4.觀察方程 ,它的形式具有什么特點?它與我們學過的一次函數(shù)有什么關系?等等。啟發(fā)學生的思維,作好與學生的對話與交流活動。

  (三)注重自主探究。設計問題鏈,環(huán)環(huán)相扣,使學生的探究活動貫穿始終。教師總是站在學生思維的最近發(fā)展區(qū)上,布設了由淺入深的學習環(huán)境突破重點、難點,引導學生逐步發(fā)現(xiàn)知識的形成過程。設計了兩次思維發(fā)散點,分別是問題二和問題六的第(2)問,要求學生分組討論,合作交流,為學生創(chuàng)造充分的探究空間,學生在交流成果的過程中,高效的完成教學任務。

高中數(shù)學說課稿10

  一、教材地位與作用

  本節(jié)知識是必修五第一章《解三角形》的第一節(jié)內容,與初中學習的三角形的邊和角的基本關系有密切的聯(lián)系與判定三角形的全等也有密切聯(lián)系,在日常生活和工業(yè)生產中也時常有解三角形的問題,而且解三角形和三角函數(shù)聯(lián)系在高考當中也時?家恍┙獯痤}。因此,正弦定理的知識非常重要。

  二、學情分析

  作為高一學生,同學們已經(jīng)掌握了基本的三角函數(shù),特別是在一些特殊三角形中,而學生們在解決任意三角形的邊與角問題,就比較困難。

  教學重點:正弦定理的內容,正弦定理的證明及基本應用。

  教學難點:正弦定理的探索及證明,已知兩邊和其中一邊的對角解三角形時判斷解的個數(shù)。

  根據(jù)我的教學內容與學情分析以及教學重難點,我制定了如下幾點教學目標

  教學目標分析:

  知識目標:理解并掌握正弦定理的證明,運用正弦定理解三角形。

  能力目標:探索正弦定理的證明過程,用歸納法得出結論。

  情感目標:通過推導得出正弦定理,讓學生感受數(shù)學公式的整潔對稱美和數(shù)學的實際應用價值。

  三、教法學法分析

  教法:采用探究式課堂教學模式,在教師的`啟發(fā)引導下,以學生獨立自主和合作交流為前提,以“正弦定理的發(fā)現(xiàn)”為基本探究內容,以生活實際為參照對象,讓學生的思維由問題開始,到猜想的得出,猜想的探究,定理的推導,并逐步得到深化。

  學法:指導學生掌握“觀察——猜想——證明——應用”這一思維方法,采取個人、小組、集體等多種解難釋疑的嘗試活動,將自己所學知識應用于對任意三角形性質的探究。讓學生在問題情景中學習,觀察,類比,思考,探究,動手嘗試相結合,增強學生由特殊到一般的數(shù)學思維能力,鍥而不舍的求學精神。

  四、教學過程

  (一)創(chuàng)設情境,布疑激趣

  “興趣是最好的老師”,如果一節(jié)課有個好的開頭,那就意味著成功了一半,本節(jié)課由一個實際問題引入,“工人師傅的一個三角形的模型壞了,只剩下如右圖所示的部分,∠A=47°,∠B=53°,AB長為1m,想修好這個零件,但他不知道AC和BC的長度是多少好去截料,你能幫師傅這個忙嗎?”激發(fā)學生幫助別人的熱情和學習的興趣,從而進入今天的學習課題。

  (二)探尋特例,提出猜想

  1.激發(fā)學生思維,從自身熟悉的特例(直角三角形)入手進行研究,發(fā)現(xiàn)正弦定理。

  2.那結論對任意三角形都適用嗎?指導學生分小組用刻度尺、量角器、計算器等工具對一般三角形進行驗證。

  3.讓學生總結實驗結果,得出猜想:

  在三角形中,角與所對的邊滿足關系

  這為下一步證明樹立信心,不斷的使學生對結論的認識從感性逐步上升到理性。

  (三)邏輯推理,證明猜想

  1.強調將猜想轉化為定理,需要嚴格的理論證明。

  2.鼓勵學生通過作高轉化為熟悉的直角三角形進行證明。

  3.提示學生思考哪些知識能把長度和三角函數(shù)聯(lián)系起來,繼而思考向量分析層面,用數(shù)量積作為工具證明定理,體現(xiàn)了數(shù)形結合的數(shù)學思想。

  4.思考是否還有其他的方法來證明正弦定理,布置課后練習,提示,做三角形的外接圓構造直角三角形,或用坐標法來證明。

  (四)歸納總結,簡單應用

  1.讓學生用文字敘述正弦定理,引導學生發(fā)現(xiàn)定理具有對稱和諧美,提升對數(shù)學美的享受。

  2.正弦定理的內容,討論可以解決哪幾類有關三角形的問題。

  3.運用正弦定理求解本節(jié)課引入的三角形零件邊長的問題。自己參與實際問題的解決,能激發(fā)學生知識后用于實際的價值觀。

  (五)講解例題,鞏固定理

  1.例1:在△ABC中,已知A=32°,B=81.8°,a=42.9cm.解三角形。

  例1簡單,結果為唯一解,如果已知三角形兩角兩角所夾的邊,以及已知兩角和其中一角的對邊,都可利用正弦定理來解三角形。

  2.例2:在△ABC中,已知a=20cm,b=28cm,A=40°,解三角形。

  例2較難,使學生明確,利用正弦定理求角有兩種可能。要求學生熟悉掌握已知兩邊和其中一邊的對角時解三角形的各種情形。完了把時間交給學生。

  (六)課堂練習,提高鞏固

  1.在△ABC中,已知下列條件,解三角形。

  (1)A=45°,C=30°,c=10cm(2)A=60°,B=45°,c=20cm

  2.在△ABC中,已知下列條件,解三角形。

  (1)a=20cm,b=11cm,B=30°(2)c=54cm,b=39cm,C=115°

  學生板演,老師巡視,及時發(fā)現(xiàn)問題,并解答。

  (七)小結反思,提高認識

  通過以上的研究過程,同學們主要學到了那些知識和方法?你對此有何體會?

  1.用向量證明了正弦定

  理,體現(xiàn)了數(shù)形結合的數(shù)學思想。

  2.它表述了三角形的邊與對角的正弦值的關系。

  3.定理證明分別從直角、銳角、鈍角出發(fā),運用分類討論的思想。

  (從實際問題出發(fā),通過猜想、實驗、歸納等思維方法,最后得到了推導出正弦定理。我們研究問題的突出特點是從特殊到一般,我們不僅收獲著結論,而且整個探索過程我們也掌握了研究問題的一般方法。在強調研究性學習方法,注重學生的主體地位,調動學生積極性,使數(shù)學教學成為數(shù)學活動的教學。)

  (八)任務后延,自主探究

  如果已知一個三角形的兩邊及其夾角,要求第三邊,怎么辦?發(fā)現(xiàn)正弦定理不適用了,那么自然過渡到下一節(jié)內容,余弦定理。布置作業(yè),預習下一節(jié)內容。

高中數(shù)學說課稿11

尊敬的各位考官:

  大家好,我是今天的X號考生,今天我說課的題目是《正弦函數(shù)、余弦函數(shù)的圖象》。

  新課標指出:高中教育屬于基礎教育,具有基礎性,且具有多樣性與選擇性,使不同的學生在數(shù)學上得到不同的發(fā)展。今天我將貫徹這一理念從教材分析、學情分析、教學過程等幾個方面展開我的說課。

  一、說教材

  教師對教材的掌握程度,是評判一位教師是否能上好一堂課的基本標準。在正式內容開始之前,我要先談一談對教材的理解。

  《正弦函數(shù)、余弦函數(shù)的圖象》是人教A版必修4第一章第四節(jié)第一小節(jié)的內容,其主要內容是正弦函數(shù)、余弦函數(shù)圖象。此前學習了誘導公式和任意角的正弦函數(shù)以及正弦線,在此基礎上來學習正弦函數(shù)、余弦函數(shù)的圖象相對比較簡單。本節(jié)課的學習為以后利用圖象學習正弦函數(shù)、余弦函數(shù)的性質以及函數(shù)

  的圖象打好基礎,起到承前啟后的作用。因此本節(jié)的學習有著極其重要的地位。

  二、說學情

  合理把握學情是上好一堂課的基礎,下面我來談談學生的實際情況。

  這一階段的學生已經(jīng)具備了一定的分析和類比的能力,且在知識方面也有了一定的積累。所以,教學中,利用學生的特點以及原有經(jīng)驗進行教學,增強學生的課堂參與度。

  三、說教學目標

  根據(jù)以上對教材的分析以及對學情的把握,我制定了如下三維教學目標:

  (一)知識與技能

  理解利用單位圓以及正弦線畫正弦函數(shù)的圖象的方法;會用“五點作圖法”畫正余弦函數(shù)的圖象。

  (二)過程與方法

  通過獨立思考以及小組討論的過程,提高合作意識,深化數(shù)形結合思想。

  (三)情感、態(tài)度與價值觀

  由實驗過程感受數(shù)學與生活的聯(lián)系;體會數(shù)學中的.圖形美,提高對數(shù)學的喜愛。

  四、說教學重難點

  我認為一節(jié)好的數(shù)學課,從教學內容上說一定要突出重點、突破難點。而教學重點的確立與我本節(jié)課的內容肯定是密不可分的。那么根據(jù)授課內容可以確定本節(jié)課的教學重點為:正弦函數(shù)、余弦函數(shù)的圖象。難點:利用正弦線轉畫出正弦函數(shù)圖象。

  五、說教法和學法

  現(xiàn)代教學理論認為,在教學過程中,學生是學習的主體,教師是學習的組織者、引導者,教學的一切活動都必須以強調學生的主動性、積極性為出發(fā)點。根據(jù)這一教學理念,結合本節(jié)課的內容特點和學生的年齡特征,本節(jié)課我采用講授法、啟發(fā)法、練習法、小組合作、自主探究等教學方法。

  六、說教學過程

  在這節(jié)課的教學過程中,我注重突出重點,條理清晰,緊湊合理。各項活動的安排也注重互動、交流,最大限度的調動學生參與課堂的積極性、主動性。

  (一)導入新課

  首先是導入環(huán)節(jié),直接講解正弦函數(shù)與余弦函數(shù)的概念。然后提問:之前研究函數(shù)時都研究了函數(shù)的哪些性質?在學生充分回顧之后,引出研究正弦函數(shù)、余弦函數(shù)的圖象。

  通過溫故知新的導入方式,為本節(jié)課后續(xù)的教學做好鋪墊。

  (二)探索新知

  接下來是新課講授環(huán)節(jié)。我將分為四部分,分別為“簡諧運動”實驗的探究、正弦函數(shù)的圖象、余弦函數(shù)的圖象、五點作圖法。

  首先是“簡諧運動”實驗的探究。組織學生動手做一做章頭圖表示的“簡諧運動”實驗。指導學生將塑料瓶底部扎一個小孔做成一個漏斗,再掛在架子上,就做成一個簡易單擺。在漏斗下方放一塊紙板,板的中間畫一條直線作為坐標系的橫軸。把漏斗灌上沙并拉離平衡位置,放手使它擺動,同時勻速拉動紙板,這樣就可在紙板上得到一條曲線,它就是簡諧運動的圖象。通過學生的試驗,展示試驗結果圖象。讓學生對正弦曲線和余弦曲線有一個初步印象。

  接下來是正弦函數(shù)圖象的探究。通過之前三角函數(shù)相關知識的學習,先和學生共同明確繼續(xù)在單位圓中研究正弦函數(shù)的圖象。提問如下兩個問題:如何在單位圓中研究正弦函數(shù)y=sinx的變化規(guī)律?如何利用正弦線的變化規(guī)律畫出正弦函數(shù)的圖象?

高中數(shù)學說課稿12

  一、教材分析

  1、教材的地位和作用

  推理與證明是人教版普通高中課程標準實驗教科書選修1—2第二章第一節(jié)內容,思想貫穿于高中數(shù)學的整個知識體系,是新課標教材的亮點之一。本節(jié)內容將歸納推理的一般方法進行了必要的總結和歸納,同時也對后繼知識的學習起到引領的作用、

  2、教材處理

  《歸納推理》是培養(yǎng)學生觀察、分析、發(fā)現(xiàn)、概括、猜想和探索能力的極好素材。根據(jù)本節(jié)課標要求:從演示觀察,先形象地真實舉例,然后轉化為猜想,引導探究典型例子分析,加強對概念的理解。

  二、教學目標分析:

  1、知識技能目標:理解歸納推理的概念,了解歸納推理的作用,掌握歸納推理的一般步驟,會利用歸納進行一些簡單的歸納推理。

  2、過程方法目標:學生自主學習歸納推理的一般方法,建構歸納推理的思維方式、讓學生明白數(shù)學發(fā)現(xiàn)的過程和方法,培養(yǎng)學生分析解決問題的能力,鍛煉他們探索規(guī)律,融會貫通的能力,并使學生思維能力得到提升。

  3、情感態(tài)度,價值觀目標:通過學生主動探究、合作學習、相互交流,培養(yǎng)不怕困難、勇于探索的優(yōu)良作風,增強學生的數(shù)學應用意識,提高學生數(shù)學思維的情趣,給學生成功的體驗,形成學習數(shù)學知識、了解數(shù)學文化的積極態(tài)度、

  三、教學的重點、難點分析:

  1、教學重點:了解歸納推理含義、能利用歸納進行簡單推理。

  教學策略:演示觀察,先形象地真實舉例,然后轉化為猜想,引導探究典型例子分析,加強對概念的理解

  2、教學難點:用歸納進行推理,做出猜想。

  教學策略:第一,創(chuàng)設情景;第二,觀察規(guī)律,得出猜想;第三,實際應用,提出質疑。

  四、教法分析、教學手段與教具選擇:

  1、教學方法:自主探究、協(xié)作學習、啟發(fā)發(fā)現(xiàn)、課堂討論法

  2、教具:多媒體、粉筆、黑板。

  3、教學手段:多媒體教學課件。

  五、學法分析:

  本課教給學生的學法是“發(fā)現(xiàn)問題、分析問題、解決問題”。因此本課教學過程中,讓學生帶著學習任務通過自主學習發(fā)現(xiàn)、課堂討論、相互合作等方式,使學生在完成任務的過程中不知不覺實現(xiàn)知識的傳遞、遷移和融合。

  六、教學過程設計分析:

  1、創(chuàng)設情景、引入新課

  游戲:袋子里裝有大小質地一樣的玻璃球,摸一個出來是紅色,摸第二個出來也是紅色,第三、第四還是紅色…

  問題1:有什么猜想?

  師生活動:老師把玻璃球攪拌均勻,可叫一個學生摸球,其他學生細心觀察。

  設計意圖:游戲吸引學生注意力,提高學習興趣,形象地引出歸納推理。

  問題2:觀察10=3+7,12=5+7,32=13+19 …等式特征,有怎樣的規(guī)律?

  師生活動:這里要引導學生觀察:這是一個等式,左右兩邊數(shù)字有什么特征,學生的猜想多種多樣,不要抹殺學生的洞察力,可進一步引導學生嘗試:其它的偶數(shù)有同樣的規(guī)律嗎?

  設計意圖:通過欣賞一些偉大猜想產生的過程,探索出歌德巴赫猜想:一個偶數(shù)(不小于6)總可以表示成兩個奇質數(shù)之和。帶領學生走進歸納推理的領域。學生主動探究、自我發(fā)現(xiàn),培養(yǎng)勇于探索的優(yōu)良作風。

  問題3:歌德巴赫猜想的歷史了解嗎?

  師生活動:通過多媒體讓學生閱讀材料。

  設計意圖:提高學生數(shù)學思維的情趣,了解數(shù)學文化,對數(shù)學充滿信心的積極態(tài)度,培養(yǎng)愛國精神。

  問題4:歌德巴赫猜想的推理過程如何?

  師生活動:讓學生探究歌德巴赫是怎樣提出這個猜想的。

  設計意圖:通過自己發(fā)現(xiàn)歌德巴赫猜想的推理過程———歸納推理的產生,為理解歸納推理的含義做鋪墊。

  問題5:由上述推理過程能否用自己語言描述歸納推理的含義?

  師生活動:學生自己總結,教師個別提問,學生修改,該問題只有部分同學能及時地回答出來。有些同學猶疑不答,有些同學會說出不同的語句獲不全面、不十分準確。教師通過評價學生的結論引入歸納推理含義——是由部分到整體、由個別到一般的推理。

  設計意圖:使學生更深刻理解和記憶歸納推理的含義,培養(yǎng)學生歸納、總結、理解能力,這比老師直接給出概念效果要好得多。

  問題6:你能用歸納推理提出一個猜想嗎?

  師生活動:學生各抒己見,踴躍回答,有生活的,有數(shù)學的.,其它學科的等。例如:

  ① 金、銀、銅、鐵、鋁等金屬能導電,歸納出“一切金屬都能導電”

 、 硫酸、硝酸、碳酸等含有氧元素,歸納出“所有的酸都含有氧元素”

 、刍@球、排球、乒乓球等是圓的,歸納出“所有的球都是圓的”

  ……

  可以讓同學們相互補充,老師適當點評和肯定。

  設計意圖:更深一步具體理解歸納推理的含義,初步形成能用歸納推理得出結論的步驟。感受歸納推理無處不在,自然而有趣,創(chuàng)造和諧積極的學習氣氛。這比直接解釋概念記憶要深刻和通俗易懂。

  2、典型例題、知識應用

  例:觀察右圖,可以發(fā)現(xiàn)

  1+3=4=22,

  1+3+5=9=32,

  1+3+5+7=16=42,

  1+3+5+7+9=25=52,

  問題7:上面等式如何由圖中觀察出來?1+3+ …+1999=?由上述具體事實能得出怎樣的一般性規(guī)律?能用一條等式表示出來嗎?

  師生活動:問題逐個解決,個別回答,集體回答相結合。部分學生會觀察上式,但不會從圖中總結規(guī)律,這里要從小正方形的個數(shù)或面積去引導他們觀察,引導學生得出等式的規(guī)律要看等號左右兩邊存在什么規(guī)律。

  總結:由幾條特殊的等式存在的規(guī)律,歸納出一般性的結論1+3+…+(2n-1)=n2(n∈N*)成立,這就是歸納推理。

  設計意圖:給出例子讓學生通過直觀感知、觀察分析、歸納體會歸納推理的一般步驟,進一步感受歸納推理的作用。讓他們懂得數(shù)形結合去做題。

  問題8:

  師生活動:

  題目沒有直接給出部分事物特征,應先找出來再觀察、歸納、猜想、引導學生做題方向,個別提問,師生共同完成、總結。

  設計意圖:體會歸納推理的一般步驟,進一步感受歸納推理的作用。讓學生感受歸納推理起到了能夠提供研究方向的作用,培養(yǎng)學生進行歸納推理的能力。

  問題9、歸納推理的一般步驟如何?

  師生活動:通過兩個例題,學生自行總結,教師綜合結論得出

  一般步驟:⑴對有限的資料進行觀察、分析、歸納整理;⑵提出帶有規(guī)律性的結論,即猜想;

  設計意圖:總結步驟,為后面應用打基礎,讓學生自行總結充分體現(xiàn)學生的自主性。

  3、思考練習

  1)、觀察下面的“三角陣”

  1

  1 1

  1 2 1

  1 3 3 1

  1 4 6 4 1

  1 5 10 a 5 1

  ……

  1 10 45 … … 45 10 1

  試找出相鄰兩行數(shù)之間的關系,并求a

  師生活動:學生觀察,尋找規(guī)律,老師和學生共同評價學生的觀察結果并接著問:上面“三角陣”還有其它規(guī)律嗎?讓學生分組討論回答

  設計意圖:感受數(shù)學美和發(fā)現(xiàn)規(guī)律的喜悅,激發(fā)學生更積極地去尋找規(guī)律、認識規(guī)律。同時讓學生感受到只要做個有心人,發(fā)現(xiàn)規(guī)律并非難事。

  2)、在數(shù)列{an}中,若a1=1,

  an+1=(n∈N﹡),試猜想這個數(shù)列的通項公式、

  師生活動:請三位學生上黑板板書,并另請三位批改,讓學生自己掌握做題方法和步驟

  答案:通過運算a2、a3、a4等的值得出an=

  3)、畫一畫、猜一猜:根據(jù)下列圖案中圓圈的排列規(guī)則,猜想第(5)個圖形是怎樣排列的,由多少個圓圈組成;第n個圖形中共有多少個圓圈?

  n=1 n=2 n=3 n=4

  師生活動:由學生在講義上作圖,發(fā)現(xiàn)規(guī)律并總結,再通過學生之間充分討論之后相互交流,教師點評。

  設計意圖:學生主動探究規(guī)律,感受歸納推理對發(fā)現(xiàn)新事實、得出新結論的作用。引導學生發(fā)現(xiàn)并總結規(guī)律。給學生創(chuàng)建一個開放的、有活力、有個性的數(shù)學學習環(huán)境,感受數(shù)學美和發(fā)現(xiàn)規(guī)律的喜悅,激發(fā)學生更積極地去尋找規(guī)律、認識規(guī)律。同時讓學生感受到只要做個有心人,發(fā)現(xiàn)規(guī)律并非難事。

  答案:第5個圖形中共有圓圈21個;第n個圖形中共有圓圈:n(n—1)+1個

  4、質疑、解疑

  問題9:猜想的一般結論是否成立?即歸納推理的可靠性如何?為什么要學習歸納推理?

  師生活動:教師生動講述歐拉發(fā)現(xiàn)第五個費馬數(shù)的過程,激發(fā)學生的好奇心與求知欲,同時,通過“猜想——驗證——再猜想”說明科學的進步與發(fā)展處在一個螺旋上升的過程。

  再例:硫酸、硝酸、碳酸等酸中含有氧元素,歸納出“所有的酸都含有氧元素”。反例:鹽酸是酸,但不含氧元素

  設計意圖:通過這個問題情境的設置,引起學生對歸納推理的結論可靠性進行思考。其結論具有猜測性、或然性,不能作為數(shù)學證明的依據(jù)。但它是一種具有創(chuàng)造性的推理,為研究問題提供一個方向讓學生在解決問題的過程中發(fā)現(xiàn)歸納推理需要檢驗過程,從而自我修正歸納推理的一般步驟。

  問題10:組織學生進行分組討論,引導學生從生活和學習兩大方面對歸納推理的應用進行舉例。

  師生活動:分組競賽,挑1、2個小組的題目出來讓其他小組進行分析。

  設計意圖:分組討論降低了概念學習的難度,加深對歸納推理的應用使學生能夠更多的圍繞重點展開探索和研究。學生的主體意識在這里獲得充分的體現(xiàn)。

  七、課堂小結:

  1、你在知識方面學會了什么?

  2、你注意到過程與方法了嗎?

  3、你在思維和情感方面有何收益?

  師生活動:學生討論總結,相互補充,教師點評。

  設計意圖:讓學生自己小結,這是一個多維整合的過程,是一個高層次的自我認識過程。

  八、作業(yè)

  1、(必做題)課本P30第1題

  2、(選做題):猜想10條直線的交點最多有多少個?(畫圖分析)答案:45個

  3、課后學習:上網(wǎng)查找了解有關“四色猜想”、“哥尼斯堡七橋猜想”、“敘拉古猜想”、“費馬猜想”等資料

  設計意圖:設計必做題是知識的初步應用和基礎知識的鞏固選做題是針對學有余力的同學提升高度,鏈接高考。思考題是開放性題目,拓展學生思維,用資料進行數(shù)學學習,同時讓學生了解網(wǎng)絡是自主學習和拓展知識面的一個重要平臺。這是本節(jié)內容的一個提高與拓展。

  九、教學效果分析:

  本節(jié)課以問題為載體,設計情景,生活、數(shù)學實力生動地學習了歸納推理的知識,體現(xiàn)了學生主動,教師指導的地位。本節(jié)課在注重基礎知識的同時培養(yǎng)學生歸納推理的能力,在尊重學生個性差異的基礎上選擇合適的例題、習題,為不同層次學生的學習提供了廣闊的空間。以分組討論為探究的基本形式,激勵學生積極主動地探索結論,同時利用著名猜想讓學生體會數(shù)學的人文價值。通過生活實例和數(shù)學實例,使學生了解歸納推理的涵義,感受歸納推理能猜測和發(fā)現(xiàn)一些新結論,探索和提供解決一些問題的思路和方向的作用,并能運用歸納進行簡單的推理、

  十、板書設計

  歸納推理

  一、推理

  二、歸納推理的含義

  三、歸納推理的應用

  四、歸納推理的一般步驟

  五、小結

  例1

  例2

  練習

高中數(shù)學說課稿13

  一、教材分析

  函數(shù)的單調性是函數(shù)的重要性質.從知識的網(wǎng)絡結構上看,函數(shù)的單調性既是函數(shù)概念的延續(xù)和拓展,又是后續(xù)研究指數(shù)函數(shù)、對數(shù)函數(shù)、三角函數(shù)的單調性等內容的基礎,在研究各種具體函數(shù)的性質和應用、解決各種問題中都有著廣泛的應用.函數(shù)單調性概念的建立過程中蘊涵諸多數(shù)學思想方法,對于進一步探索、研究函數(shù)的其他性質有很強的啟發(fā)與示范作用.

  根據(jù)函數(shù)單調性在整個教材內容中的地位與作用,本節(jié)課教學應實現(xiàn)如下教學目標:

  知識與技能使學生理解函數(shù)單調性的概念,初步掌握判別函數(shù)單調性的方法;

  過程與方法引導學生通過觀察、歸納、抽象、概括,自主建構單調增函數(shù)、單調減函數(shù)等概念;能運用函數(shù)單調性概念解決簡單的問題;使學生領會數(shù)形結合的數(shù)學思想方法,培養(yǎng)學生發(fā)現(xiàn)問題、分析問題、解決問題的能力。

  情感態(tài)度與價值觀在函數(shù)單調性的學習過程中,使學生體驗數(shù)學的科學價值和應用價值,培養(yǎng)學生善于觀察、勇于探索的良好習慣和嚴謹?shù)目茖W態(tài)度。

  根據(jù)上述教學目標,本節(jié)課的教學重點是函數(shù)單調性的概念形成和初步運用.雖然高一學生已經(jīng)有一定的抽象思維能力,但函數(shù)單調性概念對他們來說還是比較抽象的。因此,本節(jié)課的學習難點是函數(shù)單調性的概念形成。

  二、教法學法

  為了實現(xiàn)本節(jié)課的教學目標,在教法上我采取了

  1、通過學生熟悉的實際生活問題引入課題,為概念學習創(chuàng)設情境,拉近數(shù)學與現(xiàn)實的距離,激發(fā)學生求知欲,調動學生主體參與的積極性。

  2、在形成概念的過程中,緊扣概念中的關鍵語句,通過學生的主體參與,正確地形成概念。

  3、在鼓勵學生主體參與的同時,不可忽視教師的主導作用,要教會學生清晰的思維、嚴謹?shù)耐评,并順利地完成書面表達。

  在學法上我重視了:

  1、讓學生利用圖形直觀啟迪思維,并通過正、反例的構造,來完成從感性認識到理性思維的質的飛躍。

  2、讓學生從問題中質疑、嘗試、歸納、總結、運用,培養(yǎng)學生發(fā)現(xiàn)問題、研究問題和分析解決問題的能力。

  三、教學過程

  函數(shù)單調性的概念產生和形成是本節(jié)課的難點,為了突破這一難點,在教學設計上采用了下列四個環(huán)節(jié)。

 。ㄒ唬﹦(chuàng)設情境,提出問題

 。▎栴}情境)(播放中央電視臺天氣預報的音樂)。如圖為某地區(qū)20xx年元旦這一天24小時內的氣溫變化圖,觀察這張氣溫變化圖:

  [教師活動]引導學生觀察圖象,提出問題:

  問題1:說出氣溫在哪些時段內是逐步升高的或下降的?

  問題2:怎樣用數(shù)學語言刻畫上述時段內“隨著時間的增大氣溫逐漸升高”這一特征?

  [設計意圖]問題是數(shù)學的心臟,問題是學生思維的開始,問題是學生興趣的開始。這里,通過兩個問題,引發(fā)學生的進一步學習的好奇心。

  (二)探究發(fā)現(xiàn)建構概念

  [學生活動]對于問題1,學生容易給出答案。問題2對學生來說較為抽象,不易回答。

  [教師活動]為了引導學生解決問題2,先讓學生觀察圖象,通過具體情形,例如,“t1=8時,f(t1)=1,t2=10時,f(t2)=4”這一情形進行描述.引導學生回答:對于自變量8<10,對應的函數(shù)值有1<4。舉幾個例子表述一下。然后給出一個鋪墊性的問題:結合圖象,請你用自己的語言,描述“在區(qū)間[4,14]上,氣溫隨時間增大而升高”這一特征。

  在學生對于單調增函數(shù)的特征有一定直觀認識時,進一步提出:

  問題3:對于任意的t1、t2∈[4,16]時,當t1

  (t1)

  [學生活動]通過觀察圖象、進行實驗(計算機)、正反對比,發(fā)現(xiàn)數(shù)量關系,由具體到抽象,由模糊到清晰逐步歸納、概括、抽象出單調增函數(shù)概念的本質屬性,并嘗試用符號語言進行初步的表述。

  [教師活動]為了獲得單調增函數(shù)概念,對于不同學生的表述進行分析、歸類,引導學生得出關鍵詞“區(qū)間內”、“任意”、“當時,都有”。告訴他們“把滿足這些條件的函數(shù)稱之為單調增函數(shù)”,之后由他們集體給出單調增函數(shù)概念的數(shù)學表述.提出:

  問題4:類比單調增函數(shù)概念,你能給出單調減函數(shù)的概念嗎?

  最后完成單調性和單調區(qū)間概念的整體表述。

  [設計意圖]數(shù)學概念的形成來自解決實際問題和數(shù)學自身發(fā)展的需要。但概念的高度抽象,造成了難懂、難教和難學,這就需要讓學生置身于符合自身實際的學習活動中去,從自己的經(jīng)驗和已有的知識基礎出發(fā),經(jīng)歷“數(shù)學化”、“再創(chuàng)造”的活動過程。剛升入高一的學生已經(jīng)具備了一定的幾何形象思維能力,但抽象思維能力不強。從日常的描述性語言概念升華到用數(shù)學符號語言精確刻畫概念是本節(jié)課的難點。

 。ㄈ┳晕覈L試運用概念

  1.為了理解函數(shù)單調性的概念,及時地進行運用是十分必要的。

  [教師活動]問題5:(1)你能找出氣溫圖中的單調區(qū)間嗎?(2)你能說出你學過的函數(shù)的單調區(qū)間嗎?請舉例說明。

  [學生活動]對于(1),學生容易看出:氣溫圖中分別有兩個單調減區(qū)間和一個單調增區(qū)間.對于(2),學生容易舉出具體函數(shù)如:f(x)=—2x+2,f(x)=x2+2x—3,f(x)=1/x,并畫出函數(shù)的草圖,根據(jù)函數(shù)的圖象說出函數(shù)的單調區(qū)間。

  [教師活動]利用實物投影儀,投影出學生畫出的草圖和標出的單調區(qū)間,并指出學生回答問題時可能出現(xiàn)的錯誤,如:在敘述函數(shù)的單調區(qū)間時寫成并集。

  [設計意圖]在學生已有認知結構的基礎上提出新問題,使學生明了,過去所研究的函數(shù)的相關特征,就是現(xiàn)在所學的函數(shù)的單調性,從而加深對函數(shù)單調性概念的理解。

  2.對于給定圖象的函數(shù),借助于圖象,我們可以直觀地判定函數(shù)的單調性,也能找到單調區(qū)間.而對于一般的函數(shù),我們怎樣去判定函數(shù)的'單調性呢?

  [教師活動]問題6:證明在區(qū)間(0,+∞)上是單調減函數(shù)。

  [學生活動]學生相互討論,嘗試自主進行函數(shù)單調性的證明,可能會出現(xiàn)不知如何比較f(x1)與f(x2)的大小、不會正確表述、變形不到位或根本不會變形等困難。

  [教師活動]教師深入學生中,與學生交流,了解學生思考問題的進展過程,投影學生的證明過程,糾正出現(xiàn)的錯誤,規(guī)范書寫的格式。

  [學生活動]學生自我歸納證明函數(shù)單調性的一般方法和操作流程:取值作差變形定號判斷。

  [設計意圖]有效的數(shù)學學習過程,不能單純的模仿與記憶,數(shù)學思想的領悟和學習過程更是如此.利用學生自己提出的問題,讓學生在解題過程中親身經(jīng)歷和實踐體驗,師生互動學習,生生合作交流,共同探究。

 。ㄋ模┗仡櫡此忌罨拍

  [教師活動]給出一組題:

  1、定義在R上的單調函數(shù)f(x)滿足f(2)>f(1),那么函數(shù)f(x)是R上的單調增函數(shù)還是單調減函數(shù)?

  2、若定義在R上的單調減函數(shù)f(x)滿足f(1+a)

  [學生活動]學生互相討論,探求問題的解答和問題的解決過程,并通過問題,歸納總結本節(jié)課的內容和方法。

  [設計意圖]通過學生的主體參與,使學生深切體會到本節(jié)課的主要內容和思想方法,從而實現(xiàn)對函數(shù)單調性認識的再次深化。

  [教師活動]作業(yè)布置:

 。1)閱讀課本P34-35例2

 。2)書面作業(yè):

  必做:教材P431、7、11

  選做:二次函數(shù)y=x2+bx+c在[0,+∞)是增函數(shù),滿足條件的實數(shù)的值唯一嗎?

  探究:函數(shù)y=x在定義域內是增函數(shù),函數(shù)有兩個單調減區(qū)間,由這兩個基本函數(shù)構成的函數(shù)的單調性如何?請證明你得到的結論。

  [設計意圖]通過兩方面的作業(yè),使學生養(yǎng)成先看書,后做作業(yè)的習慣;诤瘮(shù)單調性內容的特點及學生實際,對課后書面作業(yè)實施分層設置,安排基本練習題、鞏固理解題和深化探究題三層。學生完成作業(yè)的形式為必做、選做和探究三種,使學生在完成必修教材基本學習任務的同時,拓展自主發(fā)展的空間,讓每一個學生都得到符合自身實踐的感悟,使不同層次的學生都可以獲得成功的喜悅,看到自己的潛能,從而激發(fā)學生飽滿的學習興趣,促進學生自主發(fā)展、合作探究的學習氛圍的形成。

  四、教學評價

  學生學習的結果評價當然重要,但是更重要的是學生學習的過程評價。教師應當高度重視學生學習過程中的參與度、自信心、團隊精神、合作意識、獨立思考習慣的養(yǎng)成、數(shù)學發(fā)現(xiàn)的能力,以及學習的興趣和成就感。學生熟悉的問題情境可以激發(fā)學生的學習興趣,問題串的設計可以讓更多的學生主動參與,師生對話可以實現(xiàn)師生合作,適度的研討可以促進生生交流,以及團隊精神,知識的生成和問題的解決可以讓學生感受到成功的喜悅,縝密的思考可以培養(yǎng)學生獨立思考的習慣。讓學生在教師評價、學生評價以及自我評價的過程中體驗知識的積累、探索能力的長進和思維品質的提高,為學生的可持續(xù)發(fā)展打下基礎。

高中數(shù)學說課稿14

  教學目標

  依據(jù)教學大綱、考試說明及學生的實際認知情況,設計目標如下:

  1、知識與技能:

 。1)了解互為反函數(shù)的函數(shù)圖像間的關系,并能利用這一關系,由已知函數(shù)的圖像作出反函數(shù)的圖像。

 。2)通過由特殊到一般的歸納,培養(yǎng)學生探索問題的能力。

  2、過程與方法:由特殊事例出發(fā),由教師引導,學生主動探索得出互為反函數(shù)的函數(shù)圖像間的關系,使學生探索知識的形成過程,本可采用自主探索,引導發(fā)現(xiàn),直觀演示等教學方法,同時滲透數(shù)形結合思想。

  3、情感態(tài)度價值觀:通過圖像的對稱變換是學生該授數(shù)學的對稱美和諧美,激發(fā)學生的學習興趣。

  重點難點

  根據(jù)教學目標,應有一個讓學生參與實踐,發(fā)現(xiàn)規(guī)律,總結特點、歸納方法的探索認知過程。特確定:

  重點:互為反函數(shù)的函數(shù)圖像間的關系。

  難點:發(fā)現(xiàn)數(shù)學規(guī)律。

  教學結構

  教學過程設計

  創(chuàng)設情景,引入新課

  1、復習提問反函數(shù)的概念。

  〇學生活動學生回答,教師總結

 。1)用y表示x

 。2)把y當自變量還是函數(shù)

  提出問題,探究問題

  一、畫出y=3x-2的圖像,并求出反函數(shù)。

  ●引導設問1原函數(shù)中的自變量與函數(shù)值和反函數(shù)中的自變量函數(shù)值什么關系?

  〇學生活動學生很容易回答

  原函數(shù)y=3x-2中反函數(shù)中

  y:函數(shù)x:自變量x:函數(shù)y:自變量

  ●引導設問2在原函數(shù)定義域內任給定一個都有唯一的一個與之對應,即在原函數(shù)圖像上,那么哪一點在反函數(shù)圖像上?

  〇學因為=3-2成立,所以成立即(,)在反函數(shù)圖像上。

  ●引導設問3若連結BG,則BG與y=x什么關系?點B與點G什么關系?為什么?點B再換一個位置行嗎?

  〇學生活動學生根據(jù)圖形很容易得出y=x垂直平分BG,點B與點G關于y=x對稱。學生證法可能有OB=OG,BD=GD等。

  ▲教師引導教師用幾何花板,就上面的問題追隨學生的思路演示當在y=3x-2圖像變化時(,)也隨之變化但始終有兩點關于y=x對稱。

  ●引導設問4若不求反函數(shù),你能畫出y=3x-2的反函數(shù)的圖像嗎?怎么畫?

  〇學生活動有了前面的鋪墊學生很容易想到只要找出點G的兩個位置便可以畫出反函數(shù)的`圖像。

  ●引導設問5上題中原函數(shù)與反函數(shù)的圖像,這兩條直線什么關系?

  〇學生活動由前面容易得出(關于y=x對稱)

  ●引導設問6若把當作原函數(shù)的圖像,那么它的反函數(shù)圖像是誰?

  〇學生活動由圖中可以看出關于y=x相互對稱所以他的反函數(shù)圖像應是,另外由上節(jié)課原函數(shù)與反函數(shù)互為反函數(shù)也可得。

  ●引導設問7以上是一個特殊的函數(shù),圖像為直線,若對一個一般的函數(shù)圖像你能根據(jù)上題的原理畫出反函數(shù)的圖像嗎?如圖是的圖像,請你猜想出它的反函數(shù)圖像。

  〇學生活動由上題學生不難得出做y=x的對稱圖像(教師配合動畫演示)

  ●引導設問8通過上面的兩個問題我們可以得出原函數(shù)圖像與反函數(shù)圖像有什么關系?

  ▲學生總結,教師補充結論

 。1)一個函數(shù)若存在反函數(shù)則原函數(shù)和反函數(shù)的圖像關于y=x這條直線對稱。

 。2)一個函數(shù)若存在反函數(shù)則這兩個函數(shù)許違反寒暑,若把其中一個圖像當作原函數(shù)圖像則另一個圖象便是反函數(shù)圖像。

  習題精煉,深化概念

  ●引導設問9根據(jù)圖像判斷函數(shù)有沒有反函數(shù)?為什么?對自變量加上什么條件才能有反函數(shù)?

  〇學生活動學生從圖中可以發(fā)現(xiàn)在原函數(shù)中可以有兩個不等的自變量與同一個y相對應,當我們用y表示x后,對一個y會有兩個x與之對應,所以應加上自變量的范圍,使得原函數(shù)是從定義域到值域的一一映射。如:加上x>0;x

  ●引導設問10什么樣的函數(shù)具有反函數(shù)?

  ▲教師引導學生總結如果一個函數(shù)圖像關于y=x對稱后還能成為一個函數(shù)的圖像,那么這個函數(shù)就有反函數(shù),這個圖像就是反函數(shù)的圖像。這與反函數(shù)定義相對應。即定義域到值域的一一映射,這樣的函數(shù)具有反函數(shù),而單調函數(shù)具備這個特點,所以單調函數(shù)一定有反函數(shù)。

  ●引導設問11通過上圖我們發(fā)現(xiàn)保留圖像的單調增(減)的部分,那么它的反函數(shù)也為單調增(減)的。在看一下前面的幾個例子你能得到什么樣的結論?

  〇學生活動通過觀察學生容易得到"單調函數(shù)的反函數(shù)與原函數(shù)的單調性一致"然后教師進一步追問為什么?(由前面我們知道若一個函數(shù)存在反函數(shù)則x與y之間是一個對一個的關系,而原函數(shù)是增函數(shù)即x越大y也越大,當然y越大x也越大。)

  ●引導設問12由圖中原函數(shù)的圖像作出反函數(shù)的圖像,并回答原函數(shù)的定義域值域與反函數(shù)的定義域值域有什么關系?

  〇學生活動由上面結論很容易做出通過圖形的樣式使學生進一步認識到原函數(shù)的定義域值域是反函數(shù)的值域定義域。

  總結反思,納入系統(tǒng):

  內容總結:

  1、在原函數(shù)圖像上,那么(,)在反函數(shù)圖像上。

  2、與(,)關于y=x對稱。

  3、原函數(shù)和反函數(shù)的圖像關于y=x這條直線對稱。

  思想總結:

  由特殊到一般的思想,數(shù)形結合的思想

  布置作業(yè),承上啟下

  ●說明:教材中對反函數(shù)(第二課時:互為反函數(shù)的函數(shù)圖像間的關系)的處理是通過畫幾個特殊的函數(shù)圖像得出一般結論的。我認為這樣處理雖然可以使學生得出并記住這個結論,但學生對這個結論理解并不深刻。這樣處理也不利于培養(yǎng)學生嚴密的數(shù)學思維。而我對這節(jié)課的處理是在不增加教材難度的情況下(不嚴密證明)利用在原函數(shù)圖像上,那么(,)在反函數(shù)圖像上這一性質,從圖形上充分研究與(,)的關系。經(jīng)討論研究可得出結論"與(,)關于y=x對稱"。進而通過任意點的對稱得出原函數(shù)和反函數(shù)的圖像關于y=x這條直線對稱,另外利用任意點來研究圖像也是以后數(shù)學中經(jīng)常用到的方法。具體操作大致如下:首先請學生畫出y=3x-2的圖像,并求出反函數(shù),然后提出問題1:原函數(shù)中的自變量與函數(shù)值和反函數(shù)中的自變量函數(shù)值什么關系?學生很容易得出原函數(shù)與反函數(shù)中的自變量,函數(shù)值正好對調即:原函數(shù)y=3x-2中y:函數(shù)x:自變量,反函數(shù)中x:函數(shù)y:自變量。問題2:在原函數(shù)定義域內任給定一個都有唯一的一個與之對應,即在原函數(shù)圖像上,那么哪一點在反函數(shù)圖像上?對于這個問題有了上題的鋪墊,學生不難得出(,)在反函數(shù)圖像上。問題3:若連結B,G(,),則BG與y=x什么關系?點B與點G什么關系?為什么?點B再換一個位置行嗎?對于這個問題的設計重在幫助學生理解與(,)為什么關于y=x對稱,突出本課重點和難點。其它環(huán)節(jié)具體見教案。

高中數(shù)學說課稿15

  一、說教材

  1、教材的地位與作用《分類計數(shù)原理與分步計數(shù)原理》,是高中數(shù)學第十章排列、組合的第一節(jié)課。分類計數(shù)原理和分步計數(shù)原理是排列、組合的基礎,學生對這兩個原理的理解,掌握和運用,成為學好本章的一個關鍵。

  2、教學目標

 。1)知識目標掌握計數(shù)的兩個基本原理,并能正確的用它們分析和解決一些簡單的問題。

 。2)能力目標通過計數(shù)基本原理的理解和運用,提高學生分析問題和解決問題的能力,開發(fā)學生的邏輯思維能力。

 。3)情感目標培養(yǎng)學生勇于探索、勇于創(chuàng)新的精神,面對現(xiàn)實生活中復雜的事物和現(xiàn)象,能夠作出正確的分析,準確的判斷,進而拿出完善的處理方案,提高實際的應變能力。

  3、重點、難點重點是分類計數(shù)原理與分步計數(shù)原理難點是正確運用分類計數(shù)原理與分步計數(shù)原理

  二、說教法啟發(fā)引導式

  三、說學法指導學生運用觀察分析討論總結的學習方法。

  四、教具、學具多媒體

  五、教學程序

  1、提出課題——引入新課

  首先,提出本節(jié)課的課題分類計數(shù)原理與分步計數(shù)原理設計意圖:明確任務,激發(fā)興趣。

  2、觀察歸納——形成概念:

  首先,我結合圖給出問題1:

  問題1:從北京到上海,可以乘火車,也可以乘汽車。一天中有火車3班,汽車有2班。那么一天中,乘坐這些交通工具從北京到上海共有多少種不同的走法?(答案:3+2=5)由這個問題我們得到分類計數(shù)原理:完成一件事,有n類辦法,在第1類辦法中有m1種不同的方法,在第2類辦法中有m2種不同的方法‥‥‥,在第n類辦法中有mn種不同的方法,那么完成這件事共有:N=m1+m2++mn種不同的方法接下來,我再結合圖給出問題2:

  問題2:從北京到上海,要從北京先乘火車到鄭州,再于第二天從鄭州乘汽車到上海。一天中從北京到鄭州的火車有3班,從鄭州到上海的汽車有2班。那么兩天中,從北京到上海共有多少種不同的走法?(答案:3x2=6)。

  由這個問題我們得到分步計數(shù)原理:完成一件事,需要分成n個步驟,做第1步有m1種不同的方法,做第2步有m2種不同的方法‥‥‥,做第n步有mn種不同的方法,那么完成這件事共有N=m1×m2××mn種不同的'方法。

  設計意圖:由兩個實際問題,引導學生得到分類計數(shù)原理與分步計數(shù)原理,培養(yǎng)學生的觀察、歸納能力。

  3、比較歸納深化概念兩個原理的比較:

  1)共同點:都是計數(shù)原理,即統(tǒng)計完成某件事不同方法種數(shù)的原理,因此都要先弄清是怎樣一件事,如何才算完成這件事。

  2)不同點:分類計數(shù)原理中的n類辦法相互獨立,且每類里的每種方法都可獨立完成該事件;分步計數(shù)原理中的n個步驟缺一不可,每一步都不能獨立完成該件事,只有這n個步驟都完成之后,這件事才算完成。

  設計意圖:通過兩個原理的比較,讓更好的掌握原理的使用。

  4、學以致用——培養(yǎng)能力

  例1、書架的第一層放有4本不同的計算機書,第二層放有3本不同的文藝書,第3層放有2本不同的體育書。

  (1)從書架上任取1本書,有多少種不同的取法?

  (2)從書架的第1、2、3層各取1本書,有多少種不同的取法?(書架取書問題)引導學生分析解答,注意區(qū)分是分類還是分步。

  例2、一種號碼鎖有4個撥號盤,每個撥號盤上有從0到9共10個數(shù)字,這4個撥號盤可以組成多少個四位數(shù)字的號碼?

  例3、如圖是廣場中心的一個大花壇,國慶期間要在A、B、C、D四個區(qū)域擺放鮮花,有4種不同顏色的鮮花可供選擇,規(guī)定每個區(qū)域只準擺放一種顏色的鮮花,相鄰區(qū)域鮮花顏色不同,問共有多少種不同的擺花方案?

  設計意圖:為了使學生達到對知識的深化理解,從而達到鞏固提高的效果。

  5、任務后延——自主探究

  (1)填空:

 、僖患ぷ骺梢杂2種方法完成,有5人會第一種方法完成,另有4人會用第2種方法完成,從中選出1人來完成這件工作,不同的選法的種數(shù)是9。

  ②從A村去B村的道路有3條,從B村去C村的道路有2條,從A村經(jīng)B村去C村,不同走法的種數(shù)是6。

  (2)現(xiàn)有高中一年級的學生3名,高中二年級的學生5名,高中三年級的學生4名。

 、購闹羞x1人參加接待外賓的活動,有多少種不同的選法?12

 、趶3個年級各選1人參加接待外賓的活動,有多少種不同的選法?60

  (3)把(a1+a2+a3)(b1+b2+b3+b4+b5)(c1+c2+c3+c4)展開后不合并時共有多少項?60

  設計意圖:培養(yǎng)學生靈活運用所學知識解決實際問題的能力。

  6、總結反思——提高認識本節(jié)課學習了以下內容(1)分類計數(shù)原理(2)分步計數(shù)原理(3)兩個原理的比較(4)用兩個原理解題的步驟

  設計意圖:突出重點,幫助學生對所學知識系統(tǒng)化、條理化

  7、布置作業(yè)——知識拓展P97習題10。11,2,3題設計意圖:鞏固所學知識,發(fā)現(xiàn)和彌補教學中的遺漏和不足,培養(yǎng)學生良好的學習習慣。

  六、板書設計(略)

【高中數(shù)學說課稿】相關文章:

高中數(shù)學《集合》說課稿07-22

高中數(shù)學說課稿07-09

高中數(shù)學經(jīng)典說課稿優(yōu)秀11-20

高中數(shù)學說課稿06-25

高中數(shù)學《向量》說課稿01-06

高中數(shù)學說課稿05-20

關于高中數(shù)學說課稿11-26

(優(yōu))高中數(shù)學說課稿05-20

[熱]高中數(shù)學說課稿06-08

高中數(shù)學說課稿15篇11-05